MTH 201

MULTIVARIABLE CALCULUS AND DIFFERENTIAL EQUATIONS

Quiz 1 (26/08/2016)
Time: 50 minutes Maximum Marks: 7

Marks for each question is given right side.

Problem 1. Are the following statements true or false? Do not give any proof for each statement.
(A) If three vectors \mathbf{u}, \mathbf{v} and \mathbf{w} intersect at the origin are in a common plane, then $\mathbf{u} .((\mathbf{v}+\mathbf{u}) \times \mathbf{w})=0$.
(B) Let $\mathbf{r}(t)$ be a space curve such that speed 1 and curvature 1 everywhere, then $\mathbf{r}(2 t)$ has speed 2 and curvature $1 / 2$ everywhere.

Note: Speed $=|d \mathbf{r} / d t|$
Problem 2. Let $P=(1,1,1), Q=(0,3,1)$ and $R=(0,1,4)$ are point in \mathbb{R}^{3}.
(A) Find the plane through P, Q and R, expressed in the form $a x+b y+c z=d$.
(B) Is the line through $(1,2,3)$ and $(2,2,0)$ parallel to the plane in part (A) ? Explain why or why not.

Problem 3. Solve any two.

$$
\begin{equation*}
(3 / 2+3 / 2) \tag{2+1}
\end{equation*}
$$

(A) Give the definition of a smooth curve in 3 space. Is the curve $\mathbf{r}:[-1,1] \rightarrow \mathbb{R}^{3}$,

$$
t \mapsto\left(t^{2}-1, \cos t, t^{3}-1\right)
$$

smooth? Give a reason.
Note: We can also write above curve as, $\mathbf{r}(t)=\left(t^{2}-1\right) \mathbf{i}+\cos t \mathbf{j}+\left(t^{3}-1\right) \mathbf{k}$, where $t \in[-1,1]$.
(B) Find the torsion of the curve $y=x^{4}, z=0$.
(C) Find the curvature for the helix,

$$
\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+b t \mathbf{k}, \quad a, b \in \mathbb{R}, a, b \geq 0, a^{2}+b^{2} \neq 0
$$

