INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGNMENT-7

Submission Date: 12-11-2019

Submit only Problem-A.

Problems-A:.
(1) Show that

$$
S O(2) \cong U(1) \cong S^{1} \cong \mathbb{R} / \mathbb{Z}
$$

where $S^{1}=\left\{z \in \mathbb{C}^{*}:|z|=1\right\}$ is the unit circle group with respect to complex multiplication.
(2) Show that a finite subgroup of $S O(2)$ is cyclic, and a finite subgroup of $O(2)$ not contained in $S O(2)$ is D_{n} (dihedral group).
(3) Let $X \subset \mathbb{R}^{n}$. Show that $\operatorname{Isom}_{X}\left(\mathbb{R}^{n}\right)$ is a subgroup of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$.
(4) Let X be a bounded subset of \mathbb{R}^{n}. Show that $\operatorname{Isom}_{X}\left(\mathbb{R}^{n}\right)$ does not contain any translation.
(5) Compute $\operatorname{Isom}(\mathbb{R})$, write it in term of Seitz symbols. Show that it is isomorphic to the group of matrices

$$
\left\{\left.\left[\begin{array}{cc}
b & a \\
0 & 1
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}, b= \pm 1\right\}
$$

Problems-B:.

(1) Verify whether the following are true or false.

- The group $O(1)$ is the Group $\{1,-1\}$ under multiplication. The group $S O(1)$ is trivial.
- The group $S O(2)$ is the set of all rotations about the origin in \mathbb{R}^{2}.
- The group $O(2)$ is the set of all rotations about $(0,0)$ together with reflections in straight lines through $(0,0)$.
- The group $S O(3)$ is the groups of all rotations about straight lines through $(0,0,0)$ in \mathbb{R}^{3}.
- The set of all translations forms a normal subgroup of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ which is isomorphic to the group \mathbb{R}^{n} under addition.

[^0](2) Prove that the linear map (with respect to standard basis of \mathbb{R}^{3}) corresponding to an element of the orthogonal group $O(3)$ is either:

- a rotation about some axis,
- a reflection in some plane,
- a rotation about an axis (say a) followed by a reflection in a plane perpendicular to that axis a. We call it rotatory reflection.
(3) Let X be a regular n-gon in \mathbb{R}^{2}. Show that $\left|\operatorname{Isom}_{X}\left(\mathbb{R}^{2}\right)\right| \leq 2 n$.
(4) Let G be a finite subgroup of $S O(3)$. Show that G is isomorphic to precisely one of the following groups:

$$
C_{n}, A_{4}, S_{4}, S_{5}, D_{n}
$$

where C_{n} is a cyclic group of order n for $n \geq 1$ and D_{n} is a diahedral group of order $2 n$ for $n \geq 2$.
(5) Can you describe all finite subgroup of $S O(4)$ and more general of $S O(n)$? It is not a part of the syllabus.
(6) Can you find any relation between $S U(2)$ and $S O(3)$. Try to prove,

$$
S U(2) \cong S O(3) / \mathbb{Z}_{2} .
$$

[^0]: Date: 06-11-2019.

