INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

Mid Semester Examination

Total Marks: 98
Time: 11.15 AM to 1.15 PM
Date: 02/10/2019

Instructions: Solve all problems. Please write all steps properly. If you are using any theorem, fact, formula then write a complete statement.

Problem-A. For each of the following statements indicate whether it is TRUE or FALSE. You DO NOT need to provide justification for your answers in this problem.
(1) Subtraction - is a binary operation on \mathbb{Z}.
(2) There exists no nonzero group homomorphism from \mathbb{Z}_{5} to \mathbb{Z}_{13}.
(3) There is no isomorphism from $(\mathbb{Q},+) \rightarrow(\mathbb{R},+)$.
(4) If $m, n, x, y \in \mathbb{Z}$ are such that $m x+n y=1$ then $\operatorname{gcd}(m, n)=1$.
(5) Any subgroup of an abelian group is always normal subgroup.
(6) Any permutation of order ≥ 12 can be written as product of disjoint transpositions.
(7) Two groups are isomorphic if both have same number of element.
(8) Let G_{1} and G_{2} are two groups and G_{1} has no proper nontrivial subgroup. There exists a non zero group homomorphism $\phi: G_{1} \rightarrow G_{2}$ which is not one-one.
(9) $4^{15}-1$ is divisible by 31 .
(10) There is a group homomorphism $\phi:(\mathbb{Z},+) \rightarrow\left(\mathbb{Q}^{*}, \cdot\right)$ such that $\phi(2)=\frac{1}{9}$.

Problem-B. Solve all questions.
(1) Let G be a group and H, N are subgroups of G such that N is normal subgroup. Show that $H N$ is a subgroup of G.

State the second isomorphism theorem.
(2) Let G be a group and H be a subgroup of G. Let

$$
\begin{equation*}
N=\bigcap_{x \in G} x H x^{-1} . \tag{10}
\end{equation*}
$$

Prove that N is a normal subgroup of G.
(3) What is the largest possible order of a permutation in S_{7} ? Write down an explicit element of this order.
(4) Suppose that H is a subgroup of G such that whenever $H a \neq H b$ then $a H \neq b H$, where $a, b \in G$. Prove that $g H^{-1} \subset H$ for all $g \in G$.
(5) Prove or disprove: $U_{20} \simeq U_{15}$.
(6) Show that any cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_{m}.
(7) Let $\phi: G_{1} \rightarrow G_{2}$ be an isomorphism.

- Show that $\phi^{-1}: G_{2} \rightarrow G_{1}$ is an isomorphism.
- Argue that $o\left(G_{1}\right)=o\left(G_{2}\right)$.
- Show that $o(\phi(a))=o(a) \forall a \in G_{1}$.

$$
(6+3+3)
$$

