INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

Mid Semester Examination

Total Marks: 98
Time: 10 AM to 12 PM
Date: 22/09/2019

Instructions: Solve all problems. Please write all steps properly. If you are using any theorem, fact, formula then write a complete statement.

Problem-A. For each of the following statements indicate whether it is TRUE or FALSE. You DO NOT need to provide justification for your answers in this problem.
(1) Subtraction - is an associative binary operation on \mathbb{Z}.
(2) There exists no non-zero group homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{21}.
(3) There is no nontrivial homomorphism from $(\mathbb{Q},+) \rightarrow(\mathbb{Z},+)$.
(4) If $m, n, x, y \in \mathbb{Z}$ are such that $m x+n y=3$ then $\operatorname{gcd}(m, n)=3$.
(5) Any normal subgroup of a group can be obtained as the kernal of some group homomorphism.
(6) Any permutation of order ≥ 3 can be written as product of disjoint transpositions.
(7) There exist a subgroup of index two in S_{10} which is not normal.
(8) Let G_{1} and G_{2} are two groups and G_{1} has no proper nontrivial subgroup. There exists a non zero group homomorphism $\phi: G_{1} \rightarrow G_{2}$ which is not one-one.
(9) $2^{36}-1$ is divisible by 37 .
(10) There is a group homomorphism $\left.\phi:(\mathbb{Z},+) \rightarrow \mathbb{Q}^{*}, \cdot\right)$ such that $\phi(2)=\frac{1}{3}$.

Problem-B. Solve all questions.
(1) Define the center of a group G and show that it is a normal subgroup.
(2) Let $\sigma=(2,4,5,6)(1,4,5)(3,1,6) \in S_{6}$. Find the order of σ. Write σ as product of transposition.
(3) Let $\sigma=(2,3)(2,5) \in S_{5}$. Find the cycle type of σ and compute the number of all $\tau \in S_{5}$, which are congugate to σ.

In the above both problems we have used cycle notation for σ.
(4) Let G be a group and let \sim be the relation defined as,

$$
x \sim y \text { if there exists } z \in G \text { such that } x=z y z^{-1} .
$$

Show that \sim is an equivalence relation and if $x \sim y$ then the order of x is equal to the order of y.
(5) Let H and K be two normal subgroups of a group G, whose intersection is the trivial subgroup. Prove that every element of H commutes with every element of K.
(6) Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Suppose G_{1} is an abelian group. Show that $\operatorname{Im}(\phi)$ is an abelian subgroup of G_{2}.

Prove or disprove $S_{3} \simeq \mathbb{Z}_{6}$.
(7) State the First Isomorphism Theorem.

Let \mathbb{C}^{*} be a group of all nonzero complex number with respect to complex multiplication and $S^{1}=\left\{z=x+i y \in \mathbb{C}:|z|=\sqrt{ }\left(x^{2}+y^{2}\right)=1\right\}$. Show that S^{1} is a normal subgroup of \mathbb{C}^{*} and

$$
\frac{\mathbb{C}^{*}}{S^{1}} \cong\left(\mathbb{R}^{+}, \cdot\right)
$$

Note: \mathbb{R}^{+}denote the group of all positive real numbers with respect to the usual multiplication of real numbers.

$$
(3+3+9)
$$

