INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGNMENT-6

Submission Date: 06-11-2019.

Note: Solve all problems.

Problems:A.

(1) Consider the lines

$$
L_{1}=\{(x ; y): x+y=2\} ; L_{2}=\{f(x ; y): x-y=2\}
$$

Write down the reflection map corresponding to L_{1}, L_{2} and find the effect on the point $P=(1 ; 0)$ of the reflections $R_{L_{1}}$ and $R_{L_{2}}$.

Compute the composition map $R_{L_{2}} \circ R_{L_{1}}$ and $R_{L_{1}} \circ R_{L_{2}}$ explicitly and compare them.
(2) Show that the only isometry of \mathbb{R}^{2} fixing $(0,1),(1,1)$ and $(0,0)$ is the identity.
(3) Show that

$$
O(2)=\left\{A \in G L_{2}(\mathbb{R}): A v \cdot A w=v \cdot w \text { for all } v, w \in \mathbb{R}^{2}\right\}
$$

Note that in the class, we have defined

$$
O(2)(\mathbb{R})=\left\{A \in G L_{2}(\mathbb{R}): A A^{t}=I\right\}
$$

(4) Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an isometry which fixes the origin. Show that h preserves angles between two lines.
(5) Define $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta) .
$$

Show that ϕ is an isometry.

Problem-B:. No need to submit.
(1) Find nontrivial (non identity) examples of isometry of \mathbb{R}^{2} which fixes the point $(0,1)$.
(2) Find nontrivial (non identity) examples of isometry $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $h\left(S^{1}\right)=S^{1}$, where S^{1} is the unit circle in \mathbb{R}^{2}.

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

