INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

Mid Semester Practice Problem

Problem Set-2 (Permutation Group)
(1) Let σ and τ be two permutations in S_{n}. Show that $\sigma \tau \sigma^{-1} \tau^{-1}$ is even permutation.
(2) Let σ and τ be two permutations in S_{n}. Show that $\sigma \tau$ is an even permutation if and only if σ and τ are both even, or both odd.
(3) Express each of the following permutations and their inverse as a product of disjoint cycles. Also compute the order. Write them as product of transposition. Classify all even permutation.

- $\sigma=\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 4 & 6 & 3 & 7 & 2 & 9 & 5 & 8 & 10\end{array}\right)$.
- $(1,4,5)(5,3,2)(2,1,6) \in S_{6}$.
- $(1,2)(2,3)(4,3)(5,7)(2,4)(6,1) \in S_{7}$.
(4) Find the order of $\sigma=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 2 & 5 & 4 & 6 & 8 & 9 & 10 & 1 & 3\end{array}\right)$. For $\tau=(3,7,8)$, compute $\sigma \tau \sigma^{-1}, \tau \sigma \tau^{-1}$ and their order. Are they even permutation?
(5) What is the largest possible order of a permutation in S_{10} ? Write down an explicit element of this order.
(6) Find number of all elements of order 4 in A_{6}.
(7) How many elements of order 5 are in S_{7} ?
(8) Let $\sigma=(1,3,5,7,9) \in S_{10}$. Find the number of element in S_{10} which commutes with σ.
(9) Show that S_{11} contains no elements of order 16.
(10) Show that S_{10} has elements of order 10,12 , and 14 , but not 11 or 13 .
(11) Find the number of elements of order 16 in S_{16}.
(12) Find the number of elements of order 35 is S_{12}.
(13) Find the number of permutations in S_{10} commuting with a cycle of lenth 5 .
(14) Find the number of even permutations in S_{n} which commute with a cycle of lenth r.
(15) Let H be a subgroup of S_{n} all of whose nonidentity permutations are odd. Show that $o(H)=1$ or 2 .
(16) Find the number of conjugacy classes of A_{4} and A_{5}.
(17) Do A_{n} and S_{n} contain same number of conjugacy classes? Justify your answer.
(18) Show that $Z\left(S_{n}\right)=I, n \geq 3$.
(19) Show that $Z\left(A_{n}\right)=I, n \geq 4$.
(20) Show that S_{n} is generated by a transposition and a cycle of length n.
(21) In S_{n} prove that there are $\frac{1}{r} \frac{n!}{(n-r)!}$ distinct r cycles.
(22) Let $\sigma=\left(i_{1}, i_{2} \ldots, i_{k}\right) \in S_{n}$ be a cycle of lenght k. Show that any permutation of the form $\sigma^{j} \tau$ where $\tau \in S_{n}$ fixes all $i_{1}, i_{2}, \ldots i_{k}$ and j is any interger commutes with σ.

