FIELDS AND GALOIS THEORY (MTH 401)

QUIZ-2 (27/10/2020)

Time: 50 minutes Maximum Marks: 23

Notation:

- (1) $Aut(E/F) = \{ \sigma : E \to E : \sigma \text{ is an automorphism of } E \text{ and } \sigma|_F = Id_F \}.$
- (2) \mathbb{F}_p denotes the field of order p.
- (3) \mathbb{R} = field of real numbers, \mathbb{Q} = field of rational numbers .

Write down your Name and Roll number on the front page. Attempt all questions.

Problem-A:. Are the following claims **true** or **false**?

For the correct answer you will get 1 mark and for the wrong answer you will get -1 mark. (7)

- (1) Let $k \subset E$ be fields and $\alpha \in E$. Then $k[\alpha] = k(\alpha)$.
- (2) We can find fields $k \subset E \subset L$ such that $1 < [L : E] < \infty$ such that every element of L, which is algebraic over k, is in k.
- (3) Let E be a finite algebraic extension over a finite field k. The number of fields F such that $k \subset F \subset E$ may be infinite.
- (4) The cardinality of the set $Aut(\mathbb{Q}(\sqrt[5]{3})/\mathbb{Q})$ is 5.
- (5) If E/F is a finite extension of fields then F is perfect iff E is perfect.
- (6) \mathbb{R} has a field extension of odd degree > 1.
- (7) Let E be an algebraic extension over k then every polynomial in E[x] splits over k iff every polynomial in k[x] splits over k.

Problem-B:. For the correct answer you will get 2 mark and for the wrong answer you will get -1 mark. (8)

- (1) Let p be a prime and F_p be the field with p elements. For which prime p is the polynomial $z^2 + z + 1$ over F_p irreducible ?
 - A) 11
 - B) 13
 - C) 7
 - D) 31
- (2) The number of all degree 3 irreducible polynomials over \mathbb{F}_{11} is
 - A) 2520
 - B) 4400
 - C) 55
 - D) 11
- (3) The degree of $\mathbb{Q}(\sqrt{2}, \sqrt{6}, \sqrt{15})$ over \mathbb{Q} is.
 - A) 2
 - B) 4
 - C) 9
 - D) 8
- (4) If E be the splitting field of the polynomial $x^3 2$ over \mathbb{Q} . Then choose which statements is true.
 - A) $\sqrt{-1} \in E$.
 - B) $[E:\mathbb{Q}]=3$
 - C) $\frac{E[x]}{\langle x^2 \sqrt[3]{2} \rangle} \cong \frac{E[x]}{\langle 2x^2 \sqrt[3]{2}(\sqrt{-3} 1) \rangle}$
 - D) $\frac{E[x]}{\langle x^2 \sqrt[3]{2} \rangle} \cong \frac{E[x]}{\langle 2x^2 \sqrt[3]{3} \rangle}$

Problem-C:. Choose all correct answers. Multiple answer can be true. There is no minus marking. (8)

- (1) Let E be an algebraic extension over k. Then choose which statements are true.
 - A) If E is separable extension over k then E is normal extension over k.
 - B) If E is splitting field of a polynomial over k then E is normal extension.
 - C) If E is splitting field of a polynomial over k and char k = 0 then E is normal and separable over k.
 - D) If E is separable extension over k and for all $\alpha \in E$, $deg(irr(\alpha, k) \leq n$ then $[E:k] \leq n$.
- (2) Let E/k be a finite extension of fields. Which of the following assertions are correct:
 - A) If $E = k(\alpha)$, where α is a root of a separable polynomial in k[X], then E/k is separable.
 - B) There exists $\alpha \in E$ such that $E = k(\alpha)$.
 - C) For any embedding σ of k in an algebraically closed field L, there exists $\tau: E \to L$ which extends σ .
 - D) For any embedding σ of k in an algebraically closed field L, there exists infinitely many embedding $\tau : E \to L$ which extends σ .
- (3) Let E be an algebraic extension over a finite field k. Which of the following assertions are correct:
 - A) E is separable over k.
 - B) E is normal over k.
 - C) If E is finite extension over k then E is normal extension.
 - D) If the cardinality of Aut(E/k) is n then [E:k] = n.
- (4) Which of the following statements are correct:

A)
$$\frac{\mathbb{Q}[x]}{\langle x^2 - 5 \rangle} \cong \mathbb{Q}(\sqrt{7})$$

B) $\frac{\mathbb{F}_3[x]}{\langle x^3 - x + 1 \rangle} \cong \frac{\mathbb{F}_3[x]}{\langle x^3 - x - 1 \rangle}$
C) $\frac{\mathbb{Q}[x]}{\langle x^2 + 5 - 1 \rangle} \cong \frac{\mathbb{Q}[x]}{\langle x^2 + 5 - 1 \rangle}$

 $\bigvee_{x^2+x+1>} = \frac{1}{\langle x^2+5x+7>}.$

D)
$$\frac{\mathbb{Q}[x]}{\langle x^2 - 2 \rangle} \cong \frac{\mathbb{Q}[x]}{\langle x^2 - 3 \rangle}$$