FIELDS AND GALOIS THEORY (MTH 401)
 ASSIGMENT-2

SUBMISSION DATE: 13/09/2020
Problem-A. Submit an answer of all problems.
(1) Let F be a finite field with characteristic p. Prove that the number of elements in F is p^{n} for some positive integer n.
(2) Determine irreducible monic polynomials over \mathbb{Q} for $1+i, 2+\sqrt{3}$, and $1+\sqrt[3]{2}+\sqrt[3]{4}$. For any two prime numbers p and q, show that $\sqrt{p}+\sqrt{q}$ is algebraic over \mathbb{Q}.
(3) Let F be an extension field of K. If $\alpha \in F$ is transcendental over K, then show that every element of $K(\alpha)$ that is not in K is also transcendental over K. Here $K(\alpha)$ is the smallest fields containing K ans α.
(4) Let K / F be an algebraic field extension and R be a ring such that $F \subset$ $R \subset K$. Show that R is a field. What happens if we do not assume that F is algebraic over K ?
(5) Let $\beta \in \mathbb{C}$ be a root of the equation $X^{2}+2=0$. Show that

$$
\mathbb{Q}[\beta]:=\{a+\beta b: a, b \in \mathbb{Q}\}
$$

is a field.
(6) Let E / K be a field extension and $\alpha \in E$ is algebraic over K. Show that for any polynomial $f(x) \in K[x], f(\alpha) \in E$ is algebraic over K.
(7) Consider the subfield $F\left(X^{2}\right) \subset F(X)$. Is X algebraic over $F\left(X^{2}\right)$?
(8) Show that the degree of the field extension $\mathbb{C} / \mathbb{Q}(i)$ is infinite.
(9) Let k be a field and x be an indeterminate. Let $y=\frac{x^{3}}{(x+1)}$. Find the minimal polynomial of x over $k(y)$.
(10) Let S denote the elements in \mathbb{C} which are algebraic over \mathbb{Q}. Then S is a countable set.
(11) Construct finite fields of order 9 and 27 . Write down multiplication tables for the fields with 9 elements and verify that the multiplicative groups of this field is cyclic. Can you find two non isomorphic fields of order 9 ?

Date: 30-08-2020.

Problem:B. You don't need to submit it.
(1) For any prime number p, show that the polynomial $x^{2}-p$ has no solution in \mathbb{Q}.
(2) Let F be an extension field of K, and let u be a nonzero element of F that is algebraic over K. Show that u^{-1} is also algebraic over K.
(3) Let $\alpha \in \mathbb{C}$ and define,

$$
\mathbb{Q}[\alpha]=\{f(\alpha): f \text { is a polynomial over } \mathbb{Q}, f \in \mathbb{Q}[x]\} .
$$

Show that $\mathbb{Q}[\alpha]$ is the smallest ring containing \mathbb{Q} an α. Prove that $\mathbb{Q}[\alpha]$ is a finite dimensional vector space over \mathbb{Q} if and only if α is algebraic over \mathbb{Q}. Also show that $\mathbb{Q}[x]$ is a field if x is algebraic over \mathbb{Q}.
(4) Let $f:\left[\begin{array}{ll}0 & 1\end{array}\right] \rightarrow \mathbb{R}$ be a non-constant continuous function. Show that the set $f\left(\left[\begin{array}{ll}0 & 1\end{array}\right]\right):=\left\{f(a): a \in\left[\begin{array}{ll}0 & 1\end{array}\right]\right\}$ contains a number transcendental over \mathbb{Q}.
(5) More useful version of Gauss Lemma:

Let $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial. Then show that $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Note that for a polynimal $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, The content of $f(x)$ is defined to be the integers,

$$
\operatorname{cont}(f):=\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)
$$

If $\operatorname{cont}(f)=1$, we say that $f(x)$ is a primitive polynomial.
(6) Show that $[\mathbb{C}: \mathbb{R}]=2$.

