
Lagrange Multipliers

Let us say we have a function f of n variables, i. e., f ≡ f(x1, x2, ..., xn). By doing a Taylor expansion
up to first order, the difference in the value of f between two neighboring points, (x1, x2, ..., xn) and (x1 +
dx1, x2 + dx2, ..., xn + dxn) can be written as,

df =

n∑
i=1

∂f

∂xi
dxi. (1)

If we want to maximize (or minimize) f then we look for a point, (x1, x2, ..., xn) such that df = 0 around
it. Since, in this case, there is no conditions (constraints) on xi’s all dxi (and also all xi) are linearly
independent. Therefore, the condition df = 0 necessarily implies that,

∂f

∂xi
= 0 (2)

for all i.
However, in some cases we encounter problems of maximization (or minimization) with one or more

constraints. For example, let us consider the problem of maximization (minimization) of f(x1, x2, ..., xn)
with the constraint that another function φ(x1, x2, ..., xn) = 0. In this case, at the point of maximum (or
minimum) we still have df = 0, but in this case, we cant say that the condition df = 0 implies,

∂f

∂xi
= 0 (3)

for all i. This is just because, the condition φ(x1, x2, ..., xn) = 0 renders one of the xi’s (and hence corre-
sponding dxi) dependent on the rest n− 1 variables which can be treated as independent 1. Since not all
variables now are independent our arguments that led to Eqn 2 do not hold in this case.

Can we find out a necessary condition someway similar to Eqn. 2 for the case of constrained maximization
(minimization)? Below, we shall derive such a condition.

As in the preceding case, we consider the problem of maximizing f(x1, x2, ..., xn) with the constraint that
φ(x1, x2, ..., xn) = 0.

Since, φ = 0 we have,

dφ =

n∑
i=1

∂φ

∂xi
dxi = 0. (4)

As discussed earlier, since the condition df = 0 holds even for the constrained problem, using above
equation we can write, df + λdφ = 0 where λ can take arbitrary value. Now, using Eqn. 1 we obtain,

n∑
i=1

(
∂f

∂xi
+ λ

∂φ

∂xi

)
dxi = 0. (5)

We know that not all dxi’s in above equation is independent. In particular, one of them can be treated
to be dependent on the rest (n − 1) independent variables. Let we treat, xn to be dependent on the first

1Since φ(x1, x2, ..., xn) = 0 we can write xn = h(x1, x2, ..., xn−2, xn−1), where h is a function of the first n− 1 variables.
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(n−1) linearly independent variables. Let us separate the nth term from the first (n−1) terms in the above
equation as follows,

n−1∑
i=1

(
∂f

∂xi
+ λ

∂φ

∂xi

)
dxi +

(
∂f

∂xn
+ λ

∂φ

∂xn

)
dxn = 0. (6)

But here λ is arbitrary. So we can choose λ such that the coefficient of dxn becomes zero. This is actually
the most important step. Since the coefficient of dxn is 0 it does not matter if we treat dxn in above equation
as linearly independent or dependent on the rest of the n− 1 linearly independent variables – i.e., in effect,
dxn has lost is presence from the above equation. Therefore, by enforcing, ∂f

∂xn
+ λ ∂φ

∂xn
= 0 we obtain,

n−1∑
i=1

(
∂f

∂xi
+ λ

∂φ

∂xi

)
dxi = 0 . (7)

where all of the dxi’s are linearly independent. Hence we must have,
(
∂f
∂xi

+ λ ∂φ
∂xi

)
for i = 1, 2, 3, ..., n − 1.

Combining with the case for i = n, we obtain,(
∂f

∂xi
+ λ

∂φ

∂xi

)
= 0 , (8)

for all i. Using vector notation we can rewrite above equation as ∇nf = −λ∇nφ, where ∇n denotes the n
dimensional gradient operator. λ is called Lagrange’s multiplier. This equation gives necessary condition for
maximum of f subject to the constraint, φ = 0.

If we have more than one constraint, namely, φj(x1, x2, .., xn) = 0, where j = 1, 2, ...,m with m < n,
then one gets n−m linearly independent dxi and m dependent dxi. By introducing m Lagrange multipliers
we can set the coefficients of m dependent dxi to zero. The rest (n − m) coefficients then automatically
become zero from the condition of linear independence. The condition for maximum of f is then modified
as ∇nf = −λ1∇nφ1 − λ2∇nφ2 − ......− λm∇nφm
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