INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

PRACTICE PROBLEM SET FOR REVISION

Problems:

(1) Let (G, \circ) be a group. Define an operation * on G by

$$g \ast h = h \circ g$$

Show that (G, *) is a group and

$$(G, \circ) \cong (G, *).$$

Hint: Define a map $g \mapsto g^{-1}$ from (G, \circ) to (G, *).

- (2) Let G be a group and $g_1, g_2 \in G$. Show that $o(g_1g_2) = o(g_2g_1)$.
- (3) If G and H are groups with coprime finite orders, then there exists no non zero group homomorphism from G to H.
- (4) Find all group homomorphism from
 - $\mathbb{Z}_2 \to \mathbb{Z}_4$.

•
$$\mathbb{Z}_2 \to \mathbb{Z}_5$$

•
$$\mathbb{Z}_4 \to \mathbb{Z}_4$$
.

- (5) Let G be the cyclic group of order 12. How many subgroups of G have order 3? Explain.
- (6) Using method defined in Cayley's theorem, write down an explicit injective homomorphism $S_3 \to S_6$.
- (7) Let G be a finite abelian group whose order is divisible by the prime number p. Show G has an element of order p.
 Hint: Use induction on the order of G. Let g(≠ e) ∈ G, then p divides the order of < g > or G/ < g >.
- (8) Let $G = G_1 \times G_2$ be a finite group with $gcd(|G_1|, |G_2|)) = 1$. Then every subgroup H of G is of the form $H = H_1 \times H_2$ where H_1, H_2 are subgroups of G. Show by example if $gcd(|G_1|, |G_2|) \neq 1$ then above result need not be true.

Date: 12-10-2019.

- (9) Prove or disprove: the set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subgroup of $(\mathbb{C}, +)$.
- (10) Let $\phi: G \to G$ be an isomorphism. Show that the set

$$H = \{g \in G : \phi(g) = g\}$$

is a subgroup of G.

- (11) If an automorphism fixes more than half of the elements of a finite group, then it is the identity automorphism.
- (12) Let $x, y \in G$ and let xy = z if $z \in Z(G)$, then show that x and y commute.
- (13) Let G = the set of all bijective maps from \mathbb{R} to \mathbb{R} which fixes almost all elements except finite. $\phi \in G$ means $\phi : \mathbb{R} \to \mathbb{R}$ is a bijective map and the set $\{x \in \mathbb{R} : \phi(x) = x\}$ is a finite subset set of \mathbb{R} . Prove or disprove: G is a group under composition.
- (14) Prove that if K is a normal subgroup of the group G, then the centre Z(K) of K is a normal subgroup of G. Show by an example that Z(K) need not be contained in Z(G).
 Hint: Z(A₃) = A₃ but Z(S₃) = 1.
- (15) Let G be a group of order n and let m be an integer relatively prime to n. Show that if $x^m = y^m$, then x = y. Hence show that for each $z \in G$ there is a unique $x \in G$ such that $x^m = z$.
- (16) Let H and K are normal subgroups of G. Then $H \cap K$ is also normal subgroup of G.

Define a map,

$$\begin{split} \phi: G/(H\cap K) \to G/H \times G/K \\ g(H\cap K) \mapsto (gH,gK) \end{split}$$

for all $g \in G$. Show that ϕ is an injective homomorphism. Using it deduce that if G/H and G/K both are abelian, then $G/H \cap K$ also abelian.

(17) Fix a set X and write P(X) for the set of all subsets of X. This is called the power set of X. Define a product on P(X) by the rule

$$A \bullet B := A \cup B - A \cap B.$$

Show that P(X) is a group with respect to \bullet .

(18) Let (G, \bullet) be a group and X any set. Let S be the set of all set maps from X to G. Define a binary operation * on S by

$$(f * g)(x) := f(x) \bullet g(x).$$

Is (S, *) a group? If so, prove that it is. If not, give an axiom which is violated and prove that this is so.

- (19) Let $g \in G$ with o(g) = nm where n, m are co-prime positive integers. Show that there are elements $g_1; g_2 \in G$ such that $g = g_1g_2 = g_2g_1$ and $o(g_1) = n, o(g_2) = m$.
- (20) Determine the order of each of the following quotient groups:
 - $\mathbb{Z}_8 / < \bar{4} >$ • $\mathbb{Z}_8 / < \bar{3} >$

Are these groups cyclic?

(21) Let G_1 and G_2 are two groups. Define an operation on $G_1 \times G_2$ by,

$$(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2),$$

where $g_1, h_1 \in G_1$ and $g_2, h_2 \in G_2$. Show that $G_1 \times G_2$ is a group with respect to the above defined operation.

Let G be a group. Define $H = \{(g,g) \in G \times G : g \in G\}$. Show that H is a subgroup of $G \times G$. Show also that, H is normal in $G \times G$ iff G is abelian.

- (22) Let H be a normal subgroup of the group G. Show that if $x, y \in G$ such that $xy \in H$, then $yx \in H$.
- (23) Let H and K be subgroups of G and $x, y \in G$ with Hx = Ky. Then show that H = K.
- (24) Let H be a subgroup of the group $G, g \in G$ such that o(g) = n and $g^m \in H$ where m, n are coprime intergers. Then show that $g \in H$.
- (25) Find the subgroup of S_5 generated by (3,1) and (1,5). Is it isomorphic to S_3 ? Explain your answer.
- (26) For each of the following statements either prove the statement or give a counterexample.
 - If H is a proper subgroup of G then $H \cong G$.
 - If G is a group such that every element of G has finite order, then the oder of G is finite.
 - If G is a finite group and n devides the order of the group then G has an element of order n.
 - If G is an infinite group then G has at least two distinct normal subgroups.
 - If H and K are conjugate subgroups of G then $H \cong K$.
 - Any two cycles of length 4 are conjugate in A_5 .
 - A_4 is simple group.
 - Let G be a group of order 15 then G contains an element of order 3.