Multivariable Calculus and Differential Equations (MTH-201)

End Semester Examination (04/12/2016)

Time: 180 minutes Maximum Marks: 100

Marks for each question are given right side. Explain each step clearly.
(1) Show that the function

$$
\begin{equation*}
f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} \tag{6}
\end{equation*}
$$

has no limit as (x, y) approaches $(0,0)$.
(2) Find the directional derivative of a function $f(x, y, z)=e^{x} y+e^{z} y^{2}$, in the direction of vector $\mathbf{u}=\frac{1}{3}(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ at the point $(1,0,2)$.
(3) Let $X=\{(x, 0): 0 \leq x \leq 1\}$ be a subset of \mathbb{R}^{2}. Find the set of interior, exterior and boundary points of X. Is X closed?
(4) Find the equation of the tangent plane and normal line to the surface

$$
\begin{equation*}
x^{2}+y^{2}-2 x y-x+3 y-z=-4 \tag{6}
\end{equation*}
$$

at the point $(2,-3,18)$.
(5) Solve the following differential equation,

$$
\begin{equation*}
\left(e^{x}-\sin y\right) d x+\cos y d y=0 \tag{8}
\end{equation*}
$$

(6) State the Fubini's theorem. Calculate

$$
\begin{equation*}
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x \tag{3+5}
\end{equation*}
$$

(7) Using Lagrange Multipliers method find the maximum and minimum values of

$$
\begin{equation*}
f(x, y, z)=x-2 y+5 z \tag{10}
\end{equation*}
$$

on the sphere $x^{2}+y^{2}+z^{2}=30$.
(8) Evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1-x}(y-2 x)^{2} \sqrt{(x+y)} d y d x \tag{15}
\end{equation*}
$$

Also sketch the region of integration.
Hint: Use transformation $u=x+y$ and $v=y-2 x$.
(9) Apply the $\epsilon-\delta$ definition of limit to find

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y^{2}}{x^{2}+y^{2}} \tag{15}
\end{equation*}
$$

if it exists.
(10) Verify the Gauss divergence theorem for the vector field $\mathbf{F}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ over the sphere of radius 3 centered at the origin.

- Do not use any formula for area and volume in this question. If you needed then compute it.

