MTH 201

MULTIVARIABLE CALCULUS AND DIFFERENTIAL EQUATIONS

Assignment-6

Problem-1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function defines as,

$$
f(x, y)= \begin{cases}\frac{x^{3} y}{x 4+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continous. Hint: use arithmatic mean - geometric mean inequality and Sandwich theorem.
(b) Show that partial derivatives at $(0,0)$ exist and equal to zero 0 .
(c) Show that directional derivatives at $(0,0)$ is written as linear combination of partial derivatives.
(d) Show that f is not differential at $(0,0)$.
(e) Can you jusify why f is not differential at $(0,0)$? Here each directional derivatives at $(0,0)$ are written as linear combination partial derivatives at $(0,0)$. Justify yourself?

Problem-2. Solve 33, 34, 38, 40, 41, 42, 43 from Section 14.8
Problem-3. Read the proof of second derivative test from section 14.10.

Note: If you have any doubt in your solution then you can discuss it in tutorials.
Text Book: Thomas' Calculus 11th edition (Maurice D. Weir, Joel Hass, Frank R. Gioedano).

