MTH 201

MULTIVARIABLE CALCULUS AND DIFFERENTIAL EQUATIONS

Assignment-5, Solution discussion date 16/09/2016

Problem-1. Solve 5, 8 from Section 14.6

Problem-2. Solve 31, 70 from Section 14.7

Problem-3. Solve 10, 28, 31, 38, 45, 50 from Exercises 14.4

Problem-4. Solve 27, 31, 32, 36 from Excercise 14.5

Problem 5. If $f:[a,b]\times[c,d]\to\mathbb{R}$ is continuous and $\partial f/\partial y$ is continuous, define

$$F(x,y) = \int_{a}^{x} f(t,y)dt$$

- Find $D_x F$ and $D_y F$.
- If $G(x) = \int_{a}^{g(x)} f(t, x) dt$, find G'(x). Hint: Use fundamental theorem of calculus and Chain rule. If $F(x) = \int_{a}^{x} f(t) dt$ then dF/dx = f(x).

Problem 6. If $f : \mathbb{R}^2 \to \mathbb{R}$ and $D_2 f = 0$, show that f is independent of the second variable. If $D_1 f = D_2 f = 0$, show that f is constant.

Problem 7. Let $f : \mathbb{R}^3 \to \mathbb{R}$ and $g : \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be defined by the equation

$$F(x,y) = f(x,y,g(x,y)).$$

(a) Find DF in terms of the partials of f and g.

.

(b) If F(x,y) = 0 for all (x,y), find $\partial g/\partial x$ and $\partial g/\partial y$ in terms of the partials of f.

Problem 8. If $f : \mathbb{R}^3 \to \mathbb{R}$ is differentiable and f((0,0,0)) = 0, prove that there exist $g_i : \mathbb{R}^3 \to \mathbb{R}$ for i = 1, 2, 3 such that

$$f(x) = xg_1(x, y, z) + yg_2(x, y, z) + zg_3(x, y, z)$$

Problem 9. Show that if $f : \mathbb{R}^3 \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^3$ there is a **unique** linear map $T_a : \mathbb{R}^3 \to \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - T_a(h)|}{|h|} = 0$$

where $h = (h_1, h_2, h_3)$ and $|h| = (h_1^2 + h_2^2 + h_3^2)^{1/2}$

Problem 10. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that $|f(x)| \leq |x|^2$. Show that f is differentiable at 0. Remark: $x = (x_1, x_2)$ and $|x| = (x_1^2 + x_2^2)^{1/2}$

Note: If you have any doubt in your solution then you can discuss it in tutorials.

Text Book: Thomas' Calculus 11th edition (Maurice D. Weir, Joel Hass, Frank R. Gioedano).