INTRODUCTION TO GROUPS AND SYMMETRY (MTH 203) ASSIGMENT-1

SUBMISSION DATE: 14-08-2019

Group-A

Problem-1. Let G be a group.
(1) Show that the intersection of any two subgroups of G is also a subgroup of G. By an example show that the union of two subgroups of G need not be subgroup?
(2) If $(a . b)^{2}=a^{2} . b^{2}$ for all $a, b \in G$, show that G must be abelian.
(3) Show that if every element of the group G is its own inverse, then G is abelian.
(4) If G has no nontrivial subgroups, show that G must be finite of prime order.
(5) If order of G is prime number then show that G is cyclic group.

Problem-2. Find all group homorphisms from $(\mathbb{Q},+)$ to $(\mathbb{Q},+)$.

Group-B

Problem-1:

(1) Let $M(n, \mathbb{R})$ denote the set of all $n \times n$ matrices whose entries are real number. For $A, B \in M(n, \mathbb{R})$ Define a binary operation $A \circ B=A+$ B, where $A+B$ is the usual matrix addition of A and B. Show that with respect addition $M(n, \mathbb{R})$ is a group. What can you say about for the binary operation $A \circ B=A . B$ where $A . B$ is the usual matrix multiplication of A and B.

Define $G L(n, \mathbb{R})=\{A \in M(n, \mathbb{R}): \operatorname{det}(A) \neq 0\}$.
Is $G L(n, \mathbb{R})$ a subgroup of $(M(n, \mathbb{R}),+)$?
(2) Show that $G L(n, \mathbb{R})$ is a group with respect usual multiplication of matrices. and det : $G L(n, \mathbb{R}) \rightarrow G L(1, \mathbb{R})=\mathbb{R}^{*}$ is a group homomorphism.
(3) Let G be a finite abelian group. Prove that if order of G is odd, then every element has a unique square root; that is, for $x \in G$ there exists exactly one $g \in G$ with $g^{2}=x$.
(4) Suppose a finite set G is closed under an associative product and that both cancellation (right and left cancellation)law holds in G. Prove that G must be a group.

Note: 1. Group B is optional. You don't need to submit it. It will be discussed in tutorial.
2. Most of the problems are very standard and easily found in any group theory book. I have taken most of the problem from Herstein Book.

