Quantum Physics (PHY 201) IISER Bhopal Assignment 4 (03-09-2010)

- 1. Consider the time dependent Schrödinger equation for a free particle, $i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2}$. Using this equation and the definition $\langle p_x \rangle = m \frac{d\langle x \rangle}{dt}$ show that $\langle p_x \rangle = -i\hbar \int_{-\infty}^{\infty} \Psi^*(x,t) \frac{\partial \Psi(x,t)}{\partial x} dx$.
- 2. Consider a one dimensional potential V(x) = V(-x). Show that, if u(x) is an eigen function of the time independent Schrödinger equation with energy eigen value E then u(-x) is also an eigen function with the same energy eigen value E.
- 3. Consider particle in a box whose sides are at $x = \pm a$. Show that the particle cannot have negative energy states. Find the energy eigen values and normalized eigen functions.
- 4. Consider a free particle inside a one dimensional box of length L with $0 \le x \le L$. Show that, for any Δx satisfying $0 < \Delta x < L/2$, the normalized eigen function, $u_n(x)$, satisfies
 - a) $u_n(L/2 + \Delta x) = u_n(L/2 \Delta x)$, if n is odd,
 - b) $u_n(L/2 + \Delta x) = -u_n(L/2 \Delta x)$, if n is even.

(Note: In case a) the eigen function remains invariant under a reflection around x = L/2, whereas in case b) the eigen function changes sign. The first type of eigen functions are known to be *parity even* and the second type is known to be *parity odd*).

- 5. Show that, the probability flux, J(x), in one dimension satisfies, $\int_{-\infty}^{\infty} J(x) dx = \langle p_x \rangle / m$.
- 6. Consider a wave function, Ψ(x, t), whose time-independent part is purely real. Assuming Ψ(x,t) = ψ(x)e^{iEt/ħ}, where ψ(x) is real, show that
 a) the probability flux for such wave function vanishes,
 b) the momentum expectation value, ⟨p_x⟩ = 0.
- 7. Find the probability flux for the wave function, $\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} A(p) e^{i(px-Et)/\hbar} dp$.