Surprise quiz-1 (03/11/2016)
Time: 60 minutes
Maximum Marks: 10

Marks for each questions are given right side.

Problem 1. Suppose C is the curve obtained by intersecting the plane $z=x$ and the cylinder $x^{2}+y^{2}=1$ oriented counter-clockwise when viewed from above. Let S be the inside of this ellipse, oriented with the upward-pointing normal. If

$$
\mathbf{F}=x \hat{\mathbf{i}}+z \hat{\mathbf{j}}+2 y \hat{\mathbf{k}},
$$

verify Stokes' theorem.

$O R$

Suppose S is that part of the plane $x+y+z=1$ in the first octant, oriented with the upward-pointing normal, and let C be its boundary, oriented counter-clockwise when viewed from above. If

$$
\begin{equation*}
\mathbf{F}=x^{2}-y^{2} \hat{\mathbf{i}}+y^{2}-z^{2} \hat{\mathbf{j}}+z^{2}-x^{2} \hat{\mathbf{k}} \tag{5}
\end{equation*}
$$

verify Stokes theorem.
Problem 2. Verify Gauss divergence theorem for vector field

$$
\mathbf{F}=x y \hat{\mathbf{i}}+\left(y^{2}+e^{x z^{2}}\right) \hat{\mathbf{j}}+\sin (x y) \hat{\mathbf{k}},
$$

and S is the surface of the region E bounded by the parabolic cylinder $z=1-x^{2}$ and the planes $z=0, y=0$, and $y+z=2$.

Note: One marks for home work submission.

