INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGNMENT-8

Submission Date: 20-11-2019.

Note: Solve all problems.

Problems:

(1) Let G be a group.

- If $g \in G$ is an element of infinite order in a group, then $g^{k}=g^{l}$ if and only if $k=l$.
- If g is an element of finite order n in a group, then $g^{k}=g^{l}$ if and only if n divides $k-l$ i.e. $k \equiv l \bmod (n)$.
- If G is cyclic then show that any subgroup of G is also cyclic.
(2) Let G be a finite group. Then the following conditions are equivalent:
- G is cyclic.
- For each positive integer d, the number of $g \in G$ such that $g^{d}=e$ is less than or equal to d.
- For each positive integer d, G has at most one subgroup of order d.
- For each positive integer d, G has at most $\Phi(d)$ elements of order d.
(3) Check weather the following statements are True or False. Justify your answer?
- G is a finite cyclic group of order n iff it has the unique subgroup order d for every divisor d of n.
- Let d be a divisor of n. The number of elements of order d in \mathbb{Z}_{n} is $\Phi(d)$
- In a finite cyclic group, two elements generate the same subgroup if and only if the elements have the same order.
- Let G be a finite cyclic group. For subgroups H and K of $G, H \subset K$ if and only if $o(H)$ divides $o(K)$.
- Let G be a cyclic group of order n, generated by a. Then the order of a^{k} is $n / \operatorname{gcd}(n, k)$. Note that any element is representted by a^{i} for

[^0]some $i \leq n$.

- Number of all the elements of order 9 in \mathbb{Z}_{9000} is 6 .

Note: $\Phi(d)=$ the number of elements which are coprime to d and less then d.

[^0]: Date: 13-11-2019.

