Quiz-3 (11/11/2016)
Time: 60 minutes
Maximum Marks: 20

Attempt all questions. Use separate page for each answer.

Problem 1.

(1) Let S be an oriented surface bounded by a smooth curve C. Let \mathbf{F} be a vector field on an open set containing the surface and its boundary, and assume that \mathbf{F} is perpendicular to the boundary(i.e. at every point of the boundary, the value of the vector field is perpendicular to the tangent line of the curve). Show that

$$
\iint_{S}(\nabla \times \mathbf{F}) \bullet \mathbf{n} d \sigma=0
$$

where \mathbf{n} is the orientation (i.e. the normal vector at every point of the surface) of the surface.
(2) Verify the Divergence Theorem for the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ over the cube defined by $0 \leq x \leq 1,0 \leq y \leq 1$ and $0 \leq z \leq 1$.

Problem 2. Solve the following ordinary differential equations.
(1) $\left(x+\frac{y}{2}\right) d y+y d x=0$
(2) $e^{x}(x+1) d x+\left(y e^{y}-x e^{x}\right) d y=0$.

