Lagrange Multipliers

Let us say we have a function f of n variables, i. e., $f \equiv f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By doing a Taylor expansion up to first order, the difference in the value of f between two neighboring points, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and ($x_{1}+$ $\left.d x_{1}, x_{2}+d x_{2}, \ldots, x_{n}+d x_{n}\right)$ can be written as,

$$
\begin{equation*}
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \tag{1}
\end{equation*}
$$

If we want to maximize (or minimize) f then we look for a point, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $d f=0$ around it. Since, in this case, there is no conditions (constraints) on x_{i} 's all $d x_{i}$ (and also all x_{i}) are linearly independent. Therefore, the condition $d f=0$ necessarily implies that,

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=0 \tag{2}
\end{equation*}
$$

for all i.
However, in some cases we encounter problems of maximization (or minimization) with one or more constraints. For example, let us consider the problem of maximization (minimization) of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with the constraint that another function $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$. In this case, at the point of maximum (or minimum) we still have $d f=0$, but in this case, we cant say that the condition $d f=0$ implies,

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=0 \tag{3}
\end{equation*}
$$

for all i. This is just because, the condition $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ renders one of the x_{i} 's (and hence corresponding $d x_{i}$) dependent on the rest $n-1$ variables which can be treated as independent ${ }^{1}$. Since not all variables now are independent our arguments that led to Eqn 2 do not hold in this case.

Can we find out a necessary condition someway similar to Eqn. 2 for the case of constrained maximization (minimization)? Below, we shall derive such a condition.

As in the preceding case, we consider the problem of maximizing $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with the constraint that $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

Since, $\phi=0$ we have,

$$
\begin{equation*}
d \phi=\sum_{i=1}^{n} \frac{\partial \phi}{\partial x_{i}} d x_{i}=0 \tag{4}
\end{equation*}
$$

As discussed earlier, since the condition $d f=0$ holds even for the constrained problem, using above equation we can write, $d f+\lambda d \phi=0$ where λ can take arbitrary value. Now, using Eqn. 1 we obtain,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial \phi}{\partial x_{i}}\right) d x_{i}=0 \tag{5}
\end{equation*}
$$

We know that not all $d x_{i}$'s in above equation is independent. In particular, one of them can be treated to be dependent on the rest $(n-1)$ independent variables. Let we treat, x_{n} to be dependent on the first

[^0]$(n-1)$ linearly independent variables. Let us separate the $n^{t h}$ term from the first $(n-1)$ terms in the above equation as follows,
\[

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(\frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial \phi}{\partial x_{i}}\right) d x_{i}+\left(\frac{\partial f}{\partial x_{n}}+\lambda \frac{\partial \phi}{\partial x_{n}}\right) d x_{n}=0 \tag{6}
\end{equation*}
$$

\]

But here λ is arbitrary. So we can choose λ such that the coefficient of $d x_{n}$ becomes zero. This is actually the most important step. Since the coefficient of $d x_{n}$ is 0 it does not matter if we treat $d x_{n}$ in above equation as linearly independent or dependent on the rest of the $n-1$ linearly independent variables - i.e., in effect, $d x_{n}$ has lost is presence from the above equation. Therefore, by enforcing, $\frac{\partial f}{\partial x_{n}}+\lambda \frac{\partial \phi}{\partial x_{n}}=0$ we obtain,

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(\frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial \phi}{\partial x_{i}}\right) d x_{i}=0 \tag{7}
\end{equation*}
$$

where all of the $d x_{i}$'s are linearly independent. Hence we must have, $\left(\frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial \phi}{\partial x_{i}}\right)$ for $i=1,2,3, \ldots, n-1$. Combining with the case for $i=n$, we obtain,

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x_{i}}+\lambda \frac{\partial \phi}{\partial x_{i}}\right)=0 \tag{8}
\end{equation*}
$$

for all i. Using vector notation we can rewrite above equation as $\nabla_{n} f=-\lambda \nabla_{n} \phi$, where ∇_{n} denotes the n dimensional gradient operator. λ is called Lagrange's multiplier. This equation gives necessary condition for maximum of f subject to the constraint, $\phi=0$.

If we have more than one constraint, namely, $\phi_{j}\left(x_{1}, x_{2}, . ., x_{n}\right)=0$, where $j=1,2, \ldots, m$ with $m<n$, then one gets $n-m$ linearly independent $d x_{i}$ and m dependent $d x_{i}$. By introducing m Lagrange multipliers we can set the coefficients of m dependent $d x_{i}$ to zero. The rest $(n-m)$ coefficients then automatically become zero from the condition of linear independence. The condition for maximum of f is then modified as $\nabla_{n} f=-\lambda_{1} \nabla_{n} \phi_{1}-\lambda_{2} \nabla_{n} \phi_{2}-\ldots . .-\lambda_{m} \nabla_{n} \phi_{m}$

[^0]: ${ }^{1}$ Since $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ we can write $x_{n}=h\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}\right)$, where h is a function of the first $n-1$ variables.

