INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

End Semester Examination

Total Marks: 100
Time: 9.15 AM to 12.15 PM
Date: 24/11/2019

Instructions: Solve all problems. Please write all steps properly. If you are using any theorem, fact, formula then write a complete statement.

Problem-A. For each of the following statements indicate whether it is TRUE or FALSE. You DO NOT need to provide justification for your answers in this problem. You will get 3 marks for correct answer, -1 marks for wrong answer and 0 marks for no answer. If your total mark in this section is negative then we will consider it 0 .
(1) There exists no element of infinite order in $(\mathbb{Q} / \mathbb{Z},+)$.
(2) There exists 5 group homomorphisms from $\mathbb{Z}_{10} \rightarrow U_{15}$.
(3) Any finite subgroup of $(\mathbb{R} / \mathbb{Z},+)$ is cyclic.
(4) There exists a surjective group homomorphism from $\left(\mathbb{R}^{*},.\right)$ onto $\left(\mathbb{Q}^{*},.\right)$.
(5) There exists a surjective homomphism $\phi: \mathbb{Z} \rightarrow S_{3}$.
(6) The Symmetry group $\operatorname{ssom}_{S^{1}}\left(\mathbb{R}^{2}\right)$ of the circle in \mathbb{R}^{2} is a finite group.
(7) There are 4 element of order 10 in S_{7}.
(8) If all subgroups of a group G are normal, then group is abelian.
(9) A subgroup H of a group G is a normal subgroup if and only if the number of left cosets of H is equal to the number of right cosets of H.
(10) $\operatorname{Sign}(\sigma)=-1$, where

$$
\sigma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 4 & 6 & 3 & 7 & 2 & 9 & 5 & 8 & 10
\end{array}\right) \in S_{10}
$$

(11) $S L_{n}(\mathbb{R})$ is not a normal subgroup of $G L_{n}(\mathbb{R})$.

$$
(3 \times 11=33)
$$

Problem-B. Solve all questions. Each question carries 7 Marks.
(1) If in the group $G, a^{5}=e, a b a^{-1}=b^{2}$ for some $a, b \in G$, find $o(b)$.
(2) Let G be a group and the order of G is $p q$, where p and q are some prime numbers. Show that G is abelian or $Z(G)$ is trivial subgroup.
Note that $Z(G)$ denote the centre of the group.
(3) Show that there is no non-trivial group homomorphism from S_{3} to $\mathbb{Z} / 3 \mathbb{Z}$.
(4) Let G be a group of order n and let m be an integer relatively prime to n. Show that if $x^{m}=y^{m}$, then $x=y$. Hence show that for each $z \in G$ there is a unique $x \in G$ such that $x^{m}=z$.

$$
(8 \times 4=32)
$$

Problem-C. Solve all problems. Each question carries 7 marks.
(1) Let $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ denote the group of all isometries of \mathbb{R}^{n}. For $X \subset \mathbb{R}^{n}$, show that $\operatorname{Isom}_{X}\left(\mathbb{R}^{n}\right)$ is a subgroup of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$, where

$$
\operatorname{Isom}_{X}\left(\mathbb{R}^{n}\right)=\left\{\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}: \phi \text { is an isometry and } \phi(X)=X\right\}
$$

(2) Prove or disprove $G L_{1}(\mathbb{R}) \cong G L_{1}(\mathbb{C})$?
(3) Show that $G L_{1}(\mathbb{C})$ is isomorphic to a subgroup of $G L_{2}(\mathbb{R})$.
(4) Show that the only isometry of \mathbb{R}^{2} fixing $(0,1),(1,1)$ and $(0,0)$ is the identity.
(5) Show that $S O(2)$ is a normal subgroup of $O(2)$, where

$$
O(2)=\left\{A \in G L_{2}(\mathbb{R}): A A^{t}=I\right\}, S O(2)=\{A \in O(2): \operatorname{det}(A)=1\}
$$

