INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203)

End Semester Examination

	Total Marks: 100	Time: 9.15 AM to 12.15 PM	Date: $24/$	11/2019
--	------------------	---------------------------	-------------	---------

Instructions: Solve all problems. Please write all steps properly. If you are using any theorem, fact, formula then write a complete statement.

Problem-A. For each of the following statements indicate whether it is **TRUE** or **FALSE**. You **DO NOT** need to provide justification for your answers in this problem. You will get 3 marks for correct answer, -1 marks for wrong answer and 0 marks for no answer. If your total mark in this section is negative then we will consider it 0.

- (1) There exists no element of infinite order in $(\mathbb{Q}/\mathbb{Z}, +)$.
- (2) There exists 5 group homomorphisms from $\mathbb{Z}_{10} \to U_{15}$.
- (3) Any finite subgroup of $(\mathbb{R}/\mathbb{Z}, +)$ is cyclic.
- (4) There exists a surjective group homomorphism from $(\mathbb{R}^*, .)$ onto $(\mathbb{Q}^*, .)$.
- (5) There exists a surjective homomphism $\phi : \mathbb{Z} \to S_3$.
- (6) The Symmetry group $Isom_{S^1}(\mathbb{R}^2)$ of the circle in \mathbb{R}^2 is a finite group.
- (7) There are 4 element of order 10 in S_7 .
- (8) If all subgroups of a group G are normal, then group is abelian.
- (9) A subgroup H of a group G is a normal subgroup if and only if the number of left cosets of H is equal to the number of right cosets of H.
- (10) Sign $(\sigma) = -1$, where

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 4 & 6 & 3 & 7 & 2 & 9 & 5 & 8 & 10 \end{pmatrix} \in S_{10}.$$

(11) $SL_n(\mathbb{R})$ is not a normal subgroup of $GL_n(\mathbb{R})$.

 $(3 \times 11 = 33)$

Problem-B. Solve all questions. Each question carries 7 Marks.

- (1) If in the group G, $a^5 = e$, $aba^{-1} = b^2$ for some $a, b \in G$, find o(b).
- (2) Let G be a group and the order of G is pq, where p and q are some prime numbers. Show that G is abelian or Z(G) is trivial subgroup. Note that Z(G) denote the centre of the group.
- (3) Show that there is no non-trivial group homomorphism from S_3 to $\mathbb{Z}/3\mathbb{Z}$.
- (4) Let G be a group of order n and let m be an integer relatively prime to n. Show that if $x^m = y^m$, then x = y. Hence show that for each $z \in G$ there is a unique $x \in G$ such that $x^m = z$.

 $(8 \times 4 = 32)$

Problem-C. Solve all problems. Each question carries 7 marks.

(1) Let $Isom(\mathbb{R}^n)$ denote the group of all isometries of \mathbb{R}^n . For $X \subset \mathbb{R}^n$, show that $Isom_X(\mathbb{R}^n)$ is a subgroup of $Isom(\mathbb{R}^n)$, where

 $Isom_X(\mathbb{R}^n) = \{\phi : \mathbb{R}^n \to \mathbb{R}^n : \phi \text{ is an isometry and } \phi(X) = X\}.$

- (2) Prove or disprove $GL_1(\mathbb{R}) \cong GL_1(\mathbb{C})$?
- (3) Show that $GL_1(\mathbb{C})$ is isomorphic to a subgroup of $GL_2(\mathbb{R})$.
- (4) Show that the only isometry of \mathbb{R}^2 fixing (0,1), (1,1) and (0,0) is the identity.
- (5) Show that SO(2) is a normal subgroup of O(2), where $O(2) = \{A \in GL_2(\mathbb{R}) : AA^t = I\}, SO(2) = \{A \in O(2) : det(A) = 1\}.$ (7 × 5 = 35)

(P.T.O)