FIELDS AND GALOIS THEORY (MTH 401) ASSIGMENT-2

SUBMISSION DATE: 13/09/2020

Problem-A. Submit an answer of all problems.

- (1) Let F be a finite field with characteristic p. Prove that the number of elements in F is p^n for some positive integer n.
- (2) Determine irreducible monic polynomials over \mathbb{Q} for $1 + i, 2 + \sqrt{3}$, and $1 + \sqrt[3]{2} + \sqrt[3]{4}$. For any two prime numbers p and q, show that $\sqrt{p} + \sqrt{q}$ is algebraic over \mathbb{Q} .
- (3) Let F be an extension field of K. If $\alpha \in F$ is transcendental over K, then show that every element of $K(\alpha)$ that is not in K is also transcendental over K. Here $K(\alpha)$ is the smallest fields containing K ans α .
- (4) Let K/F be an algebraic field extension and R be a ring such that $F \subset R \subset K$. Show that R is a field. What happens if we do not assume that F is algebraic over K?
- (5) Let $\beta \in \mathbb{C}$ be a root of the equation $X^2 + 2 = 0$. Show that $\mathbb{Q}[\beta] := \{a + \beta b : a, b \in \mathbb{Q}\}$

is a field.

- (6) Let E/K be a field extension and $\alpha \in E$ is algebraic over K. Show that for any polynomial $f(x) \in K[x], f(\alpha) \in E$ is algebraic over K.
- (7) Consider the subfield $F(X^2) \subset F(X)$. Is X algebraic over $F(X^2)$?
- (8) Show that the degree of the field extension $\mathbb{C}/\mathbb{Q}(i)$ is infinite.
- (9) Let k be a field and x be an indeterminate. Let $y = \frac{x^3}{(x+1)}$. Find the minimal polynomial of x over k(y).
- (10) Let S denote the elements in \mathbb{C} which are algebraic over \mathbb{Q} . Then S is a countable set.
- (11) Construct finite fields of order 9 and 27. Write down multiplication tables for the fields with 9 elements and verify that the multiplicative groups of this field is cyclic. Can you find two non isomorphic fields of order 9?

Date: 30-08-2020.

Problem:B. You don't need to submit it.

- (1) For any prime number p, show that the polynomial $x^2 p$ has no solution in \mathbb{Q} .
- (2) Let F be an extension field of K, and let u be a nonzero element of F that is algebraic over K. Show that u^{-1} is also algebraic over K.
- (3) Let $\alpha \in \mathbb{C}$ and define,

 $\mathbb{Q}[\alpha] = \{ f(\alpha) : f \text{ is a polynomial over } \mathbb{Q}, f \in \mathbb{Q}[x] \}.$

Show that $\mathbb{Q}[\alpha]$ is the smallest ring containing \mathbb{Q} an α . Prove that $\mathbb{Q}[\alpha]$ is a finite dimensional vector space over \mathbb{Q} if and only if α is algebraic over \mathbb{Q} . Also show that $\mathbb{Q}[x]$ is a field if x is algebraic over \mathbb{Q} .

- (4) Let $f : [0 \ 1] \to \mathbb{R}$ be a non-constant continuous function. Show that the set $f([0 \ 1]) := \{f(a) : a \in [0 \ 1]\}$ contains a number transcendental over \mathbb{Q} .
- (5) More useful version of Gauss Lemma:
 - Let $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial. Then show that f(x) is irreducible in $\mathbb{Z}[x]$ if and only if f(x) is irreducible in $\mathbb{Q}[x]$.

Note that for a polynimal $f(x) = \sum_{i=0}^{n} a_i x^i$, The content of f(x) is defined to be the integers,

$$\operatorname{cont}(f) := \gcd(a_0, \dots, a_n).$$

If cont(f) = 1, we say that f(x) is a primitive polynomial.

(6) Show that $[\mathbb{C}:\mathbb{R}]=2$.