Quantum Physics (PHY 201)
 Assignment 3 (21-08-2010)

1. Prove that,
a)

$$
\int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=(2 \pi) \delta\left(k-k^{\prime}\right) .
$$

b)

$$
\int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x / \hbar} d x=(2 \pi \hbar) \delta\left(p-p^{\prime}\right) .
$$

[Hint for question 1a): Show that $\frac{1}{(2 \pi)} \int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x$ satisfies the defining properties of Dirac delta function. You would find the result $\int_{-\infty}^{\infty} \frac{\sin (y)}{y} d y=\pi$ useful in this problem.]
2. The wave function in the spatial domain, $\Psi(x)$, is related to wave function in the momentum domain, $A(p)$, following,

$$
\Psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} A(p) e^{\frac{i p x}{\hbar}} d p
$$

Show that, if $\Psi(x)$ is a normalized wave function $A(p)$ also is a normalized wave function. (This is known as Parseval's theorem.)
3. Assuming $\Psi(x)$ is given by the relation as given in the question 2 above, show that, a)

$$
\left\langle p^{2}\right\rangle=\int_{-\infty}^{\infty} \Psi^{*}(x)\left(-\hbar^{2} \frac{d^{2}}{d x^{2}}\right) \Psi(x) d x
$$

b)

$$
\langle x\rangle=\int_{-\infty}^{\infty} A^{*}(p)\left(i \hbar \frac{d}{d p}\right) A(p) d p
$$

c)

$$
\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} A^{*}(p)\left(-\hbar^{2} \frac{d^{2}}{d p^{2}}\right) A(p) d p
$$

[Assume that $\Psi(x)$ and $A(p)$ are normalized.]
4. The wave function of a particle is given by $\Psi(x)$. Find the velocity expectation value $\langle v\rangle$.
5. A particle moving in one dimension has a De Broglie wavelength somewhere in the range $\lambda=\lambda_{0} \pm \Delta \lambda$. Assuming $\Delta \lambda / \lambda_{0} \gg\left(\Delta \lambda / \lambda_{0}\right)^{n}$ for all $n>1$ and n is an integer, find the minimum spread, Δx, of the wave associated with it.
6. A wave function $\Psi(x)$, in the range $|x| \leq 2$ is given by,

$$
\Psi(x)=\frac{x^{2}}{2}-\frac{x^{4}}{8} .
$$

Given that $\Psi(x)=0$ for $|x|>2$,
a) Check if $\Psi(x)$ is a normalized wave function and draw the normalized wave function as a function of x .
b) Find the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$. Using these results find uncertainty Δx.
c) Using $\hat{p}_{x}=\frac{\hbar}{i} \frac{d}{d x}$ and $\hat{p}_{x}^{2}=-\hbar^{2} \frac{d^{2}}{d x^{2}}$ find expectation values $\left\langle p_{x}\right\rangle,\left\langle p_{x}^{2}\right\rangle$ and using these results estimate uncertainty in the x component of momentum Δp_{x}.
d) Using the results of b) and c) above, find the uncertainty product, $\Delta x \Delta p_{x}$.
7. The momentum wave function $A(p)$, in the range $0 \leq p \leq 1$ is given by,

$$
A(p)=p(1-p)(p-0.5)^{2}
$$

Assume that $A(p)$ is zero for $p>1$ or $p<0$.
a) Check if $A(p)$ is a normalized wave function and plot the normalized wave function as a function of p.
b) Using the results of question 3b) and 3c) find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ and hence the uncertainty Δx.
c) Find $\left\langle p_{x}\right\rangle,\left\langle p_{x}^{2}\right\rangle$ and hence Δp_{x}. Finally estimate the uncertainty product, $\Delta x \Delta p_{x}$.

