INTRODUCTION TO GROUPS AND SYMMETRY

IISER BHOPAL

MTH 203

MID SEMESTER PRACTICE PROBLEM

PROBLEM SET-1

- (1) Prove that if G is any group with identity e then $G/\{e\} \simeq G$.
- (2) Let G be a finite group and let H and K be subgroups of G with K normal in G. Using the second isomorphism theorem prove that,

$$o(HK) = \frac{o(H)o(K)}{o(H \cap K)}.$$

(3) Let m, n be nonzero integers show that

$$m\mathbb{Z} \cap n\mathbb{Z} = lcm(m, n)\mathbb{Z}.$$

(4) Let m, n be nonzero integers show that

$$m\mathbb{Z} + n\mathbb{Z} = gcd(m, n)\mathbb{Z}.$$

Note that $m\mathbb{Z} + n\mathbb{Z}$ is product of $m\mathbb{Z}$ and $n\mathbb{Z}$ in \mathbb{Z} with respect + operation. It is subgroup because any subgroup of \mathbb{Z} is normal.

- (5) Let G be a group and let H and K be normal subgroups of G with $K \subset H$. Suppose that G/K is cyclic. Prove that G/H and H/K are cyclic.
- (6) Let $\overline{7} \in \mathbb{Z}_{28}$. Define $H = \langle \overline{7} \rangle =$ the subgroup of \mathbb{Z}_{28} generated by $\overline{7}$. Prove that

$$\frac{\mathbb{Z}_{28}}{H} \simeq \mathbb{Z}_7.$$

(7) Prove that,

$$\frac{6\mathbb{Z}}{12\mathbb{Z}} \simeq \frac{3\mathbb{Z}}{6\mathbb{Z}}$$

(8) Let m, n be nonzero integers such that m|n, show that

$$m\mathbb{Z}/n\mathbb{Z}\simeq\mathbb{Z}_{n/m}.$$

Also show that,

$$|m\mathbb{Z}/n\mathbb{Z}| = |\mathbb{Z}_{n/m}| = n/m,$$

where $|m\mathbb{Z}/n\mathbb{Z}|$ = the number of elements in $m\mathbb{Z}/n\mathbb{Z}$.

Date: 05-09-2019.

Hint: Define a map

$$\phi: \mathbb{Z} \to m\mathbb{Z}/n\mathbb{Z}, \ x \mapsto [mx] = mx + n\mathbb{Z}.$$

and use it to prove the result. You can also try any other method.

(9) Let G be a group and $a \in G$. Then show that

$$\langle a^m \rangle \cap \langle a^n \rangle = \langle a^{lcm(m,n)} \rangle$$

where m, n nonzero integers.

- (10) Prove that if a group G contains a subgroup H of finite index, then G contains a normal subgroup of finite index.
- (11) Let N be a subgroup in the centre Z(G) of G. Show that N is normal in G. Prove that if the factor group G/N is cyclic, then G is abelian. Is converse true ?
- (12) Prove that if a group G has no non-trivial automorphisms, then G is abelian and $g^2 = e$ for all $g \in G$.
- (13) Let G be a cyclic group. Compute all subgroups of G. Hints: Any cyclic group is homomorphic image of \mathbb{Z} .
- (14) Prove or disprove:
 - U_{20} and U_{24} are isomorphic.
 - U_{20} and U_{15} are isomorphic.
 - U_{20} and D_4 are isomorphic.

(15) Prove that if m and n are relatively prime then $\mathbb{Z}_{mn} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$.

- (16) Let $\phi : \mathbb{Z}_{36} \to \mathbb{Z}_{20}$ be a map defined by $\phi(\bar{n}) = \overline{5n}$. Find the Kernal of ϕ .
- (17) Let k and n be positive integers. For a fixed $m \in \mathbb{Z}$, define

$$f; \mathbb{Z}_n \to \mathbb{Z}_k$$

by $f(\bar{a}) =: \overline{ma}$, for $\bar{a} \in \mathbb{Z}_n$. Find all values of m such that f is a well defined function.

- (18) Let $\phi : \mathbb{Z}_{20} \to \mathbb{Z}_{45}$ be a group homomorphism. What are all possible orders of $\phi(\bar{1})$.
- (19) Describe all group homomorphisms from \mathbb{Z}_{15} to \mathbb{Z}_{25} .
- (20) Describe all group isomorphism from \mathbb{Z}_{25} to \mathbb{Z}_{25} .
- (21) Describe all group homomorphisms from \mathbb{Z}_9 to S_4 .

(22) Define $C[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$. Show that with respect to addition of maps C[0,1] gives a group structure on C[0,1]. Using the above idea define a group structure on a the set of all group homomorphism from G_1 to G_2 . For $x \in [0,1]$, define

$$\phi_x: C[0,1] \to (\mathbb{R},+)$$

by

$$f \mapsto f(x).$$

Show that ϕ_x is a group homomorphism. Find out the Kernal of ϕ_x .

(23) Let G_1, G_2 be two groups. Define a operation on $G_1 \times G_2$ by

$$(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2).$$

Show that with respect to above operation $G_1 \times G_2$ is a group.

Define a map $p_1 : G_1 \times G_2 \to G_1$ by $(g,h) \to g$. Show that p_1 is a group homorphism, $Ker(p_1) \cong G_2$

$$(G_1 \times G_2)/Ker(p_1) \cong G_1.$$

(24) S_n be the permutation group. For $1 \le i \le n$, define

$$H_i = \{ \sigma \in S_n : \sigma(i) = i \}.$$

Show that H_i is a subgroup of S_n . Is it normal?

(25) Show that \mathbb{Z} is a normal subgroup of $(\mathbb{R}, +)$. Also prove that

$$\frac{\mathbb{R}}{\mathbb{Z}} \cong S^1$$

where $S^1 = \{z = e^{i\theta} \in \mathbb{C} : |z| = 1\}$ is a group with respect to the usual multipliction of two complex numbers.

- (26) Show that \mathbb{Q} is a normal subgroup of $(\mathbb{R}, +)$.
- (27) Does \mathbb{Q} have any subgroups isomorphic to $\mathbb{Z} \times \mathbb{Z}$? Prove your answer.
- (28) Prove that $(\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$.
- (29) Is $(\mathbb{R}, +) \cong (\mathbb{R}^*, \cdot)$?
- (30) Is $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$? Note: \mathbb{R}^+ is the set of all positive real numbers.
- (31) Let G be a group. G is cyclic Group if and only if there exists a surjective group homomorphism from $\mathbb{Z} \to G$.
- (32) Prove that every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.

- (33) Prove that $(\mathbb{Q}, +)$ and $(\mathbb{Q} \times \mathbb{Q}, +)$ are not isomorphic as groups.
- (34) Find all homorphisms from $\mathbb{Z}_3 \times \mathbb{Z}_{10}$ to $\mathbb{Z}_6 \times \mathbb{Z}_{25}$.
- (35) Let G_1, G_2, G_3 be groups such that G_1 is a homomorphic image of both G_2 and G_3 . If order of G_2 is 24 and order G_3 is 30, list the possibilities for G_1 (up to isomorphism).