MULTIVARIABLE CALCULUS AND DIFFERENTIAL EQUATIONS (MTH 201)

Mid Semester Examination (18/09/2016)

Time: 120 minutes Maximum Marks: 30

Problem A. Are the following statements true or false? Do not give any proof for each statement.
(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function and \mathbf{u} be any vector in \mathbb{R}^{2}. If $\partial f / \partial x, \partial f / \partial y$ exists and continuous at each point then the directional derivative $f^{\prime}(\mathbf{u}, \mathbf{a})$ and f are also continuous.
(b) Any continuous map from a bounded subset of \mathbb{R}^{n} to \mathbb{R} is bounded.
(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function of two variable x and y. The tangent plane at point of local maxima or minima is always parallel to $x y$ plane.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let $a, b \in \mathbb{R}$ such that $f(a) \neq f(b)$, then for every number w in between $f(a)$ and $f(b)$, there exist $r \in \mathbb{R}$ such that $f(r)=w$.

Problem B.

$(3+3+3+3)$
(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defined as,

$$
(x, y) \rightarrow \frac{e^{(\sin x+\cos y)} \cdot \sqrt{ }\left(x^{2}+y^{2}\right)}{\log \left(x^{2}+y^{2}+2\right)}
$$

Show that f is a continuous function.
(2) Let A be a closed and open subset of \mathbb{R}. Define $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Show that,
(1) f is continuous,
(2) A is either empty set or \mathbb{R}.
(3) Find a constant c such that at any point of intersection of the two spheres

$$
(x-c)^{2}+y^{2}+z^{2}=3 \text { and } x^{2}+(y-1)^{2}+z^{2}=1
$$

the corresponding tangent planes will be perpendicular to each other.
(4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. If $f(0,0)=0$ and $\left.f(t x, t y)\right)=t f(x, y)$ for all $t \in \mathbb{R}$ and $(x, y) \in \mathbb{R}^{2}$, prove that $f(x, y)=\nabla f(0,0) \bullet(x, y)$ for all (x, y). In particular f is linear. Note \bullet is dot product.

Problem C.

(5) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function and $\partial f / \partial y=0$. Show that f is independent of the second variable. If $\nabla f=0$, show that f is constant.
(6) Show that the maximum value of the function $f(x, y, z)=x^{2} y^{2} z^{2}$ on the sphere $S=: x^{2}+y^{2}+z^{2}=1$ is $(1 / 3)^{3}$. Also show that for any positive number a_{1}, a_{2}, a_{3},

$$
\left(a_{1} a_{2} a_{3}\right)^{1 / 3} \leq\left(a_{1}+a_{2}+a_{3}\right) / 3 .
$$

(7) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defines as,

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continuous.
(b) Show that partial derivatives $\partial f / \partial x, \partial f / \partial y$ at $(0,0)$ exist and equal to zero 0.
(c) Show that directional derivatives exist at $(0,0)$.
(d) Show that f is not differentiable at $(0,0)$.

