INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGMENT-2

SUBMISSION DATE: 21-08-2019

Group-A

Problem-1.

(1) List all the possible equivalence relations on the set $X=\{a, b\}$.
(2) Let X be a set and \sim be an equivelence relation (i.e. a subset A of $X \times X$) on X. Show that if $a \sim b$ then $[a]=[b]$ and if c is not releted to d then $[c]$ and $[d]$ sre disjoint. where $a, b, c, d \in X$.
(3) Let n be an integer, define $A_{n}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: a-b=k n$ for some $k \in \mathbb{Z}\}$. Show that A gives an equivalence relation \sim_{n} on \mathbb{Z}. Find the equivalence classes [2] and [3]. Also find the set of equivalence classes \mathbb{Z} / \sim can you give a group structure on \mathbb{Z} / \sim using + and . operation on \mathbb{Z}.
(4) Let G be a finite group. Show that there exist no non trivial group homomorphism from $G \rightarrow \mathbb{Z}$. Here \mathbb{Z} is a group with respect to addition of integers.
(5) Let $X=\{1,2,3\}$ define a set $S=$ Set of all bijective map from $X \rightarrow X$. Define a map

$$
\mu: S \times S \rightarrow S,(f, g) \rightarrow g \circ f
$$

where $g \circ f$ is composition map of f with g. Show that S is a non abelian group of order 6 with respect to the binary operation μ.

Group-B

Problem-1:

(1) Prove that any subgroup of cyclic group is cyclic.
(2) Let G be a finite cyclic group and a be a non identity element in G show that $o(a)$ divide $o(G)$. Note $o(a)$ denote order of a and $o(G)$ denotes number of elements in G. Is it true for any finite group G ?
(3) If in the group $G, a^{5}=e, a b a^{-1}=b^{2}$ for some $a, b \in G$, find $o(b)$.
(4) Let G be any group, g a fixed element in G. Define $\psi: G \rightarrow G$ by $\psi(x)=g x g^{-1}$. Show that ψ is group homomorphism and bijective.
(5) Let G be an abelian group. Show that,

- Centre $Z(G)=G$,
- $C_{G}(A)=N_{G}(A)=G$ for any subset A of G. Note here $C_{G}(A)$ and $N_{G}(A)$ denotes centralizer and Normalizer of A in G.
(6) Let $G=S$ group of all bijective maps from $\{1,2,3\} \rightarrow\{1,2,3\}$ defined above. Let $A=\{f\}$ where $f \in S$ and $f(1)=2, f(2)=3, f(3)=1$ find $Z(G), C_{G}(A)$ and $N_{G}(A)$. Take any subset A of G and compute $C_{G}(A)$ and $N_{G}(A)$.

Date: 14-08-2019.

Note: 1. Group B is optional. You don't need to submit it. It will be discussed in tutorial.
2. Most of the problems are very standard and easily found in any group theory book. I have taken most of the problems from Herstein's Book.

