MTH 201

MULTIVARIABLE CALCULUS AND DIFFERENTIAL EQUATIONS

Assignment-5, Solution discussion date 16/09/2016

Problem-1. Solve 5, 8 from Section 14.6

Problem-2. Solve 31, 70 from Section 14.7

Problem-3. Solve 10, 28, 31, 38, 45, 50 from Exercises 14.4

Problem-4. Solve 27, 31, 32, 36 from Excercise 14.5

Problem 5. If $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continous and $\partial f / \partial y$ is continous, define

$$
F(x, y)=\int_{a}^{x} f(t, y) d t
$$

- Find $D_{x} F$ and $D_{y} F$.
- If $G(x)=\int_{a}^{g(x)} f(t, x) d t$, find $G^{\prime}(x)$.

Hint: Use fundamental theorem of calculus and Chain rule.
If $F(x)=\int_{a}^{x} f(t) d t$ then $d F / d x=f(x)$.
Problem 6. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $D_{2} f=0$, show that f is independent of the second variable. If $D_{1} f=D_{2} f=0$, show that f is constant.

Problem 7. Let $f: R^{3} \rightarrow R$ and $g: R^{2} \rightarrow R$ be differentiable. Let $F: R^{2} \rightarrow R$ be defined by the equation

$$
F(x, y)=f(x, y, g(x, y))
$$

(a) Find $D F$ in terms of the partials of f and g.
(b) If $F(x, y)=0$ for all (x, y), find $\partial g / \partial x$ and $\partial g / \partial y$ in terms of the partials of f.

Problem 8. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable and $f((0,0,0))=0$, prove that there exist $g_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ for $i=1,2,3$ such that

$$
f(x)=x g_{1}(x, y, z)+\underset{1}{y g_{2}}(x, y, z)+z g_{3}(x, y, z)
$$

Problem 9. Show that if $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}^{3}$ there is a unique linear map $T_{a}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\lim _{h \rightarrow 0} \frac{\left|f(a+h)-f(a)-T_{a}(h)\right|}{|h|}=0
$$

where $h=\left(h_{1}, h_{2}, h_{3}\right)$ and $|h|=\left(h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right)^{1 / 2}$
Problem 10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $|f(x)| \leq|x|^{2}$. Show that f is differentaible at 0. Remark: $x=\left(x_{1}, x_{2}\right)$ and $|x|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$

Note: If you have any doubt in your solution then you can discuss it in tutorials.
Text Book: Thomas’ Calculus 11th edition (Maurice D. Weir, Joel Hass, Frank R. Gioedano).

