DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES (MTH 406)

Mid Semester Examination (23/02/2020)

Time: 120 minutes
Maximum Marks: 30

Attempt all questions. Use separate page for each answer.

Problem-1: Are the following statements "True" or "False"? DO NOT write any justification or a proof.
(a). Any unit speed curve in \mathbb{R}^{3} with constant curvature is a part of circle.
(b). The normal curvature of a unit speed curve on a smooth surface depends only on the second fundamental form of the surface.
(c). The ellipse $\gamma(t)=(3 \cos (t), 5 \sin (t))$ has at least three vertex.
(d). Let S be a surface and P be a point on the surface. Let \mathcal{S} be the set of all curves on the surface which passes through P and obtained by the intersection of S with the plane which is normal to the tangent plane at P and passing through P. The normal curvature of any curve in \mathcal{S} is same at P..

Problem-2: Let $\left(a_{i j}\right)$ be a skew-symetric 3×3 matrix. Let X_{1}, X_{2} and X_{3} be smooth functions of a parameter s satisfying the differentail equations

$$
\dot{X}_{i}=\sum_{j=1}^{3} a_{i j} X_{j},
$$

for $i=1,2$ and 3 , and suppose that for some parameter value s_{0} the vectors $X_{1}\left(s_{0}\right), X_{2}\left(s_{0}\right)$ and $X_{3}\left(s_{0}\right)$ are orthonormal. Show that the vectors $X_{1}(s), X_{2}(s)$ and $X_{3}(s)$ are orthonormal for all values of s.

Problem-3: Show that applying an isometry of \mathbb{R}^{3} to a surface does not change its first fundamental form. What is the effect of a dialation (i.e., a map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ of the form $v \rightarrow a v$ for some constant real number $a \neq 0)$?

Problem-4: Give a definition of orientable surface.
Suppose that two smooth surfaces S_{1} and S_{2} are diffeomorphic and that S_{1} is orientable. Prove that S_{2} is also orientable.

Problem-5: Let

$$
S=\left\{(x ; y ; z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

be an unit sphere. Find the geodesic curvature of the circle in the unit sphere S, which is the intersection of the sphere with the plane $z=c$, where c is a constant real number and $-1<c<1$. Compare it with the curvature of the same circle considered as a curve in the space.

