INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

MID SEMESTER PRACTICE PROBLEM

PROBLEM SET-2 (PERMUTATION GROUP)

- (1) Let σ and τ be two permutations in S_n . Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ is even permutation.
- (2) Let σ and τ be two permutations in S_n . Show that $\sigma\tau$ is an even permutation if and only if σ and τ are both even, or both odd.
- (3) Express each of the following permutations and their inverse as a product of disjoint cycles. Also compute the order. Write them as product of transposition. Classify all even permutation.
 - $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 4 & 6 & 3 & 7 & 2 & 9 & 5 & 8 & 10 \end{pmatrix}.$
 - $(1,4,5)(5,3,2)(2,1,6) \in S_6.$
 - $(1,2)(2,3)(4,3)(5,7)(2,4)(6,1) \in S_7$.
- (4) Find the order of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 2 & 5 & 4 & 6 & 8 & 9 & 10 & 1 & 3 \end{pmatrix}$. For $\tau = (3, 7, 8)$, compute $\sigma\tau\sigma^{-1}, \tau\sigma\tau^{-1}$ and their order. Are they even permutation?
- (5) What is the largest possible order of a permutation in S_{10} ? Write down an explicit element of this order.
- (6) Find number of all elements of order 4 in A_6 .
- (7) How many elements of order 5 are in S_7 ?
- (8) Let $\sigma = (1, 3, 5, 7, 9) \in S_{10}$. Find the number of element in S_{10} which commutes with σ .
- (9) Show that S_{11} contains no elements of order 16.
- (10) Show that S_{10} has elements of order 10, 12, and 14, but not 11 or 13.

Date: 13-09-2019.

- (11) Find the number of elements of order 16 in S_{16} .
- (12) Find the number of elements of order 35 is S_{12} .
- (13) Find the number of permutations in S_{10} commuting with a cycle of lenth 5.
- (14) Find the number of even permutations in S_n which commute with a cycle of lenth r.
- (15) Let H be a subgroup of S_n all of whose nonidentity permutations are odd. Show that o(H) = 1 or 2.
- (16) Find the number of conjugacy classes of A_4 and A_5 .
- (17) Do A_n and S_n contain same number of conjugacy classes? Justify your answer.
- (18) Show that $Z(S_n) = I, n \ge 3$.
- (19) Show that $Z(A_n) = I, n \ge 4$.
- (20) Show that S_n is generated by a transposition and a cycle of length n.
- (21) In S_n prove that there are $\frac{1}{r} \frac{n!}{(n-r)!}$ distinct r cycles.
- (22) Let $\sigma = (i_1, i_2, ..., i_k) \in S_n$ be a cycle of lenght k. Show that any permutation of the form $\sigma^j \tau$ where $\tau \in S_n$ fixes all $i_1, i_2, ..., i_k$ and j is any interger commutes with σ .