DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES (MTH 406)
 ASSIGMENT-2

SUbMISSION DATE: 21-01-2020

Problem-A. Submit an answer of all problems.
(1) Show that, if the curvature $\kappa(t)$ of a regular curve $\gamma(t)$ is >0 everywhere, then $\kappa(t)$ is a smooth function of t. Give an example to show that this may not be the case without the assumption that $\kappa>0$.
(2) Let γ be a regular curve in \mathbb{R}^{3} with nowhere vanishing curvature. Show that, the image of γ is contained in a plane if and only if torsion τ is zero at every point of the curve.
(3) Solve excercise 2.1.1(i), 2.1.1(iii), 2.3.1, 2.3.2 from Chapter 2.
(4) Find an unit speed curve plane curve whose curvature function is $1 /\left(1+s^{2}\right)$.

Problem:B. You don't need to submit it.
(1) Let γ be a unit-speed curve in \mathbb{R}^{3} with constant curvature and zero torsion. Show that γ is (part of) a circle.
(2) Solve 2.2.1, 2.2.2, 2.2.4, 2.3.4, 2.3.5, 2.3.6 from Chapter 2.
(3) Find an unit speed curve space curve whose curvature and torsion function are $1 /\left(1+s^{2}\right)$.
(4) Find the curvature fuction for the curve $\gamma(t)=(t, \sin (t))$.

Text Book: Elementry Differential Geometry, Andrew Pressley 2nd edition

Date: 08-01-2020.

