INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGMENT-2

SUBMISSION DATE: 21-08-2019

Group-A

Problem-1.

- (1) List all the possible equivalence relations on the set $X = \{a, b\}$.
- (2) Let X be a set and \sim be an equivelence relation (i.e. a subset A of $X \times X$) on X. Show that if $a \sim b$ then [a] = [b] and if c is not releted to d then [c] and [d] sre disjoint. where $a, b, c, d \in X$.
- (3) Let *n* be an integer, define $A_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a b = kn$ for some $k \in \mathbb{Z}\}$. Show that *A* gives an equivalence relation \sim_n on \mathbb{Z} . Find the equivalence classes [2] and [3]. Also find the set of equivalence classes \mathbb{Z}/\sim can you give a group structure on \mathbb{Z}/\sim using + and . operation on \mathbb{Z} .
- (4) Let G be a finite group. Show that there exist no non trivial group homomorphism from $G \to \mathbb{Z}$. Here \mathbb{Z} is a group with respect to addition of integers.
- (5) Let $X = \{1, 2, 3\}$ define a set S = Set of all bijective map from $X \to X$. Define a map

$$\mu: S \times S \to S, (f,g) \to g \circ f$$

where $g \circ f$ is composition map of f with g. Show that S is a non abelian group of order 6 with respect to the binary operation μ .

GROUP-B

Problem-1:

- (1) Prove that any subgroup of cyclic group is cyclic.
- (2) Let G be a finite cyclic group and a be a non identity element in G show that o(a) divide o(G). Note o(a) denote order of a and o(G) denotes number of elements in G. Is it true for any finite group G?
- (3) If in the group G, $a^5 = e$, $aba^{-1} = b^2$ for some $a, b \in G$, find o(b).
- (4) Let G be any group, g a fixed element in G. Define $\psi : G \to G$ by $\psi(x) = gxg^{-1}$. Show that ψ is group homomorphism and bijective.
- (5) Let G be an abelian group. Show that,
 - Centre Z(G) = G,
 - $C_G(A) = N_G(A) = G$ for any subset A of G. Note here $C_G(A)$ and $N_G(A)$ denotes centralizer and Normalizer of A in G.
- (6) Let G = S group of all bijective maps from $\{1, 2, 3\} \rightarrow \{1, 2, 3\}$ defined above. Let $A = \{f\}$ where $f \in S$ and f(1) = 2, f(2) = 3, f(3) = 1 find $Z(G), C_G(A)$ and $N_G(A)$. Take any subset A of G and compute $C_G(A)$ and $N_G(A)$.

Date: 14-08-2019.

2 INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGMENT-2

Note: 1. Group B is optional. You don't need to submit it. It will be discussed in tutorial.

2. Most of the problems are very standard and easily found in any group theory book. I have taken most of the problems from Herstein's Book.