INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

Mid Semester Examination

Total Marks: 98 Time: 10 AM to 12 PM Date: 22/09/2019

Instructions: Solve all problems. Please write all steps properly. If you are using any theorem, fact, formula then write a complete statement.

Problem-A. For each of the following statements indicate whether it is **TRUE** or **FALSE**. You **DO NOT** need to provide justification for your answers in this problem. (30)

- (1) Subtraction is an associative binary operation on \mathbb{Z} .
- (2) There exists no non-zero group homomorphism from \mathbb{Z}_{10} to \mathbb{Z}_{21} .
- (3) There is no nontrivial homomorphism from $(\mathbb{Q}, +) \to (\mathbb{Z}, +)$.
- (4) If $m, n, x, y \in \mathbb{Z}$ are such that mx + ny = 3 then gcd(m, n) = 3.
- (5) Any normal subgroup of a group can be obtained as the kernal of some group homomorphism.
- (6) Any permutation of order ≥ 3 can be written as product of disjoint transpositions.
- (7) There exist a subgroup of index two in S_{10} which is not normal.
- (8) Let G_1 and G_2 are two groups and G_1 has no proper nontrivial subgroup. There exists a non zero group homomorphism $\phi: G_1 \to G_2$ which is not one-one.
- (9) $2^{36} 1$ is divisible by 37.
- (10) There is a group homomorphism $\phi : (\mathbb{Z}, +) \to \mathbb{Q}^*, \cdot)$ such that $\phi(2) = \frac{1}{3}$.

Problem-B. Solve all questions.

- (1) Define the center of a group G and show that it is a normal subgroup. (6)
- (2) Let $\sigma = (2, 4, 5, 6)(1, 4, 5)(3, 1, 6) \in S_6$. Find the order of σ . Write σ as product of transposition. (6+3)
- (3) Let $\sigma = (2,3)(2,5) \in S_5$. Find the cycle type of σ and compute the number of all $\tau \in S_5$, which are congugate to σ . (3+6)

In the above both problems we have used cycle notation for σ .

(4) Let G be a group and let \sim be the relation defined as,

 $x \sim y$ if there exists $z \in G$ such that $x = zyz^{-1}$.

Show that \sim is an equivalence relation and if $x \sim y$ then the order of x is equal to the order of y. (6+3)

- (5) Let H and K be two normal subgroups of a group G, whose intersection is the trivial subgroup. Prove that every element of H commutes with every element of K. (10)
- (6) Let $\phi : G_1 \to G_2$ be a group homomorphism. Suppose G_1 is an abelian group. Show that $Im(\phi)$ is an abelian subgroup of G_2 .

Prove or disprove $S_3 \simeq \mathbb{Z}_6$. (6+4)

(7) State the First Isomorphism Theorem.

Let \mathbb{C}^* be a group of all nonzero complex number with respect to complex multiplication and $S^1 = \{z = x + iy \in \mathbb{C} : |z| = \sqrt{(x^2 + y^2)} = 1\}$. Show that S^1 is a normal subgroup of \mathbb{C}^* and

$$\frac{\mathbb{C}^*}{S^1} \cong (\mathbb{R}^+, \cdot)$$

Note: \mathbb{R}^+ denote the group of all positive real numbers with respect to the usual multiplication of real numbers. (3+3+9)