INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGNMENT-8

Submission Date: 20-11-2019.

Note: Solve all problems.

Problems:

- (1) Let G be a group.
 - If $g \in G$ is an element of infinite order in a group, then $g^k = g^l$ if and only if k = l.
 - If g is an element of finite order n in a group, then $g^k = g^l$ if and only if n divides k l i.e. $k \equiv l \mod(n)$.
 - If G is cyclic then show that any subgroup of G is also cyclic.
- (2) Let G be a finite group. Then the following conditions are equivalent:
 - G is cyclic.
 - For each positive integer d, the number of $g \in G$ such that $g^d = e$ is less than or equal to d.
 - For each positive integer d, G has at most one subgroup of order d.
 - For each positive integer d, G has at most $\Phi(d)$ elements of order d.
- (3) Check weather the following statements are True or False. Justify your answer?
 - *G* is a finite cyclic group of order *n* iff it has the unique subgroup order *d* for every divisor *d* of *n*.
 - Let d be a divisor of n. The number of elements of order d in \mathbb{Z}_n is $\Phi(d)$
 - In a finite cyclic group, two elements generate the same subgroup if and only if the elements have the same order.
 - Let G be a finite cyclic group. For subgroups H and K of G, $H \subset K$ if and only if o(H) divides o(K).
 - Let G be a cyclic group of order n, generated by a. Then the order of a^k is n/gcd(n,k). Note that any element is represented by a^i for

Date: 13-11-2019.

some $i \leq n$.

• Number of all the elements of order 9 in \mathbb{Z}_{9000} is 6.

Note: $\Phi(d)$ = the number of elements which are coprime to d and less then d.