Multivariable Calculus and Differential Equations (MTH-201)

Quiz 2 (25/10/2016)
Time: 60 minutes
Maximum Marks: 16
Marks for each questions are given right side.

Problem 1.

(A) Give the statement of Green's theorem in the plane. Clearly write all assumption needed in the theorem.
(B) Find the counterclockwise circulation and outward flux of the vector field $F=$ $x y \hat{\mathbf{i}}+y^{2} \hat{\mathbf{j}}$ around and over the boundary of the region enclosed by the curves $y=x^{2}$ and $y=x$ in the first quadrant.

$$
O R
$$

Show that the value of

$$
\oint_{C} x y^{2} d x+\left(x^{2} y+2 x\right) d y
$$

around any square depends only on the area of the square and not on its location in the plane.

Problem 2. Let C be a smooth curve in $x y$ plane satisfying the equation $x^{2}+x y+y^{2}=1$ joining the point $(0,1,0)$ to $(1,0,0)$. Compute the line integral $\int_{C} \mathbf{F} \bullet d \mathbf{r}$, where $\mathbf{F}=$ $e^{y+2 z}(\hat{\mathbf{i}}+x \hat{\mathbf{j}}+2 x \hat{\mathbf{k}})$.

Problem 3. Let f be defined on the rectangle $Q=[0,2] \times[0,2]$ as follows:

$$
f(x, y)= \begin{cases}0, & \text { if } x=y \\ 10, & \text { otherwise }\end{cases}
$$

Using a definition of double integrals show that $\iint_{Q} f$ exists. Find $\iint_{Q} f$?
Note: In class and assignment, I have given 3 equivalent definition of double integrals using partitions. You can use anyone.

Problem 4. Let R be the region in the first quadrant of the $x y$-plane bounded by the lines $y=-2 x+4, y=-2 x+7, y=x-2$ and $y=x+1$. Evaluate

$$
\begin{equation*}
\iint_{R}\left(2 x^{2}-x y-y^{2}\right) d A \tag{5}
\end{equation*}
$$

Hint: Use suitable transformation.

