Lagrange Multipliers

Let us say we have a function f of n variables, i. e., $f \equiv f(x_1, x_2, ..., x_n)$. By doing a Taylor expansion up to first order, the difference in the value of f between two neighboring points, $(x_1, x_2, ..., x_n)$ and $(x_1 + dx_1, x_2 + dx_2, ..., x_n + dx_n)$ can be written as,

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i. \tag{1}$$

If we want to maximize (or minimize) f then we look for a point, $(x_1, x_2, ..., x_n)$ such that df = 0 around it. Since, in this case, there is no conditions (constraints) on x_i 's all dx_i (and also all x_i) are linearly independent. Therefore, the condition df = 0 necessarily implies that,

$$\frac{\partial f}{\partial x_i} = 0 \tag{2}$$

for all i.

However, in some cases we encounter problems of maximization (or minimization) with one or more constraints. For example, let us consider the problem of maximization (minimization) of $f(x_1, x_2, ..., x_n)$ with the constraint that another function $\phi(x_1, x_2, ..., x_n) = 0$. In this case, at the point of maximum (or minimum) we still have df = 0, but in this case, we cant say that the condition df = 0 implies,

$$\frac{\partial f}{\partial x_i} = 0 \tag{3}$$

for all *i*. This is just because, the condition $\phi(x_1, x_2, ..., x_n) = 0$ renders one of the x_i 's (and hence corresponding dx_i) **dependent** on the rest n-1 variables which can be treated as independent ¹. Since not all variables now are independent our arguments that led to Eqn 2 do not hold in this case.

Can we find out a *necessary condition* someway similar to Eqn. 2 for the case of constrained maximization (minimization)? Below, we shall derive such a condition.

As in the preceding case, we consider the problem of maximizing $f(x_1, x_2, ..., x_n)$ with the constraint that $\phi(x_1, x_2, ..., x_n) = 0$.

Since, $\phi = 0$ we have,

$$d\phi = \sum_{i=1}^{n} \frac{\partial \phi}{\partial x_i} dx_i = 0.$$
(4)

As discussed earlier, since the condition df = 0 holds even for the constrained problem, using above equation we can write, $df + \lambda d\phi = 0$ where λ can take arbitrary value. Now, using Eqn. 1 we obtain,

$$\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial \phi}{\partial x_i} \right) dx_i = 0.$$
(5)

We know that not all dx_i 's in above equation is independent. In particular, one of them can be treated to be dependent on the rest (n-1) independent variables. Let we treat, x_n to be dependent on the first

¹Since $\phi(x_1, x_2, ..., x_n) = 0$ we can write $x_n = h(x_1, x_2, ..., x_{n-2}, x_{n-1})$, where h is a function of the first n-1 variables.

(n-1) linearly independent variables. Let us separate the n^{th} term from the first (n-1) terms in the above equation as follows,

$$\sum_{i=1}^{n-1} \left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial \phi}{\partial x_i} \right) dx_i + \left(\frac{\partial f}{\partial x_n} + \lambda \frac{\partial \phi}{\partial x_n} \right) dx_n = 0.$$
(6)

But here λ is arbitrary. So we can choose λ such that the coefficient of dx_n becomes zero. This is actually the most important step. Since the coefficient of dx_n is 0 it does not matter if we treat dx_n in above equation as linearly independent or dependent on the rest of the n-1 linearly independent variables – i.e., in effect, dx_n has lost is presence from the above equation. Therefore, by enforcing, $\frac{\partial f}{\partial x_n} + \lambda \frac{\partial \phi}{\partial x_n} = 0$ we obtain,

$$\sum_{i=1}^{n-1} \left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial \phi}{\partial x_i} \right) dx_i = 0.$$
(7)

where all of the dx_i 's are linearly independent. Hence we must have, $\left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial \phi}{\partial x_i}\right)$ for i = 1, 2, 3, ..., n - 1. Combining with the case for i = n, we obtain,

$$\left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial \phi}{\partial x_i}\right) = 0, \qquad (8)$$

for all *i*. Using vector notation we can rewrite above equation as $\nabla_n f = -\lambda \nabla_n \phi$, where ∇_n denotes the *n* dimensional gradient operator. λ is called Lagrange's multiplier. This equation gives *necessary condition* for maximum of *f* subject to the constraint, $\phi = 0$.

If we have more than one constraint, namely, $\phi_j(x_1, x_2, ..., x_n) = 0$, where j = 1, 2, ..., m with m < n, then one gets n - m linearly independent dx_i and m dependent dx_i . By introducing m Lagrange multipliers we can set the coefficients of m dependent dx_i to zero. The rest (n - m) coefficients then automatically become zero from the condition of linear independence. The condition for maximum of f is then modified as $\nabla_n f = -\lambda_1 \nabla_n \phi_1 - \lambda_2 \nabla_n \phi_2 - \dots - \lambda_m \nabla_n \phi_m$