INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

Mid Semester Practice Problem
 Problem Set-1

(1) Prove that if G is any group with identity e then $G /\{e\} \simeq G$.
(2) Let G be a finite group and let H and K be subgroups of G with K normal in G. Using the second isomorphism theorem prove that,

$$
o(H K)=\frac{o(H) o(K)}{o(H \cap K)} .
$$

(3) Let m, n be nonzero integers show that

$$
m \mathbb{Z} \cap n \mathbb{Z}=\operatorname{lcm}(m, n) \mathbb{Z} .
$$

(4) Let m, n be nonzero integers show that

$$
m \mathbb{Z}+n \mathbb{Z}=\operatorname{gcd}(m, n) \mathbb{Z} .
$$

Note that $m \mathbb{Z}+n \mathbb{Z}$ is product of $m \mathbb{Z}$ and $n \mathbb{Z}$ in \mathbb{Z} with respect + operation. It is subgroup becuase any subgroup of \mathbb{Z} is normal.
(5) Let G be a group and let H and K be normal subgroups of G with $K \subset H$. Suppose that G / K is cyclic. Prove that G / H and H / K are cyclic.
(6) Let $\overline{7} \in \mathbb{Z}_{28}$. Define $H=<\overline{7}>=$ the subgroup of \mathbb{Z}_{28} generated by $\overline{7}$. Prove that

$$
\frac{\mathbb{Z}_{28}}{H} \simeq \mathbb{Z}_{7}
$$

(7) Prove that,

$$
\frac{6 \mathbb{Z}}{12 \mathbb{Z}} \simeq \frac{3 \mathbb{Z}}{6 \mathbb{Z}}
$$

(8) Let m, n be nonzero integers such that $m \mid n$, show that

$$
m \mathbb{Z} / n \mathbb{Z} \simeq \mathbb{Z}_{n / m} .
$$

Also show that,

$$
|m \mathbb{Z} / n \mathbb{Z}|=\left|\mathbb{Z}_{n / m}\right|=n / m,
$$

where $|m \mathbb{Z} / n \mathbb{Z}|=$ the number of elements in $m \mathbb{Z} / n \mathbb{Z}$.

Hint: Define a map

$$
\phi: \mathbb{Z} \rightarrow m \mathbb{Z} / n \mathbb{Z}, x \mapsto[m x]=m x+n \mathbb{Z}
$$

and use it to prove the result. You can also try any other method.
(9) Let G be a group and $a \in G$. Then show that

$$
<a^{m}>\cap<a^{n}>=<a^{l c m(m, n)}>
$$

where m, n nonzero integers.
(10) Prove that if a group G contains a subgroup H of finite index, then G contains a normal subgroup of finite index.
(11) Let N be a subgroup in the centre $Z(G)$ of G. Show that N is normal in G. Prove that if the factor group G / N is cyclic, then G is abelian. Is converse true ?
(12) Prove that if a group G has no non-trivial automorphisms, then G is abelian and $g^{2}=e$ for all $g \in G$.
(13) Let G be a cyclic group. Compute all subgroups of G.

Hints: Any cyclic group is homomorphic image of \mathbb{Z}.
(14) Prove or disprove:

- U_{20} and U_{24} are isomorphic.
- U_{20} and U_{15} are isomorphic.
- U_{20} and D_{4} are isomorphic.
(15) Prove that if m and n are relatively prime then $\mathbb{Z}_{m n} \simeq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
(16) Let $\phi: \mathbb{Z}_{36} \rightarrow \mathbb{Z}_{20}$ be a map defined by $\phi(\bar{n})=\overline{5 n}$. Find the Kernal of ϕ.
(17) Let k and n be positive integers. For a fixed $m \in \mathbb{Z}$, define

$$
f ; \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{k}
$$

by $f(\bar{a})=: \overline{m a}$, for $\bar{a} \in \mathbb{Z}_{n}$. Find all values of m such that f is a well defined function.
(18) Let $\phi: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{45}$ be a group homomorphism. What are all possible orders of $\phi(\overline{1})$.
(19) Describe all group homomorphisms from \mathbb{Z}_{15} to \mathbb{Z}_{25}.
(20) Describe all group isomorphism from \mathbb{Z}_{25} to \mathbb{Z}_{25}.
(21) Describe all group homomorphisms from \mathbb{Z}_{9} to S_{4}.
(22) Define $C[0,1]=\{f:[0,1] \rightarrow \mathbb{R}: f$ is continuous $\}$. Show that with respect to addition of maps $C[0,1]$ gives a group structure on $C[0,1]$. Using the above idea define a group structure on a the set of all group homomorphism from G_{1} to G_{2}.

For $x \in[0,1]$, define

$$
\phi_{x}: C[0,1] \rightarrow(\mathbb{R},+)
$$

by

$$
f \mapsto f(x) .
$$

Show that ϕ_{x} is a group homomorphism. Find out the Kernal of ϕ_{x}.
(23) Let G_{1}, G_{2} be two groups. Define a operation on $G_{1} \times G_{2}$ by

$$
\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)=\left(g_{1} h_{1}, g_{2} h_{2}\right)
$$

Show that with respect to above operation $G_{1} \times G_{2}$ is a group.
Define a map $p_{1}: G_{1} \times G_{2} \rightarrow G_{1}$ by $(g, h) \rightarrow g$. Show that p_{1} is a group homorphism, $\operatorname{Ker}\left(p_{1}\right) \cong G_{2}$

$$
\left(G_{1} \times G_{2}\right) / \operatorname{Ker}\left(p_{1}\right) \cong G_{1} .
$$

(24) S_{n} be the permutation group. For $1 \leq i \leq n$, define

$$
H_{i}=\left\{\sigma \in S_{n}: \sigma(i)=i\right\} .
$$

Show that H_{i} is a subgroup of S_{n}. Is it normal?
(25) Show that \mathbb{Z} is a normal subgroup of $(\mathbb{R},+)$. Also prove that

$$
\frac{\mathbb{R}}{\mathbb{Z}} \cong S^{1}
$$

where $S^{1}=\left\{z=e^{i \theta} \in \mathbb{C}:|z|=1\right\}$ is a group with respect to the usual multipliction of two complex numbers.
(26) Show that \mathbb{Q} is a normal subgroup of $(\mathbb{R},+)$.
(27) Does \mathbb{Q} have any subgroups isomorphic to $\mathbb{Z} \times \mathbb{Z}$? Prove your answer.
(28) Prove that $(\mathbb{Q},+) \not \equiv\left(\mathbb{Q}^{*}, \cdot\right)$.
(29) Is $(\mathbb{R},+) \cong\left(\mathbb{R}^{*}, \cdot\right)$?
(30) Is $(\mathbb{R},+) \cong\left(\mathbb{R}^{+}, \cdot\right)$?
Note: \mathbb{R}^{+}is the set of all positive real numbers.
(31) Let G be a group. G is cyclic Group if and only if there exists a surjective group homomorphism from $\mathbb{Z} \rightarrow G$.
(32) Prove that every finitely generated subgroup of $(\mathbb{Q},+)$ is cyclic.
(33) Prove that $(\mathbb{Q},+)$ and $(\mathbb{Q} \times \mathbb{Q},+)$ are not isomorphic as groups.
(34) Find all homorphisms from $\mathbb{Z}_{3} \times \mathbb{Z}_{10}$ to $\mathbb{Z}_{6} \times \mathbb{Z}_{25}$.
(35) Let G_{1}, G_{2}, G_{3} be groups such that G_{1} is a homomorphic image of both G_{2} and G_{3}. If order of G_{2} is 24 and order G_{3} is 30 , list the possibilities for G_{1} (up to isomorphism).

