COMPLEX VARIABLES (MTH 204)

DR. SANJAY KUMAR SINGH

Assignment-4

Submission and Discussion Date: 04-02-2023

Problem 1. Solve problem 2.b, 2.d,4.b, from Page-70-71, Section24, Chapter 2.
Problem 2. Solve problems 1.b, 1.d, 2.b, 7 from Page-76-77, Section-26, Chapter 2.
Problem 3. Solve problems 1, 4, 5 from Page-84-85, Section-29, Chapter 2.
Problem 4. Solve all problems.
(a) Suppose that v is a harmonic conjugate of u in a domain D and also that u is a harmonic conjugate of v in D. Show that both $u(x, y)$ and $v(x, y)$ must be constant throughout D.
(b) Show that v is a harmonic conjugate of u in a domain D if and only if $-u$ is a harmonic conjugate of v in D.
(c) Show that
(a) $\exp (2 \pm 3 \pi i)=-e^{2}$;
(b) $\exp (z+\pi i)=-\exp z$.
(d) Find all values of z such that
(a) $e^{z}=-2$;
(b) $e^{z}=1+\sqrt{3} i$.
(e) (a) Show that if e^{z} is real, then $\operatorname{Im} z=n \pi(n=0, \pm 1, \pm 2, \cdots)$.
(b) If e^{z} is purely imaginary, what restriction is placed on z ?
(f) Show that
(a) $\log (-e i)=1-\frac{\pi}{2} i$;
(b) $\log (1-i)=\frac{1}{2} \ln 2-\frac{\pi}{4} i$;
(c) $\log e=1+2 n \pi i \quad(n=0, \pm 1, \pm 2, \cdots)$;
(d) $\log i=\left(2 \pi+\frac{1}{2}\right) \pi i \quad(n=0, \pm 1, \pm 2, \cdots)$.

Text Book: R. V. Churchill and J. W. Brown, Complex variables and applications, McGraw-Hill, 2003, 9th Indian Edition.
Note: Assignment submission is not compulsory. If you submit the assignment, Tutor will check it and mark your mistakes. It will be very helpful in the examination.

