INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

PRACTICE PROBLEM SET FOR REVISION

Problems:

(1) Let (G, \circ) be a group. Define an operation $*$ on G by

$$
g * h = h \circ g
$$

Show that $(G, *)$ is a group and

$$
(G, \circ) \cong (G, *).
$$

Hint: Define a map $g \mapsto g^{-1}$ from (G, \circ) to $(G, *)$.

- (2) Let G be a group and $g_1, g_2 \in G$. Show that $o(g_1g_2) = o(g_2g_1)$.
- (3) If G and H are groups with coprime finite orders, then there exists no non zero group homomorphism from G to H .
- (4) Find all group homomorphism from

$$
\bullet\ \mathbb{Z}_2 \to \mathbb{Z}_4.
$$

$$
\bullet \ \mathbb{Z}_2 \to \mathbb{Z}_5.
$$

$$
\bullet\ \mathbb{Z}_4 \rightarrow \mathbb{Z}_4.
$$

- (5) Let G be the cyclic group of order 12. How many subgroups of G have order 3? Explain.
- (6) Using method defined in Cayley's theorem, write down an explicit injective homomorphism $S_3 \to S_6$.
- (7) Let G be a finite abelian group whose order is divisible by the prime number p . Show G has an element of order p . Hint: Use induction on the order of G. Let $g(\neq e) \in G$, then p divides the order

of $g >$ or $G / < g >$.

(8) Let $G = G_1 \times G_2$ be a finite group with $gcd(|G_1|, |G_2|)) = 1$. Then every subgroup H of G is of the form $H = H_1 \times H_2$ where H_1, H_2 are subgroups of G. Show by example if $gcd(|G_1|, |G_2|)) \neq 1$ then above result need not be true.

Date: 12-10-2019.

- (9) Prove or disprove: the set $\mathbb{Q}(\sqrt{2})$ $(2) = \{a + b\}$ $\sqrt{2}$: $a, b \in \mathbb{Q}$ is a subgroup of $(\mathbb{C}, +)$.
- (10) Let $\phi: G \to G$ be an isomorphism. Show that the set

$$
H = \{ g \in G : \phi(g) = g \}
$$

is a subgroup of G .

- (11) If an automorphism fixes more than half of the elements of a finite group, then it is the identity automorphism.
- (12) Let $x, y \in G$ and let $xy = z$ if $z \in Z(G)$, then show that x and y commute.
- (13) Let $G =$ the set of all bijective maps from $\mathbb R$ to $\mathbb R$ which fixes almost all elements except finite. $\phi \in G$ means $\phi : \mathbb{R} \to \mathbb{R}$ is a bijective map and the set ${x \in \mathbb{R} : \phi(x) = x}$ is a finite subset set of R. Prove or disprove: G is a group under composition.
- (14) Prove that if K is a normal subgroup of the group G, then the centre $Z(K)$ of K is a normal subgroup of G . Show by an example that $Z(K)$ need not be contained in $Z(G)$. Hint: $Z(A_3) = A_3$ but $Z(S_3) = 1$.
- (15) Let G be a group of order n and let m be an integer relatively prime to n. Show that if $x^m = y^m$, then $x = y$. Hence show that for each $z \in G$ there is a unique $x \in G$ such that $x^m = z$.
- (16) Let H and K are normal subgroups of G. Then $H \cap K$ is also normal subgroup of G.

Define a map,

$$
\phi: G/(H \cap K) \to G/H \times G/K
$$

$$
g(H \cap K) \mapsto (gH, gK)
$$

for all $g \in G$. Show that ϕ is an injective homomoprphism. Using it deduce that if G/H and G/K both are abelian, then $G/H \cap K$ also abelian.

(17) Fix a set X and write $P(X)$ for the set of all subsets of X. This is called the power set of X. Define a product on $P(X)$ by the rule

$$
A \bullet B := A \cup B - A \cap B.
$$

Show that $P(X)$ is a group with respect to \bullet .

(18) Let (G, \bullet) be a group and X any set. Let S be the set of all set maps from X to G. Define a binary operation $*$ on S by

$$
(f * g)(x) := f(x) \bullet g(x).
$$

Is $(S, *)$ a group? If so, prove that it is. If not, give an axiom which is violated and prove that this is so.

- (19) Let $q \in G$ with $o(q) = nm$ where n, m are co-prime positive integers. Show that there are elements $g_1; g_2 \in G$ such that $g = g_1g_2 = g_2g_1$ and $o(g_1) = n, o(g_2) = m$.
- (20) Determine the order of each of the following quotient groups:
	- $\mathbb{Z}_8/<\overline{4}>$ \bullet Z₈/ $< \bar{3}$ $>$

Are these groups cyclic?

(21) Let G_1 and G_2 are two groups. Define an operation on $G_1 \times G_2$ by,

$$
(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2),
$$

where $g_1, h_1 \in G_1$ and $g_2, h_2 \in G_2$. Show that $G_1 \times G_2$ is a group with respect to the above defined operation.

Let G be a group. Define $H = \{(g, g) \in G \times G : g \in G\}$. Show that H is a subgroup of $G \times G$. Show also that, H is normal in $G \times G$ iff G is abelian.

- (22) Let H be a normal subgroup of the group G. Show that if $x, y \in G$ such that $xy \in H$, then $yx \in H$.
- (23) Let H and K be subgroups of G and $x, y \in G$ with $Hx = Ky$. Then show that $H = K$.
- (24) Let H be a subgroup of the group $G, g \in G$ such that $o(g) = n$ and $g^m \in H$ where m, n are coprime intergers. Then show that $q \in H$.
- (25) Find the subgroup of S_5 generated by $(3,1)$ and $(1,5)$. Is it isomorphic to S_3 ? Explain your answer.
- (26) For each of the following statements either prove the statement or give a counterexample.
	- If H is a proper subgroup of G then $H \cong G$.
	- If G is a group such that every element of G has finite order, then the oder of G is finite.
	- If G is a finite group and n devides the order of the group then G has an element of order n.
	- If G is an infinite group then G has at least two distinct normal subgroups.
	- If H and K are conjugate subgroups of G then $H \cong K$.
	- Any two cycles of length 4 are conjugate in A_5 .
	- A_4 is simple group.
	- Let G be a group of order 15 then G contains an element of order 3.