QUIZ-2

Introduction to Groups and Symmetry (MTH 203)

30-10-2019

Total Marks: 10

Time: 55 Minutes

Solve all Problems.

Problem-A. For each of the following statements indicate whether it is TRUE or FALSE. You DO NOT need to provide justification for your answers in this problem.
(1) Let H be a normal subgroup of a cyclic group G. Then G / H need not be cyclic.
(2) Let G be a finite group and $\phi: G \rightarrow G$ be a group isomorphism. If ϕ fixes more than half of the elements of a G, then it is the identity automorphism.
(3) Let G be the cyclic group of order 120. It has more then 2 subgroups of order 3.
(4) Let H be the subgroup of all isometries of \mathbb{R}^{2} that fixes the origin. Then

$$
H \cong O(2) .
$$

(5) An isometry of \mathbb{R}^{2} is determined by its value on any three non-collinear points.

Note: A map $f: X \rightarrow X$ fixes an element $x \in X$ means $f(x)=x$.
Problem-B. Solve all questions.
(1) Let G be a group and $x, y \in G$. Let $z=x y \in Z(G)$, then show that x and y commute.
(2) Consider the line

$$
\begin{equation*}
L=\left\{(x ; y) \in \mathbb{R}^{2}: 3 x-y=0\right\} . \tag{3}
\end{equation*}
$$

Write down the reflection map $R_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponding to L.

