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1 Banach Algebras

1.1 Definition and Examples

All vector spaces in this course will be over C.

Definition 1.1.1. 1. An algebra is a vector space A over C together with a bilinear
multiplication under which A is a ring. In other words, for all α, β ∈ C, a, b, c ∈ A,
we have

(αa+ βb)c = α(ac) + β(bc) and a(αb+ βc) = α(ab) + β(ac)

2. An algebra A is said to be a normed algebra if there is a norm on A such that

a) (A, ‖ · ‖) is a normed linear space

b) For all a, b ∈ A, we have ‖ab‖ ≤ ‖a‖‖b‖

3. A Banach algebra is a complete normed algebra.

Remark 1.1.2. 1. If X is a normed linear space, then ‖x + y‖ ≤ ‖x‖ + ‖y‖. Hence,
the map

(x, y) 7→ x+ y

is jointly continuous. ie. If xn → x and yn → y, then xn + yn → x+ y.

2. Similarly, if A is a normed algebra, then the map

(x, y) 7→ xy

is jointly continuous [Check!]

Example 1.1.3. 1. A = C

2. A = C[0, 1]. More generally, C(X) for X A compact, Hausdorff space.

A = Cb(X), where X is a locally compact Hausdorff space.

3. A = C0(X), where X is a locally compact Hausdorff space. [Exercise]

4. A = c0, the space of complex sequences converging to 0.

Note: All the above examples are abelian.
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5. A = Mn(C) for any n ∈ N with the operator norm

‖A‖ = sup{‖A(x)‖ : x ∈ Cn, ‖x‖ ≤ 1}

6. A = B(X) for any Banach space X.

7. A = L1(R) with multiplication given by convolution

Proof. For f, g ∈ A, we write

f ∗ g(x) :=

∫
R
f(t)g(x− t)dt

Now

‖f ∗ g‖L1(R) =

∫
R
|f ∗ g(x)|dx ≤

∫
R

∫
R
|f(t)||g(x− t)|dtdx = ‖f‖‖g‖

by Fubini’s theorem. The other axioms are easy to check.

8. A = `1(Z) with multiplication given by convolution (proof is identical to the
previous one). A is a commutative Banach algebra.

Definition 1.1.4. Let A be a Banach algebra.

1. A subset I ⊂ A is called a left ideal of A if it is a vector subspace of A and

a ∈ A, b ∈ I ⇒ ab ∈ I

2. A right ideal is defined similarly.

3. In this course, an ideal will refer to a two-sided ideal, for which we write I C A.

4. An ideal I C A is said to be proper if I 6= {0} and I 6= A.

5. A maximal ideal is an ideal that is not properly contained in any proper ideal.

Example 1.1.5. 1. A = C[0, 1], then I = {f ∈ C(X) : f(1) = 0} is a maximal ideal.

2. If A = Mn(C), then A has no non-trivial ideals

Proof. Let {0} 6= J C A, then choose 0 6= T ∈ J , then ∃Ti,j = a 6= 0. Let Ek,l be
the permutation matrix obtained by switching the kth row of the identity matrix
with the lth row. Then

T ′ := E1,jTEi,1 ∈ J
and T ′1,1 = a 6= 0. Now let F1,1 be the matrix with 1 in the (1, 1)th entry and zero
elsewhere. Then

1

a
F1,1T

′F1,1 = F1,1 ∈ J

Similarly, F2,2, F3,3, . . . , Fn,n ∈ J . Adding them up, we have ICn ∈ J and since J
is an ideal, this means that J = A.

4



(End of Day 1)

3. If X is a locally compact Hausdorff space, then C0(X) is an ideal in Cb(X), the
space of bounded continuous functions on X

4. Let X be a Banach space and A = B(X), then set

F(X) = {T ∈ B(X) : T has finite rank}

Then F(X) is an ideal in A.

5. If A = B(X), then the set K(X) of compact operators on X is a closed ideal in A.
In fact, if H is a Hilbert space, then K(H) = F(H)

Theorem 1.1.6. If A is a Banach algebra, and I C A is a proper closed ideal, then
A/I is a Banach algebra with the quotient norm

‖a+ I‖ = inf{‖a+ b‖ : b ∈ I}

Proof. 1. Clearly, A/I is an algebra.

2. Now we check that the axioms of the norm hold :

a) If ‖a + I‖ = 0, then ∃bn ∈ I such that ‖a + bn‖ → 0. Since I is closed, this
means that a ∈ I and hence a+ I = 0 in A/I

b) Clearly, ‖a+ I‖ ≥ 0.

c) If a, b ∈ A, then for any c, d ∈ I

‖a+ b+ I‖ ≤ ‖a+ b+ c+ d‖ ≤ ‖a+ c‖+ ‖b+ d‖

This is true for any c, d ∈ I, so taking infimum gives ‖a+ b+ I‖ ≤ ‖a+ I‖+
‖b+ I‖

3. We now check that A/I is a Banach algebra: If a, b ∈ A, then for any c, d ∈ I we
have

(a+ c)(b+ d) = ab+ cb+ ad+ dc

where x := cb+ ad+ dc ∈ I. Hence

‖ab+ I‖ ≤ ‖ab+ x‖ ≤ ‖a+ c‖‖b+ d‖

This is true for any c, d ∈ I, so taking infimum gives ‖ab+ I‖ ≤ ‖a+ I‖‖b+ I‖

4. A is complete (See [Conway, Theorem III.4.2])

Definition 1.1.7. Let A and B be Banach algebras.

1. A map ϕ : A→ B is called a homomorphism of Banach algebras if
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a) ϕ : A → B is a continuous (ie. bounded) linear transformation of normed
linear spaces

b) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A.

2. Recall that if ϕ is continuous, then

‖ϕ‖ = sup{‖ϕ(a)‖ : a ∈ A, ‖a‖ ≤ 1}

3. A bijective homomorphism whose inverse is also continuous is called an isomorphism
of Banach algebras.

Example 1.1.8. 1. If I C A is a closed ideal, then the natural quotient map π :
A→ A/I is a homomorphism. Note that

‖π(a)‖ = ‖a+ I‖ ≤ ‖a+ 0‖ = ‖a‖

Hence ‖π‖ ≤ 1. We will see later (Theorem 1.2.9) that ‖π‖ = 1 if A is unital.

2. If A = C(X) and x0 ∈ X, then f 7→ f(x0) is a continuous homomorphism.

3. Let A be any Banach algebra, and B(A) be the space of bounded linear operators
on A. Define ϕ : A→ B(A) by

x 7→ Lx, where Lx(y) := xy

Then ϕ is a continuous homomorphism, called the left regular representation of A.

4. Let X = [0, 1], H = L2(X) and set A = C(X), B = B(H). Define

ϕ : A→ B by f 7→Mf

where Mf (g) := fg. Then ϕ is a continuous homomorphism.

(End of Day 2)

Theorem 1.1.9. Let ϕ : A → B be a homomorphism of Banach algebras and let
I = ker(ϕ). Then

1. I = ker(ϕ) is a closed ideal in A

2. There is a unique injective homomorphism ϕ : A/I → B such that ϕ ◦ π = ϕ.
Furthermore,

‖ϕ‖ = ‖ϕ‖
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Proof. We know from algebra that ∃ a unique homomorphism of rings ϕ : A/I → B
such that ϕ ◦ π = ϕ which is given by

ϕ(a+ I) = ϕ(a)

It is easy to see that ϕ is linear as well, and so is a homomorphism of algebras. Further-
more, for any c ∈ I

‖ϕ(a+ I)‖ = ‖ϕ(a)‖ = ‖ϕ(a+ c)‖ ≤ ‖ϕ‖‖a+ c‖

Taking infimum, we see that ϕ is continuous and ‖ϕ‖ ≤ ‖ϕ‖. However, since ‖π‖ ≤ 1
by Example 1.1.8(1),

‖ϕ‖ = ‖ϕ ◦ π‖ ≤ ‖ϕ‖‖π‖ ≤ ‖ϕ‖

Hence, ‖ϕ‖ = ‖ϕ‖.

1.2 Invertible Elements

Definition 1.2.1. Let A be a Banach algebra

1. A is said to be unital if ∃e ∈ A such that ae = ea = a for all a ∈ A.

2. If A is unital with unit e, then we will write 1A = 1 = e, and assume that ‖1A‖ = 1.

3. If A is unital, then we may assume C ⊂ A via the map α 7→ α1A

Remark 1.2.2. ([Arveson, Theorem 1.4.2]) Let (A, ‖·‖) be a complex algebra with a unit
e that is also a Banach space. Furthermore, assume that the multiplication map

(x, y) 7→ xy

is jointly continuous. Then there is a norm ‖ · ‖1 on A that is equivalent to ‖ · ‖ such
that (A, ‖ · ‖1) is a Banach algebra and ‖e‖1 = 1.

Example 1.2.3. 1. If X is compact Hausdorff, then C(X) is unital.

2. If X is non-compact, then C0(X) is non-unital. In particular, c0 is non-unital.

3. Mn(C) is unital. So is B(X) for any Banach space X

4. L1(R) is non-unital

Proof. Suppose e ∈ L1(R) is a unit, then for all ε > 0,∃δ > 0 such that for any
measurable V ⊂ R

m(V ) < δ ⇒
∫
V

|e(x)|dx < ε
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Let V = (−δ/4, δ/4), then m(V ) = δ/2 < δ. Now if f = χV is the characteristic
function of V , then for any x ∈ R

f(x) = e ∗ f(x) =

∫
R
e(t)f(x− t)dt =

∫
x−V

e(t)dt < ε

However, if x ∈ V , then
1 = f(x) < ε

so with ε = 1/2, this gives a contradiction.

5. `1(Z) is unital with unit (en) given by

en =

{
1 : n = 0

0 : n 6= 0

6. L∞(X,µ) is unital

Definition 1.2.4. Let A be a unital Banach algebra.

1. An element a ∈ A is said to be invertible if ∃b ∈ A such that ab = ba = 1A. The
inverse, if it exists, is unique, and is denoted by a−1.

2. The General Linear group of A, denoted by GL(A), is the set of all invertible
elements in A.

Theorem 1.2.5. If a ∈ A is such that ‖1− a‖ < 1, then a ∈ GL(A). Furthermore, a−1

is given by the Neumann series

a−1 = 1 + (1− a) + (1− a)2 + . . . =
∞∑
k=0

(1− a)k

Proof. Since the series on the RHS converges absolutely, the series

∞∑
n=0

(1− a)n

converges to an element b ∈ A (since A is a Banach space). Furthermore, writing
x = (1− a), by continuity of multiplication,

ab = lim
n→∞

n∑
k=0

a(1− a)k = lim
n→∞

n∑
k=0

(1− x)xk = lim
n→∞

(1− xn+1) = 1

Similarly, ba = 1 as well.

Corollary 1.2.6. 1. GL(A) is an open subset of A
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2. The map x 7→ x−1 from GL(A) to GL(A) is a homeomorphism.
In particular, GL(A) is a topological group.

Proof. 1. If a ∈ GL(A) and b ∈ A such that

‖a− b‖ < 1

‖a−1‖
Then ‖1− a−1b‖ < 1 and so a−1b is invertible, whence b is invertible.

2. WTS: a 7→ a−1 is continuous, so suppose an → a in GL(A). Replacing an by
ana

−1, we may assume WLOG that a = 1. Given δ > 0,∃N ∈ N such that

‖an − 1‖ < δ ∀n ≥ N

By Theorem 1.2.5,

a−1
n = 1 +

∞∑
k=1

(1− an)k

Hence,

‖a−1
n − 1‖ ≤

∞∑
k=1

‖1− an‖k <
δ

(1− δ)

So given ε > 0, choose δ > 0 such that δ/(1− δ) < ε.

(End of Day 3)

Theorem 1.2.7. Let A be a unital Banach algebra, then every ideal I C A is contained
in a maximal ideal.

Proof. Same proof as in Ring theory (using Zorn’s Lemma).

Theorem 1.2.8. Let A be a unital Banach algebra

1. If I C A is a proper ideal, then I is a proper closed ideal.

2. Every maximal ideal in A is closed.

Proof. If I is an ideal, then it is easy to check that I is an ideal. If I C A is proper,
then I ∩GL(A) = ∅. Hence, I ⊂ (A \GL(A)) which is closed, whence I ⊂ (A \GL(A)).

Finally, part (2) follows from part (1).

Theorem 1.2.9. Let A be a unital Banach algebra and I C A be a proper closed ideal.
Let π : A→ A/I be the natural homomorphism, then π is continuous and

‖π‖ = ‖π(1)‖ = 1

Proof. We saw in Example 1.1.8 that π is continuous and ‖π‖ ≤ 1. Since ‖1A‖ = 1,

‖1A + I‖ = ‖π(1A)‖ ≤ ‖π‖‖1A‖ = ‖π‖ ≤ 1

However, for any b ∈ I, ‖1A + b‖ ≥ 1 since I ∩GL(A) = ∅. Hence,

‖1A + I‖ = inf{‖1A + b‖ : b ∈ GL(A)} ≥ 1
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1.3 Spectrum of an Element

Throughout this section, let A denote a unital Banach algebra with unit 1 ∈ A

Definition 1.3.1. Let a ∈ A

1. The spectrum of a, denoted by σ(a), is defined as

σ(a) := {λ ∈ C : (a− λ1A) /∈ GL(A)}

2. The resolvent of a, denoted by ρ(a), is defined as

ρ(a) := C \ σ(a)

Example 1.3.2. 1. If T ∈ B(Cn), then σ(T ) is the set of eigen-values of T

2. If X is a Banach space,

σ(T ) = {λ ∈ C : (T − λI) is not bijective}

3. If T ∈ B(C[0, 1]) be the operator

T (f)(x) :=

∫ x

0

f(t)dt

Then T is not surjective, because if g ∈ Image(T ), then g is a C1 function. Hence,
0 ∈ σ(T ). However, 0 is not an eigen-value of T [Exercise]

4. If f ∈ C(X), then σ(f) = f(X) is the range of f

5. If A = `∞(X) for some set X, then for any f ∈ A, σ(f) = f(X) is the closure of
the range of f in C

Theorem 1.3.3. For any a ∈ A, σ(a) is a compact subset of the disc

{z ∈ C : |z| ≤ ‖a‖} ⊂ C

Proof. 1. If |λ| > ‖a‖, then ‖a/λ‖ < 1, so (1 − a/λ) ∈ GL(A). Hence, λ ∈ ρ(a).
Hence,

σ(a) ⊂ {z ∈ C : |z| ≤ ‖a‖}

2. The function f : λ 7→ (λ − a) is a continuous function C → A. Since GL(A) is
open,

ρ(a) = f−1(GL(A))

is open, and hence σ(a) is closed.
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Remark 1.3.4. Let A be a Banach algebra, Ω ⊂ C be an open set and F : Ω → A be a
function.

1. We say that F is analytic if ∃G : Ω→ A continuous such that

lim
h→0

∥∥∥∥F (z + h)− F (z)

h
−G(z)

∥∥∥∥ = 0 ∀z ∈ Ω

and in that case, we say that F ′(z) = G(z)

2. Suppose F is analytic, and τ ∈ A∗ is a bounded linear functional, then

H : Ω→ C given by H = τ ◦ F

is analytic (in the usual sense) and H ′ = τ ◦G.

(End of Day 4)

Lemma 1.3.5. Let a ∈ A and F : ρ(a)→ A be given by

F (z) = (z − a)−1

Then F is analytic and F ′(z) = −(z − a)−2

Proof. Let G : ρ(a)→ A be given by z 7→ −(z − a)−2. Then G is continuous because it
is the composition of continuous functions. Now, for any x, y ∈ GL(A)

x−1 − y−1 = x−1(y − x)y−1

Applying this to x = (z + h− a) and y = (z − a), we have

F (z + h)− F (z) = (z + h− a)−1(−h)(z − a)−1

so ∥∥∥∥F (z + h)− F (z)

h
−G(z)

∥∥∥∥ =
∥∥[(z + h− a)−1 − (z − a)−1](z − a)−1

∥∥
Now use the fact that z 7→ (z − a)−1 is continuous.

Theorem 1.3.6 (Gelfand-Mazur). If A is a Banach algebra, then σ(a) 6= ∅ for any
a ∈ A.

Proof. Let a ∈ A, then we want to show that σ(a) 6= ∅. Clearly, if a = 0, then 0 ∈ σ(a),
so we assume that a 6= 0. Suppose σ(a) = ∅, then ρ(a) = C, so consider F : C→ A by

F (z) = (z − a)−1

By Lemma 1.3.5, F is analytic and

F ′(z) = −(z − a)−2 (1.1)
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As z →∞, (1− a/z)→ 1, so by Corollary 1.2.6(2), we have

F (z) = z−1
(

1− a

z

)−1

→ 0 (1.2)

Hence, if τ ∈ A∗, then consider

H(z) = τ ◦ F (z) = τ((z − a)−1)

Then, H is entire by Equation 1.1 and bounded by Equation 1.2. So H is constant by
Liouville’s theorem. In particular,

H ′(0) = τ(a−2) = 0

This is true for all τ ∈ A∗, which is impossible since a 6= 0 and so a−2 6= 0.

Corollary 1.3.7. If A is a unital Banach algebra in which every non-zero element is
invertible, then A = C1A

Proof. Let a ∈ A, then ∃λ such that a − λ1A is not invertible. Hence, a − λ1A = 0, so
a = λ1A.

Definition 1.3.8. For a ∈ A, the spectral radius of a is r(a) := sup{|λ| : λ ∈ σ(a)}

Remark 1.3.9. 1. By Theorem 1.3.3, r(a) ≤ ‖a‖

2. Since σ(a) is compact, ∃λ0 ∈ σ(a) such that r(a) = |λ0|

Example 1.3.10. 1. If X is compact, Hausdorff and A = C(X), then r(f) = ‖f‖∞
for all f ∈ A

2. If T =

(
0 1
0 0

)
∈M2(C), then r(T ) = 0, while ‖T‖ = 1

More generally, if T ∈ Mn(C) is nilpotent, then r(T ) = 0 because the minimal
polynomial of T is xk for some k ∈ N

3. Let H be a Hilbert space and A = B(H). Let T ∈ A be a unitary operator, then

a) 0 /∈ σ(T ) because T is invertible.

b) If λ ∈ σ(T ), then λ ∈ σ(T ∗) = σ(T−1).

c) Furthermore, for any α ∈ ρ(T ) \ {0}, we have

T−1 − α−1 = α−1(α− T )T−1

and so α−1 ∈ ρ(T−1). Hence, if λ ∈ σ(T ), then λ
−1 ∈ σ(T ).

d) Since ‖T‖ = 1, it follows that

max{|λ|, |λ|−1} ≤ 1

Hence, |λ| = 1. This is true for all λ ∈ σ(T ), so σ(T ) ⊂ T := {z ∈ C : |z| = 1}
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e) Since σ(T ) 6= ∅, it follows that r(T ) = 1 = ‖T‖

Theorem 1.3.11 (Spectral Mapping Theorem). Let A be a unital Banach algebra, a ∈ A
and p ∈ C[z], then

σ(p(a)) = p(σ(a)) = {p(λ) : λ ∈ σ(a)}

Proof. Note that if p(z) = a0 + a1z + . . . + anz
n, then p(a) = a01A + a1a + . . . + ana

n.
Now, if α ∈ C, then by the Fundamental theorem of algebra, ∃γ, β1, β2, . . . , βn ∈ C such
that

p(z)− α = γ(z − β1)(z − β2) . . . (z − βn)

Hence,
p(a)− α = γ(a− β1)(a− β2) . . . (a− βn)

Hence,

α ∈ σ(p(a))⇔ βi ∈ σ(a) for some 1 ≤ i ≤ n

⇔ p(λ)− α = 0 for some λ ∈ σ(a)

⇔ α ∈ p(σ(a))

(End of Day 5)

Theorem 1.3.12 (Spectral Radius Formula). For any a ∈ A,

r(a) = lim
n→∞

‖an‖1/n

In particular, this limit exists.

Proof. 1. By Theorem 1.3.3, r(a) ≤ ‖a‖. In fact, if λ ∈ σ(a), then λn ∈ σ(an) by the
Spectral Mapping theorem. Hence, |λn| ≤ ‖an‖ ⇒ |λ| ≤ ‖an‖1/n. Hence,

r(a) ≤ lim inf ‖an‖1/n

2. Conversely, let D be the open disc in C centred at 0 of radius 1/r(a) [= +∞ if
r(a) = 0]. If λ ∈ D, then 1− λa ∈ GL(A) [check!]. So if τ ∈ A∗, consider the map

g : D → C given by g(λ) := τ((1− λa)−1)

As in Theorem 1.3.6, g is analytic, and so ∃ unique αn ∈ C such that

g(λ) =
∞∑
n=0

αnλ
n

Now if |λ| < 1/‖a‖, then λ ∈ D and ‖λa‖ < 1, so by Theorem 1.2.5,

(1− λa)−1 =
∞∑
n=0

λnan
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Hence,

g(λ) =
∞∑
n=0

τ(λnan) =
∞∑
n=0

λnτ(an)

So by uniqueness of the αn, we have

g(λ) =
∞∑
n=0

τ(an)λn ∀λ ∈ D

0
1/r(a)

1/
‖a
‖

In particular, for fixed λ ∈ D, the series
∑∞

n=0 τ(an)λn converges, and so the
sequence {τ(an)λn} converges to 0, and is therefore bounded. This is true for
all τ ∈ A∗, so by the Uniform Boundedness principle, the sequence {λnan} is a
bounded sequence. Hence, ∃M > 0 such that for all n ≥ 0,

‖λnan‖ ≤M ⇒ ‖an‖1/n ≤M1/n/|λ|

Taking lim sup on both sides, we get

lim sup ‖an‖1/n ≤ 1

|λ|

This is true for all λ ∈ C such that |λ| < 1/r(a), and so

lim sup ‖an‖1/n ≤ r(a)

Example 1.3.13. Let A = B(C[0, 1]) and T ∈ A be

T (f)(x) =

∫ x

0

f(t)dt

Then
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1. ‖T‖ = 1

2.

T 2(f)(x) =

∫ x

0

∫ t

0

f(s)dsdt

⇒ |T 2(f)(x)| ≤ ‖f‖∞
∫ x

0

∫ t

0

dsdt

= ‖f‖∞
∫ x

0

tdt

= ‖f‖∞
x2

2

⇒ ‖T 2‖ ≤ 1

2

3. More generally,

‖T n‖ ≤ 1

n!

4. Hence,

r(T ) ≤ lim
n→∞

(
1

n!

)1/n

= 0

Thus, σ(T ) = {0} even though T is not nilpotent.

1.4 Unital Commutative Banach Algebras

Throughout this section, let A denote a unital commutative Banach algebra

Definition 1.4.1. 1. A linear functional τ : A → C is said to be multiplicative if
τ(ab) = τ(a)τ(b) for all a, b ∈ A.

Note: We do not require it to be continuous - it will be automatically.

2. The Gelfand spectrum of A is defined as

Ω(A) = {τ : A→ C : τ is a non-zero multiplicative linear functional}

(End of Day 6)

Lemma 1.4.2. Let A be a unital commutative Banach algebra.

1. If τ ∈ Ω(A), then τ(1) = 1

2. If τ ∈ Ω(A), then ker(τ) is a maximal ideal.
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3. The map
µ : τ 7→ ker(τ)

defines a bijection between Ω(A) and the set of all maximal ideals of A

4. Every τ ∈ Ω(A) is continuous and ‖τ‖ = τ(1) = 1

Proof. 1. For all a ∈ A, τ(a) = τ(a ·1) = τ(a)τ(1). Choose a ∈ A such that τ(a) 6= 0,
then τ(1) = 1.

2. If τ ∈ Ω(A), then τ is surjective [Check!], and so τ induces an isomorphism τ :
A/ ker(τ)→ C. Hence, ker(τ) is a maximal ideal.

3. If τ ∈ Ω(A), then ker(τ) is maximal, so µ is well-defined.

a) If τ1(a) 6= τ2(a), then a− τ2(a) ·1 ∈ ker(τ2)\ker(τ1), so the map µ is injective.

b) If I C A is a maximal ideal, then I is closed, and so A/I is a Banach algebra.
Furthermore, if a + I 6= I, then W := {x + ab : x ∈ I, b ∈ A} is an ideal
(Check!) of A that contains I. Since W 6= I, it must happen that W = A.
Hence, ∃x ∈ I and b ∈ A such that x+ab = 1A. Hence, (a+I)(b+I) = 1A+I.
Thus, every non-zero element in A/I is invertible.

Thus, by Corollary 1.2.6, there is an isomorphism ϕ : A/I → C. Let π : A→
A/I be the natural homomorphism then τ := ϕ◦π is an element of Ω(A) and
ker(τ) = I so µ is surjective.

4. If τ ∈ Ω(A) then τ : A→ C is a linear functional.

a) By part (2), I := ker(τ) is a maximal ideal. By Theorem 1.2.8, I is closed.
Hence, π : A → A/I is continuous by Theorem 1.2.9. Furthermore, since
both A/I and C are finite dimensional, τ : A/I → C as above is continuous.
Since

τ = τ ◦ π

it follows that τ is continuous.

b) Now for any a ∈ A, ∃α ∈ C such that a+ I = α + I and

|τ(a+ I)| = |τ(α + I)| = |α|

By Theorem 1.1.6, |α| = ‖α+ I‖ and so ‖τ‖ = 1. Hence, ‖τ‖ ≤ ‖τ‖‖π‖ ≤ 1.
Since τ(1) = 1, it follows that ‖τ‖ = 1.

Theorem 1.4.3. Let A be a unital commutative Banach algebra and a ∈ A. Then

σ(a) = {τ(a) : τ ∈ Ω(A)}

16



Proof. Suppose λ ∈ σ(a), then x := (a − λ · 1) is not invertible. Let I be the principal
ideal generated by x, then I is contained in a maximal ideal J by Theorem 1.2.7. Let
τ be the corresponding element of Ω(A), then J = ker(τ) so τ(x) = 0 and so λ = τ(a).
Conversely, if τ ∈ Ω(A), then x := a − τ(a) · 1 is in ker(τ), which is a proper ideal.
Hence, x cannot be invertible and so τ(a) ∈ σ(a).

Remark 1.4.4. Recall that A∗ carries the weak-∗ topology.

1. Banach-Alouglu theorem states that the set

B := {ϕ ∈ A∗ : ‖ϕ‖ ≤ 1}

is compact in the weak-∗ topology.

2. Ω(A) inherits the weak-∗ topology and is pre-compact since Ω(A) ⊂ B by Lemma 1.4.2

Theorem 1.4.5. Ω(A) is a compact Hausdorff space in the weak-∗ topology.

Proof. It suffices to show that Ω(A) is closed in B. So suppose τα → τ with τα ∈ Ω(A)
for all τ . In particular, τα(1) = 1 for all α. Hence, τ(1) = 1 6= 0. Hence, τ 6= 0. Also,
for any a, b ∈ A, we have

τα(ab) = τα(a)τα(b)→ τ(a)τ(b)

Hence, τ is multiplicative as well.

Definition 1.4.6. Given a ∈ A, the Gelfand Transform of a is defined by

â : Ω(A)→ C

by â(τ) := τ(a)

Theorem 1.4.7. Let A be a unital commutative Banach algebra.

1. For a ∈ A, â ∈ C(Ω(A))

2. ‖â‖∞ = r(a)

3. The map
ΓA : A→ C(Ω(A)) given by a 7→ â

is a homomorphism of Banach algebras. This is called the Gelfand representation
of A.

Proof. 1. Note that Ω(A) has the weak-∗ topology, so for any net τα ∈ Ω(A), we say
that τα → τ iff τα(x)→ τ(x) for all x ∈ A. In particular, â(τα) = τα(a)→ τ(a) =
â(τ). Hence, â ∈ C(Ω(A))

2. Follows from Theorem 1.4.3.
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3. Note that, for any a, b ∈ A and τ ∈ Ω(A),

âb(τ) = τ(ab) = τ(a)τ(b) = â(τ)b̂(τ)

This is true for all τ ∈ Ω(A), and so âb = âb̂. Hence, ΓA is multiplicative. Similarly,
we see that ΓA is also linear. Finally, ΓA is continuous since

‖ΓA(a)‖ = ‖â‖∞ = r(a) ≤ ‖a‖

by Theorem 1.3.3

(End of Day 7)

Definition 1.4.8. A is generated by {a, 1} if A = {p(a) : p ∈ C[z]}

Theorem 1.4.9. Let A be a unital Banach algebra generated by {1, a}. Then A is
commutative, and the map

â : Ω(A)→ σ(a), given by τ 7→ τ(a)

is a homeomorphism.

Proof. That A is commutative is clear. The map â is surjective by Theorem 1.4.3. Also,
if τ1, τ2 ∈ Ω(A) such that τ1(a) = τ2(a), then since τ1(1) = 1 = τ2(1), it follows that for
any p ∈ C[z],

τ1(p(a)) = τ2(p(a))

Since both τ1 and τ2 are continuous, it follows that τ1 = τ2. Hence, â is also injective.
Thus,

â : Ω(A)→ σ(a)

is bijective and continuous by Theorem 1.4.7. Since both sets are compact and Hausdorff,
it is a homeomorphism.

Definition 1.4.10. Let A be a unital commutative Banach algebra

1. The radical of A, denoted by rad(A) is ker(ΓA).

Note:
rad(A) = {a ∈ A : r(a) = 0} = {a ∈ A : σ(a) = {0}}

and rad(A) is the intersection of all maximal ideals of A.

2. A Banach algebra A is said to be semi-simple if rad(A) = {0}

Note: A is semi-simple iff ΓA is injective.
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1.5 Examples of the Gelfand Spectrum

Remark 1.5.1. Let X be a compact Hausdorff space and A = C(X). For any x ∈ X,
the map

τx : A→ C given by f 7→ f(x)

is a multiplicative linear functional. So we get a function X → Ω(A) which is clearly
injective.

Theorem 1.5.2. Let I C C(X) be a maximal ideal. Then ∃x0 ∈ X such that

I = ker(τx0)

Proof. Let I C C(X) be a maximal ideal, then we claim that ∃x0 ∈ X such that

f(x0) = 0 ∀f ∈ I (∗)

Suppose not, then for all x ∈ X, ∃fx ∈ I such that fx(x) 6= 0. Then ∃ a neighbourhood
Vx of X such that fx(y) 6= 0 for all y ∈ Vx. Now the family {Vx : x ∈ X} forms an open
cover of X, and so must have a finite subcover, say {Vx1 , Vx2 , . . . , Vxn}. Define

h =
n∑
i=1

fxifxi

Then h ∈ I since I is an ideal, and if x ∈ X then ∃1 ≤ i ≤ n such that x ∈ Vxi .
Hence, fxi(x) 6= 0 and so h(x) > 0. Thus, h > 0 on X. Hence, h ∈ GL(C(X)) and so
I = C(X). This is a contradiction, and so the claim (∗) is true. Thus, I ⊂ ker(τx0) and
since I is maximal, it follows that I = ker(τx0).

Theorem 1.5.3. Let A = C(X), then the map

µ : X → Ω(A) given by x 7→ τx

is a homeomorphism.

Proof. By Remark 1.5.1, Lemma 1.4.2 and Theorem 1.5.2, the map µ is bijective. Now
suppose xα → x in X. Then, for any f ∈ C(X)

f(xα)→ f(x)⇔ τxα(f)→ τx(f)

Hence, τxα → τx in the weak-∗ topology. Hence, µ is a continuous bijection between two
compact sets. Hence, µ is a homeomorphism.

Remark 1.5.4. Let A = `1(Z), then for any λ ∈ T, define

τλ : `1(Z)→ C given by (an) 7→
∞∑
n=0

anλ
n

Note that τλ is well-defined since the series on the right-hand side converges absolutely.
Furthermore, τλ ∈ Ω(A) [Check!]
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(End of Day 8)

Theorem 1.5.5. The map

µ : T→ Ω(A) given by λ 7→ τλ

is a homeomorphism.

Proof. As before, µ is injective and continuous. Since T and Ω(A) are both compact, it
suffices to prove that µ is surjective. So suppose τ ∈ Ω(A) and let a ∈ A be given by

an =

{
1 : n = 1

0 : n 6= 1

and let λ := τ(a). Then

1. |λ| = |τ(a)| ≤ ‖a‖ = 1

2. a ∈ A is invertible with inverse b given by

bn =

{
1 : n = −1

0 : n 6= −1

Hence, ∣∣∣∣1λ
∣∣∣∣ = |τ(b)| ≤ ‖b‖ ≤ 1

Hence, |λ| = 1

3. Consider τ ∈ Ω(A), then for λ := τ(a), we have |λ| = 1 as above, and

τλ(a) = λ = τ(a)

4. Now note that ak is the sequence

(ak)n =

{
1 : n = k

0 : n 6= k

and so A is generated by a as a Banach algebra. Since τ(a) = τλ(a), it follows that
τ = τλ

Definition 1.5.6. Let f : T → C be continuous, then we say that f has an absolutely
convergent Fourier series if

f(z) =
∑
n∈Z

anz
n and

∑
n∈Z

|an| <∞

The Wiener algebra W is the set of all such functions.
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Theorem 1.5.7 (Gelfand-Weiner). If f ∈ W has no zeroes in T, then 1/f ∈ W

Proof. Let A = `1(Z) and let
ΓA : A→ C(T)

be the Gelfand transform. Note that W = R(ΓA). Hence, if f ∈ W such that f has no
zeroes in T, then write f = â and note that

τλ(a) 6= 0 ∀λ ∈ T

Hence, τ(a) 6= 0 for all τ ∈ Ω(A). By Theorem 1.4.3, 0 /∈ σ(a), and so a ∈ GL(A). Let
b = a−1 then g := b̂ is the inverse of f in W .

1.6 Spectral Permanence Theorem

Throughout this section, let A be a unital Banach algebra and B ⊂ A a subalgebra of
A such that 1A ∈ B.

Remark 1.6.1. We say that b ∈ B is invertible in B if ∃b′ ∈ B such that bb′ = 1.

1. GL(B) ⊂ GL(A)

2. For b ∈ B, we write

σB(b) = {λ ∈ C : (b− λ1A) is invertible in B}

and distinguish it from σA(b)

3. By part (i), it follows that σA(b) ⊂ σB(b)

Example 1.6.2. Let A = C(T) and B ⊂ A be the subalgebra generated by ζ ∈ A,
where ζ(z) = z. Hence,

B = {p(z) : p ∈ C[z]}
Then

1. By Example 1.3.2(4), σA(ζ) = ζ(T) = T

2. Claim: σB(ζ) = D := {z ∈ C : |z| ≤ 1}. By Theorem 1.4.3,

σB(ζ) = {τ(ζ) : τ ∈ Ω(B)}

So we claim: Ω(B) = D.

a) For each λ ∈ D, define τλ(p(z)) = p(λ). By the Maximum modulus principle,

|p(λ)| ≤ sup
|z|=1

|p(z)| = ‖p‖B

Hence, τλ extends to a bounded linear functional on B, and is clearly multi-
plicative [Check!]
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b) Now given τ ∈ Ω(B), let λ = τ(ζ). Then, |λ| ≤ ‖ζ‖B = 1. Also, for any
p(z) ∈ C[z],

τ(p(z)) = p(τ(ζ)) = p(λ) = τλ(p(z))

Since τ = τλ on a dense set, it follows that τ = τλ on B.

Hence, Ω(B) ∼= D and so σB(ζ) = ζ(D) = D.

(End of Day 9)

Theorem 1.6.3. Let B be a closed subalgebra of a unital Banach algebra A containing
the unit of A. If b ∈ B, then ∂σB(b) ⊂ σA(b)

Proof. Suppose not, then ∃λ ∈ ∂σB(b) \ σA(b). Hence, (b − λ) ∈ GL(A) and ∃(λn) ⊂
ρB(b) such that λn → λ. Hence, (b− λn) ∈ GL(B) ⊂ GL(A). But the continuity of the
inverse map in GL(A), we have

(b− λn)−1 → (b− λ)−1 in GL(A)

But, (b − λn)−1 ∈ B for all n and so (b − λ)−1 ∈ B, whence λ /∈ σB(b). This is a
contradiction.

Definition 1.6.4. Let K ⊂ C be a compact set, then C \ K has exactly one un-
bounded component, which we denote by X∞. List the other bounded components
X1, X2, . . . , Xn, so that

C \K = X∞ tX1 tX2 t . . . tXn

Each such Xi, 1 ≤ i ≤ n is called a hole in K.

Lemma 1.6.5. Let X be a connected topological space and K ⊂ X be a closed set such
that ∂K = ∅. Then either K = X or K = ∅.
Proof. If ∂K = ∅, then X = int(K) t X \ K can be expressed as a union of disjoint
open sets. Since X is connected, either int(K) = ∅ or X \K = ∅. If K 6= X, it follows
that int(K) = ∅. But then K = int(K) t ∂K = ∅.
Corollary 1.6.6. Let 1A ∈ B ⊂ A as above and b ∈ B. If X is a component of C\σA(b),
then either X ∩ σB(b) = ∅ or X ⊂ σB(b)

Proof. Since ∂σB(b) ⊂ σA(b), it follows that the unbounded component of C \ σA(b)
must intersect σB(b) trivially. So suppose X is a hole in σA(b), then let K = X ∩ σB(b)
as a closed subspace of X. The boundary ∂X(K) of K relative to X is

∂X(K) = K ∩X \K = K ∩X \K

Now note that K ⊂ σB(b) and

X \K = {x ∈ X : x /∈ σB(b)} = X ∩ ρB(b) ⊂ ρB(b)

But Theorem 1.6.3,
∂X(K) ⊂ ∂σB(b) ⊂ σA(b) ⊂ C \X

But ∂X(K) ⊂ X, so ∂X(K) = ∅. The previous lemma now implies that either K = ∅ or
K = X as required.
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Theorem 1.6.7 (Spectral Permanence Theorem). Let 1A ∈ B ⊂ A as above and b ∈ B.
Then σB(b) is obtained from σA(b) by adjoining to it some (and perhaps none) of its
holes.

For instance, if σA(b) = T, then σB(b) must be either T or D. Compare this with
Example 1.6.2.

Corollary 1.6.8. Let 1A ∈ B ⊂ A as above and b ∈ B. If σA(b) has no holes, then
σB(b) = σA(b). In particular, if σA(b) ⊂ R, then σB(b) = σA(b).

1.7 Exercises

1. Let X = C[0, 1] with the supremum norm, and let T : X → X be given by

Tf(x) =

∫ x

0

f(t)dt

a) Prove that T ∈ B(X)

b) Prove that T does not have any eigen-values. (See Example 1.3.2)

2. Let X be a Banach space

a) If A,B ⊂ X are two compact sets, then prove that

A+B = {x+ y : x ∈ A, y ∈ B}

is compact.

[Hint: The operation + : X ×X → X is continuous]

b) Prove that K(X) is a subspace of B(X)

Also read [Conway, Theorem II.4.2]. This proves that K(X) is a closed ideal
in B(X)

3. LetX be a locally compact Hausdorff space. Prove that C0(X) is a Banach algebra.
(See Example 1.1.3)

4. Let {An} be a sequence of Banach algebras. Define

B = {(an) : an ∈ An ∀n and sup ‖an‖ <∞}

a) Prove that B is an algebra under the operations of component-wise addition,
scalar multiplication and multiplication.
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b) For any (an) ∈ B, define

‖(an)‖ := sup ‖an‖

and prove that B is a Banach algebra with respect to this norm.

Note: B is called the direct sum of the An’s and is denoted by

∞⊕
n=1

An

5. Let H = `2(N) and T ∈ B(H) be given by

T ((xn)) = (0, x1, x2, . . .)

and let λ ∈ C.

a) If |λ| > 1, then prove that λ /∈ σ(T )

b) If |λ| ≤ 1, then prove that e1 = (1, 0, 0, . . .) is not in the range of (T − λ)

[Hint: Consider the case where λ = 0 separately]

Conclude that σ(T ) = {z ∈ C : |z| ≤ 1}

6. Let A = C1[0, 1] be the space of all continuously differentiable functions on [0, 1]
with the norm

‖f‖ := ‖f‖∞ + ‖f ′‖∞
a) Prove that A is a Banach algebra under this norm.

b) Let f(x) = x, then prove that r(f) = 1 and ‖f‖ = 2.

7. Let A = C1[0, 1] as above. Let ζ : [0, 1]→ C be the inclusion.

a) Show that ζ generates A as a Banach algebra (See Definition 1.4.8)

b) For t ∈ [0, 1], define τt : A→ C by

τt(f) := f(t)

Show that the map [0, 1]→ Ω(A) given by t 7→ τt is a homeomorphism.

c) Conclude that the Gelfand representation of Theorem 1.4.7 is not surjective.

8. Let A be the set of all 2× 2 complex matrices of the form(
a b
0 a

)
for some a, b ∈ C. Think of A as a subset of B(C2), and equip A with the operator
norm.
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a) Show that A is a unital commutative Banach algebra

b) Determine Ω(A)

c) Show that the Gelfand transform ΓA : A→ C(Ω(A)) is not injective.

The next 3 problems indicate that the theory developed for unital commutative
Banach algebras translates to the non-unital case almost verbatim.

9. Let A be a non-unital Banach algebra, and set Ã = A × C. Define algebraic
operations on Ã by

a) (a, α) + (b, β) = (a+ b, α + β)

b) β(a, α) = (βa, βα)

c) (a, α)(b, β) = (ab+ αb+ βa, αβ)

and define
‖(a, α)‖ := ‖a‖+ |α|

Then, prove that

a) Ã is a unital Banach algebra

b) The map a 7→ (a, 0) from A to Ã is an injective homomorphism.

Ã is called the unitization of A.

10. Let A be a commutative non-unital Banach algebra, and let Ω(A) be defined as in
Definition 1.4.1.

a) Prove that Ω(A) ∪ {0} is a compact set in the weak-∗ topology. Conclude
that Ω(A) is a locally compact, Hausdorff space.

b) For any a ∈ A, define â as in Definition 1.4.6. Prove that â ∈ C0(Ω(A)) by
treating 0 ∈ A∗ as the “point at infinity”.

11. Let A be a commutative non-unital Banach algebra and Ã its unitization.

a) For each τ ∈ Ω(A) ∪ {0}, define τ̃ ∈ Ω(Ã) by τ̃((a, α)) = τ(a) + α. Prove
that the map

τ 7→ τ̃

defines a bijection from Ω(A) ∪ {0} to Ω(Ã)

b) For each a ∈ A, define σ(a) = σÃ((a, 0)). Prove that

σ(a) = {τ(a) : τ ∈ Ω(A)} ∪ {0}

Note: For each a ∈ A, 0 ∈ σ(a). This is one crucial difference between the
non-unital and unital cases.

12. Let A be a unital Banach algebra and a, b ∈ A.
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a) Prove that the series
∞∑
n=0

an

n!

converges in A. We denote its sum by ea

b) Prove that ‖ea‖ ≤ e‖a‖

c) If ab = ba, then prove that ea+b = eaeb [Hint: Prove the Binomial theorem in
this setting]

13. Let A be a Banach algebra.

a) Let {Aα} be a family of Banach subalgebras of A. Prove that
⋂
αAα is a

Banach algebra.

b) Let S ⊂ A be any set. Prove that ∃B ⊂ A such that

i. S ⊂ B

ii. B is a Banach algebra

iii. If C ⊂ A is any Banach algebra such that S ⊂ C, then B ⊂ C.

B is called the Banach algebra generated by S

14. Let A be a unital Banach algebra and let B ⊂ A be a maximal commutative
subalgebra (ie. B is commutative, and if C is any commutative subalgebra of A
such that B ⊂ C, then B = C).

a) Prove that 1A ∈ B
b) For any b ∈ B, prove that σB(a) = σA(b)
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2 C*-Algebras

2.1 Operators on Hilbert Spaces

Throughout this section, let H and K be complex Hilbert spaces and B(H,K) be the
collection of bounded operators from H to K. We write B(H) for B(H,H).

Definition 2.1.1. 1. A function u : H ×K → C is called a sesqui-linear form if, for
all x, y, z ∈ H or K and for all α, β ∈ C

a) u(αx+ βy, z) = αu(x, z) + βu(y, z)

b) u(x, αy + βz) = αu(x, y) + βu(x, z)

2. A sesqui-linear form u : H × K → C is called bounded if ∃M ≥ 0 such that
|u(x, y)| ≤M‖x‖‖y‖ for all (x, y) ∈ H ×K

If T ∈ B(H,K), then u(x, y) := 〈Tx, y〉 is a bounded sesqui-linear form.

Theorem 2.1.2. If u : H×K → C is a bounded sesqui-linear form with bound M , then
∃ unique operators T ∈ B(H,K) and S ∈ B(K,H) such that

u(x, y) = 〈Tx, y〉 = 〈x, Sy〉

Proof. For each y ∈ K, define Ly : H → C by Ly(x) = u(x, y). Then Lx is a bounded
linear functional on H. By the Riesz representation theorem, ∃by ∈ H such that

Ly(x) = 〈x, sy〉

Define S : K → H by S(y) = sy. Then S is linear [Check!]. For any y ∈ K such that
‖y‖ ≤ 1, ‖sy‖ = ‖Ly‖ ≤M , then ‖S‖ ≤M .

(End of Day 10)

Definition 2.1.3. If T ∈ B(H,K) the unique operator S ∈ B(K,H) such that

〈Tx, y〉 = 〈x, Sy〉

is called the adjoint of T and is denoted by T ∗

Example 2.1.4. 1. If H = Cn and T = (ai,j) ∈ B(H), then T ∗ = (aj,i)
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2. If H = L2[0, 1] and k ∈ L2([0, 1]× [0, 1]), we define

T (f)(x) =

∫ 1

0

k(x, y)f(y)dy

Then T ∈ B(H) is called the Volterra integral operator with kernel k and

‖T‖ ≤ ‖k‖2

In this case

T ∗(f)(x) =

∫ 1

0

k(y, x)f(y)dy

Proof. For any f, g ∈ H let h := T ∗(g), then we have∫ 1

0

∫ 1

0

k(x, y)f(y)g(x)dydx =

∫ 1

0

f(x)h(x)dx

By taking conjugates and using Fubini, we have∫ 1

0

∫ 1

0

k(x, y)g(x)dxf(y)dy =

∫ 1

0

h(y)f(y)dy

This must be true for any f ∈ H, so

T ∗(g)(y) = h(y) =

∫ 1

0

k(x, y)g(x)dx

3. If H = `2 and S ∈ B(H) is given by

S(x1, x2, . . .) = (0, x1, x2, . . .)

S is called the right shift operator and

S∗(x1, x2, . . .) = (x2, x3, . . .)

4. Let H = L2[0, 1] and f ∈ C[0, 1]. Define Tf ∈ B(H) by

Tf (g) := fg

Note that ‖Tf‖ ≤ ‖f‖∞ (See Example 1.1.8(4)) and

(Tf )
∗ = Tf

Theorem 2.1.5. For T, S ∈ B(H) and α, β ∈ C

1. (αT + S)∗ = αT ∗ + S∗
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2. (TS)∗ = S∗T ∗

3. (T ∗)∗ = T

4. If T ∈ GL(B(H)), then T ∗ ∈ GL(B(H)) and (T−1)∗ = (T ∗)−1

Proof. Obvious by definition.

Theorem 2.1.6. If T ∈ B(H), then

‖T‖ = ‖T ∗‖ = ‖T ∗T‖1/2

Proof. For x ∈ H with ‖x‖ ≤ 1, we have

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Th, h〉
≤ ‖T ∗Th‖‖h‖ ≤ ‖T ∗T‖
≤ ‖T ∗‖‖T‖

Taking sup gives ‖T‖ ≤ ‖T ∗‖. The reverse inequality is true since T ∗∗ = T . Hence,
‖T‖ = ‖T ∗‖. But then the inequalities above show that

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖

which proves the theorem.

Definition 2.1.7. Let T ∈ B(H). We say that T is

1. normal if TT ∗ = T ∗T

2. unitary if TT ∗ = T ∗T = I

3. self-adjoint if T = T ∗

4. a projection if T = T ∗ = T 2

Note: Every projection T ∈ B(H) is associated to a unique closed subspace M =
T (H) ⊂ H. Conversely, if M is a closed subspace of H, then H = M ⊕M⊥, so
there is a natural projection T ∈ B(H) such that T (H) = M .

5. an isometry if ‖Tx‖ = ‖x‖ for all x ∈ H

Theorem 2.1.8. T ∈ B(H) is self-adjoint iff 〈Tx, x〉 ∈ R for all x ∈ H

Proof. If T is self-adjoint, then for any x ∈ H, we have

〈Tx, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = 〈Tx, x〉

Conversely, if 〈Tx, x〉 ∈ R for all x ∈ H, then

〈Tx, x〉 = 〈T ∗x, x〉
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as above. Consider S = (T − T ∗), then S = S∗ and

0 = 〈S(x+ αy), x+ αy〉 = 〈Sx, x〉+ α〈Sx, y〉+ α〈Sy, x〉+ |α|2〈Sy, y〉
= α〈Tx, y〉 − α〈x, Ty〉+ α〈Ty, x〉+ α〈y, Tx〉

⇒ α〈Tx, y〉+ α〈Ty, x〉 = α〈T ∗x, y〉 − α〈T ∗y, x〉

First put α = 1 and then α = i, to get

〈Tx, y〉+ 〈Ty, x〉 = 〈T ∗x, y〉 − 〈T ∗y, x〉
−i〈Tx, y〉+ i〈Ty, x〉 = −i〈T ∗x, y〉 − i〈T ∗y, x〉

Multiplying the first equation by i and adding gives that

〈Tx, y〉 = 〈T ∗x, y〉

which proves that T = T ∗.

(End of Day 11)

Theorem 2.1.9. If T ∈ B(H) is self-adjoint, then

‖T‖ = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}

Proof. Let β := sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}, then by Cauchy-Schwartz, β ≤ ‖T‖.
Conversely, since T = T ∗, we have that for any x, y ∈ H with ‖x‖ = ‖y‖ = 1,

〈T (x± y), x± y〉 = 〈Tx, x〉 ± 2Re〈Tx, y〉+ 〈Ty, y〉

Hence,

4Re〈Tx, y〉 = 〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉
≤ β(‖x+ y‖2 + ‖x− y‖2)

= 2β(‖x‖2 + ‖y‖2)

= 4β

Now if λ〈Tx, y〉 = |〈Tx, y〉| with |λ| = 1, we may replace x by λx to get the required
inequality.

Corollary 2.1.10. If T ∈ B(H) and 〈Tx, x〉 = 0 for all x ∈ H, then T = 0

Proof. Since 〈Tx, x〉 ∈ R for all x ∈ H, T is self-adjoint by Theorem 2.1.8. Hence, T = 0
by Theorem 2.1.9.

Corollary 2.1.11. T ∈ B(H) is an isometry iff T ∗T = I

Proof. T is an isometry iff 〈Tx, Tx〉 = 〈x, x〉 for all x ∈ H. This is equivalent to
〈(T ∗T − I)x, x〉 = 0, so the theorem now follows from the previous corollary.
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Theorem 2.1.12. T ∈ B(H) is normal iff ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Proof. For all x ∈ H,

‖Tx‖2 = ‖T ∗x‖2

⇔ 〈T ∗Tx, x〉 = 〈TT ∗x, x〉
⇔ 〈(T ∗T − TT ∗)x, x〉 = 0

The theorem now follows from Corollary 2.1.10.

Definition 2.1.13. Let A be a Banach algebra.

1. An involution on A is a map δ : A→ A such that for all a, b ∈ A and α ∈ C,

a) δ(δ(a)) = a

b) δ(ab) = δ(b)δ(a)

c) δ(αa+ b) = αδ(a) + δ(b)

2. We write a∗ := δ(a)

3. A is called a C∗-algebra if there is an involution a 7→ a∗ on A such that

‖a∗a‖ = ‖a‖2 ∀a ∈ A

Remark 2.1.14. 1. By property (a), a 7→ a∗ is bijective

2. If A is unital, then for any a ∈ A,

a∗ = a∗ · 1 = (1∗ · a)∗ ⇒ a = 1∗ · a

and similarly, a = a · 1∗. By the uniqueness of the identity, 1 = 1∗

3. If A is unital, then for any α ∈ C, α∗ := (α · 1)∗ = α

4. If A is a Banach algebra and a 7→ a∗ is an involution such that ‖a‖2 ≤ ‖a∗a‖ for
all a ∈ A, then A is a C∗-algebra.

Proof. We need to show that ‖a∗a‖ ≤ ‖a‖2. Since A is a Banach algebra, we know
that ‖a∗a‖ ≤ ‖a∗‖‖a‖, so it suffices to prove that ‖a∗‖ ≤ ‖a‖.
But since ‖a∗‖2 ≤ ‖(a∗)∗a∗‖ = ‖aa∗‖ ≤ ‖a‖‖a∗‖, it follows that ‖a∗‖ ≤ ‖a‖.

Example 2.1.15. 1. If A = C with the usual norm. Then z 7→ z is an involution on
C that makes it a C∗-algebra.

2. If H is a Hilbert space, then B(H) is a C∗-algebra by Theorem 2.1.6. In particular,
Mn(C) is a C∗ algebra in which

(ai,j)
∗ := (aj,i)

31



3. Similarly, K(H) is a C∗-algebra [If T ∈ K(H), then T ∗ ∈ K(H)]. Note that if H is
infinite dimensional, then K(H) is non-unital.

(End of Day 12)

4. If X is a locally compact Hausdorff space, then C0(X) is a C∗-algebra with invo-
lution f ∗(x) = f(x). This is unital iff X is compact.

5. If (X,µ) is a measure space, then L∞(X,µ) is a C∗ algebra with the same involution
as above.

6. Let A = C1[0, 1] be the Banach algebra with norm

‖f‖ := ‖f‖∞ + ‖f ′‖∞

(See section 1.7, §6) The map f 7→ f ∗ := f is an involution in A. However, if
f(x) = x, then

‖f‖2 = (1 + 1)2 = 4, while ‖f ∗f‖ = ‖f 2‖ = 1 + 2 = 3

and so A is not a C∗-algebra with respect to this involution and norm.

Lemma 2.1.16. If A is a C*-algebra, then for any a ∈ A,

1. ‖a‖ = ‖a∗‖

2. ‖aa∗‖ = ‖a‖2

Proof. 1. Note that ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖. Hence, ‖a‖ ≤ ‖a∗‖. The other
inequality follows from the fact that (a∗)∗ = a.

2. Note that ‖aa∗‖ = ‖(a∗)∗a‖ = ‖a∗‖2 = ‖a‖2 (by part (i)).

Definition 2.1.17. Let T ∈ B(H), then consider

A := {p(T, T ∗) : p is a polynomial in two non-commuting variables }

1. A is a subalgebra of B(H). Since A is closed, A is a Banach algebra.

2. If p is a polynomial as above, then p(T, T ∗)∗ ∈ A since the latter is also a polyno-
mial in T and T ∗. So if a ∈ A, then ∃pn as above such that pn(T, T ∗) → a. By
the previous lemma, pn(T, T ∗)∗ → a∗. Hence, a∗ ∈ A, and so A is a C∗ algebra.

3. If B ⊂ B(H) is any C∗-algebra containing {1, T}, then T ∗ ∈ B. Hence, for any
polynomial p as above, p(T, T ∗) ∈ B, whence A ⊂ B. Hence, A is the smallest C∗

algebra containing {1, T}.

Thus, A is called the C∗-algebra generated by T and is denoted by C∗(T ).
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Note: C∗(T ) is commutative iff T is normal, and in that case

C∗(T ) = {p(T, T ∗) : p ∈ C[x, y]}

Theorem 2.1.18. If A is a C∗ algebra, then for any a ∈ A, we have

‖a‖ = sup{‖ax‖ : x ∈ A, ‖x‖ ≤ 1}
= sup{‖xa‖ : x ∈ A, ‖x‖ ≤ 1}
= sup{‖x∗ay‖ : x, y ∈ A, ‖x‖, ‖y‖ ≤ 1}

Proof. Assume a 6= 0. Since A is a Banach algebra, ‖ax‖ ≤ ‖a‖ for all x ∈ A such that
‖x‖ ≤ 1. Furthermore, if x = a∗/‖a‖, then ‖x‖ = 1 by Lemma 2.1.16, and ‖ax‖ = ‖a‖.
This proves the first equality. The second is similar and the third follows from the first
two.

Definition 2.1.19. 1. A function ϕ : A → B between two C∗ algebras is called a
∗-homomorphism if ϕ is a homomorphism of Banach algebras, and ϕ(a∗) = ϕ(a)∗

2. A bijective ∗-homomorphism is called an isomorphism of C∗-algebras.

Example 2.1.20. 1. If A = C(X) and x0 ∈ X, then ϕ : A→ C given by f 7→ f(x0)
is a ∗-homomorphism.

2. If A = C(X) and {x1, x2, . . . , xn} ⊂ X (with possible repeats). Define ϕ : A →
Mn(C) by

f 7→


f(x1) 0 . . . 0

0 f(x2) . . . 0
...

...
0 0 . . . f(xn)


This is a ∗-homomorphism from A to Mn(C)

3. Conversely, if T = diag(λ1, λ2, . . . , λn) ∈ Mn(C) be a diagonal matrix. Let X =
{λ1, λ2, . . . , λn} = σ(T ), and define ϕ : C(X)→Mn(C) by

f 7→ f(T ) :=


f(λ1) 0 . . . 0

0 f(λ2) . . . 0
...

...
0 0 . . . f(λn)


4. If A = C[0, 1] and B = B(L2[0, 1]), then define ϕ : A→ B by

f 7→Mf

(See Example 2.1.4). Then ϕ is a ∗-homomorphism.

(End of Day 13)
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Definition 2.1.21. Let A be a C∗-algebra, then an ideal of A is an ideal I C A of A
such that a ∈ I ⇒ a∗ ∈ I.

Remark 2.1.22. If A is a C∗-algebra and I C A is closed. Then

1. There is a well-defined involution on A/I given by

(a+ I)∗ := a∗ + I

Since A/I is a Banach algebra by Theorem 1.1.6, by Remark 2.1.14, we need to
prove that

‖a+ I‖2 ≤ ‖a∗a+ I‖

We will prove this later.

2. Furthermore, that will show that the natural map π : A→ A/I is a ∗-homomorphism
(it is already continuous since ‖a+ I‖ ≤ ‖a‖)

3. If ϕ : A → B is a ∗-homomorphism, then I = ker(ϕ) is an ideal in A. Hence, by
part (i), A/I is a C∗-algebra, and there is an injective homomorphism

ϕ : A/I → B given by a+ I 7→ ϕ(a)

such that ϕ ◦ π = ϕ. Note that ϕ is a ∗-homomorphism.

Theorem 2.1.23. Let A be a non-unital C∗-algebra, then ∃ a C∗ algebra Ã such that

1. Ã is unital

2. There is an isometric ∗-homomorphism µ : A → Ã such that µ(A) C Ã and
Ã/µ(A) is a one-dimensional vector space.

3. If B is any unital C∗ algebra and ϕ : A→ B a ∗-homomorphism, then ∃ a unique
∗-homomorphism ϕ̃ : Ã→ B such that ϕ̃(1Ã) = 1B and ϕ̃ ◦ µ = ϕ.

4. If (Ã′, µ′) is a pair satisfying properties (i)-(iii), then there is an isomorphism
ψ : Ã→ Ã′ such that ψ ◦ µ = µ′

The algebra Ã is called the unitization of A

Proof. Let B(A) denote the space of bounded operators on A (treated as Banach space)
and let µ : A→ B(A) be the left-regular representation (See Example 1.1.8)

a 7→ La where La(b) := ab

Let Ã := {La + λ · 1B(A) : a ∈ A, λ ∈ C}, and define an involution on Ã by

(La + λ · 1)∗ := La∗ + λ · 1

Now
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1. Note that the map from A→ B(A) given by

a 7→ La

is isometric by Theorem 2.1.18. Hence, its image is closed in B(A). Now it follows
from [Conway, § III.4.3] that Ã is closed. Since it is clearly a linear subspace, and
an algebra [Check!], it follows that Ã is a Banach algebra. It now remains to check
that

‖X‖2 ≤ ‖X∗X‖ ∀X ∈ Ã

If X = La + λ1, then

‖X‖2 = sup
‖b‖≤1

‖(La + λ1A)(b)‖2 = sup
‖b‖≤1

‖ab+ λb‖2

= sup
‖b‖≤1

‖(ab+ λb)∗(ab+ λb)‖

= sup
‖b‖≤1

‖b∗(X∗X(b)‖

≤ sup
‖b‖≤1

‖X∗X(b)‖ ≤ ‖X∗X‖

2. By Theorem 2.1.18, ‖La‖ = ‖a‖ and so µ is an isometry. By Definition, µ is a
∗-homomorphism, and µ(A) = {La : a ∈ A} C Ã [Check!]

We now need to prove that Ã/µ(A) is one-dimensional : Now, Ã/µ(A) has dimen-
sion atmost 1. If it had dimension zero, then µ(A) = Ã, and so 1B(A) = La for
some a ∈ A. But then, ab = b for all b ∈ A. Taking ∗’s, we see that b∗a∗ = b∗, and
so ca = c for all c ∈ A. Hence, a = 1A which contradicts the assumption that A is
non-unital. Hence, Ã/µ(A) is one-dimensional.

3. If ϕ : A→ B is a ∗-homomorphism with B unital, then define ϕ̃ : Ã→ B by

La + λ1 7→ ϕ(a) + λ1B

Then ϕ̃ is well-defined (since the map µ is injective) and satisfies all the required
conditions.

4. Exercise.

If A is already unital, then the map µ constructed above is an isomorphism, so we just
write Ã = A in that case.
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2.2 Spectrum of an Element

Remark 2.2.1. Let A be a C∗-algebra, then for a ∈ A, we define σ(a) = σÃ(a) if A is
non-unital.

Definition 2.2.2. Let A be a C∗ algebra, then a ∈ A is called

1. normal if aa∗ = a∗a

2. self-adjoint if a = a∗

3. positive if ∃b ∈ A such that a = b∗b

Note:

a) Every positive element is self-adjoint.

b) If T ∈ B(H) is a positive operator, then 〈Tx, x〉 ≥ 0 for all x ∈ H.

4. If A is unital, then a is unitary if aa∗ = a∗a = 1

5. a projection if a = a∗ = a2

(End of Day 14)

Remark 2.2.3. Let A be a C∗-algebra and a ∈ A, then ∃ unique b, c self-adjoint such
that a = b+ ic

Proof. Let b = (a + a∗)/2, c = i(a∗ − a)/2, then a = b + ic. Suppose a = b′ + ic′, then
b′− b = i(c′− c). Take ∗’s to note that b′− b = −i(c′− c), and so b′− b = c′− c′ = 0.

Theorem 2.2.4. Let τ : A→ C be a non-zero homomorphism, then

1. If a = a∗, then τ(a) ∈ R

2. τ(a∗) = τ(a) for all a ∈ A

3. If a ∈ A is positive, then τ(a) ≥ 0

4. If A is unital and u ∈ A is unitary, then |τ(u)| = 1

5. If p ∈ A is a projection, then τ(p) ∈ {0, 1}.

Proof. If A is unital, then τ(1) = 1 by Lemma 1.4.2. If A is non-unital, then we may
extend τ to a map τ̃ : Ã→ C such that τ̃(1) = 1. Therefore, we assume WLOG that A
is unital and that τ(1) = 1.
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1. By Lemma 1.4.2, ‖τ‖ = 1. Hence, if t ∈ R, then

|τ(a+it)|2 ≤ ‖a+it‖2 = ‖(a+it)∗(a+it)‖ = ‖(a−it)(a+it)‖ = ‖a2+t2‖ ≤ ‖a2‖+t2

So if τ(a) = α + iβ, then

|α|2 + (β + t)2 ≤ ‖a2‖+ t2 ⇒ |α|2 + 2tβ ≤ ‖a2‖

If β 6= 0, then let t→ ±∞ to obtain a contradiction. Hence, β = 0 and so τ(a) ∈ R

2. If a ∈ A, then write a = b + ic, where b, c are self-adjoint as in Remark 2.2.3.
Then τ(b), τ(c) ∈ R by part (i) and a∗ = b − ic. Hence, τ(a) = τ(b) + iτ(c) and
τ(a∗) = τ(b)− iτ(c) = τ(a)

3. If b ∈ A, then τ(b∗b) = τ(b∗)τ(b) = τ(b)τ(b) = |τ(b)|2 ≥ 0.

4. 1 = τ(1) = τ(u∗u) = τ(u∗)τ(u) = τ(u)τ(u)

5. τ(p) = τ(p) = τ(p)2. The only two numbers in C that satisfy these properties are
{0, 1}

Remark 2.2.5. Let A be a C∗-algebra and a ∈ A, then (as in Definition 2.1.17), we
consider

B := {p(a, a∗) : p is a polynomial in two non-commuting variables}

Then, as in Definition 2.1.17, B is a C∗-algebra, which we call the C∗-algebra generated by a,
and is denoted by C∗(a).

Note: If C is the Banach algebra generated by a, then C ⊂ B. However, C 6= B in
general.

Theorem 2.2.6 (Spectral Permanence Theorem). Let B ⊂ A be a subalgebra such that
1A ∈ B. For any b ∈ B, σB(b) = σA(b)

Proof. 1. Suppose b ∈ B is self-adjoint, consider C = C∗(b) to be the C∗-algebra
generated by {1, b}. Then C is commutative since b = b∗. Hence,

σC(b) = {τ(b) : τ ∈ Ω(C)}

by Theorem 1.4.3. By Theorem 2.2.4, σC(b) ⊂ R. In particular, σC(b) = ∂σC(b).
Hence by Remark 1.6.1 and Theorem 1.6.3, we have

σA(b) ⊂ σC(b) = ∂σC(b) ⊂ σA(b)⇒ σA(b) = σC(b)

Similarly, σB(b) = σC(b).
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2. Now suppose b is not self-adjoint. By Remark 1.6.1, we need to show that σB(b) ⊂
σA(b). Let λ ∈ σB(b) and let c := b− λ1. If c is invertible in A, then ∃d ∈ A such
that cd = 1 = dc. Hence, c∗d∗ = d∗c∗ = 1. Hence,

(d∗d)(cc∗) = (cc∗)(d∗d) = 1

So (cc∗) is invertible in A. Since cc∗ is self-adjoint, it follows from the first part
that cc∗ is invertible in B. Hence, ∃c′ ∈ B such that cc∗c′ = 1. Hence, c is right-
invertible in B. Similarly, c is left-invertible in B. Hence, c is invertible [Why?],
and λ /∈ σB(b). This is a contradiction.

Corollary 2.2.7. Let A be a C∗ algebra and a ∈ A

1. If a = a∗, then σ(a) ⊂ R

2. If a is unitary, then σ(a) ⊂ T

3. If a is a projection, then σ(a) ⊂ {0, 1}

Proof. In all cases, let B := C∗(a) (which is commutative). By Theorem 1.4.3,

σB(a) = {τ(a) : τ ∈ Ω(B)}

But by Spectral Permanence, σA(a) = σB(a). Now apply Theorem 2.2.4.

Remark 2.2.8. It is also true that if a is positive (as in Definition 2.2.2), then σ(a) ⊂
[0,∞). However, the proof is much harder as we do not know that the element b ∈ A
(which satisfies b∗b = a) is an element of C∗(a), and so we cannot apply Theorem 1.4.3
directly.

Lemma 2.2.9. If a ∈ A is self-adjoint, then r(a) = ‖a‖

Proof. Since a = a∗, ‖a‖2 = ‖aa∗‖ = ‖a2‖. Now note that a2 = (a2)∗, so

‖a4‖ = ‖(a2)∗(a2)‖ = ‖a2‖2 = ‖a‖4

So by induction, ‖a2n‖ = ‖a‖2n for all n ∈ N. So by Theorem 1.3.12,

r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

‖a2n‖1/2n = ‖a‖

(End of Day 15)

Theorem 2.2.10. There is atmost one norm on an involutive algebra making it a C∗

algebra.
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Proof. If ‖·‖ and ‖·‖′ are two norms under which A is a C∗-algebra, then for any a ∈ A,
we have

‖a‖2 = ‖a∗a‖ = r(a∗a) = ‖a∗a‖′2 = ‖a‖′2

Theorem 2.2.11. Let ϕ : A→ B be a ∗-homomorphism. Then

1. If ϕ(1A) = 1B, then σB(ϕ(a)) ⊂ σA(a) for all a ∈ A

2. ‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A

3. If ϕ is injective, then ‖ϕ(a)‖ = ‖a‖ for all a ∈ A.

Proof. 1. If λ /∈ σA(a), then ∃b ∈ A such that (a− λ1A)b = b(a− λ1A) = 1A. Apply
ϕ to this expression to see that λ /∈ σB(ϕ(a)).

2. If A is non-unital, extend ϕ to a map ϕ̃ : Ã → B̃ such that ϕ̃(1A) = 1B. If A is
unital, then set C := Image(ϕ). Note that ϕ(1A) is the unit in C. Hence, if a ∈ A,
then set b := a∗a (so that b is self-adjoint), and note that

σC(ϕ(b)) ⊂ σA(b)⇒ rC(ϕ(b)) ≤ rA(b)

⇒ ‖ϕ(b)‖ ≤ ‖b‖ (by Lemma 2.2.9)

⇒ ‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2

3. Suppose ϕ is injective, define a new norm on A by

‖a‖′ := ‖ϕ(a)‖

Then ‖ · ‖′ satisfies all the requirements to make (A, ‖ · ‖′) a C∗-algebra [Check!].
By uniqueness of the norm, we have

‖ϕ(a)‖ = ‖a‖′ = ‖a‖ ∀a ∈ A

2.3 Unital Commutative C∗ algebras

Lemma 2.3.1. Let A ⊂ C(X,R) be an closed subalgebra of real continuous functions
such that

1. A contains the constant functions

2. For all x, y ∈ X, x 6= y,∃f ∈ A such that f(x) 6= f(y).

Note: If this happens, we say that A separates points of X

Then, for any f, g ∈ A
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1. |f | ∈ A

2. max{f, g},min{f, g} ∈ A

Proof. Since, for any f and g in C(X), we have

max{f, g} =
1

2
[f + g + |f − g|]

min{f, g} =
1

2
[f + g − |f − g|]

it suffices to prove part (i).
Let f ∈ A, then there is m > 0 such that |f(x)| ≤ m for each x ∈ X. Then defining

g(x) := |f(x)|
m

for each x ∈ X we see that g(x) ∈ [0, 1] for each x ∈ X. Since A is a
subspace of C(X) it is enough to prove that g ∈ A. By the Weierstrass approximation
theorem, there is a sequence pn of polynomials such that pn →

√
· uniformly on [0, 1].

Hence,

pn

(
f 2

m2

)
−→

√
f 2

m2
= g

uniformly on [0, 1]. Since A is an algebra containing the constants,

pn

(
f 2

m2

)
∈ A for each n ∈ N

Since A is closed, g is in A as required.

Lemma 2.3.2. Let A and X satisfy the hypotheses of Lemma 2.3.1, then for any pair
of real numbers α, β and any pair of distinct points x, y ∈ X, there is a function g ∈ A
such that g(x) = α and g(y) = β

Proof. Since x 6= y we can choose and f ∈ A such that f(x) 6= f(y). Then the function
g defined by

g(u) =
α(f(u)− f(y))− β(f(x)− f(u))

f(x)− f(y)

is an element of A since A is an algebra, and it satisfies the required properties.

Theorem 2.3.3 (Stone-Weierstrass). Let A ⊂ C(X,R) be an closed subalgebra of real
continuous functions such that

1. A contains the constant functions

2. A separates points of X

Then A = C(X,R)
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Proof. Let f ∈ C(X), and ε > 0 be given. For any τ, σ ∈ X, by Lemma 2.3.2, there is
a function fτσ ∈ A such that fτσ(τ) = f(τ) and fτσ(σ) = f(σ). Define

Uτσ := {t ∈ X : fτσ(t) < f(t) + ε}
Vτσ := {t ∈ X : fτσ(t) > f(t)− ε}

Then Uτσ and Vτσ are open sets containing τ and σ respectively. By the compactness of
X, there is a finite set {t1, t2, . . . , tn} such that {Utiσ}ni=1 covers X. Let fσ := min{ftiσ :
1 ≤ i ≤ n} then fσ is an element of A (by Lemma 2.3.1) and satisfies

fσ(t) < f(t) + ε ∀ t ∈ X

fσ(t) > f(t)− ε ∀ t ∈ Vσ :=
n⋂
i=1

Vtiσ

We now select a finite subcover {Vσj}mj=1 from {Vσ} for X and define g := max{fσj : 1 ≤
j ≤ m}. Then g is in A by Lemma 2.3.1, and it satisfies

f(t)− ε < g(t) < f(t) + ε (t ∈ X)

Hence, to every ε > 0 there is an element g ∈ A such that ‖f − g‖∞ < ε. Since A is
closed, we see that f is in A. This is true for every f in C(X) and hence the theorem
is proved.

(End of Day 16)

Theorem 2.3.4 (Stone Weierstrass). Let A ⊂ C(X) be a closed subalgebra of the space
of complex-valued continuous functions on a compact Hausdorff space X. Suppose that

1. A contains the constant functions

2. A separates points of X

3. If f ∈ A, then f ∗ ∈ A

Then A = C(X)

Proof. Let B := {Re(f) : f ∈ A} ⊂ C(X,R). Then B satisfies all the hypotheses of
Theorem 2.3.3. If f ∈ C(X), then write f = g + ih, where g, h are real-valued. By
Theorem 2.3.3, g, h ∈ B, and so f ∈ A.

Theorem 2.3.5 (Gelfand-Naimark). Let A be a unital commutative C∗ algebra, and let
Ω(A) denote its Gelfand spectrum. Then the Gelfand transform

ΓA : A→ C(Ω(A))

is an isometric isomorphism of C∗ algebras.

Proof. Let A := R(ΓA), then

41



1. ΓA is isometric: Suppose a ∈ A, we want to show that ‖a‖ = ‖â‖∞ = r(a). As
in Lemma 2.2.9, it suffices to prove that ‖a2n‖ = ‖a‖2n for all n ∈ N. Since A is
commutative,

‖a2‖ = ‖(a2)∗a2‖1/2 = ‖(a∗a)(a∗a)‖1/2 = (‖a∗a‖2)1/2 = (‖a‖4)1/2 = ‖a‖2

By induction, we may show that ‖a2n‖ = ‖a‖2n for all n ∈ N, so ΓA is injective.

2. ΓA is surjective:

a) A is closed since A is complete and ΓA is isometric.

b) Since A is unital, A contains 1C(X). Hence, A contains the constant functions.

c) If τ, µ ∈ Ω(A) are two different element, then ∃a ∈ A such that τ(a) 6= µ(a).
This is equivalent to the fact that â(τ) 6= â(µ). Hence, A separates points of
X

d) Suppose â ∈ A, then â∗ = â∗ ∈ A.

So A satisfies all the hypotheses of the Stone-Weierstrass theorem. Hence, ΓA is
surjective.

Theorem 2.3.6. Let A be a unital C∗ algebra and a ∈ A be such that A = C∗(a). Then
the map

â : Ω(A)→ σ(a) given by τ 7→ τ(a)

is a homeomorphism.

Proof. Note that â is clearly continuous.

1. â is injective: If â(τ) = â(µ), then τ(a) = µ(a). By Theorem 2.2.4(2), this implies
that τ(a∗) = µ(a∗). Since τ(1) = µ(1) = 1, it follows that τ(p(a, a∗)) = µ(p(a, a∗))
for any polynomial p in two non-commuting variables. Hence, τ = µ on A.

2. â is surjective: Follows from Theorem 1.4.9.

Since Ω(A) and σ(a) are compact, â is a homeomorphism.

Note: This is different from Theorem 1.4.9 since the Banach algebra generated by a may
be strictly smaller than C∗(a).

Remark 2.3.7. Let a ∈ A be as in Theorem 2.3.6, then there is an isomorphism

µ : C(σ(a))→ C(Ω(A))

given by f 7→ f ◦ â

(End of Day 17)
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Theorem 2.3.8. Let A be a C∗-algebra and a ∈ A be normal. Then there is an isometric
∗-isomorphism

Θ : C(σ(a))→ C∗(a)

such that
Θ(p(z, z)) = p(a, a∗)

for any polynomial p ∈ C[x, y]. This map Θ is called the continuous functional calculus
and we write

f(a) := Θ(f)

for any f ∈ C(σ(a)).

Proof. By Remark 2.3.7, there is a ∗-isomorphism µ : C(σ(a)) → C(Ω(A)). Further-
more, if p(z) = z, then

µ(p)(τ) = p ◦ â(τ) = p(τ(a)) = τ(a) = â(τ)

Hence, µ(p) = â. Now, by the Gelfand-Naimark theorem, we have a ∗-isomorphism

ΓA : C∗(a)→ C(Ω(A)) given by a 7→ â

Note that Γ−1
A (â) = a, so the map

Θ : C(σ(a))→ C∗(a) given by Θ = Γ−1
A ◦ µ

is a ∗-isomorphism such that
Θ(p) = a

Similarly, if q(z) = z, then Θ(q) = a∗. Hence, for any polynomial p ∈ C[x, y], we have

Θ(p(z, z)) = p(a, a∗)

Theorem 2.3.9 (Spectral Mapping Theorem). Let A be a C∗-algebra and a ∈ A be a
normal element. Then for any f ∈ C(σ(a)),

σ(f(a)) = f(σ(a))

Proof. Note that f 7→ f(a) is an isometric ∗-isomorphism from C := C(σ(a)) to B :=
C∗(a). Hence,

σB(f(a)) = σC(f)

By the Spectral Permanence theorem,

σB(f(a)) = σA(f(a))

By Example 1.3.2, σC(f) = f(σ(a)).

Corollary 2.3.10. Let a ∈ A be a normal element, then ‖a‖ = r(a)
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Compare this with Lemma 2.2.9

Proof. Let f ∈ C(σ(a)) be the function f(z) = z, then ‖f‖∞ = r(a). But f(a) = a, so
‖a‖ = ‖f‖∞ since the continuous functional calculus is isometric.

Theorem 2.3.11. Let A be a unital C∗ algebra and a ∈ A be a normal element.

1. If σ(a) ⊂ R, then a = a∗

2. If σ(a) ⊂ [0,∞), then a is positive

3. If σ(a) ⊂ T, then a is unitary

4. If σ(a) ⊂ {0, 1}, then a is a projection

Compare this with Corollary 2.2.7

Proof. Let f 7→ f(a) denote the functional calculus from C(σ(a)) → C∗(a) ⊂ A. In
particular, if p(z) = z, then

a = p(a) and a∗ = p∗(a) = p(a)

1. If σ(a) ⊂ R, then p = p in C(σ(a)), so a = a∗

2. Let f(t) = t1/2, then b := f(a) is normal and σ(b) = f(σ(a)) ⊂ R, so b is self-
adjoint. Now, b∗b = b2 = a, so a is positive

3. Note that pp = pp = 1 on C(σ(a)), so aa∗ = a∗a = 1A

4. Again, p = p2 = p∗, so a = a2 = a∗ is a projection.

2.4 Spectrum of a Normal Operator

The goal of this section is to understand the spectrum of a normal operator, and under-
stand what it can say about the operator in light of the continuous functional calculus.
We begin by analyzing the spectrum of any bounded operator in B(H). For T ∈ B(H),
we write ker(T ) and R(T ) to denote the kernel and range of T respectively.

Definition 2.4.1. We say that an operator T ∈ B(H) is bounded below if ∃c > 0 such
that ‖T (x)‖ ≥ c‖x‖ for all x ∈ H

Lemma 2.4.2. Let T ∈ B(H) be bounded below, then

1. T is injective

2. R(T ) is closed in H

Proof. 1. This is trivial from the definition.
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2. If (yn) ⊂ R(T ) such that yn → y, then write yn = T (xn). Since (yn) is Cauchy and

‖yn − ym‖ ≥ c‖xn − xm‖

implies that (xn) is Cauchy. Since H is complete, ∃x ∈ H such that xn → x. Since
T ∈ B(H), T (xn)→ T (x), and so y = T (x) ∈ R(T ) as required.

Theorem 2.4.3. Let T ∈ B(H), then TFAE:

1. T is bounded below

2. T is left-invertible in B(H) (ie. ∃S ∈ B(H) such that ST = I)

Proof. 1. If T is left-invertible with left-inverse S ∈ B(H), then for all x ∈ H

‖x‖ = ‖ST (x)‖ ≤ ‖S‖‖T (x)‖

so c := ‖S‖−1 works.

2. Conversely, if T is bounded below by a constant c > 0, then T is injective, and
R(T ) is closed. So let M < H such that H = R(T )⊕M . Then define S : H → H
by

S(T (x),m) := x

One can check that this map is well-defined and it is bounded since

‖x‖2 ≤ c−2‖T (x)‖2 ≤ c−2‖T (x)‖2 + c−2‖m‖2 = c−2‖(T (x),m)‖2

Hence, S ∈ B(H) and clearly, ST = I holds.

Theorem 2.4.4. Let T ∈ B(H), then T is invertible if and only if T is bounded below
and R(T ) is dense in H.

Proof. If T is invertible, then c = ‖T−1‖−1 works, so T is bounded below. Furthermore,
the range R(T ) is H, so it is, in particular, dense in H.

Conversely, if T is bounded below and R(T ) is dense, then T is injective, and R(T ) = H
because it is closed. Hence, T is surjective. By the bounded inverse theorem, T is
invertible.

Definition 2.4.5. Let T ∈ B(H).

1. The point spectrum of T , denoted by σp(T ), is the set of all eigen-values of T .

2. The approximate spectrum of T is the set

σap(T ) = {λ ∈ C : (T − λ) is not bounded below}
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Note that
σp(T ) ⊂ σap(T ) ⊂ σ(T )

The following example shows that these inclusions may be strict. Before we do that, we
show that σap(T ) is always non-empty.

Theorem 2.4.6. For any T ∈ B(H), ∂σ(T ) ⊂ σap(T ). In particular, σap(T ) 6= ∅

Proof. Suppose λ ∈ ∂σ(T ) \ σap(T ), then ∃λn ∈ ρ(T ) such that λn → λ, and (T − λ)
is bounded below, say by c > 0. Since λ ∈ σ(T ), (T − λ) is not invertible. Hence, it
must happen that R(T − λ) is not dense in H. Equivalently, ∃x ∈ R(T − λ)⊥ which is
non-zero. Now define

xn =
(T − λn)−1(x)

‖(T − λn)−1(x)‖
Then (T − λn)xn is a scalar multiple of x, and so

(T − λn)(xn) ⊥ (T − λ)(xn)

Hence, by Pythagoras’ theorem,

‖(T − λ)(xn)‖2 ≤ ‖(T − λ)(xn)‖2 + ‖(T − λn)(xn)‖2

= ‖(λ− λn)(xn)‖2

= |λ− λn|2 → 0

This contradicts the fact that (T − λ) is bounded below.

(End of Day 18)

Example 2.4.7. Let S : `2 → `2 be the right-shift operator

S((xn)) = (0, x1, x2, . . .)

We wish to determine σ(S), σap(S) and σp(S). Note that S∗ is the left-shift operator

S∗((xn)) = (x2, x3, . . .)

1. If |λ| < 1, then we claim that λ ∈ σ(S). To see this, note that S is not surjective,
so 0 ∈ σ(S). So it suffices to consider the case where λ 6= 0. Then,

λ ∈ σ(S)⇔ λ ∈ σ(S∗)

But if z = λ then |z| < 1, so if x = (z, z2, z3, . . .), then z ∈ `2, and

S∗(x) = (z2, z3, . . .) = zx

and so z is an eigen-value of S∗, whence z ∈ σ(S∗). Hence,

λ ∈ σ(S)
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2. In fact, this shows that if D = {z ∈ C : |z| < 1}, then

D ⊂ σ(S∗)⇒ D ⊂ σ(S)

However, σ(S) is closed, and ‖S‖ = 1, so by Theorem 1.3.3

σ(S) = D = {z ∈ C : |z| ≤ 1}

3. Now if λ ∈ C with |λ| < 1, then

‖(S − λ)x‖ ≥ |‖Sx‖ − ‖λx‖ = (1− λ)‖x‖

so (S − λ) is bounded below, whence λ /∈ σap(S). By the previous theorem, it
follows that

σap(S) = {z ∈ C : |z| = 1}

4. Finally, σp(S) = ∅ (HW). Hence,

σ(S) = {z ∈ C : |z| ≤ 1}
σap(S) = {z ∈ C : |z| = 1}
σp(S) = ∅

We now examine the case of a normal operator. But before that, we need a rather useful
lemma.

Lemma 2.4.8. For any A ∈ B(H),

1. ker(A) = R(A∗)⊥

2. R(A∗) = ker(A)⊥

3. R(A∗A) = ker(A)⊥

Proof. 1. For any x, y ∈ H, we have

x ∈ ker(A)

⇔ 〈Ax, y〉 = 0 ∀y ∈ H
⇔ 〈x,A∗y〉 = 0 ∀y ∈ H

⇔ x ∈ R(A∗)⊥

2. Follows from part (i) and the fact that for any subspace W ⊂ H

W = (W⊥)⊥
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3. By part (ii), R(A∗A) ⊂ R(A∗) = ker(A)⊥, so it suffices to prove that

R(A∗) ⊂ R(A∗A)

Let y ∈ ran(A∗) and write y = A∗(x) for some x ∈ H. Express

x = u+ v where u ∈ ker(A∗), v ∈ ker(A∗)⊥

Then y = A∗(v). Now by part (ii) applied to A∗, ∃w ∈ ran(A) such that

‖v − w‖ < ε

Write w = Au for some u ∈ H. Then

‖y − A∗Au‖ = ‖A∗v − A∗w‖ ≤ ε‖A‖

Theorem 2.4.9. If T ∈ B(H) is a normal operator, then σ(T ) = σap(T )

Proof. Since one inclusion is trivial, we show that σ(T ) ⊂ σap(T ). So fix λ /∈ σap(T ),
then we wish to show that λ /∈ σ(T ). Since λ /∈ σap(T ), (T − λ) is bounded below. By
Theorem 2.4.4, it now suffices to show that R(T − λ) is dense in H. Equivalently by
Lemma 2.4.8, we wish to show that

R(T − λ)⊥ = ker((T − λ)∗) = {0}

But since (T − λ) is normal, by Theorem 2.1.12,

‖(T − λ)(x)‖ = ‖(T − λ)∗(x)‖ ∀x ∈ H

Since (T − λ) is bounded below, it follows that (T − λ)∗ is also bounded below, and
hence injective. This completes the proof.

Theorem 2.4.10. Let T ∈ B(H) be a normal operator. If λ ∈ σ(T ) is an isolated point
of σ(T ), then λ is an eigen-value of T .

Proof. Since λ is an isolated point, let f = χ{λ} ∈ C(σ(T )) and P = f(T ). Since

f = f = f 2, it follows that P is an orthogonal projection and P 6= 0 since f 6= 0.
Furthermore,

(z − λ)f(z) = 0 ∀z ∈ σ(T )

and so (T − λ)P = 0. Hence, any non-zero vector in P (H) is an eigen-vector associated
to λ.

Definition 2.4.11. Let T ∈ B(H) and M ⊂ H a closed subspace of H

1. M is said to be invariant under T if T (M) ⊂M

2. M is said to be reducing for T if M is invariant under T and T ∗
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For a general T ∈ B(H), the existence of a non-trivial invariant subspace is an open
problem. However, for normal operators, the problem is more tractable because of the
functional calculus. We give one such example.

Theorem 2.4.12. If T ∈ B(H) is a normal operator such that σ(T ) is disconnected,
then T has a non-trivial invariant subspace.

Proof. HW.

(End of Day 19)

2.5 Positive Operators and Polar Decomposition

Recall that a complex number z ∈ C can be expressed in the form z = rω where r ∈ R+

is a positive real number and ω ∈ S1. We now prove the existence of a polar decompo-
sition of an operator in B(H), where the role of r is played by a positive operator, and
eiθ by a partial isometry (both of which are defined below).

Throughout this section, for an operator T ∈ B(H), we write ker(T ) and R(T ) for its
kernel and range respectively.

Lemma 2.5.1. An operator T ∈ B(H), then TFAE:

1. ∃S ∈ B(H) such that T = S∗S

2. 〈Tx, x〉 ≥ 0 for all x ∈ H

If either of these conditions hold, then we say that T is a positive operator (See Defini-
tion 2.2.2)

Proof. If T is positive, then ∃S ∈ B(H) such that T = S∗S, and so

〈Tx, x〉 = ‖Sx‖2 ≥ 0 ∀x ∈ H

Conversely, if 〈Tx, x〉 ≥ 0 for all x ∈ H, then T is self-adjoint (and hence normal)
by Theorem 2.1.8. By Theorem 2.3.11, it suffices to show that σ(T ) ⊂ [0,∞). By
Corollary 2.2.7, σ(T ) ⊂ R, so we show that if λ ∈ R, λ < 0, then λ /∈ σ(T ). To see this,
fix x ∈ H, and note that

‖(T − λ)x‖2 = ‖Tx‖2 − 2λ〈Tx, x〉+ λ2‖x‖2

≥ −2λ〈Tx, x〉+ λ2‖x‖2

≥ λ2‖x‖2

since λ < 0 and 〈Tx, x〉 ≥ 0. Hence, (T − λ) is bounded below. Since (T − λ) is
self-adjoint and hence normal, it follows from Theorem 2.4.9 that λ /∈ σ(T ).
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Note that every positive operator is self-adjoint by Theorem 2.1.8. Furthermore, if
A ∈ B(H), then T := A∗A is a positive operator, and hence we may apply the continuous
functional calculus to T . Since σ(T ) ⊂ R+, we may apply the square root function
t 7→
√
t to T , which leads to the following definition.

Definition 2.5.2. 1. Let A ∈ B(H), then we define

|A| = (A∗A)1/2

Note that if A is normal, then this coincides with applying the modulus function
to A.

2. An operator W ∈ B(H) is called a partial isometry if

x ∈ ker(W )⊥ ⇒ ‖W (x)‖ = ‖x‖

The space ker(W )⊥ is called the initial space ofW andR(W ) is called the final space
of W . Note that both are closed subspaces of H.

Note: A partial isometry is an isometry iff its initial space is H

Lemma 2.5.3. Let W be a partial isometry, then W ∗W and WW ∗ are projections onto
the initial and final space of W respectively.

Proof. Let p := W ∗W , then

1. For x ∈ ker(W )⊥ and y ∈ ker(W ), we have

〈p(x), y〉 = 〈W (x),W (y)〉 = 0

Hence, p(x) ∈ ker(W )⊥.

2. Furthermore, for x ∈ ker(W )⊥, then

〈W (x),W (x)〉 = 〈x, x〉

So by the polarization identity,

〈W (x),W (y)〉 = 〈x, y〉 ∀x, y ∈ ker(W )⊥

Thus, if x ∈ ker(W )⊥, then for any y ∈ H, we write y = y′ + y′′ where y′ ∈
ker(W ), y′′ ∈ ker(W )⊥, then

〈p(x), y〉 = 〈W (x),W (y)〉 = 〈W (x),W (y′′)〉
= 〈x, y′′〉 = 〈x, y〉

Hence, p(x) = x, so p is a projection.
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3. If p(x) = x, then for any y ∈ ker(W ),

〈x, y〉 = 〈W (x),W (y)〉 = 0

so x ∈ ker(W )⊥, so p is a projection onto ker(W )⊥.

The argument for q := WW ∗ is similar.

Theorem 2.5.4 (Polar Decomposition). Let A ∈ B(H), then ∃ a partial isometry W ∈
B(H) such that

A = W |A|

Furthermore, if A = UP with P positive and U a partial isometry such that ker(U) =
ker(P ), then P = |A| and U = W must hold.

This unique expression A = W |A| is called the polar decomposition of A.

Proof. For x ∈ H, we have

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 = 〈|A|2x, x〉 = 〈|A|x, |A|x〉 = ‖|A|x‖2

Hence,
W : R(|A|)→ R(A) given by W (|A|x) = Ax

is an isometry. By Lemma 2.4.8(3),

R(A∗A) = ker(A)⊥

But since A∗Ax = |A|(|A|x), it follows that

R(|A|) = ker(A)⊥

Hence W extends to an isometry

W : ker(A)⊥ → R(A)

Now extend W to ker(A) to be zero, so we get a partial isometry. And clearly, W |A| = A
holds.

As for uniqueness, note that A∗A = PU∗UP and U∗U is the projection E onto the initial
space of U , ker(U)⊥ = ker(P )⊥ = R(P ). Thus, A∗A = PEP = P 2. By the uniqueness
of the positive square root, it follows that P = |A|. Since

Ax = U |A|x = W |A|x

it follows that U and W agree on R(|A|), which is a dense subset of both their initial
spaces. Hence, U = W must hold.

One simple example of how the polar decomposition may be used is the following rather
useful result.
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Corollary 2.5.5. For any T ∈ B(H), T ∈ K(H) if and only if T ∗T ∈ K(H)

Proof. If T ∈ K(H) then T ∗T ∈ K(H) since K(H) is an ideal. Conversely, if S := T ∗T ∈
K(H), then Sn ∈ K(H) for all n ≥ 1. Hence, p(S) ∈ K(H) for any polynomial p(z) ∈
C[z] such that p(0) = 0. Now, since S is self-adjoint, σ(S) ⊂ R, so by the Weierstrass
approximation theorem, f(S) ∈ K(H) for any f ∈ C(σ(S)) such that f(0) = 0. In
particular,

|T | =
√
T ∗T ∈ K(H)

Now it follows that T ∈ K(H) because of the polar decomposition and the fact that
K(H) is an ideal.

(End of Day 20)

2.6 Exercises

1. Let A be a unital C∗-algebra, then prove that ‖1A‖ = 1

2. Let H be a Hilbert space. Prove that T ∈ B(H) is left-invertible iff ker(T ) =
{0} and T (H) is a closed subspace of H. [Hint: Every closed subspace has an
orthogonal complement]

3. Let ϕ : A → B be a ∗-homomorphism between two commutative C∗-algebras.
Prove that the transpose

ϕt : Ω(B)→ Ω(A) given by τ 7→ τ ◦ ϕ

is continuous. Furthermore, if ϕ is an isomorphism, then prove that ϕt is a home-
omorphism.

4. Let X and Y be two compact Hausdorff spaces. Prove that X is homeomorphic
to Y iff there is a ∗-isomorphism C(X) ∼= C(Y ).

5. Let H be a Hilbert space, T ∈ B(H), W < H a closed subspace of H. W is said to
be invariant under T if T (W ) ⊂ W , andW is said to be reducing with respect to T
if W is invariant under T and T ∗

If P ∈ B(H) be the orthogonal projection onto W , then prove that

a) W is invariant under T iff PTP = TP

b) W is reducing with respect to T iff TP = PT

6. Let T ∈ B(H) be a normal operator such that σ(T ) is disconnected. Prove that T
has a non-trivial invariant subspace.

52



3 The Spectral Theorem

3.1 The Finite Dimensional Case

Let H be a finite dimensional complex Hilbert space

Definition 3.1.1. An operator T ∈ B(H) is said to be diagonalizable if H has an
orthonormal basis consisting of eigen-vectors of T .

Remark 3.1.2. Note that the matrix

A =

(
1 1
0 2

)
is diagonalizable in the sense that it is similar to a diagonal matrix. However, it is not
diagonalizable in the sense of the above definition because the basis of eigen-vectors are
not orthogonal.

Lemma 3.1.3. If T ∈ B(H) is diagonalizable, then T is normal.

Proof. Let β ⊂ H be an orthonormal basis consisting of eigen-vectors of T . For any
v, w ∈ β suppose Tv = λv, Tw = µw. If v 6= w, then

〈T ∗v, w〉 = µ〈v, w〉 = 0 = λ〈v, w〉

and if v = w, then
〈T ∗v, w〉 = λ〈v, w〉

In either case, we see that T ∗(v) = λv. Hence,

TT ∗v = |λ|2v = T ∗Tv

This is true for all v ∈ β, so TT ∗ = T ∗T .

Lemma 3.1.4. If T ∈ B(H) is normal and v ∈ H is an eigen-vector of T corresponding
to the eigen value λ, then v is an eigen-vector of T ∗ corresponding to the eigen value λ

Proof. Suppose Tv = λv, then ‖(T − λ)v‖ = 0. But (T − λ) is normal, so by Theo-
rem 2.1.12,

‖(T ∗ − λ)v‖ = 0

and so T ∗v = λv
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Lemma 3.1.5. Let T ∈ B(H). If W ⊂ H is a subspace such that T (W ) ⊂ W , then
T ∗(W⊥) ⊂ W⊥

Proof. If x ∈ W⊥, then for any y ∈ W , we have Ty ∈ W , so

〈T ∗x, y〉 = 〈x, Ty〉 = 0

Hence, T ∗x ∈ W⊥ as required.

Theorem 3.1.6 (Spectral Theorem). Let T ∈ B(H) be normal, then T is diagonalizable.

Proof. We induct on dim(H). Since H is a complex Hilbert space, T has an eigen-value
and a corresponding eigen-vector v. Then the subspace 〈v〉 spanned by v is invariant
under T ∗ (by Lemma 3.1.4). Hence, W := 〈v〉⊥ is invariant under T (by Lemma 3.1.5).
Similarly, T ∗(W ) ⊂ W . Hence,

T |W∈ B(W )

is a normal operator. By induction, W has an ONB β′ consisting of eigen vectors of T .
Then, β′ ∪ {v} forms an ONB for H consisting of eigen-vectors of T .

Lemma 3.1.7. If T is normal, and λ 6= µ ∈ σ(T ), then the corresponding eigen-spaces
are orthogonal.

Proof. Suppose T is normal, and x ∈ Eλ, y ∈ Eµ, then T ∗y = µy (by Lemma 1.3), so

λ〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉

Since λ 6= µ, it follows that 〈x, y〉 = 0

Theorem 3.1.8. T ∈ B(H) is diagonalizable iff there exist mutually orthogonal projec-
tions {P1, . . . , Pn} and complex numbers {λ1, . . . , λn} such that

I =
n∑
i=1

Pi and T =
n∑
i=1

λiPi

Proof. 1. Suppose T is diagonalizable, then T is normal by Lemma 1.2. Let {λ1, . . . , λn}
be the distinct eigen-values of T and let Eλi be the corresponding eigen-spaces.
Then the Eλi are mutually orthogonal spaces by Lemma 1.6. Since T is diagonal-
izable, they span H, so

H = ⊕ni=1Eλi

Let Pi denote the projection onto Eλi . Then

I =
n∑
i=1

Pi

and the {Pi} are mutually orthogonal (PiPj = PjPi = 0 if i 6= j). Furthermore,

T =
∑

λiPi

clearly holds.
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2. Conversely, if T =
∑
λiPi for some mutually orthogonal projections, then for

Ei := Pi(H), we have

H = I(H) =
n∑
i=1

Ei

and Ei ∩ Ej = {0}, so the above sum must be a direct sum. Also,

Tx = TPix =
∑

λjPjPix = λix ∀x ∈ Ei

Let βi be a basis for Ei, then
β := ∪ni=0βi

forms a basis for H (since H =
∑
Ei) and β consists of eigen-vectors of T .

Theorem 3.1.9. Let H be a complex Hilbert space of dimension n, let H0 = Cn and
{e1, . . . , en} be the standard ONB for H0. Then T ∈ B(H) is diagonalizable iff ∃ a
unitary operator

U : H → H0

such that S := UTU−1 ∈ B(H0) satisfies

S(ei) = λiei

for some sequence (λ1, λ2, . . . , λn) ∈ Cn. Furthermore, in that case

sup
i
{|λi|} ≤ ‖T‖

Proof. 1. Suppose T is diagonalizable, then there is an ONB {x1, x2, . . . , xn} of H
such that

T (xi) = λixi ∀1 ≤ i ≤ n

Define U(xi) = ei, and extend U to a linear operator H → H0. Now note that

〈U(xi), ej〉 = δi,j = 〈xi, U∗(ej)〉

Hence, U∗(ej) = xj for all 1 ≤ j ≤ n. Hence,

UU∗ = U∗U = I

Furthermore, if S = UTU−1 ∈ B(H0), we have

S(ei) = UTU−1(ei) = λiei ∀1 ≤ i ≤ n

And finally, for each 1 ≤ i ≤ n,

|λi| = ‖λiei‖ = ‖S(ei)‖ ≤ ‖S‖ = ‖UTU−1‖ ≤ ‖T‖
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2. Conversely, suppose S = UTU−1 as in the statement of the theorem, then let
xi := U−1(ei). Since U is a unitary, {x1, x2, . . . , xn} forms an ONB for H. A
simple calculation shows that T (xi) = λixi as required. Furthermore, each λi is
an eigen value of T , so sup{|λi|} = r(T ) ≤ ‖T .

Definition 3.1.10. Let H and H0 be two Hilbert spaces. Two operators T ∈ B(H) and
S ∈ B(H0) are said to be unitarily equivalent if ∃ a unitary operator U : H → H0 such
that S = UTU−1

Note:

1. Unitary equivalence is an equivalence relation. We write S ∼U T

2. If S ∼U T , then σ(S) = σ(T )

Proof. S − λI = U(T − λI)U−1

(End of Day 21)

3.2 Multiplication Operators

Definition 3.2.1. Let (X,µ) be a σ-finite measure space.

1. For two measurable function f, g : X → C, we say that f = g a.e. if

µ({x ∈ X : f(x) 6= g(x)}) = 0

This defines an equivalence relation on the set of measurable functions on X.

2. For any 1 ≤ p <∞, we say f is p-summable if∫
X

|f(x)|p <∞

The equivalence classes of measurable p-summable functions forms a vector space,
denoted by Lp(X,µ). Furthermore, the function

‖f‖p :=

(∫
X

|f(x)|p
)1/p

defines a norm on Lp(X,µ) under which it is a Banach space.

3. Note that L2(X,µ) is a Hilbert space with respect to the inner product

〈f, g〉 :=

∫
X

fgdµ
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4. For any ϕ : X → C be measurable and M > 0, we define

AM := {x ∈ X : |ϕ(x)| > M}

We say that ϕ is essentially bounded if ∃M > 0 such that

µ(AM) = 0

5. We define L∞(X,µ) to be the vector space of (equivalence classes of) essentially
bounded functions. The function

‖ϕ‖∞ := inf{M > 0 : µ(AM) = 0}

defines a norm on L∞(X,µ).

6. Note that L∞(X,µ) is a C∗-algebra with respect to this norm and point-wise
multiplication.

Theorem 3.2.2. Let ϕ : X → C be essentially bounded, then we define

Mϕ : L2(X,µ)→ L2(X,µ) given by f 7→ ϕf

Then

1. Mϕ ∈ B(L2(X,µ))

2. ‖Mϕ‖ ≤ ‖ϕ‖∞

3. If ϕ = ψ a.e., then Mϕ = Mψ

Proof. For any f ∈ L2(X,µ), let M > 0 such that µ(AM) = 0, then we have

‖Mϕ(f)‖2 =

∫
X

|ϕ(x)f(x)|2dµ =

∫
X\AM

|ϕ(x)f(x)|2 ≤M2

∫
X\AM

|f(x)|2dµ ≤M2‖f‖2

Hence, Mϕ ∈ B(L2(X,µ)) and
‖Mϕ‖ ≤M

This is true for all M > 0 such that µ(AM) = 0, and so

‖Mϕ‖ ≤ ‖ϕ‖∞

This proves (i) and (ii). Part (iii) follows from the definition.

Example 3.2.3. A multiplication operator should be thought of as a generalization of
a diagonal matrix.

1. If X = {1, 2, 3, . . . , n} and µ is the counting measure, then

a) L2(X,µ) ∼= Cn with the usual inner product.
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b) A multiplication operator Mϕ : Cn → Cn corresponds to a diagonal matrix

Mϕ(en) = λnen

where λn = ϕ(n)

2. If X = N and µ is the counting measure, then

a) ϕ : X → C is essentially bounded iff the sequence λn := ϕ(n) is bounded.

b) The multiplication operator Mϕ : `2 → `2 corresponds to an infinite diagonal
matrix

Mϕ(en) = λnen

Definition 3.2.4. Let H be a Hilbert space. T ∈ B(H) is said to be diagonalizable if ∃
a σ-finite measure space (X,µ) such that T is unitarily equivalent to the multiplication
operator on L2(X,µ).

In other words, ∃ϕ ∈ L∞(X,µ) and a unitary operator U : H → L2(X,µ) such that

Mϕ = UTU−1

Theorem 3.2.5. Let (X,µ) be a σ-finite measure space. The map

∆ : ϕ→Mϕ

from L∞(X,µ) to B(L2(X,µ)) is an isometric ∗-homomorphism.

Proof. ∆ is clearly a ∗-homomorphism. We need to show that ‖Mϕ‖ = ‖ϕ‖∞. We know
that ‖Mϕ‖ ≤ ‖ϕ‖∞. To prove the reverse inequality, consider 0 < c < ‖ϕ‖∞, then

Ac := {x ∈ X : |ϕ(x)| > c}

has positive measure. Choose E ⊂ Ac such that 0 < µ(E) < ∞ (this is possible since
(X,µ) is σ-finite). Now χE ∈ L2(X,µ) and

|ϕ(x)χE(x)| ≥ cχE(x) ∀x ∈ X

Hence by squaring and integrating

‖MϕχE‖2 ≥ c‖χE‖2

and so ‖Mϕ‖ ≥ c since ‖χE‖ 6= 0. This is true for all 0 < c < ‖ϕ‖∞, and so

‖Mϕ‖ ≥ ‖ϕ‖∞

as required.

Corollary 3.2.6. If T ∈ B(H) is diagonalizable, then T is normal.
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Proof. Choose a unitary U : H → L2(X,µ) and a ϕ ∈ L∞(X,µ) such thatMϕ = UTU−1,
then

T = U−1MϕU

and so T ∗ = U−1M∗
ϕU since U = U∗. By Theorem 3.2.5, M∗

ϕ = Mϕ, so

TT ∗ = U−1MϕMϕU and T ∗T = U−1MϕMϕU

Since ϕ and ϕ commute, T is normal.

(End of Day 22)

Definition 3.2.7. If ϕ ∈ L∞(X,µ), λ ∈ C and r > 0, define

B(λ, r) := {z ∈ C : |z − λ| < r}

The essential range of ϕ is defined as

ess-range(ϕ) := {λ ∈ C : µ(ϕ−1(B(λ, r)) > 0 ∀r > 0}

In other words, λ ∈ C is not in the essential range of ϕ iff ∃r > 0 such that

µ({x ∈ X : |f(x)− λ| < r}) = 0

Equivalently, λ /∈ ess-range(ϕ) iff ∃r > 0 such that

|ϕ(x)− λ| ≥ r a.e.

Note that the essential range does not depend on the choice of representative in the
equivalence class of ϕ.

Theorem 3.2.8. Let (X,µ) be a σ-finite measure space, then

σ(Mϕ) = ess-range(ϕ)

Proof. Suppose λ /∈ ess-range(ϕ), then ∃r > 0 such that

|ϕ(x)− λ| ≥ r a.e.

Let E := {x ∈ X : |ϕ(x)− λ| < r}, then µ(E) = 0, so define

ψ(x) :=

{
1

ϕ(x)−λ : x /∈ E
0 : x ∈ E

Then |ψ(x)| ≤ 1/r for all x ∈ X, so ψ ∈ L∞(X,µ) and for any f ∈ L2(X,µ), we have

(Mϕ − λI)Mψf(x) = f(x) ∀x /∈ E
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Since µ(E) = 0, this means that (Mϕ − λI)Mψ = I. Similarly, Mψ(Mϕ − λI) = I and
so λ /∈ σ(Mϕ). Hence,

σ(Mϕ) ⊂ ess-range(ϕ)

Now if λ ∈ ess-range(ϕ), then we construct a sequence (fn) ⊂ L2(X,µ) of unit vectors
such that

‖(Mϕ − λI)fn‖ → 0

For each n ∈ N, the set

En := {x ∈ X : |ϕ(x)− λ| ≤ 1/n}

has positive measure. Since µ is σ-finite, choose Fn ⊂ En such that 0 < µ(Fn) <∞ and
define fn := µ(Fn)−1/2χFn , so that

|(ϕ(x)− λ)fn(x)| ≤ 1

n
|fn(x)| ∀x ∈ X

Squaring and integrating gives

‖(Mϕ − λI)fn‖2 ≤
1

n
→ 0

Remark 3.2.9. We have proved that if ϕ ∈ L∞(X,µ) is such that Mϕ is invertible, then
M−1

ϕ = Mψ for some ψ ∈ L∞(X,µ). This is a reflection of the fact that

A := {Mϕ : ϕ ∈ L∞(X,µ)}

is a maximal Abelian subalgebra of B(L2(X,µ)) [See Problem 14 of Section 1.7]

Definition 3.2.10. 1. Let S ⊂ B(H) be any set. The commutant of S is defined as

S ′ := {T ∈ B(H) : Ta = aT ∀a ∈ S}

Note that S ′ is a linear subspace of B(H) that is closed under composition. Fur-
thermore, if S is closed under taking adjoints, then so is S ′. Hence, if S is a
C*-subalgebra of B(H), then so is S ′.

2. If S ⊂ B(H), then S ′′ := (S ′)′. Note that S ⊂ S ′′.

Lemma 3.2.11. A ⊂ B(H) is a maximal Abelian subalgebra if and only if A = A′.

Proof. Omitted.

Definition 3.2.12. A C*-algebra A ⊂ B(H) is called a von Neumann algebra if A = A′′

Remark 3.2.13. We have just shown that if A ⊂ B(H) is a maximal Abelian subalgebra,
then A is a von Neumann algebra. In particular,

L∞(X,µ) ↪→ B(L2(X,µ))

is a von Neumann algebra.
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3.3 The Spectral Theorem

Definition 3.3.1. Let X be a compact metric space and µ be a positive measure on X
defined on a σ-algebra M on X.

1. µ is called a Borel measure if the domain of µ includes all Borel sets (equivalently,
all the open sets)

2. µ is called inner regular if for any A ∈M, we have

µ(A) = sup{µ(K) : K ⊂ A compact }

3. µ is called outer regular if for any A ∈M, we have

µ(A) = inf{µ(U) : A ⊂ A open }

4. µ is called Radon if µ is a Borel measure that is both inner and outer regular and
µ(K) <∞ for any compact set K ⊂ X. [Equivalently, µ(X) <∞]

Remark 3.3.2. Let X be a compact metric space and µ a Radon measure on X.

1. Then every continuous function f : X → C is measurable and

|
∫
X

fdµ| ≤ ‖f‖∞µ(X) <∞

Hence, the map

Λµ : f 7→
∫
X

fdµ

defines a bounded linear functional on C(X).

2. Furthermore, if f ≥ 0 in C(X), then Λ(f) ∈ [0,∞). Such a linear functional on
C(X) is called positive.

Theorem 3.3.3 (Riesz Representation Theorem). Let X be a compact Hausdorff space
and

Λ : C(X)→ C

be a positive linear functional. Then ∃ a unique Radon measure µ on X such that

Λ(f) =

∫
X

fdµ ∀f ∈ C(X)

Proof. Omitted.

(End of Day 23)
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Definition 3.3.4. Let H be a Hilbert space and T ∈ B(H) a normal operator. Recall
that

C∗(T ) = {p(T, T ∗) : p ∈ C[x, y]}
is the smallest C∗-algebra containing T . A vector e ∈ H is called cyclic with respect to
T if the set

C∗(T )e := {Ae : A ∈ C∗(T )}
is dense in H

Example 3.3.5. 1. Let H = L2[0, 1] and T ∈ B(H) be given by

Tf(x) = xf(x)

Then take e(x) ≡ 1, then e ∈ H is a cyclic vector for T .

Proof. Note that Te(x) = x, so C∗(T )e contains all polynomials. By Weierstrass’
theorem and Lusin’s theorem, the polynomials are dense in L2[0, 1].

2. Let H = C2 and T (x, y) = (x, 0), then

a) For any e ∈ H, C∗(T )(e) ⊂ C⊕ {0}, and so T does not have a cylic vector.

b) However, if H1 := C ⊕ {0}, and H2 = {0} ⊕ C, then T (Hi) ⊂ Hi and
T |Hi∈ B(Hi) has a cyclic vector each.

Theorem 3.3.6 (Spectral Theorem - Special Case). Suppose T ∈ B(H) is a normal
operator which has a cyclic vector, then T is diagonalizable.

Proof. Let e ∈ H be a cyclic vector for T . Let X := σ(T ). Define

Λ : C(X)→ C by f 7→ 〈f(T )e, e〉

Since the map f 7→ f(T ) is linear, Λ is a linear map. Furthermore, if f ≥ 0 in C(X),
∃g ∈ C(X) such that g = g and g2 = f . Hence,

g(T ) = g(T )∗ and g(T )2 = f(T )

Thus,
〈f(T )e, e〉 = 〈g(T )e, g(T )e〉 ≥ 0

Thus, Λ is a positive linear functional on C(X). Hence by the Riesz Representation
theorem, ∃ a unique Radon measure µ on X such that

〈f(T )e, e〉 =

∫
X

fdµ

Now consider C(X) as a subspace of L2(X,µ). For any f, g ∈ C(X), we have

〈f, g〉 =

∫
X

fgdµ

=

∫
X

gfdµ

= 〈g(T )∗f(T )e, e〉
= 〈f(T )e, g(T )e〉
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So we define U : C(X)→ H by
U(f) := f(T )e

Then

1. U preserves inner product. Since C(X) is dense in L2(X,µ) by Lusin’s theorem,
U extends to a unitary from L2(X,µ) to its range.

2. The range of U contains C∗(T )e. Since this is dense in H, the range of U is all of
H.

Furthermore, let ϕ ∈ L∞(X,µ) be the function ϕ(z) = z, then for any g ∈ C(X), we
have

UMϕ(g) = U(ϕg) = ϕ(T )g(T )e = Tg(T )e = TU(g)

Hence,
T = UMϕU

−1

since the two operators agree on C(X) which is dense in L2(X,µ).

Remark 3.3.7. Let {Hn} be a sequence of separable Hilbert spaces and An ∈ B(Hn) such
that

sup ‖An‖ <∞

Then let

H :=
∞⊕
n=1

Hn := {(xn) : xn ∈ Hn and
∞∑
n=1

‖xn‖2
Hn <∞}

1. H is a Hilbert space with inner product given by

〈(xn), (yn)〉 :=
∞∑
n=1

〈xn, yn〉

2. The operator A : H → H defined by

A((xn)) := (An(xn))

is a bounded linear operator. We denote this operator by

A =
∞⊕
n=1

An

Lemma 3.3.8. Suppose {Hn} is a finite or infinite sequence of Hilbert spaces and An ∈
B(Hn) such that sup ‖An‖ < ∞. If each An is diagonalizable, then A := ⊕∞n=1An is
diagonalizable.
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Proof. For each n ∈ N, there is a σ-finite measure space (Xn,Mn, µn), unitaries Un :
Hn → L2(Xn, µn) and ϕn ∈ L∞(Xn, µn) such that

An = U−1
n MϕnUn

Now set X := tXn be the disjoint union with the σ-algebra

M := {E ⊂ X : E ∩Xn ∈Mn ∀n ∈ N}

and measure µ given by

µ(E) :=
∞∑
n=1

µn(E ∩Xn)

Then µ is clearly a measure on X, and it is σ-finite since each µn is. [Check!].

L2(X,µ) =
∞⊕
n=1

L2(Xn, µn)

Then, U :=
⊕

Un defines a unitary operator from H := ⊕Hn to L2(X,µ) and define
ϕ : X → C by

ϕ|Xn= ϕn

Then ϕn is µ-essentially bounded. And

A = U−1MϕU

Lemma 3.3.9. Let H be a separable Hilbert space and T ∈ B(H) be a normal operator,
then ∃ closed subspaces {Hn} of H such that

1. Each Hn is reducing for T

2. T |Hn has a cyclic vector xn ∈ Hn

3. If n 6= m, then Hn ⊥ Hm

4. H =
⊕

Hn

Proof. For any x ∈ H, define
Hx := C∗(T )x

Define
F := {S ⊂ H : ∀x, y ∈ S,Hx ⊥ Hy}

Then F can be partially ordered by inclusion. If C is a chain in F , then the union

T :=
⋃
S∈C

S
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is also a member of F and is an upper bound for C. Hence, F satisfies the conditions of
Zorn’s lemma, and so must have a maximal element E.

We claim that H =
∑

e∈E He. For if not, then ∃x ∈ H such that x ⊥
∑

e∈E He. Then,
E ∪ {x} would be a member of F contradicting the maximality of E. Hence,

H =
⊕
e∈E

He

Since H is separable, E must be countable, thus proving the theorem.

Theorem 3.3.10 (Spectral Theorem - General Case). If H is a separable Hilbert space
and T ∈ B(H) a normal operator, then T is diagonalizable.

Proof. Theorem 3.3.6 + Lemma 3.3.8 + Lemma 3.3.9.

3.4 Exercises

1. Let T ∈ K(H) be a compact normal operator. Show that every non-zero spectral
value is an eigen-value of T .

[Hint: If λ ∈ σ(T ) \ {0}, by Theorem 2.4.9, there is a sequence of unit vectors
(xn) ⊂ H such that ‖T (xn) − λxn‖ → 0. Choose a subsequence (xnj) such that
T (xnj) converges. Show that this limit vector is, in fact, an eigen-vector of T ]

2. Let T ∈ K(H) be a normal operator. Show that H has an orthonormal basis
consisting of eigen-vectors of T .

[Hint: Use the ideas of Theorem 3.1.6. Use the previous problem, and replace the
induction argument by Zorn’s lemma.]

3. Let X be a compact metric space and Λ : C(X)→ C be a positive linear functional
(as in Remark 3.3.2). Without using the Riesz Representation theorem, prove that
Λ is bounded and that

‖Λ‖ = Λ(1)

where 1 denotes the contant function 1.

4. Let X be a compact Hausdorff space and µ a positive Borel measure on X. For
any ϕ ∈ C(X), prove that

ess-range(ϕ) = ϕ(X)

For the remaining problems, let H be a Hilbert space, T ∈ B(H) a normal operator
with a cyclic vector e ∈ H. Furthermore, set X := σ(T ) and let µ be the (positive)
Radon measure obtained in the Spectral Theorem (Theorem 3.3.6).
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5. If f ∈ C(X) is such that f(T )e = 0, then show that f = 0 in C(X).

6. For any λ ∈ X and any open neighbourhood U ⊂ X of λ, show that µ(U) > 0

Note: For any positive Borel measure µ on a set X, the support of µ is defined to
be

supp(µ) := {x ∈ X : µ(U) > 0 ∀ open U such that x ∈ U}

The above problem shows that if µ is the measure obtained in Theorem 3.3.6, then

supp(µ) = σ(T )

7. Show that λ ∈ C is an eigen-value of T iff µ({λ}) 6= 0.

Note: Let (X,µ) be a σ-finite measure space.

a) A point x ∈ X is called an atom of the measure µ if µ({x}) > 0

b) Note that if λ ∈ σ(T ) is an isolated point, then µ({λ}) > 0 by the previous
theorem. Hence we have obtained Theorem 2.4.10.

8. Prove that for any ε > 0 there exist a normal operator S ∈ B(H) with finite
spectrum such that ‖S − T‖ < ε.

[Hint: If ψ is a simple function, then prove that the induced multiplication operator
Mψ ∈ B(L2(X,µ)) has finite spectrum]

3.5 Complex Measures

This section sketches the theory of complex measures. For details, see [Rudin, Chapter
6]

Definition 3.5.1. Let M be a σ-algebra on a set X.

1. If E ∈ M, a partition of E is a countable family {Ei} ⊂ M of mutually disjoint
sets such that E = tEi.

2. A complex measure on X is a function

µ :M→ C

such that for any E ∈M and any partition {Ei} of E, one has

µ(E) =
∞∑
i=1

µ(Ei)

where the RHS is a convergent series in C.

Remark 3.5.2. If µ is a complex measure on X
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1. If E ∈M, then for any partition {Ei} of E, the series

∞∑
i=1

µ(Ei)

converges in C. In particular, any rearrangement of that series converges, and so
the series must converge absolutely (by Riemann’s theorem). Hence,

∞∑
i=1

|µ(Ei)| <∞

2. We want to find a positive measure λ on X such that

|µ(E)| ≤ λ(E) ∀E ∈M

In particular, for any partition {Ei} of E, one must have

λ(E) ≥
∞∑
i=1

|µ(Ei)|

Therefore, we define a set function λ :M→ [0,∞) by

λ(E) := sup
∞∑
i=1

|µ(Ei)|

where the supremum is taken over all partitions of E.

(End of Day 24)

Theorem 3.5.3. Let µ be a complex measure on X. Then the function λ defined above
is a positive measure on X.

Proof. Clearly,
λ(E) ≥ 0 ∀E ∈M

and λ(∅) = 0. Hence it suffices to prove countable additivity. So let {Ei} be a partition
of E ∈M. We WTS:

λ(E) =
∞∑
i=1

λ(Ei)

1. Suppose ti ∈ R such that ti < λ(Ei) for all i. Then each Ei has a partition {Ai,j}
such that

∞∑
j=1

|µ(Ai,j)| > ti
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Since {Ai,j} forms a partition for E, it follows that

∞∑
i=1

ti ≤
∑
i,j

|µ(Ai,j)| ≤ λ(E)

Taking supremum over all possible {ti} proves that

∞∑
i=1

λ(Ei) ≤ λ(E)

2. Conversely, let {Aj} be a partition of E, then for each j ∈ N, {Aj ∩ Ei} is a
partition of Aj, and for each i ∈ N, {Aj ∩ Ei} is a partition of Ei. Hence,

∑
j

|µ(Aj)| =
∑
j

∣∣∣∣∣∑
i

µ(Aj ∩ Ei)

∣∣∣∣∣
≤
∑
j

∑
i

|µ(Aj ∩ Ei)|

=
∑
i

∑
j

|µ(Aj ∩ Ei)|

≤
∑
i

λ(Ei)

This is true for any partition {Aj} of E, and so taking supremum gives

λ(E) ≤
∑
i

λ(Ei)

Remark 3.5.4. 1. The measure λ defined above is unique in the following sense: If ν
is any other positive measure on X such that

|µ(E)| ≤ ν(E) ∀E ∈M

Then λ(E) ≤ ν(E) for all E ∈M

Proof. If ν is any other measure as above, then for any E ∈M, and any partition
{Ei} of E, we have ∑

i

|µ(Ei)| ≤
∑
i

ν(Ei) = ν(E)

This is true for any partition {Ei}, so taking supremum gives λ(E) ≤ ν(E) for all
E ∈M.

This measure λ is called the total variation of µ and is denoted by |µ|
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2. If µ is a complex measure and α ∈ C, then αµ is a complex measure defined by

(αµ)(E) := αµ(E)

Now we claim that |αµ‖ = |α||µ|

Proof. Let γ := αµ, and let E ∈M and {Ei} be a partition of E, then∑
i

|γ(Ei)| = |α|
∑
i

|µ(Ei)| ≤ |α||µ|(E)

Taking supremum gives that
|γ|(E) ≤ |α||µ|

Replacing α by 1/α gives the reverse inequality

3. Similarly, if µ and γ are two complex measures, then

(µ+ γ)(E) := µ(E) + γ(E)

defines a complex measure such that

|µ+ γ|(E) ≤ |µ|(E) + |γ|(E) ∀E ∈M

Theorem 3.5.5. Let µ be a complex measure on X, then |µ|(X) <∞.

Proof. Omitted.

Theorem 3.5.6. Let M(X) be the set of all complex measures on X. Define

(µ+ λ)(E) := µ(E) + λ(E) and (αµ)(E) := αµ(E)

Then M(X) is a vector space under these operations. Furthermore, The function

‖µ‖ := |µ|(X)

defines a norm on M(X).

Proof. By Theorem 3.5.5, ‖ · ‖ is a well-defined real-valued function on M(X) such that
‖µ‖ ≥ 0 for all µ ∈M(X). Furthermore,

1. If ‖µ‖ = 0, then, for any E ∈M, we have

|µ(E)| ≤ |µ|(E) ≤ |µ|(X) = ‖µ‖ = 0⇒ µ(E) = 0 ∀E ∈M

2. The other two conditions of the norm follow from Remark 3.5.4.
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Definition 3.5.7. Let µ be a positive measure on X and λ ∈M(X). We say that λ is
absolutely continuous with respect to µ if

∀E ∈M, µ(E) = 0⇒ λ(E) = 0

If this happens, we write λ� µ

Example 3.5.8. 1. Let µ be any measure on X and ϕ ∈ L1(X,µ). Define

λ(E) :=

∫
E

ϕdµ

Then λ ∈M(X) and λ� µ

2. If µ any complex measure, then µ� |µ|

Theorem 3.5.9 (Radon-Nikodym Theorem). Let µ be a positive measure on X and
λ ∈M(X) such that λ� µ. Then ∃ unique ϕ ∈ L1(µ) such that

λ(E) =

∫
E

ϕdµ

Proof. Omitted.

Proposition 3.5.10. Let µ be a complex measure on X, then ∃h ∈ L1(X, |µ|) such that
|h(x)| = 1 for all x ∈ X and

µ(E) =

∫
E

hd|µ| ∀E ⊂ X measurable

Furthermore, this h is unique a.e. [|µ|]

Proof. Omitted.

Definition 3.5.11. Let µ be a complex Borel measure on X, then

1. We say µ is regular if |µ| is regular (as in Definition 3.3.1). Write MB(X) for
the set of all regular complex Borel measures on X, and we think of MB(X) as a
subspace of M(X).

2. For any f : X → C measurable, we define∫
X

fdµ :=

∫
X

fhd|µ|

where h is as above. This is well-defined by the uniqueness of h.

3. The map Λµ : C(X)→ C given by

f 7→
∫
X

fdµ

defines a bounded linear functional on X with

‖Λµ‖ = ‖µ‖
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Proof. Clearly, ∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|fh|d|µ| ≤ ‖f‖∞|µ|(X)

since |h| = 1 onX. Hence, Λµ is bounded and ‖Λµ‖ ≤ ‖µ‖. Now since h ∈ L1(X, |µ|),∃(fn) ∈
C(X) such that

fn → h in L1(X, |µ|)

Replacing fn by fn/‖fn‖ if need be, we may assume that ‖fn‖ = 1. Since h ∈ L∞(X, |µ|),
it follows that

Λµ(fn) =

∫
X

fnhd|µ| →
∫
X

|h|2d|µ| = |µ|(X) = ‖µ‖

Hence, ‖Λµ‖ = ‖µ‖

Theorem 3.5.12 (Riesz Representation Theorem). Let X be a compact Hausdorff space
and Λ : C(X) → C be a bounded linear functional. Then ∃ a unique complex Borel
measure µ on X such that

Λ = Λµ

In other words, the map

MB(X)→ C(X)′ given by µ 7→ Λµ

is an isometric isomorphism of normed linear spaces.

Proof. Omitted.

(End of Day 25)

3.6 Borel Functional Calculus

Given a normal operator T ∈ B(H), we would like to define f(T ) when f : σ(T )→ C is
not necessarily continuous.

Definition 3.6.1. Let X ⊂ C be compact. Set

B(X) = {f : X → C : f Borel-measurable and bounded}

Note that

1. B(X) is a normed linear space under the supremum norm. It is a Banach space
(because the pointwise limit of a sequence of measurable functions is again mea-
surable and the uniform limit of a sequence of bounded functions is bounded)

2. B(X) is a C∗-algebra under the point-wise operations

3. C(X) ⊂ B(X).
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4. C(X) 6= B(X) in general, since B(X) contains characteristic functions χE for any
Borel set E ⊂ X, and these may not be continuous (unless X is discrete).

Given f ∈ B(X), we wish to make sense of

f(T ) ∈ B(H)

We do this by constructing a ∗-homomorphism

Θ̂ : B(X)→ B(H)

which extends the continuous functional calculus.

Definition 3.6.2. 1. LetA be a C∗-algebra andH a Hilbert space. A ∗-representation
of A on H is a ∗-homomorphism π : A→ B(H). We write (H, π) for the represen-
tation.

2. A ∗-representation π : A→ B(H) is called cyclic if ∃e ∈ H such that the set

{π(a)(e) : a ∈ A}

is dense in H

3. A ∗-representation π : A→ B(H) is called non-degenerate if the set

{π(a)x : a ∈ A, x ∈ H}

is dense in H.

Example 3.6.3. 1. Any cyclic representation is a non-degenerate representation.

2. Let T ∈ B(H) be a normal operator, then if A = C(σ(T )), then the continuous
functional calculus defines a representation of A. If T has a cyclic vector, then this
is a cyclic representation.

3. If T ∈ B(C2) is given by T (x, y) = (x, 0), then this is not a non-degenerate
representation of C(σ(T ))

4. Let X ⊂ C and µ be a Borel measure on X. Let H := L2(X,µ) and define

π : C(X)→ B(H) given by f 7→Mf

Then π is a cyclic representation because the set

{π(f)(1) : f ∈ C(X)}

is dense in H.
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Definition 3.6.4. 1. A sequence of operators (Tn) ∈ B(H) is said to converge strongly
to T ∈ B(H) if, for each x ∈ H

Tn(x)→ T (x)

If this happens, we write Tn
s−→ T

2. A sequence of operators (Tn) ∈ B(H) is said to converge weakly to T ∈ B(H) if,
for each x, y ∈ H

〈Tn(x), y〉 → 〈Tx, y〉

If this happens, we write Tn
w−→ T

Example 3.6.5. 1. If Tn → T in the norm of B(H), then Tn
s−→ T

2. If Tn
s−→ T , then Tn

w−→ T by Cauchy-Schwartz.

3. Let S ∈ B(`2) be given by the left-shift operator

S((x1, x2, . . .)) = (x2, x3, . . .)

Then let Tn := Sn. Note that

Tn((x1, x2, . . .)) = (xn+1, xn+2, . . .)

a) ‖Tn‖ = 1 for all n (Exercise)

b) However, for any x ∈ H, we have∑
|xn|2 <∞

So

‖Tn(x)‖2 =
∞∑

j=n+1

|xj|2 → 0

Thus, Tn
s−→ 0

4. Let H = `2(N) and let S be the right-shift operator

S((xn)) = (0, x1, x2, . . .)

Let Tn := Sn, so that

T ((xn)) = (0, 0, . . . , 0︸ ︷︷ ︸
n times

, x1, x2, . . .)

a) Tn does not converge strongly to 0 because each Tn is an isometry.

b) Claim: Tn
w−→ 0
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Proof. If x, y ∈ H, and ε > 0, choose N ∈ N such that

∞∑
n=N

|yn|2 < ε2

Then, for any n ≥ N , we have

|〈Tn(x), y〉| = |
∞∑
n=N

xn−Nyn| ≤ ‖x‖

(
∞∑
n=N

|yn|2
)1/2

< ε‖x‖

by the Cauchy-Schwartz inequality Hence, 〈Tn(x), y〉 → 0

Definition 3.6.6. A representation π̂ : B(X)→ B(H) is called a σ-representation if for
every uniformly bounded (fn) ∈ B(X)

fn → 0 pointwise ⇒ π̂(fn)
s−→ 0

Lemma 3.6.7. Let π̂ : B(X)→ B(H) be a representation such that for every uniformly
bounded (fn) ∈ B(X)

fn → 0 pointwise⇒ π̂(fn)
w−→ 0

Then π̂ is a σ-representation.

Proof. Suppose this condition holds, and (fn) a uniformly bounded sequence such that
fn → 0 pointwise. Then for any x ∈ H, consider

‖π̂(fn)(x)‖2 = 〈π̂(f ∗nfn)(x), x〉

But, (f ∗nfn) is a uniformly bounded sequence converging pointwise to 0. Hence by
hypothesis, the RHS converges to 0, and hence

π̂(fn)(x)→ 0 ∀x ∈ H

as required

Theorem 3.6.8. Let X be a compact metric space and H a Hilbert space. Every non-
degenerate ∗-representation π : C(X) → B(H) extends uniquely to a σ-representation
π̂ : B(X)→ B(H)

Proof. We prove this using the following lemmas.

(End of Day 26)

Solved Exercises 1,2,5,6, and 7 from section 3.4

(End of Day 27)

Lemma 3.6.9. Let S(X) denote the set of all simple Borel-measurable functions on X.
Then S(X) is dense in B(X)
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Proof. Clearly, S(X) is a subalgebra of B(X) that is closed under taking adjoints. Sup-
pose f ∈ B(X) and ε > 0 are given, then f(X) ⊂ C is bounded. Hence, f(X) is
pre-compact. Thus, ∃ disjoint Borel sets {V1, V2, . . . , Vn} of C such that

diam(Vi) < ε ∀i and f(X) ⊂
n⋃
i=1

Vi

Assume WLOG that f(X)∩ Vi 6= ∅, so for 1 ≤ i ≤ n, choose αi ∈ f(X)∩ Vi, and define

g :=
n∑
i=1

αiχf−1(Vi)

then g ∈ S(X) and ‖g − f‖ ≤ ε [Check!]

Lemma 3.6.10. Let π̂ : B(X) → B(H) be a σ-representation, then for any x, y ∈ H,
define

µx,y(E) := 〈π̂(χE)x, y〉 ∀ Borel sets E

Then

1. µx,y is a complex measure on X

2. For all f ∈ B(X), ∫
X

fdµx,y = 〈π̂(f)x, y〉 (∗)

Proof. 1. We need to check countable additivity. Since π̂ is linear, µx,y is clearly
finitely additive. So suppose E ∈M has a partition {En}, then consider

Fn := E1 t E2 t . . . t En

Then

µx,y(Fn) =
n∑
i=1

µx,y(Ei)

However, χFn is a sequence of uniformly bounded functions such that

χFn → χE

Since π̂ is a σ-representation, it follows that

π̂(χFn)
w−→ π̂(χE)

Thus, µx,y(Fn)→ µx,y(E) which means that

µx,y(E) =
∞∑
i=1

µx,y(Ei)

Hence µx,y is a complex measure.
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2. Note that (∗) holds if f is a characteristic function by definition. Hence, it holds
for all f ∈ S(X) by linearity. Now if f ∈ B(X), then ∃(fn) ∈ S(X) such that
fn → f uniformly (by Lemma 3.6.9) and so

π̂(fn)
w−→ π̂(f)

since π̂ is a σ-representation. Hence,

〈π̂(fn)x, y〉 → 〈π̂(f)x, y〉

But by the dominated convergence theorem,∫
X

fndµx,y →
∫
X

fdµx,y

and hence the result.

Theorem 3.6.11 (Uniqueness part of Theorem 3.6.8). Let π : C(X) → B(H) be a
non-degenerate representation, and suppose π1 and π2 : B(X) → B(H) are two σ-
representations extending π. We WTS that π1(f) = π2(f) for all f ∈ B(X).

Proof. For any x, y ∈ H, it suffices to prove that

〈π1(f)x, y〉 = 〈π2(f)x, y〉

Let µx,y and λx,y be the associated complex measures from Lemma 3.6.10, then we want
to show that ∫

X

fdµx,y =

∫
X

fdλx,y ∀f ∈ B(X)

Since π1(g) = π2(g) for all g ∈ C(X), we know that this equality holds in C(X). Thus,
µx,y and λx,y define the same linear functional on C(X). By the uniqueness part of the
Riesz Representation theorem (Theorem 3.5.12), it follows that

µx,y(E) = λx,y(E) ∀E ∈M

Hence, the required equality holds for all f ∈ S(X). Using the fact that both π1 and π2

are σ-representations, it follows that

π1(f) = π2(f) ∀f ∈ B(X)

Note: We have just prove that if µ and λ are two complex measures such that∫
X

fdµ =

∫
X

fdλ ∀f ∈ C(X)

Then the same equality holds for all f ∈ B(X). We will use this fact repeatedly in the
following arguments.
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Lemma 3.6.12. Let g ∈ B(X), and {µ1, µ2, . . . , µn} be a finite collection of complex
Borel regular measures on X. Then for all ε > 0,∃f ∈ C(X) such that∫

X

|f − g|dµi < ε ∀1 ≤ i ≤ n

Proof. Let ν := |µ1| + |µ2| + . . . + |µn|, then ν is a positive Borel measure. By Lusin’s
theorem, ∃f ∈ C(X) such that ‖f‖∞ ≤ ‖g‖∞ and if

N := {x ∈ X : f(x) 6= g(x)} ⇒ µ(N) < ε

Hence, |µi(N)| ≤ |µi|(N) ≤ µ(N) < ε for all 1 ≤ i ≤ n. Hence,∫
X

|f − g|dµi =

∫
N

|f − g|dµi ≤ 2ε‖g‖∞

This is true for all 1 ≤ i ≤ n, proving the result.

(End of Day 28)

Theorem 3.6.13 (Existence part of Theorem 3.6.8). Let π : C(X) → B(H) be a non-
degenerate representation, we want to define a σ-representation π̂ : B(X)→ B(H) which
extends π.

Proof. 1. Once again, fix x, y ∈ H and consider

Λx,y : C(X)→ C given by f 7→ 〈π(f)x, y〉

This is clearly a linear functional. Also, since ‖π(f)‖ ≤ ‖f‖, it follows that it is
bounded and

‖Λx,y‖ ≤ ‖x‖‖y‖
By the Riesz Representation theorem, ∃ a complex Borel measure µx,y on X such
that ∫

X

fdµx,y = 〈π(f)x, y〉 ∀f ∈ C(X)

and
‖µx,y‖ ≤ ‖x‖‖y‖

Now since µx,y is a Borel measure, we may define∫
X

fdµx,y ∀f ∈ B(X)

2. For any f ∈ B(X) fixed, define a map

ηf : H ×H → C given by (x, y) 7→
∫
X

fdµx,y

Then we claim: ηf is a sesqui-linear form
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Proof. Given x1, x2, y ∈ H and ε > 0, then by Lemma 3.6.12, ∃g ∈ C(X) such
that ∫

X

|f − g|dµ < ε ∀µ ∈ {µx1,y, µx2,y, µx1+x2,y}

Hence,

|ηf (x1 + x2, y)− ηf (x1, y)− ηf (x2, y)| ≤ 3ε+ |ηg(x1 + x2, y)− ηg(x1, y)− ηg(x2, y)|

But
ηg(x, y) = 〈π(g)x, y〉

and so the last term is zero, whence

|ηf (x1 + x2, y)− ηf (x1, y)− ηf (x2, y)| ≤ 3ε

This is true for all ε > 0 and so

ηf (x1 + x2, y) = ηf (x1, y) + ηf (x2, y)

Similarly, one can prove the other conditions to ensure that ηf is a sesqui-linear
form.

3. Also, since ‖µx,y‖ ≤ ‖x‖‖y‖, it follows that

|ηf (x, y)| =
∣∣∣∣∫
X

fdµx,y

∣∣∣∣ ≤ ‖f‖‖x‖‖y‖
So by Theorem 2.1.2, ∃Tf ∈ B(H) such that

ηf (x, y) =

∫
X

fdµx,y = 〈Tf (x), y〉

and
‖Tf‖ ≤ ‖f‖

So we define
π̂ : B(X)→ B(H) by f 7→ Tf

and we claim that π̂ is a σ-representation. Suppose we prove this, then it is clear
that π̂ extends π since for all f ∈ C(X) and x, y ∈ H, we have

〈π̂(f)x, y〉 =

∫
X

fdµx,y = 〈π(f)x, y〉

4. Note that by construction
‖π̂(f)‖ ≤ ‖f‖∞

5. Claim : π̂ is linear

78



Proof. Given f1, f2 ∈ B(X), we have

ηf1+f2(x, y) =

∫
X

(f1 + f2)dµx,y =

∫
X

f1dµx,y +

∫
X

f2dµx,y = ηf1(x, y) + ηf2(x, y)

Hence,
〈Tf1+f2x, y〉 = 〈Tf1x, y〉+ 〈Tf2x, y〉

and so π̂(f1 + f2) = π̂(f1) + π̂(f2)

Similarly,
π̂(αf) = απ̂(f) ∀f ∈ B(X), α ∈ C

6. Claim: π̂(f) = π̂(f)∗

Proof. a) If f ∈ C(X) is a positive function, then ∃h ∈ C(X) such that hh = f ,
and so for any x ∈ H

〈π(f)x, x〉 = 〈π(h)x, π(h)x〉 ≥ 0

Hence, ∫
X

fdµx,x ≥ 0

and so µx,x is a positive measure (by the Riesz Representation theorem).

b) Thus, if f = f , then

〈Tfx, x〉 =

∫
X

fdµx,x ∈ R ∀x ∈ H

By Theorem 2.1.8, Tf = T ∗f .

c) Now for any f ∈ B(X), write f = g + ih where g, h are real-valued. Hence,

Tf = Tg + iTh

so
T ∗f = T ∗g − iT ∗h = Tg − iTh = Tf

Hence, π̂(f) = π̂(f)∗

7. Claim:
π̂(fg) = π̂(f)π̂(g) ∀f, g ∈ B(X)
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Proof. a) Note that if f, g ∈ C(X), then π̂(fg) = π̂(f)π̂(g) holds since π̂ is an
extension of π. Now recall that: if µ, λ are two complex measures on X such
that ∫

X

fdµ =

∫
X

fdλ ∀f ∈ C(X)

Then the same equality is true for all f ∈ B(X).

b) For any f, h ∈ C(X), and x, y ∈ H fixed∫
X

fhdµx,y = 〈π(fh)x, y〉 = 〈π(f)π(h)x, y〉 =

∫
X

fdµπ(h)x,y

Thus, ∫
X

fhdµx,y =

∫
X

fdµπ(h)x,y ∀f ∈ B(X)

In other words, ∀f ∈ B(X), h ∈ C(X)

〈π̂(fh)x, y〉 = 〈π̂(f)π̂(h)x, y〉

and so π̂(fh) = π̂(f)π̂(h).

c) Now for f ∈ B(X), g ∈ C(X), and x, y ∈ H fixed∫
X

gfdµx,y =

∫
X

fgdµx,y = 〈π̂(fg)x, y〉

= 〈π̂(f)π̂(g)x, y〉 by (b)

= 〈π̂(g)x, π̂(f)∗y〉
= 〈π̂(g)x, π̂(f)y〉 by (6)

=

∫
X

gdµx,π̂(f)y

Again by the uniqueness part of the Riesz Representation Theorem, it follows
that ∫

X

gfdµx,y =

∫
X

gdµx,π̂(f)y ∀g ∈ B(X)

In other words, for all f, g ∈ B(X)

〈π̂(fg)x, y〉 = 〈π̂(gf)x, y〉 = 〈π̂(g)x, π̂(f)y〉 = 〈π̂(f)π̂(g)x, y〉

Hence, π̂(fg) = π̂(f)π̂(g) as required.

8. Claim: π̂ is a σ-representation
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Proof. Suppose (fn) ∈ B(X) is a uniformly bounded sequence such that fn → 0
pointwise. By Lemma 3.5, it suffices to prove that

π̂(fn)
w−→ 0

So for any x, y ∈ H, the dominated convergence theorem implies that

〈π̂(fn)x, y〉 =

∫
X

fndµx,y → 0

Hence the result.

Corollary 3.6.14. Let T ∈ B(H) be a normal operator, then there is a unique σ-
representation

Θ̂ : B(σ(T ))→ B(H)

which extends the continuous functional calculus

Θ : C(σ(T ))→ B(H)

This is called the Borel Functional Calculus and we again write

f(T ) := Θ̂(f) ∀f ∈ B(σ(T ))

(End of Day 29)

Remark 3.6.15. If T ∈ B(H) is normal and A ⊂ B(H) is a C*-algebra containing T ,
then the continuous functional calculus gives a map

Θ : C(σ(T ))→ C∗(T ) ⊂ A

However, the range of the Borel functional calculus

Θ̂ : B(σ(T ))→ B(H)

may not lie in A. For instance, suppose H = L2[0, 1] and T ∈ B(H) given by

T (f)(x) := xf(x)

Then σ(T ) = [0, 1], so if A = C∗(T ), then we get an isomorphism

C[0, 1]→ A

In particular, A has no non-trivial projections. However, B([0, 1]) has many projections

(in fact, the linear span of projections is dense in B([0, 1])). Thus, the range of Θ̂ must
be strictly larger than A.
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3.7 Spectral Measures

Definition 3.7.1. Let (X,M) be a measurable space and H a Hilbert space. A
spectral measure (or a resolution of the identity) on X is a map

E :M→ B(H)

such that

1. E(∅) = 0, E(X) = I

2. E(ω) = E(ω)2 = E(ω)∗ for all ω ∈M

3. E(ω1 ∩ ω2) = E(ω1)E(ω2) for all ω1, ω2 ∈M

4. If {ωn} are disjoint sets in M, then

E(
∞⋃
n=1

ωn) =
∞∑
n=1

E(ωn)

where the series converges strongly (See Definition 3.6.4). In other words, for all
x ∈ H

E(
∞⋃
n=1

ωn)(x) = lim
k→∞

k∑
n=1

E(ωn)(x)

Remark 3.7.2. Let E :M→ B(H) be a spectral measure.

1. If {ωn} are disjoint sets in M, then by condition (iii)

E(ωi)E(ωj) = 0 ∀i 6= j

Hence, the E(ωi)’s are a family of mutually orthogonal projections. Condition (iv)
implies that

E(
∞⋃
n=1

ωn)(H) =
∞⊕
n=1

E(ωn)(H)

2. If x, y ∈ H, then the map

Ex,y(ω) := 〈E(ω)x, y〉

defines a complex measure on X [Check!]

3. If x = y above, then

Ex,x(ω) = 〈E(ω)x, x〉 = 〈E(ω)2x, x〉 = ‖E(ω)x‖2 ≥ 0

and so Ex,x is a positive measure.
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4. Each measure Ex,y is automatically regular [Rudin, Theorem 2.18]

Example 3.7.3. 1. Let H = Cn and T ∈ B(H) a normal operator. Write X :=
σ(T ) = {λ1, λ2, . . . , λn} and let M = P(X). Define E :M→ B(H) by

E({λi}) := Pi

where Pi is the projection onto ker(T − λiI) (Exercise). Now, for any x, y ∈ H,
Ex,y is a measure. We consider∫

X

λdEx,y =
n∑
i=1

〈λiE({λi})(x), y〉

But
n∑
i=1

λiE({λi}) =
n∑
i=1

λiPi = T

by Theorem 3.1.8. Hence ∫
X

λdEx,y = 〈Tx, y〉

2. Let (X,M) be a measurable space and µ be a positive Radon measure on X. Let
H := L2(X,µ) and define

E :M→ B(H) by E(ω) := Mχω

Now for any x, y ∈ H, we have

Ex,y(ω) = 〈Mχωx, y〉 =

∫
X

χωxydµ

Hence, ∫
X

χωdEx,y = Ex,y(ω) =

∫
X

χωxydµ

Hence, for any f ∈ B(X),∫
X

fdEx,y =

∫
X

fxydµ = 〈Mfx, y〉

In particular, ∫
X

λdEx,y = 〈Mζx, y〉

where ζ(z) = z

Theorem 3.7.4. Let X ⊂ C compact, H a Hilbert space, and π̂ : B(X) → B(H) a
non-degenerate σ-representation. Then the map

E(ω) := π̂(χω)

defines a spectral measure on X. Furthermore, for any f ∈ B(X) and any x, y ∈ H, we
have ∫

X

fdEx,y = 〈π̂(f)x, y〉
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Proof. Exercise. Use the same ideas as in Lemma 3.6.10.

Definition 3.7.5. Suppose π̂ is a σ-represention of B(X) and E is the corresponding
spectral measure, then, for any x, y ∈ H and any f ∈ B(X), we have∫

X

fdEx,y = 〈π̂(f)x, y〉 (∗)

Therefore, we write ∫
X

fdE := π̂(f) ∀f ∈ B(X)

Note: The symbol ∫
X

fdE

does not have any intrinsic meaning since E is not a complex measure. It only means
that (∗) holds for any x, y ∈ H.

Theorem 3.7.6. Let X ⊂ C be compact and π : C(X) → B(H) be a non-degenerate
representation, then ∃ a unique spectral measure E on the Borel σ-algebra of X such
that

π(f) =

∫
X

fdE ∀f ∈ C(X)

Proof. Theorem 3.6.8+Theorem 3.7.4

Theorem 3.7.7 (Spectral Theorem). Let T ∈ B(H) be a normal operator, then ∃ a
unique spectral measure E on σ(T ) such that

T =

∫
σ(T )

λdE

Proof. Apply Theorem 3.7.6 to the continuous functional calculus of T .

(End of Day 30)

3.8 Compact Normal Operators

Lemma 3.8.1. Let T ∈ B(H) be a normal operator with spectral measure E. For any
λ ∈ C, λ is an eigen-value of T iff E({λ}) 6= 0. Furthermore, in that case, E({λ}) is
the projection onto ker(T − λI).

Proof. Let X := σ(T ), π̂ : B(X) → B(H) be the Borel functional calculus. Then, if
ζ ∈ B(X) is the function ζ(z) = z, then

T = π̂(ζ)
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Also if ω ⊂ X is a Borel set, then

E(ω) = π̂(χω)

Furthermore, for any f ∈ B(X) and x, y ∈ H,∫
X

fdEx,y = 〈π̂(f)x, y〉

1. Hence, if P = E({λ}), then

TP = π̂(ζχ{λ})) = π̂(λχ{λ}) = λP

Thus, if P 6= 0, then any element of P (H) is an eigen-vector with eigen-value λ.

2. Conversely, suppose λ is an eigen-value with eigen-vector x, then we claim that

E({λ})(x) = x

which would imply that E({λ}) 6= 0.

a) Define

∆n := {z ∈ C : |z − λ| ≥ 1

n
}

Write En := E(∆n), then

EnT = π̂(χ∆nζ) = π̂(ζχ∆n) = TEn

Hence,
(T − λI)En(x) = En(T − λI)x = 0

But

0 = ‖(T − λI)En(x)‖2 = 〈(T − λI)En(x), (T − λI)En(x)〉
= 〈E∗n(T − λI)∗(T − λI)En(x), x〉
= 〈π̂(χ∆n(ζ − λI)(ζ − λI)χ∆n)x, x〉

=

∫
X

χ∆n|z − λ|2dEx,x

≥ 1

n2

∫
X

χ∆ndEx,x

=
1

n2
〈π̂(χ∆n)x, x〉

=
1

n2
〈En(x), x〉

=
1

n2
〈En(x), En(x)〉 =

1

n2
‖En(x)‖2

Hence, E(∆n)(x) = En(x) = 0 for all n ∈ N
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b) Now observe that if
∆n ⊂ ∆n+1

and

∆ := σ(T ) \ {λ} =
∞⋃
n=1

∆n

Since π̂ is a σ-representation, it follows that

E(∆)(x) = limE(∆n)(x) = 0

But then

x = E(X)(x) = E({λ})(x) + E(∆)(x) = E({λ})(x)

Hence, E({λ}) 6= 0 as required.

3. Finally, we observe from the proof that E({λ})(x) = x iff x ∈ ker(T − λI) as
required.

Lemma 3.8.2. Let T ∈ B(H) be a normal operator with spectral measure E. Then T
is compact iff

Pε := E({z ∈ σ(T ) : |z| > ε})
is a finite rank projection for each ε > 0

Proof. 1. Let X := σ(T ), and set

Bε := {z ∈ X : |z| > ε} and Fε = X \Bε

then

T − TPε =

∫
X

λdE −
∫
X

λχBε(λ)dE =

∫
X

λχFεdE = f(T )

where f(z) = zχFε(z). Hence,

‖T − TPε‖ = ‖f‖∞ = sup{|z| : z ∈ Fε} ≤ ε

So, if Pε has finite rank for all ε > 0, then TPε ∈ K(H), so T is a limit of finite
rank operators. Hence, T ∈ K(H)

2. Suppose T is compact, then define

g(z) :=
1

z
χBε(z)

Then g ∈ B(X) and g(z)z = χBε(z). Hence,

g(T )T = Pε ∈ K(H)

But Pε is a projection, so Pε has finite rank (Why?)
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Theorem 3.8.3 (Spectral Theorem for Compact Normal Operators). Let T ∈ K(H) be
a compact normal operator. Then

1. σ(N) is either finite, or is a countable set with 0 as the only limit point.

Write σ(N) \ {0} = {λ1, λ2, . . .}, and set

Hk := ker(T − λkI)

and let Ek be the projection onto Hk. Then

2. Each Hk is non-zero, finite dimensional, and mutually orthogonal.

3.

T =
∞∑
k=1

λkEk

where the series converges in the operator norm.

Proof. 1. Fix ε > 0, and consider

Bε := {z ∈ σ(T ) : |z| > ε}

By Exercise 1 of section 3.4, every element of Bε is an eigen-value. Furthermore,
if λ, µ ∈ Bε are distinct, then by Lemma 3.8.1 and Lemma 3.1.7,

E({λ}) ⊥ E({µ})

Hence, if Pε = E(Bε) as above, then Pε has finite rank by Lemma 3.8.2. Together,
these facts imply (why?) that Bε is a finite set (In fact, |Bε| ≤ rank(Pε)).

2. Fix λk, then each Hk is non-zero because each such λk is an eigen-value. For
ε > |λk|, Pε has finite rank. But

PεEk = E(Bε)E({λk}) = E(Bε ∩ {λk}) = E({λk}) = Ek

So Hk = Ek(H) = Pε(Ek(H)) ⊂ Pε(H) is finite dimensional. Finally, the Hk are
mutually orthogonal by Lemma 3.1.7.

3. We WTS that

T =
∞∑
k=1

λkEk

Suppose that σ(T ) is infinite, as the finite case is similar (easier). By part (1),

σ(T ) = {0, λ1, λ2, . . .}

where λk are a sequence of non-zero complex numbers converging to 0. Since each
Bε is finite, each λk is an isolated point of σ(T ). Hence,

χ{λk} ∈ C(σ(T ))
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and furthermore,
Ek = χ{λk}(T )

Define

sn :=
n∑
k=1

λkχ{λk}

Then sn(z) = z for all z ∈ {λ1, λ2, . . . , λn}, so

‖ζ − sn‖∞ ≤ sup
k>n
|λk|

But this term converges to 0 by hypothesis. Hence, sn → ζ in the sup norm.
Therefore,

T = lim sn(T ) =
∞∑
k=1

λkEk

and the sum converges in the norm topology.

Remark 3.8.4. If T ∈ B(H) is a normal operator with countable spectrum σ(T ) =
{λ1, λ2, . . .}, then for any x, y ∈ H, we have

〈Tx, y〉 =

∫
σ(T )

λdEx,y =
∞∑
i=1

λiEx,y({λi}) =
∞∑
i=1

λi〈E({λi)(x), y〉

Hence,

T =
∞∑
i=1

λiE({λi})

where the convergence is in the weak operator topology. However, in the above theorem,
because T is compact, we get norm convergence because the spectral values converge to
0.

(End of Day 31)

Theorem 3.8.5. Let H be a separable Hilbert space and J C B(H) be a two-sided ideal
that contains a non-compact operator, then J = B(H)

Proof. Let A ∈ I be non-compact, then T := A∗A ∈ J is normal. Furthermore, T is
not compact by Corollary 2.5.5. By Lemma 3.8.2, ∃ε > 0 such that Pε has infinite rank.
Furthermore, in the proof, we saw that ∃S ∈ B(H) such that

Pε = ST

Hence, Pε ∈ J . Let M := Pε(H), then M is a closed subspace of H and

dim(H) = dim(H) = ℵ0

Hence, there is a surjective isometry U : H →M , so that

I = U∗PεU

Since Pε ∈ J , it follows that I ∈ J , so J = B(H).
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Definition 3.8.6. Let H be a Hilbert space and x, y ∈ H. Define Θx,y ∈ B(H) by

Θx,y(z) := 〈z, x〉y

Then Θx,y is a rank one operator.

Lemma 3.8.7. Every finite rank operator is a linear combination of these Θx,y

Proof. Exercise

Theorem 3.8.8. If H is a separable Hilbert space, then the only non-trivial closed,
two-sided ideal of B(H) is K(H)

Proof. Let J 6= {0} be a closed ideal, then by Theorem 3.8.5, it suffices to show that
K(H) ⊂ J . Choose T ∈ J non-zero, then ∃x0, x1 ∈ H such that T (x0) = x1 6= 0. For
any y0, y1 ∈ H of norm 1, consider two operators

A := Θy0,x0 and B := Θx1,y1

Then for any z ∈ H,

BTA(z) = BT (〈z, y0〉x0) = 〈z, y0〉BT (x0)

= 〈z, y0〉B(x1) = 〈z, y0〉y1

= Θy0,y1(z)

Hence, every Θx,y belongs to J . By the previous lemma, all finite rank operators belong
to J . Since J is closed, it follows that K(H) ⊂ J .

3.9 Exercises

1. Let X be a compact Hausdorff space, and H a Hilbert space, and suppose π :
C(X) → B(H) is a non-degenerate representation. Let 1 denote the constant
function 1, then prove that

a) π(1) is a projection in B(H)

b) Conclude that π(1) = I

2. Let T ∈ B(H) be a normal operator.

a) If σ(T ) is finite, then show that T is a linear combination of projections.

b) If σ(T ) is a singleton, then show that T is a scalar multiple of the identity.

3. Show that an element U ∈ B(H) is unitary iff there is a self-adjoint operator
T ∈ B(H) such that U = eiT

4. Show that the space U(H) of unitary operators on H is path connected.
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5. Let (X,M, µ) be a σ-finite measure space, H = L2(X,µ) and let ϕ ∈ L∞(X,µ)
be fixed. We define E :M→ B(H) by

E(ω) := Mχϕ−1(ω)

Then prove that

a) E is a spectral measure on X

b)

Mϕ =

∫
X

λdE

6. Let U : H0 → H be a unitary, and (X,M) a measurable space. Suppose

Ẽ :M→ B(H0)

is a spectral measure, then define

E :M→ B(H) by ω 7→ UẼ(ω)U−1

a) Prove that E defines a spectral measure on X

b) If x, y ∈ H, set x̃ = U−1(x), ỹ = U−1(y), then prove that for any f ∈ B(X),∫
X

fdEx,y =

∫
X

fdẼx̃,ỹ

7. Let π : C(X)→ B(H) be a non-degenerate representation and E be the associated
spectral measure from Theorem 3.7.6. Prove that π is injective iff E(ω) 6= 0 for
all open ω ⊂ X.

[Hint: Use Remark 3.7.2 and Corollary 2.1.10]

8. Let T ∈ B(H) be a normal operator with spectral measure E on σ(T ). Show that,
for any Borel set ω ⊂ σ(T ),

E(ω)T = TE(ω)

Conclude that, if dim(H) > 1, then T has a non-trivial invariant subspace.

9. Let T ∈ B(H) be a normal operator with spectral measure E. Suppose that T
satisfies the following properties:

a) σ(T ) is a countable set with 0 as the unique limit point.

b) For each λ ∈ σ(T ) \ {0}, E({λ}) is a finite rank projection.

Show that T is a compact operator.
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4 Additional Topics

4.1 Quotients of C∗ algebras

Remark 4.1.1. Recall that if A is a C*-algebra and I C A is a closed two-sided ideal,
then A/I is a Banach algebra (Theorem 1.1.6) with the quotient norm

‖a+ I‖ = inf{‖a+ b‖ : b ∈ I}

We now wish to define an involution on A/I by

(a+ I)∗ := a∗ + I

and show that A/I is a C*-algebra with this involution and norm.

Lemma 4.1.2. Let A be a C∗-algebra and I C A be a closed ideal in A. For any a ∈ I,∃
a sequence of self-adjoint en ∈ I such that σ(en) ⊂ [0, 1] and

lim
n→∞

‖a− aen‖ = 0

Proof. By adjoining a unit to A if need be, we assume WLOG that A is unital.

1. Suppose a = a∗, then σ(a) ⊂ R so if

fn(t) :=
nt2

1 + nt2

then fn ∈ C(σ(a)). Hence, we may define en := fn(a).

a) Since fn = fn, en = e∗n

b) Now fn ∈ C(σ(a)) is a limit of polynomials in pn,k(a). Furthermore, since
fn(0) = 0, we may choose these polynomials pn,k such that pn,k(0) = 0 (See
also Corollary 2.5.5). Hence, pn,k(a) ∈ I for all k, so that en ∈ I because I is
closed. Since the RHS is a limit of polynomials in a, en ∈ I since I is closed.

c) Since fn(t) ∈ [0, 1] for all t ∈ σ(a), it follows from the spectral mapping
theorem, that σ(en) ⊂ [0, 1]. In particular,

σ(1− en) ⊂ [0, 1]

and so ‖1− en‖ and ‖en‖ ≤ 1
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d) Hence

‖a− aen‖2 = ‖a(1− en)‖2 = ‖(1− en)a2(1− en)‖ ≤ ‖a2(1− en)‖

Now, gn(t) := 1 + nt2 ∈ C(σ(a)) is an invertible function because σ(a) ⊂ R.
Hence, (1 + na2) is invertible in A, and

‖a2(1− en)‖ = ‖a2(1 + na2)−1‖ =
1

n
‖na2(1 + na2)−1‖ =

1

n
‖1− en‖ ≤

1

n

and so ‖aen − a‖ → 0

2. Now if a is not self-adjoint, let b := a∗a ∈ I. By part (i), there is sequence en of
self-adjoint elements such that σ(en) ⊂ [0, 1] and

‖a∗a(1− en)‖ → 0

Hence,
‖aen − a‖2 = ‖(1− en)a∗a(1− en)‖ ≤ ‖a∗a(1− en)‖ → 0

(End of Day 32)

Example 4.1.3. 1. Let A = B(`2) and I = K(`2), and let En be the projection onto
the subspace spanned by {e1, e2, . . . , en}. Then for any T ∈ I,

‖T − TEn‖ → 0

2. Let A = C[0, 1] and I = C0((0, 1/2)), then we may choose en ∈ I such that
en(x) = 1 if 1/n ≤ x ≤ 1/2− 1/n and 0 ≤ en ≤ 1. Then for any f ∈ I,

‖f − fen‖ → 0

Proof. Exercise.

Corollary 4.1.4. Let A be a C∗-algebra and I C A a closed ideal. Then for any a ∈ A

‖a+ I‖ = inf{‖a− ax‖ : x ∈ I, x = x∗, σ(x) ⊂ [0, 1]}

Proof. Fix a ∈ A and recall that

‖a+ I‖ = inf{‖a− b‖ : b ∈ I}

Let E = {x ∈ I, x = x∗, σ(x) ⊂ [0, 1]}, then since ax ∈ I for each x ∈ E, it follows that

‖a+ I‖ ≤ β := inf{‖a− ax‖ : x ∈ E}

Now suppose b ∈ I, then choose en ∈ I such that ‖b−ben‖ → 0, then since ‖(1−en)‖ ≤ 1,
we have

‖a+b‖ ≥ ‖(a+b)(1−en)‖ = ‖(a−aen)−(ben−b)‖ ≥ ‖a−aen‖−‖ben−b‖ ≥ β−‖ben−b‖

Taking limit, we see that
‖a+ b‖ ≥ β

This is true for all b ∈ I, so ‖a+ I‖ = β as required.
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Corollary 4.1.5. Let A be a C∗-algebra and I C A a closed ideal in A. For any
a ∈ I, a∗ ∈ I

Note: This shows that if I is closed, then the second half of Definition 2.1.21 is redundant.

Proof. Let a ∈ I, choose en ∈ I self-adjoint such that ‖aen − a‖ → 0, then

(aen)∗ = ena
∗ → a∗

since the map a 7→ a∗ is continuous (Lemma 2.1.16). Since en ∈ I, it follows that
ena

∗ ∈ I for all n. Since I is closed, a∗ ∈ I.

Theorem 4.1.6. Let A be a C∗-algebra and I C A a closed ideal in A. The involution

(a+ I)∗ := a∗ + I

is well-defined, and A/I is a C∗-algebra with respect to this involution and the norm as
above.

Proof. By Remark 2.1.14, it suffices to check that

‖a+ I‖2 ≤ ‖a∗a+ I‖

But by Corollary 4.1.4,

‖a+ I‖2 = inf{‖a− ax‖2 : x ∈ I, x = x∗, σ(x) ⊂ [0, 1]}

and for any x as above ‖1− x‖ ≤ 1, so

‖a− ax‖2 = ‖(a− ax)∗(a− ax)‖ = ‖(1− x)a∗a(1− x)‖ ≤ ‖a∗a(1− x)‖

Taking infimum, we get the required inequality.

Example 4.1.7. The Calkin algebra is defined as

Q(H) := B(H)/K(H)

By Theorem 4.1.6, Q(H) is a C∗-algebra.

Theorem 4.1.8. Let ϕ : A→ B be a ∗-homomorphism, then

1. ker(ϕ) C A is a closed ideal

2. Consider the quotient map π : A→ A/ ker(ϕ), then the induced map

ϕ : A/ ker(ϕ)→ B

given by Theorem 1.1.9 is an isometric ∗-isomorphism from A/ ker(ϕ) to ϕ(A)

3. ϕ(A) is a C∗-subalgebra of B
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Proof. 1. ker(ϕ) is clearly an ideal, and ker(ϕ) = ϕ−1({0}) is closed since ϕ continu-
ous.

2. Consider the map ϕ : A/ ker(ϕ)→ B given by

a+ I 7→ ϕ(a)

Then it clearly a ∗-homomorphism that must be injective by Theorem 1.1.9. By
Theorem 2.2.11, this implies that ϕ is isometric.

3. Hence, ϕ(A) = ϕ(A/I) must be a closed C∗-subalgebra of B since it is the isometric
image of a C∗-algebra [Check!]

4.2 Positive Linear Functionals

Let A be a C*-algebra.

Remark 4.2.1. 1. Define

A+ := {a ∈ A : a = a∗, σ(a) ⊂ [0,∞)}

Note that, by Theorem 2.3.11, A+ ⊂ {b∗b : b ∈ A}. We will soon show that, in
fact, these two sets are equal. Elements of A+ are called positive elements in A.

2. Write Asa for the set of all self-adjoint elements of A.

Lemma 4.2.2. Let a, b ∈ A+, then a+ b ∈ A+

Proof. Note that c ∈ A+ iff λc ∈ A+ for all λ ∈ [0,∞). Therefore, we may assume
WLOG that ‖a‖ ≤ 1 and ‖b‖ ≤ 1.If z := a+b

2
, then WTS: z ∈ A+. Note that z is

self-adjoint. Since a ∈ A+ and ‖a‖ ≤ 1, it follows by functional calculus that

σ(1− a) ⊂ [−1, 1]⇒ ‖1− a‖ = r(1− a) ≤ 1

Similarly, ‖1− b‖ ≤ 1, so

‖1− z‖ =

∥∥∥∥(1− a) + (1− b)
2

∥∥∥∥ ≤ 1

2
+

1

2
= 1

Hence, if t ∈ σ(z), then |1− t| ≤ 1. Since t ∈ R, this implies t ≥ 0, so

σ(z) ⊂ [0,∞)

as required.

Lemma 4.2.3. Let a ∈ A, such that −a∗a ∈ A+, then a = 0
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Proof. 1. We first show that if a, b ∈ A, then σ(ab) ∪ {0} = σ(ba) ∪ {0}: Suppose
λ ∈/∈ σ(ab) ∪ {0}, then by rescaling, we may assume that λ = 1. Now, 1 − ab is
invertible, with inverse c, say. Then c− 1 = cab. Define x := 1 + bca, then

x(ba− 1) = (1 + bca)ba− x = ba+ b(cab)a− x = ba+ b(c− 1)a− x
= ba+ bca− ba− x = bca− x = 1

Similarly, (ba− 1)x = 1, and we are done.

2. Now suppose −a∗a ∈ A+, then σ(a∗a) ⊂ (−∞, 0]. By part (i),

σ(aa∗) ⊂ (−∞, 0]

Hence, −aa∗ ∈ A+, so −(a∗a+ aa∗) ∈ A+, whence

σ(a∗a+ aa∗) ⊂ (−∞, 0]

Write a = b+ ic, where b, c ∈ Asa, then

a∗a+ aa∗ = (b− ic)(b+ ic) + (b+ ic)(b− ic) = 2b2 + 2c2

Hence, −(b2 + c2) ∈ A+. But c2 ∈ A+, so by the previous lemma,

−b2 ∈ A+ ⇒ σ(b2) ⊂ (−∞, 0]

But b is self-adjoint, so σ(b2) ⊂ [0,∞), so this implies

σ(b2) ⊂ {0}

But this implies ‖b‖ = r(b) = 0, so b = 0. Similarly, c = 0, so a = 0 as required.

Theorem 4.2.4. For a ∈ A, TFAE:

1. a = a∗ and σ(a) ⊂ [0,∞)

2. ∃b ∈ A such that a = b∗b

3. ∃c ∈ Asa such that a = c2

Proof. (i)⇒ (ii) follows by Theorem 2.3.11, and (iii)⇒ (i) follows by the spectral mapping
theorem, so it suffices to prove (ii)⇒ (iii): If a = b∗b, then a = a∗, so σ(a) ⊂ R. Define
f, g : σ(a)→ R by

f(t) :=

{√
t : t ≥ 0

0 : t < 0
and g(t) :=

{
0 : t ≥ 0√
−t : t < 0

Let x := f(a), y := g(a), then x and y are self-adjoint. Furthermore, by the functional
calculus,

a = x2 − y2

95



Furthermore f(t)g(t) = 0, so xy = yx = 0, so that

(by)∗(by) = yb∗by = yay = yx2y − y4 = −y4

By Lemma 4.2.3, it follows that y4 = 0. By the continuous functional calculus, this
implies y = (y4)1/4 = 0. Hence, a = x2 as required.

Definition 4.2.5. A linear functional τ : A → C is said to be positive if τ(a) ≥ 0 for
all a ∈ A+.

Example 4.2.6. 1. Let X be a compact Hausdorff space and A = C(X). If µ is a
positive Borel measure on X, then τ : A→ C given by

f 7→
∫
X

fdµ

is a positive linear functional. By the Riesz representation theorem, these are all
the positive linear functionals on C(X).

2. For instance, if x0 ∈ X, then f 7→ f(x0) is a positive linear functional.

3. If A = B(H) and x ∈ H, then τ : A→ C given by

τ(T ) := 〈Tx, x〉

is a positive linear functional.

4. If A = Mn(C), then the trace is a positive linear functional on A because

Tr(T ) =
n∑
i=1

〈T (ei), ei〉

(End of Day 33)

Definition 4.2.7. Let a ∈ Asa, then σ(a) ⊂ R, so define f : σ(a)→ R by

f(t) =

{
t : t ≥ 0

0 : t ≤ 0

Then f ∈ C(σ(a)), so we define
a+ := f(a)

Similarly, we define a− := g(a), where

g(t) =

{
0 : t ≥ 0

−t : t ≤ 0

Note that a+, a− ∈ A+ and
a = a+ − a−

Furthermore, ‖a+‖ = ‖f(a)‖ = ‖f‖∞ ≤ ‖a‖, and similarly, ‖a−‖ ≤ ‖a‖.
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Lemma 4.2.8. Let S := {a ∈ A+ : ‖a‖ ≤ 1}. Suppose τ is a linear functional such that
τ is bounded on S, then τ is bounded.

Proof. For any a ∈ A with ‖a‖ ≤ 1, consider

b :=
a+ a∗

2
and c :=

a− a∗

2i

Then b, c ∈ Asa and a = b + ic. Furthermore, ‖b‖, ‖c‖ ≤ 1. Then b+, b−, c+, c− ∈ S, so
if M ≥ 0 such that

|τ(x)| ≤M ∀x ∈ S

we have

|τ(a)| ≤ |τ(b)|+ |τ(c)| ≤ |τ(b+)|+ |τ(b−)|+ |τ(c+)|+ |τ(c−)| ≤ 4M

Hence, τ is bounded and ‖τ‖ ≤ 4M .

Theorem 4.2.9. Every positive linear functional on A is bounded.

Proof. By the above lemma, it suffices to show that τ is bounded on S := {a ∈ A+ :
‖a‖ ≤ 1}. Suppose not, then for each n ∈ N,∃an ∈ S such that

|τ(an)| = τ(an) ≥ 4n

Consider the series
∞∑
n=1

an
2n

Then the series converges absolutely, so it converges to a point a. Now, note that

a− an
2n

= lim
`→∞

∑̀
k 6=n

ak
2k

Each term of the limit is in A+ by Lemma 4.2.2. Thus, a− an/2n ∈ A+, so

a ≥ an/2
n ⇒ τ(a) ≥ τ(an)/2n ≥ 2n

This implies that τ(a) /∈ R, which is impossible.

Theorem 4.2.10. Let A be a unital C*-algebra and τ a positive linear functional on A.
Then

1. For any a, b ∈ A,
|τ(b∗a)| ≤ τ(a∗a)1/2τ(b∗b)1/2

2. τ(a∗) = τ(a)

3. |τ(a)|2 ≤ ‖τ‖τ(a∗a)
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4. The set
Nτ := {a ∈ A : τ(a∗a) = 0}

is a closed left-ideal of A.

Proof. 1. The map u : A× A→ C given by

(a, b) 7→ τ(b∗a)

is a bounded sesqui-linear form. So the result follows from the Cauchy-Schwartz
inequality.

2. If a ∈ Asa, then a = a+ − a−, so τ(a) = τ(a+) − τ(a−) ∈ R. Hence, if a ∈ A, we
write a = b+ ic for b, c ∈ Asa. Then

a∗ = b− ic

so τ(a∗) = τ(b)− iτ(c) = τ(b) + iτ(c) = τ(a)

3. If a ∈ A, then by part (i)

|τ(a)|2 = τ(1∗a)2 ≤ τ(a∗a)τ(1∗1)

But τ(1∗1) = τ(1) ≤ ‖τ‖ since ‖1‖ = 1

4. If a ∈ Nτ , then for any x ∈ A,

|τ(xa)| ≤ τ(xx∗)1/2τ(a∗a) = 0

Hence, τ(xa) = 0. Also, τ(a∗x) = τ(x∗a) = 0. Hence, if a, b ∈ Nτ , then

τ((a+ b)∗(a+ b)) = τ(a∗a+ a∗b+ b∗a+ b∗b) = 0

Hence, a+b ∈ Nτ . Hence, Nτ is a vector subspace of A. Furthermore, if c ∈ A, a ∈
Nτ , then

τ((ca)∗(ca)) = τ(a∗c∗ca) = 0

Finally, observe that if an → a, then a∗nan → a∗a. Since τ is continuous, we can
conclude that Nτ is closed.

Example 4.2.11. 1. Let τ : B(H)→ C be given by τ(T ) := 〈Te1, e1〉. Then

Nτ = {T ∈ B(H) : Te1 = 0}

This is a left-ideal, but not a right-ideal (Why?).
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2. Let µ be a positive Borel measure on a compact Hausdorff space X and let τ be
the positive linear functional

f 7→
∫
X

fdµ

Then
Nτ = {f ∈ C(X) : f ≡ 0 a.e.[µ]}

Theorem 4.2.12. If τ is a bounded linear functional on a unital C*-algebra A, then τ
is positive iff ‖τ‖ = τ(1)

Proof. 1. Suppose τ is positive, then for any a ∈ A, then for any a ∈ A,

|τ(a)|2 ≤ τ(a∗a)τ(1)

If ‖a‖ ≤ 1, then ‖a∗a‖ = ‖a‖2 ≤ 1. Hence,

σ(a∗a) ⊂ [0, 1]⇒ a∗a ≤ 1

Thus, τ(a∗a) ≤ τ(1). Hence,

|τ(a)|2 ≤ τ(1)2 ⇒ |τ(a)| ≤ τ(1)

This is true for all a ∈ A such that ‖a‖ ≤ 1, so

‖τ‖ ≤ τ(1)

But ‖1‖ = 1, so the reverse inequality holds as well.

(End of Day 34)

2. Conversely, suppose τ is a bounded linear functional such that ‖τ‖ = τ(1), then
WTS: τ is positive. We prove this in two steps. By scaling, we may assume that
‖τ‖ = τ(1) = 1.

a) For any a ∈ Asa, we show that τ(a) ∈ R. We may assume that ‖a‖ ≤ 1. First
write

τ(a) = α + iβ

WTS: β = 0. Suppose not, then replacing a by −a if necessary, we may
assume that β < 0. For n ∈ N,

‖a− in‖2 = ‖(a− in)∗(a− in)‖
= ‖(a+ in)(a− in)‖ = ‖a2 + n2‖
≤ ‖a2‖+ n2

Since ‖a‖ ≤ 1, we have
‖a− in‖2 ≤ 1 + n2
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Since τ(1) = 1,

|α + iβ − in|2 = |τ(a− in)|2 ≤ ‖τ‖τ((a− in)∗(a− in))

≤ ‖τ‖2‖a− in‖2 ≤ 1 + n2

Hence,
α2 + β2 − 2nβ + n2 ≤ 1 + n2 ⇒ 2nβ + 1 ≥ α2 + β2

This cannot happen if β < 0. This contradicts our assumption. Hence, β = 0
must hold, so τ(a) ∈ R if a ∈ Asa.

b) Now suppose a ∈ A+, WTS: τ(a) ∈ R+. Assume WLOG that ‖a‖ ≤ 1, then
by the previous lemma, 1− a ≤ 1, so since τ(a) ∈ R,

1− τ(a) = τ(1− a) = |τ(1− a)| ≤ ‖τ‖‖1− a‖ ≤ 1

Hence, τ(a) ≥ 0

Definition 4.2.13. Let A be a C*-algebra. A state on A is a positive linear functional
of norm 1. We write S(A) for the set of all states on A.

Lemma 4.2.14. Let A be a unital C*-algebra and B ⊂ A be a sub-algebra such that
1A ∈ B. If τ : B → C a positive linear functional on A, then τ extends to a positive
linear functional τ̃ : A→ C such that ‖τ̃‖ = ‖τ‖

Proof. By Hahn-Banach, there is an extension τ̃ : A→ C such that ‖τ‖ = ‖τ̃‖. However,

τ̃(1A) = τ(1A) = ‖τ‖ = ‖τ̃‖

so τ̃ is positive by Theorem 4.2.12.

Theorem 4.2.15. Let A be a C*-algebra and a ∈ A be a normal element. Then ∃τ ∈
S(A) such that |τ(a)| = ‖a‖

Proof. Consider the unitization Ã and think of A as an ideal of Ã. Then a is normal in
Ã and Ã is unital, so define

B := C∗(1Ã, a)

ThenB is a commutative C*-algebra, so ifX := Ω(B), there is an isometric ∗-isomorphism

ΓB : B → C(X) given by b 7→ b̂

In particular,
‖a‖ = ‖â‖∞ = sup

τ∈Ω(B)

|τ(a)|

Since Ω(B) is compact, ∃τ1 ∈ Ω(B) such that

|τ1(a)| = ‖a‖
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By Lemma 1.4.2,
τ1(1Ã) = ‖τ1‖ = 1

Therefore, τ1 is positive. By Lemma 4.2.14, τ1 extends to a state τ2 on Ã. Clearly,

|τ2(a)| = |τ2(a)| = ‖a‖

Now we may restrict τ2 to a linear functional τ on A. Clearly, τ is positive because
τ2 is positive. Furthermore, ‖τ‖ ≤ ‖τ2‖ = 1. However, |τ(a)| = ‖a‖, so ‖τ‖ ≥ 1, so
τ ∈ S(A).

(End of Day 35)

4.3 The Gelfand-Naimark-Segal Construction

Remark 4.3.1. 1. Given a C*-algebra A and a representation ϕ : A→ B(H), we may
use this to construct positive linear functionals on A: If ζ ∈ H, define τ : A→ C
by

a 7→ 〈ϕ(a)ζ, ζ〉 (†)

The Gelfand-Naimark-Segal (GNS) construction is a converse to this - given a
state τ ∈ S(A), we use it to construct a representation such that (†) holds for
some ζ ∈ H. Furthermore, the triple (H,ϕ, ζ) will be uniquely associated to τ in
a certain sense.

2. The idea is similar to the following : Let X be a compact Hausdorff space and µ a
positive Borel measure on X. Let τ : C(X)→ C be the positive linear functional

f 7→
∫
X

fdµ

We set H := L2(X,µ), which is the completion of C(X) in the norm induced by
the inner product

〈f, g〉 :=

∫
X

fgdµ = τ(fg)

For every f ∈ C(X), we define Mf ∈ B(H) by

Mf (g) := fg

Then the map ϕ : f 7→ Mf defines a representation of C(X). Furthermore, if
ζ := 1 ∈ C(X), then for any f ∈ C(X),

〈ϕ(f)ζ, ζ〉 = 〈f, ζ〉 =

∫
X

fdµ = τ(f)

Throughout this section, fix a unital C*-algebra A. What follows can be done in the
non-unital case, but needs a little more work.
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Lemma 4.3.2. If τ ∈ S(A), define Nτ := {a ∈ A : τ(a∗a) = 0}.

1. If a ∈ Nτ , then for any b ∈ A,

τ(ba) = 0 and τ(a∗b) = 0

2. For any a, b ∈ A,
τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b)

Proof. 1. The first statement follows from Cauchy-Schwartz. The second follows from
the fact that

τ(a∗b) = τ((b∗a)∗) = τ(b∗a)

2. Fix b ∈ A. If τ(b∗b) = 0, then the inequality is true by Cauchy-Schwartz. So
suppose τ(b∗b) > 0. Define ρ : A→ C by

c 7→ τ(b∗cb)

τ(b∗b)

Note that if c ∈ A+, then ∃d ∈ A such that c = d∗d, so

b∗cb = b∗d∗db = (db)∗db ∈ A+

Hence, ρ is a positive linear functional. Furthermore,

ρ(1) = 1 = ‖ρ‖

Hence, ρ ∈ S(A), and
ρ(a∗a) ≤ ‖a∗a‖

which gives the required result.

Lemma 4.3.3. If τ ∈ S(A), define

K := A/Nτ

Then K is a vector space. Define u : K ×K → C by

u(a+Nτ , b+Nτ ) 7→ τ(b∗a)

Then u is a well-defined inner product on K.

Proof. 1. Well-defined: If a+Nτ = c+Nτ , then

τ(b∗a)− τ(b∗c) = τ(b∗(a− c)) = 0

Similarly, if b+Nτ = d+Nτ as well.
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2. Bounded sesqui-linear form on K: because for any x, y ∈ Nτ ,

τ((b+ y)∗(a+ x)) = τ(b∗a+ b∗x+ y∗a+ y∗x) = τ(b∗a)

Hence by Cauchy-Schwartz,

|τ(b∗a)| ≤ ‖(a+ x)∗(a+ x)‖1/2‖(b+ y)∗(b+ y)‖1/2 = ‖a+ x‖‖b+ y‖

Taking infimum, we see that

|τ(b∗a)| ≤ ‖a+Nτ‖‖b+Nτ‖

3. Positive definite: If a+Nτ ∈ K is such that

τ(a∗a) = 0⇒ a+Nτ = 0

We define Hτ to be the Hilbert space completion of K.

Theorem 4.3.4 (Gelfand-Naimark-Segal). Let K as above, and a ∈ A. Define Ma :
K → K by

Ma(b+Nτ ) := ab+Nτ

Then

1. Ma uniquely defines a bounded linear operator on Hτ .

2. The map ϕτ : A→ B(Hτ ) given by

a 7→Ma

is a unital representation of A.

3. If ζ := 1A +Nτ ∈ Hτ , then ζ is a cyclic vector for the representation.

4. For each a ∈ A, we have
τ(a) = 〈ϕτ (a)ζ, ζ〉

5. (Uniqueness) Suppose (L, ψ, η) is a triple such that

a) ψ : A→ B(L) is a representation

b) η is a cyclic vector for the representation

c) For all a ∈ A,
τ(a) = 〈ψ(a)η, η〉

Then there is a unitary U : Hτ → L such that

U−1ψ(a)U = ϕτ (a) ∀a ∈ A
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The triple (Hτ , ϕτ , ζ) is called the GNS-representation associated to τ .

(End of Day 36)

Proof. 1. If a ∈ A, then by Lemma 4.3.2,

‖Ma(b+Nτ )‖2 = ‖ab+Nτ‖2 = τ((ab)∗ab)

= τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b)

= ‖a‖2‖b+Nτ‖2

Hence, Ma defines a bounded operator on K with ‖Ma‖ ≤ ‖a‖. Thus, Ma extends
uniquely to a bounded operator Ma on Hτ .

2. If a, b ∈ A, then

MaMb(x+Nτ ) = Ma(bx+Nτ ) = abx+Nτ = Mab(x+Nτ )

Furthermore, if a ∈ A, then

〈Ma(b+Nτ ), c+Nτ 〉 = 〈ab+Nτ , c+Nτ 〉
= τ(c∗ab) = τ((a∗c)∗b)

= 〈b+Nτ , a
∗c+Nτ = 〈b+Nτ ,Ma∗(c+Nτ )〉

Hence,
(Ma)

∗ = Ma∗

so ϕτ is a ∗-homomorphism. Note that M1 = idK , so ϕτ is unital as well.

3. If ζ = 1A +Nτ , then

ϕτ (A)(ζ) = {a+Nτ : a ∈ A} = K ⇒ ϕτ (A)(ζ) = Hτ

as required.

4. Finally, if a ∈ A,

〈ϕτ (a)ζ, ζ〉 = 〈a+Nτ , 1A +Nτ 〉 = τ(1∗Aa) = τ(a)

5. For uniqueness, suppose (K,ψ, η) is a triple as above, note that K = A/Nτ is a
dense subspace of Hτ , so define U : K → L by

U(a+Nτ ) := ψ(a)η

Then

a) U is well-defined: If a, b ∈ A are such that c := b− a ∈ Nτ , then

‖ψ(c)η‖2 = 〈ψ(c)η, ψ(c)η〉 = 〈ψ(c∗c)η, η〉 = τ(c∗c) = 0

Hence ψ(c)η = 0 whence ψ(a)η = ψ(b)η as required.
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b) U preserves the inner product: If a, b ∈ A, then

〈a+Nτ , b+Nτ 〉 = τ(b∗a) = 〈ψ(b∗a)η, η〉 = 〈ψ(a)η, ψ(b)η〉

c) Hence U extends to an isometry U : Hτ → L. Note that U is surjective
because the range contains {ψ(a)η : a ∈ A} which is dense in L. Hence, U is
a unitary.

d) Finally, note that for all a, b ∈ A

U−1ψ(a)U(b+Nτ ) = U−1ψ(a)(ψ(b)η) = U−1ψ(ab)(η) = ab+Nτ = ϕτ (a)(b+Nτ )

Hence, U−1ψ(a)U = ϕτ (a)

Example 4.3.5. Let µ be a positive Borel measure on a compact Hausdorff space X
and let τ : C(X)→ C be the positive linear functional

f 7→
∫
X

fdµ

Then
Nτ = {f ∈ C(X) : f ≡ 0 a.e.[µ]}

Now Hτ is the completion of
K = C(X)/Nτ

Hence, Hτ
∼= L2(X,µ). Furthermore, the GNS representation associated to τ is precisely

the map
ϕ : C(X)→ B(L2(X,µ)) given by f 7→Mf

Definition 4.3.6. 1. We say that ϕ is faithful if it is injective.

2. Let {Hλ : λ ∈ I} be a possibly uncountable family of Hilbert spaces. Define

K := {(xλ) : xλ 6= 0 for only finitely many λ ∈ I}

Then K is an inner product space with the usual inner product. The completion
of K w.r.t this inner product is a Hilbert space, denoted by

H :=
⊕
λ∈I

Hλ

3. For each λ ∈ I, if Aλ ∈ B(Hλ), then as in Remark 3.3.7, we may define

A :=
⊕
λ∈I

Aλ ∈ B(H)

provided supλ ‖Aλ‖ <∞.
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4. For each λ ∈ I, if (Hλ, ϕλ) is a representation of A, then for each a ∈ A, by
Theorem 2.2.11, ‖ϕλ(a)‖ ≤ ‖a‖. Hence, we may define ϕ : A→ B(H) by

ϕ(a) :=
⊕
λ

ϕλ(a)

This is a representation of A, and is denoted by

ϕ =
⊕
λ∈I

ϕλ

Definition 4.3.7. Consider all GNS-representations {(Hτ , ϕτ ) : τ ∈ S(A)}. Define

H :=
⊕

Hτ and ϕ :=
⊕

ϕτ

The pair (H,ϕ) is called the universal representation of A.

Theorem 4.3.8. The universal representation is injective (faithful).

Proof. Suppose a ∈ A such that ϕ(a) = 0, then for any τ ∈ S(A), ϕτ (a) = 0. Hence,

ϕτ (a)(1A +Nτ ) = a+Nτ = 0 +Nτ

⇒ a ∈ Nτ

⇒ τ(a∗a) = 0 ∀τ ∈ S(A)

⇒ ‖a∗a‖ = 0 (by Theorem 4.2.15)

⇒ a = 0

Corollary 4.3.9. Every C*-algebra is isometrically isomorphic to a subalgebra of B(H)
for some Hilbert space H.

Proof. Every injective ∗-homomorphism is isometric by Theorem 2.2.11, so the universal
representation sets up the required isomorphism.

(End of Day 37)

Review for the Final Exam

(End of Day 38)
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5 Instructor Notes

1. The course went well, and the students seem interested and responsive, which was
good.

2. The goal of the course was as before, to do the spectral theorem in the spirit of
[Arveson]. On advice from other faculty, I decided to add the GNS construction
at the end, which was nice.

3. The only thing that I left out that would be nice to include is many theorems in
the context of non-unital C*-algebras, starting from Gelfand-Naimark, all the way
to the GNS construction. One needs to include approximate units, but other than
that, it should be an easy change for the next time.
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