FIELDS AND GALOIS THEORY (MTH 401) ASSIGMENT-1

SUBMISSION DATE: 28/08/2020
Problem-A. Submit an answer of all problems.
(1) Let F be a finite field of order q and let $f(x)$ be a polynomial in $F[x]$ of degree $n \geq 1$. Prove that $F[x] /(f(x))$ has q^{n} elements.
(2) Prove that if $f(x)$ and $g(x)$ arc polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer.
(3) Let p be a prime and consider the polynomial $\phi_{p}(x)=1+x+x^{2}+\cdots+$ $x^{p-2}+x^{p-1}$. Show that it is irreducible polynomial.
(4) Show that the polynomial $x^{4}+10 x+5$ is irreducible over \mathbb{Z}.
(5) Show that the polynomial $(x-1)(x-2) \ldots(x-n)-1$ is irreducible over \mathbb{Z} for all $n \geq 1$.
(6) Prove that $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field which is isomorphic to the complex numbers.
(7) Show that if a rational number $\frac{p}{q}$, where p, q are relatively prime integers, is a solution of an equation $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}=0$ with integer coefficients a_{i}, then p divides a_{0} and q divides a_{n}.
Problem:B. You don't need submit it.
(1) Find all the monic irreducible polynomials of degree ≤ 3 in $(\mathbb{Z} / 2 \mathbb{Z})[x]$, and the same in $(\mathbb{Z} / 2 \mathbb{Z})[x]$.
(2) Show that if a reduction of a monic polynomial $f(x) \in \mathbb{Z}[x]$ modulo a prime number p is irreducible as a polynomial in $(\mathbb{Z} / 2 \mathbb{Z})[x]$, then $f(x)$ is irreducible in $\mathbb{Q}[X]$.
(3) Show that over every field there exists infinitely many irreducible polynomials.

