INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

Quiz-1

Total Marks: 10

Time: 55 Minutes

Solve all Problems.

Problem-A. Are the following statements True or False? DO NOT write any justification or a proof.
(3 Marks)
(1) Union of two subgroups of a group is always a subgroup.
(2) Let G be a finite group with an element of order 2. The order of G cannot be odd.
(3) Any equivalence relation on a set X gives a partition of X.
(4) Every subset of a group G is a subgroup of G.
(5) If G has no nontrivial subgroups then the order of G can be infinite.
(6) There exists a group homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(3)=6$ and $f(133)=399$.

Answer:

(1) False
(2) True
(3) True
(4) False
(5) False
(6) False

Problem-B. Let S_{4} be the group of permutations on the set $\{1,2,3,4\}$.
(1) Compute the product $(3,4,1,2)(1,3,4,2)$ in S_{4}.
(2) Find the inverse of $(3,1,4,2)$ in S_{4}. Hint: write $(3,1,4,2)$ as a map and find inverse of that map and then write cycle notation.
(3) Find the order of $(3,1,4,2)$ in S_{4}.

Answer:

(1) $(4,2,1,3)$.
(2) Now let $\sigma=(3,1,4,2)$ means that

$$
\begin{aligned}
& \sigma(1)=3, \\
& \sigma(2)=1, \\
& \sigma(3)=4, \\
& \sigma(4)=2 .
\end{aligned}
$$

Now The inverse of σ as a set map is,

$$
\begin{gathered}
\sigma^{-1}(1)=2 \\
\sigma^{-1}(2)=4 \\
1
\end{gathered}
$$

$$
\begin{aligned}
& \sigma^{-1}(3)=1 \\
& \sigma^{-1}(4)=3
\end{aligned}
$$

Hence the inverse of $(3,1,4,2)$ is $(2,4,1,3)$.
(3) To compute the order of $(3,1,4,2)$ we have to find smallest n such that $(3,1,4,2)^{n}=(1,2,3,4)$.

$$
(3,1,4,2)(3,1,4,2)=(4,3,2,1)
$$

$(3,1,4,2)(3,1,4,2)(3,1,4,2)=(4,3,2,1)(3,1,4,2)=(2,4,1,3)$,
$(3,1,4,2)(3,1,4,2)(3,1,4,2)(3,1,4,2)=(2,4,1,3)(3,1,4,2)=(1,2,3,4)$.
Hence $o((3,1,4,2))=4$.
Problem-C. Let $f: G \rightarrow G$ be a group homomorphism. Let $a \in G$ be a nonidentity element. Show that order of $f(a)$ divides the order of a.

Show that there are no non-zero (non-trivial) group homomorphism from $S_{3} \rightarrow$ G, where G is a group of order 217 .
($2+1$ Marks)
Answer: Let $o(a)=n$ and $o(f(a)=m$.

$$
(f(a))^{n}=f\left(a^{n}\right)=f(e)=e,
$$

implies $o(f(a) \leq o(a)$. Also by division algorithm we get q, r such that

$$
n=m q+r
$$

where $0 \leq r<m$ (why $r \geq 0$?). So

$$
(f(a))^{n}=f(a)^{q m+r}=\left(f(a)^{m}\right)^{q}(f(a))^{r}=(f(a))^{r},
$$

which implies that $r=0$. Hence $m \mid n$.
Note that order of S_{3} is 6 and order of G is 217 . So by corolllary of Lagrange's theorem possible order of any element in S_{3} can be $\{1,2,3\}$ and in G can be $\{1,7,31\}$.

Note that the above result can be proved for any $f: G_{1} \rightarrow G_{2}$ using the same method.

Suppose there exists any non trivial homomorphism so we get $a \in S_{3}$ such that $f(a) \neq e$ is not identity. By above result $o(f(a)$ should divide the order of a. Which only possible if $o(f(a))=1$ i.e. $f(a)=e$.

