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I. Preliminaries

1. Review of Linear Algebra

Note: All vector spaces in this course will be over R or C (= K), and will be assumed to
be non-zero.

Definition 1.1. A Hamel basis for a vector space E is a set Λ ⊂ E such that every
element of E can be expressed uniquely as a finite linear combination of elements in Λ.

Theorem 1.2 (Zorn’s Lemma). Let (F ,≤) be a partially ordered set such that every totally
ordered subset has an upper bound. Then F has a maximal element.

Theorem 1.3. Every vector space has a Hamel basis. In fact, if Λ0 ⊂ E is any linearly
independent set, then there exists a Hamel basis Λ of E such that Λ0 ⊂ Λ.

Example 1.4.

(i) For E = Kn, we write ei := (0, 0, . . . , 0, 1, 0, . . . , 0) (with 1 in the ith position). The
set {ei : 1 ≤ i ≤ n} is called the standard basis for Kn.

(ii) Define

c00 := {(xn)
∞
n=1 : xi ∈ K, and there exists N ∈ N such that xi = 0 for all i ≥ N}

It is a vector space over K where the vector space operators are defined compo-
nentwise. Write ei for the sequence

(ei)j = δi,j =

{
1 : if i = j,
0 : otherwise.

Then, {ei : i ∈ N} is a basis for c00.

(iii) Define
c0 = {(xn)

∞
n=1 : xi ∈ K, and lim

i→∞
xi = 0}

Note that {ei : i ∈ N} as above is a linearly independent set, but not a basis
for c0 (give an example of an element in c0 that cannot be expressed as a linear
combination of the {ei}).

(iv) Let a, b ∈ R with a < b, and define

C[a, b] := { f : [a, b] → K continuous}.

This is a vector space over K under pointwise addition and scalar multiplication.
For n ≥ 0, let en(x) := xn, then {en : n ≥ 0} is a linearly independent set, but it is
not a basis for C[a, b] (once again, do verify this).
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More generally, if X is a compact, Hausdorff space, we set C(X) to denote the
space of continuous, K-valued functions on X. This is a vector space under
pointwise operations as well.

For the most part, all examples will fall into three ‘types’: Finite dimensional vector
spaces, sequence spaces, and function spaces.

Theorem 1.5. If E is a vector space, then any two Hamel bases of E have the same cardinality.
This common number is called the dimension of E.

Definition 1.6. Let E and F be two vector spaces.

(i) A function T : E → F is said to be a linear transformation or an operator if

T(αx + y) = αT(x) + T(y)

for all x, y ∈ E and α ∈ K.

(ii) We write L(E, F) for the set of all linear operators from E to F. If S, T ∈ L(E, F)
and α ∈ K, we define the operators (S + T) and αS by

(S + T)(x) := S(x) + T(x), and (αS)(x) = αS(x).

Clearly, this makes L(E, F) a K-vector space.

(iii) If F = K, then a linear transformation T : E → K is called a linear functional.

(iv) Given a linear transformation T : E → F, define

ker(T) := {x ∈ E : T(x) = 0}, and Range(T) := {T(x) : x ∈ E}.

Then, ker(T) and Range(T) are subspaces of E and F respectively.

(v) A linear transformation T : E → F is said to be an isomorphism if T is bijective. If
such a map exists, we write E ∼= F.

(End of Day 1)

Example 1.7.

(i) Let E = Kn, F = Km, then any m × n matrix A with entries in K defines a linear
transformation TA : E → F given by x 7→ A(x). Conversely, if T ∈ L(E, F), then
the matrix whose columns are {T(ei) : 1 ≤ i ≤ n} defines an m × n matrix A such
that T = TA. If Mm×n(K) denotes the vector space of all such matrices, then there
is an isomorphism of vector spaces

L(E, F) ∼= Mm×n(K)

given by TA 7→ A. If we replace the standard basis {e1, e2, . . . , en} by another
basis Λ of E, we get another isomorphism from L(E, F) → Mm×n(K). Thus, the
isomorphism is not canonical (it depends on the choice of basis).
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(ii) Let E = c00 and define φ : E → K by

φ((xj)) :=
∞

∑
n=1

xn.

Note that φ is well-defined and linear. Thus, φ ∈ L(c00, K).

(iii) Let E = C[a, b] and define φ : E → K by

φ( f ) :=
∫ b

a
f (t)dt.

Then, φ ∈ L(C[a, b], K).

(iv) Let E = F = C[0, 1]. Define T : E → F by

T( f )(x) :=
∫ x

0
f (t)dt.

Note that T is well-defined (from Calculus) and linear. Thus, T ∈ L(E, F).

Definition 1.8. Let E be a vector space, and F be a subspace of E.

(i) The quotient space, denoted by E/F, is the quotient group, viewing E as an
abelian group under addition, and F as a (normal) subgroup. Note that E/F has a
natural vector space structure, with addition given by

(x + F) + (y + F) := (x + y) + F,

and scalar multiplication given by α(x + F) := αx + F for α ∈ K and x, y ∈ E.

(ii) The quotient map, denoted by π : E → E/F, is given by x 7→ x + F. It is a
surjective linear transformation such that ker(π) = F.

(iii) Furthermore, we define the codimension of F by codim(F) := dim(E/F).

(iv) If codim(F) = 1, then we say that F is a hyperplane of E.

Given a non-zero linear functional φ : E → K, the subspace ker(φ) is a hyperplane in
E; and conversely, every hyperplane is of this form. Henceforth, we will write ‘F < E’
to indicate that F is a subspace of E.

Proposition 1.9. Let E be a finite dimensional vector space and F < E. Then codim(F) =
dim(E)− dim(F)

Theorem 1.10 (First Isomorphism Theorem). Let T : E → F be a linear transformation.
Then,

(i) ker(T) < E and Range(T) < F.

(ii) Furthermore, the map T̂ : E/ ker(T) → Range(T) given by

x + ker(T) 7→ T(x)

is an isomorphism.

Theorem 1.11 (Rank-Nullity Theorem). If T : E → F is a linear transformation and E is
finite dimensional, then dim(ker(T)) + dim(Range(T)) = dim(E).
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2. Review of Measure Theory

Definition 2.1. Let X be a set. A σ-algebra on X is a collection M of subsets of X
satisfying the following axioms:

(a) ∅ ∈ M.

(b) If E ∈ M, then Ec := X \ E ∈ M.

(c) If {E1, E2, . . .} is a sequence of sets in M, then
⋃∞

n=1 En ∈ M.

The pair (X,M) is called a measurable space, and the members of M are called measurable sets.

If {Mα : α ∈ J} is a family of σ-algebras on a set X, then the intersection
⋂

α∈J Mα is
also a σ-algebra. In particular, if S is a collection of subsets of X, then there is a unique
smallest σ-algebra on X that contains S . This is called the σ-algebra generated by S .

Definition 2.2. Let X be a topological space. The σ-algebra generated by the topology
on X is called the Borel σ-algebra on X, and is denoted by BX. The members of this
σ-algebra are called Borel sets.

Important examples of Borel sets are the following: A countable union of closed sets is
called an Fσ-set, and the countable intersection of open sets is called a Gδ-set.

Definition 2.3. Let (X,M) be a measurable space, and Y be a topological space. A
function f : X → Y is said to be measurable if f−1(U) ∈ M for every open set U ⊂ Y.

For the most part, measurable functions in this book will take values in K (= R or C),
where the latter is equipped with the usual topology. When it is important to make a
distinction, we will refer to such functions as real-measurable or complex-measurable, as
the case may be.

Example 2.4.

(i) Given a subset E ⊂ X, the characteristic function of E is the map χE : X → R

given by

χE(x) =

{
1 : if x ∈ E,
0 : otherwise.

Clearly, χE is a measurable function if and only if E is a measurable set.

(ii) More generally, a linear combination of characteristic functions of measurable
sets is measurable. Such a function is called a simple function. Alternatively, a
simple function is a measurable function whose range is a finite set.

(iii) If X and Y are both topological spaces, and we take M = BX, then any measurable
function f : X → Y is said to be Borel measurable. Notice that every continuous
function is Borel measurable (however, there are Borel measurable functions that
are not continuous).

(End of Day 2)
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Proposition 2.5. Let (X,M) be a measurable space.

(i) If f : X → K, and g : X → K are measurable functions, and α ∈ K, then α f + g is also
measurable. So is the pointwise product f g : X → K, which is given by x 7→ f (x)g(x).

(ii) If u : X → R and v : X → R are real-measurable functions, then f := u + iv is
complex-measurable. Conversely, if f : X → C is complex-measurable, then its real and
imaginary parts are real-measurable functions.

(iii) If f , g : X → R are measurable, then so are max{ f , g} and min{ f , g}, which are defined
by max{ f , g}(x) := max{ f (x), g(x)}, and min{ f , g}(x) := min{ f (x), g(x)}. In
particular,

f+ := max{ f , 0}, and f− := −min{ f , 0}
are both measurable.

(iv) If f : X → R is measurable, then so is | f | = f+ + f−.

(v) If { fn} are a sequence of K-valued measurable functions, then lim supn→∞ fn and
lim infn→∞ fn are both measurable. In particular, the pointwise limit of measurable
functions (if it exists) is measurable.

Theorem 2.6. Let f : X → R+ be a non-negative measurable function. Then, there is a
sequence (sn) of simple functions such that, for each x ∈ X, (sn(x)) is an increasing sequence
of non-negative real numbers with limn→∞ sn(x) = f (x).

Definition 2.7. Let (X,M) be a measurable space. A positive measure on (X,M) is a
function µ : M → [0, ∞] satisfying the following axioms.

(a) µ(∅) = 0.

(b) µ is countably additive: If {E1, E2, . . .} is a sequence of mutually disjoint sets in M,
then

µ

(
∞⋃

n=1

En

)
=

∞

∑
n=1

µ(En).

The triple (X,M, µ) is called a measure space.

Example 2.8.

(i) Let X be any set, and x0 ∈ X be a fixed point. Let M := 2X be the set of all subsets
of X, and let µ : M → R be the function

µ(E) :=

{
1 : if x0 ∈ E,
0 : if x0 /∈ E.

This is called the Dirac measure at x0, and is denoted by δx0 .
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(ii) Let X be any set, and M := 2X as above. Define µ : M → [0, ∞] by

µ(E) :=

{
|E| : if E is finite,
∞ : otherwise.

(where | · | denotes the cardinality function). It is clear that this is a measure on
(X,M), and is called the counting measure.

(iii) If X is a topological space, a measure on X is called a Borel measure if its domain
contains BX. Note that the domain of the measure may be larger than BX as well.

(iv) A measure µ on a measurable space (X,M) is said to be a finite measure if µ(X) <
∞, and it is said to be σ-finite if X can be expressed as a countable union of sets of
finite measure.

Example 2.9.

(i) Consider R, equipped with the usual topology. Then, there is a σ-algebra L, which
contains BR, and a positive measure m : L → [0, ∞] satisfying the following
properties:

(a) If a, b ∈ R with a < b, then m([a, b)) = (b − a).

(b) If E ∈ L and x ∈ R, then E + x ∈ L and m(E + x) = m(E). This property is
called translation invariance of the measure m (here, E + x is the set {y + x :
y ∈ E}).

(c) If E ∈ L, then

m(E) = inf{m(U) : U open, E ⊂ U} = sup{m(K) : K compact, K ⊂ E}.

This property is called regularity of the measure m.

(d) If E ∈ L is such that m(E) = 0, and F ⊂ E, then F ∈ L (and hence, m(F) = 0).
This property is called completeness of the measure m.

The members of L are called Lebesgue measurable sets. By construction, every
Borel set is Lebesgue measurable. There do exist subsets of R which are not
Lebesgue measurable .

(ii) We may do the same for Rn when n ≥ 2. There is a σ-algebra Ln on Rn, which
contains the Borel σ-algebra BRn , and a measure m = mn on Ln with the property
that

m

(
n

∏
i=1

[ai, bi)

)
=

n

∏
i=1

(bi − ai),

and satisfying properties (b)-(d) exactly as above. Since any such rectangle has
finite measure, it follows that m is a σ-finite measure on Rn.

(iii) Finally, if X ⊂ R is a measurable set, then we may define a σ-algebra on E by

LX := {E ∩ X : E ∈ L}.
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Then, LX ⊂ L, and therefore, we may restrict the Lebesgue measure to LX to
obtain a measure on X. We will simply refer to this as the Lebesgue measure on
X. We will almost entirely focus on the case when X = [a, b] is a compact interval
in R, so as to have a finite measure to work with.

Given a measure space (X,M, µ) and a measurable function f : X → K, we would like
to make sense of the symbol ∫

X
f dµ =

∫
X

f (x)dµ(x)

Now, if f = χE is a characteristic function, then it makes sense to define∫
X

χEdµ := µ(E)

More generally, if s = ∑n
i=1 αiχEi is a non-negative simple function, and the sets

{E1, E2, . . . , En} are mutually disjoint, then we may define∫
X

sdµ :=
n

∑
i=1

αiµ(Ei).

(we require s to be non-negative, because µ is allowed to take the value ∞, and we
want to avoid potential landmines such as ‘∞ − ∞’). If f : X → R+ is a non-negative
measurable function, we define∫

X
f dµ := sup

{∫
X

sdµ : s is simple, and 0 ≤ s ≤ f
}

.

This definition has the important property that it is monotone: if 0 ≤ g ≤ f are
both measurable functions, then

∫
X gdµ ≤

∫
X f dµ. Suppose that f : X → R is real-

measurable, so that we may define f+ := max{ f , 0} and f− := −min{ f , 0} as we did
above. Then, | f | = f+ + f− is a non-negative function, which allows us to make the
following definition.

Definition 2.10. A function f : X → R is said to be integrable if∫
X
| f |dµ < ∞.

By the monotonicity of the integral, it follows that if f is integrable, then
∫

X f+dµ < ∞
and

∫
X f−dµ < ∞. Therefore, we may define∫

X
f dµ :=

∫
X

f+dµ −
∫

X
f−dµ.

Finally, if f is a complex-valued measurable function, then we may define integrability
exactly as in Definition 2.10. Furthermore, if we write f = u + iv, where u and v are
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real-measurable functions, then integrability of f implies the integrability of u and v.
Hence, we may define∫

X
f dµ :=

∫
X

udµ + i
∫

X
vdµ =

∫
X

u+dµ −
∫

X
u−dµ + i

∫
X

v+dµ − i
∫

X
v−dµ.

Note: If f : X → C and g : X → C are integrable functions, and α ∈ C is a scalar, then
(α f + g) is integrable, and∫

X
(α f + g)dµ = α

∫
X

f dµ +
∫

X
gdµ.

(End of Day 3)

Example 2.11.

(i) Let X be any set, x0 ∈ X, and µ = δx0 be the Dirac measure at x0 as in Example 2.8.
Then, any function f : X → C is measurable, integrable, and∫

X
f dδx0 = f (x0).

(ii) If X = N and µ denotes the counting measure as in Example 2.8, then a function
f : X → C corresponds to a sequence ( f (n))∞

n=1 of complex numbers. Also, f is
integrable if and only if the corresponding series is absolutely convergent, and, in
that case, ∫

N
f dµ =

∞

∑
n=1

f (n).

(iii) If f : [a, b] → K is a bounded, Riemann integrable function, then f is Lebesgue
measurable, and its Lebesgue integral coincides with its Riemann integral (see
[2, Section 4.2]). Therefore, whenever f : [a, b] → K is a measurable function, we
have the liberty to write ∫ b

a
f =

∫ b

a
f (t)dt :=

∫
[a,b]

f dm.

Theorem 2.12 (Fatou’s Lemma). Let (X,M, µ) be a measure space, and ( fn) be a sequence
of non-negative measurable functions. Then,∫

X
lim inf

n→∞
fndµ ≤ lim inf

n→∞

∫
X

fndµ.

Theorem 2.13 (Monotone Convergence Theorem). Let (X,M, µ) be a measure space, and
( fn) be a sequence of non-negative measurable functions such that

(i) 0 ≤ f1(x) ≤ f2(x) ≤ . . . for all x ∈ X.

(ii) limn→∞ fn(x) = f (x) for all x ∈ X.
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Then, f is measurable and
∫

X f dµ = limn→∞
∫

X fndµ.

An immediate consequence of the Monotone Convergence Theorem is the following
result.

Proposition 2.14. Let (X,M, µ) be a measure space, and ( fn) be a sequence of non-negative
measurable functions. Then, ∑∞

n=1 fn is measurable, and

∫
X

(
∞

∑
n=1

fn

)
dµ =

∞

∑
n=1

∫
X

fndµ

Theorem 2.15 (Dominated Convergence Theorem). Let (X,M, µ) be a measure space, and
( fn) be a sequence of K-valued measurable functions. Suppose that

(i) limn→∞ fn(x) = f (x) for all x ∈ X, and

(ii) there is an integrable functions g : X → [0, ∞] such that | fn(x)| ≤ g(x) for all x ∈ X
and n ∈ N.

Then, f is integrable and
∫

X f dµ = limn→∞
∫

X fndµ.

Now, a property is said to hold almost everywhere (in symbols, we write ‘a.e.’ or ‘a.e.
[µ]’) if the set on which it fails to hold is contained in a set of measure zero. For instance,
we would write “ f = limn→∞ fn a.e.” if the set {x ∈ X : limn→∞ fn(x) ̸= f (x)} is
contained in a set of measure zero. It is a fact that the convergence theorems mentioned
above hold if we assume that the sequence converges almost everywhere (in other
words, it need not converge everywhere for the conclusions to hold).

Let (X,M, µ) and (Y,N, ν) be two measure spaces. We wish to construct a σ-algebra
and a measure on X × Y. A measurable rectangle is a set of the form E × F, where
E ∈ M and F ∈ N. The σ-algebra on X ×Y generated by all such measurable rectangles
is called the product σ-algebra, and is denoted by M⊗N. Now, there is a measure λ
on M⊗N such that

λ(E × F) = µ(E)ν(F)

for any E ∈ M and F ∈ N. Furthermore, if both µ and ν are σ-finite measures, then
there is exactly one measure on M ⊗N satisfying this property. This is called the
product measure on X × Y, and is denoted by µ × ν. The Fubini-Tonelli Theorem now
tells us how one may integrate functions on X ×Y with respect to this product measure.

Theorem 2.16 (Fubini-Tonelli Theorem). Let (X,M, µ) and (Y,N, ν) be two σ-finite mea-
sure spaces, and let f : X × Y → C be a measurable function.

(i) (Tonelli, 1909) If f is a non-negative function, then the functions

g(x) :=
∫

Y
f (x, y)dν(y), and h(y) :=

∫
X

f (x, y)dµ(x)
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are both non-negative measurable functions on (X,M) and (Y,N) respectively, and∫
X×Y

f d(µ × ν) =
∫

X

(∫
Y

f (x, y)dν(y)
)

dµ(x)

=
∫

Y

(∫
X

f (x, y)dµ(x)
)

dν(y).
(I.1)

(ii) (Fubini, 1907) If f is integrable over X × Y, then the functions g and h as above are
defined almost everywhere, both g and h are integrable over X and Y respectively, and
Equation I.1 holds.

The most important example of this phenomenon is, once again, the Lebesgue measure.
If BRn denotes the Borel σ-algebra on Rn, then BRn ⊗BRk = BRn+k . If we restrict the
Lebesgue measure mn to BRn , the product measure mn × mk is precisely the restriction
of mn+k to BRn+k . The measure mn+k is thus an extension of the product measure
mn × mk.
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II. Normed Linear Spaces

1. Definitions and Examples

Definition 1.1. A norm on a K-vector space E is a function

∥ · ∥ : E → R+

which satisfies the following properties for all x, y ∈ E, and all α ∈ K.

(a) ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0.

(b) ∥αx∥ = |α|∥x∥.

(c) (Triangle inequality) ∥x + y∥ ≤ ∥x∥+ ∥y∥.

The pair (E, ∥ · ∥) is called a normed linear space.

Remark 1.2. Let (E, ∥ · ∥) be a normed linear space.

(i) The function d(x, y) := ∥x− y∥ defines a metric on E, called the metric induced by the norm.
This makes E a topological space.

(ii) A sequence (xn) ⊂ E converges to x ∈ E if and only if limn→∞ ∥xn − x∥ = 0.
When this happens, we will write xn → x.

(iii) By the triangle inequality, vector space addition is a continuous map from E×E →
E. Therefore, if xn → x and yn → y, then (xn + yn) → (x + y). Similarly, scalar
multiplication is also a continuous map from K× E → E. (Here, E × E and K× E
may both be equipped with a product metric).

(iv) For any x, y ∈ E, the triangle inequality implies that

|∥x∥ − ∥y∥| ≤ ∥x − y∥.

Thus, the norm function E → R+ is continuous. Hence, if xn → x in E then
∥xn∥ → ∥x∥ in R.

(End of Day 4)

Now, let us revisit the examples from Example 1.4, and equip those spaces with norms.

Example 1.3.

(i) K(= R or C) is a normed linear space with the absolute value norm.
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(ii) Kn may be equipped with many different norms. We give two such, and we will
give more later on.

(i) The 1-norm is given by ∥(x1, x2, . . . , xn)∥1 := ∑n
i=1 |xi|.

(ii) The supremum norm given by ∥(x1, x2, . . . , xn)∥∞ := sup1≤i≤n |xi|.
(iii) c00 is a normed linear space with a variety of norms. In fact, the 1-norm and

supremum norm may be defined exactly as above (except that we need to take an
infinite sum, in principle).

(iv) c0 (the space of sequences ‘vanishing at infinity’) is a normed linear space with
the supremum norm. Note that the 1-norm no longer makes sense on c0.

(v) C[a, b] may also be equipped with many norms. The definitions of the 1-norm
and supremum norm as similar to the case of Kn and c00 above.

(i) The 1-norm is given by

∥ f ∥1 :=
∫ b

a
| f (t)|dt.

Note that it is a norm because if ∥ f ∥1 = 0 and f is continuous, then f ≡ 0
(This is no longer true if we replace C[a, b] by the larger class of Riemann-
integrable functions.).

(ii) The supremum norm given by

∥ f ∥∞ := sup
x∈[a,b]

| f (x)|.

Definition 1.4. An inner product on a vector space E is a function

⟨·, ·⟩ : E × E → K

satisfying the following properties for all x, y, z ∈ E, and α, β ∈ K.

(a) ⟨αx + βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩,
(b) ⟨x, y⟩ = ⟨y, x⟩,
(c) ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 if and only if x = 0.

The pair (E, ⟨·, ·⟩) is called an inner product space

Lemma 1.5 (Cauchy-Schwarz Inequality (Cauchy, 1821, Bunyakovsky, 1859, and Schwarz,
1888)). If E is an inner product space, and x, y ∈ E, then

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩.

Moreover, equality holds if and only if the set {x, y} is linearly dependent.
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Proof. The inequality is clearly true if x = 0, so we may assume that x ̸= 0. Now, set
z := y − ⟨y,x⟩

⟨x,x⟩x, and compute

⟨z, y⟩ =
〈

y − ⟨y, x⟩
⟨x, x⟩x, y

〉
= ⟨y, y⟩ − ⟨y, x⟩⟨x, y⟩

⟨x, x⟩

= ⟨y, y⟩ − |⟨x, y⟩|2
⟨x, x⟩ .

Since ⟨z, x⟩ = 0, we see that ⟨z, y⟩ = ⟨z, z⟩ ≥ 0. This gives us the required inequality.
The second statement concerning equality is left as an exercise.

Corollary 1.6. If E is an inner product space, then the function

∥x∥ :=
√
⟨x, x⟩

defines a norm on E. This is called the norm induced by the inner product.

Proof. We only check the triangle inequality, since the other axioms are obvious. For
x, y ∈ E, consider

∥x + y∥2 = ⟨x + y, x + y⟩
= ∥x∥2 + ⟨x, y⟩+ ⟨y, x⟩+ ∥y∥2

= ∥x∥2 + 2 Re(⟨x, y⟩) + ∥y∥2

≤ ∥x∥2 + 2|⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2.

Note that the penultimate step follows from the Cauchy-Schwarz Inequality. Taking
square roots now gives us the triangle inequality.

One important consequence of the Cauchy-Schwarz Inequality is the fact that the inner
product is a continuous map from E × E to K, when E is equipped with this norm. In
other words, if xn → x and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩ in K.

Let us now look at the most basic examples of inner product spaces.

Example 1.7.

(i) Kn with the Euclidean inner product given by

⟨(xj), (yj)⟩ =
n

∑
i=1

xiyi.

The induced norm is denoted by ∥ · ∥2.

15



(ii) c00 with the Euclidean inner product given by

⟨(xj), (yj)⟩ =
∞

∑
i=1

xiyi.

Note that this is a finite sum for any two vectors in c00, and is thus well-defined.

(iii)

ℓ2 :=

{
(xn)

∞
n=1 : xi ∈ K for all i ≥ 1, and

∞

∑
i=1

|xi|2 < ∞

}
.

This is the space of square-summable sequences, and is equipped with the Euclidean
inner product

⟨(xj), (yj)⟩ =
∞

∑
i=1

xiyi.

It is not obvious that this series converges, so let’s prove that. Fix (xn), (yn) ∈ ℓ2,
and define sm := ∑m

i=1 xiyi. Fix integers n > m, and observe that

|sn − sm| =
∣∣∣∣∣ n

∑
i=m+1

xiyi

∣∣∣∣∣ ≤
(

n

∑
i=m+1

|xi|2
)1/2( n

∑
i=m+1

|yi|2
)1/2

.

by the Cauchy-Schwarz Inequality in Kn. For a fixed ϵ > 0, we may choose
M ∈ N such that ∑∞

i=M+1 |xi|2 < ϵ and ∑∞
i=M+1 |yi|2 < ϵ. If n > m ≥ M, it

follows that |sn − sm| < ϵ. Thus, the sequence (sn) is a Cauchy sequence in K,
and the series ∑∞

i=1 xiyi converges. Once the inner product is well-defined, the
other axioms are trivial to check.

Definition 1.8. Fix 0 < p < ∞.

(i) A p−integrable function f : [a, b] → K is a Lebesgue measurable function such
that ∫ b

a
| f (t)|pdt < ∞.

(ii) Let Lp[a, b] be the set of all p-integrable measurable functions. Observe that if
f , g ∈ Lp[a, b], then

| f + g|p ≤ [2 max{| f |, |g|}]p ≤ 2p[| f |p + |g|p]. (II.1)

Hence, f + g ∈ Lp[a, b], making Lp[a, b] a vector space.

(iii) Define µp : Lp[a, b] → R+ by

µp( f ) :=
(∫ b

a
| f |p(t)dt

)1/p

Then, µp enjoys the following properties:
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(i) µp( f ) ≥ 0 for all f ∈ Lp[a, b].

(ii) µp(α f ) = |α|µp( f ) for all α ∈ K.

(iii) Note that µp( f ) = 0 implies that f ≡ 0 a.e. (not that f = 0).

We do not know, as yet, if µp satisfies the triangle inequality.

(iv) Define N := { f ∈ Lp[a, b] : µp( f ) = 0} = { f ∈ Lp[a, b] : f ≡ 0 a.e.}. Then, N is
a subspace of Lp[a, b] by Equation II.1, so we may define

Lp[a, b] := Lp[a, b]/N.

Then, Lp[a, b] is a vector space.

(End of Day 5)

(v) For f + N ∈ Lp[a, b], we write

∥ f + N∥p := µp( f ).

Note that if f + N = g + N, then f ≡ g a.e., and so µp( f ) = µp(g). Hence,
∥ · ∥p : Lp[a, b] → R+ is well-defined, and clearly satisfies the first two axioms of
a norm.

Henceforth, we identify two functions that are equal a.e., and merely write ∥ f ∥p for
∥ f + N∥p.

Example 1.9. For 0 < p < 1, the triangle inequality fails. Take f = χ(0,1/2), g =

χ(1/2,1) ∈ Lp[0, 1], then ∥ f ∥p = ∥g∥p = 2−1/p, ∥ f + g∥p = 1, and

∥ f ∥p + ∥g∥p = 2−1/p + 2−1/p = 21−1/p < 1.

Lemma 1.10. If a, b ≥ 0 and 0 < λ < 1, then aλb1−λ ≤ λa + (1 − λ)b. Moreover, equality
holds if and only if a = b.

Proof. If b = 0, there is nothing to prove, so assume b ̸= 0 and set t = a/b. Then, we
wish to prove that

tλ ≤ λt + (1 − λ)

with equality if and only if t = 1. The function f : [0, ∞) → R given by t 7→ tλ − λt
satisfies f ′(t) = λtλ−1 − λ. Since 0 < λ < 1, f is increasing for t < 1 and decreasing for
t > 1. Hence, the global maximum of f occurs at t = 1. The result now follows from
the fact that f (1) = 1 − λ.

Theorem 1.11 (Hölder’s Inequality (Rogers, 1888 and Hölder, 1889)). Let 1 < p < ∞
and q ∈ R such that 1/p + 1/q = 1. If f , g : [a, b] → K are measurable functions, then∫ b

a
| f g| ≤ ∥ f ∥p∥g∥q

Furthermore, equality holds if and only if there exist constants α, β ∈ K such that αβ ̸= 0, and
α| f |p ≡ β|g|q a.e.
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Proof. If either term on the right hand side is 0 or ∞, there is nothing to prove. Further-
more, if the inequality holds for any pair f , g, then it also holds for all pairs α f , βg for
α, β ∈ K. Therefore, replacing f by f /∥ f ∥p and g by g/∥g∥q, it suffices to assume that

∥ f ∥p = ∥g∥q = 1

So fix x ∈ [a, b] and let a = | f (x)|p, b = |g(x)|q, and λ = 1/p in Lemma 1.10, so that

| f (x)g(x)| ≤ | f (x)|p
p

+
|g(x)|q

q
.

Integrating both sides, we get∫ b

a
| f g| ≤ 1

p

∫ b

a
| f |p + 1

q

∫ b

a
|g|q = 1

p
+

1
q
= 1 = ∥ f ∥p∥g∥q.

Furthermore, equality holds if and only if | f (x)|p = |g(x)|q a.e.

Given 1 ≤ p ≤ ∞, the real number q satisfying the relation 1
p + 1

q = 1 is called the
conjugate exponent of p. Note that if p = 1, then q = ∞, and vice-versa.

Theorem 1.12 (Minkowski’s Inequality). If 1 ≤ p < ∞ and f , g ∈ Lp[a, b], then

∥ f + g∥p ≤ ∥ f ∥p + ∥g∥q.

Thus, (Lp[a, b], ∥ · ∥p) is a normed linear space.

Proof. The result is obvious if p = 1 or f + g = 0 a.e. Otherwise,

| f + g|p ≤ (| f |+ |g|)| f + g|p−1.

Let q be the conjugate exponent of p. By Hölder’s Inequality,∫ b

a
| f + g|p ≤ ∥ f ∥p∥| f + g|p−1∥q + ∥g∥p∥| f + g|p−1∥q

= [∥ f ∥p + ∥g∥p]

[∫ b

a
| f + g|(p−1)q

]1/q

.

Now (p − 1)q = p and Equation II.1 tells us that
∫ b

a | f + g|p < ∞. Thus, we may divide

by
[∫ b

a | f + g|p
]1/q

on both sides to obtain

∥ f + g∥p =

[∫ b

a
| f + g|p

]1−1/q

≤ ∥ f ∥p + ∥g∥p.

Definition 1.13. In what follows, we will write ‘m’ to denote the Lebesgue measure.
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(i) A function f : [a, b] → K is said to be essentially bounded if there exists M ∈ R

such that
m({x ∈ [a, b] : | f (x)| > M}) = 0.

A number M satisfying this condition is called an essential bound of f .

(ii) Let L∞[a, b] be the set of all essentially bounded measurable functions. If f , g ∈
L∞[a, b], then f + g ∈ L∞[a, b] (this is because the union of two sets of measure
zero has measure zero). Therefore, L∞[a, b] is a vector space.

(iii) For f ∈ L∞[a, b], define

µ∞( f ) := inf{M > 0 : M is an essential bound for f }.

Predictably, the quantity µ∞( f ) is called the essential supremum of f .

Lemma 1.14. If f ∈ L∞[a, b], then | f | ≤ µ∞( f ) a.e.

Proof. We wish to prove that µ∞( f ) is an essential bound for f . If n ∈ N, then µ∞( f ) +
1/n is not a lower bound for the set A f := {M > 0 : M is an essential bound for f }.
Hence, there exists Mn ∈ A f such that Mn ≤ µ∞( f ) + 1/n. Now,

{x ∈ [a, b] : | f (x)| > µ∞( f )} =
∞⋃

n=1

{x ∈ [a, b] : | f (x)| > µ∞( f ) + 1/n}

⊂
∞⋃

n=1

{x ∈ [a, b] : | f (x)| > Mn}.

But each set {x ∈ [a, b] : | f (x)| > Mn} has measure zero, and thus m({x ∈ [a, b] :
| f (x)| > µ∞( f )}) = 0. Therefore, | f | ≤ µ∞( f ) a.e.

Definition 1.15. Consider N := { f ∈ L∞[a, b] : µ∞( f ) = 0}. Then, f ∈ N if and only if
f = 0 a.e. Therefore, N is a subspace of L∞[a, b]. We define

L∞[a, b] := L∞[a, b]/N

and for any f + N ∈ L∞[a, b], we write

∥ f + N∥∞ := µ∞( f ).

Then, ∥ · ∥∞ is well-defined and a norm on L∞[a, b]

(End of Day 6)

Definition 1.16.

(i) If X = {1, 2, . . . , n} is a finite set equipped with the counting measure, then a
function f : X → K is determined by a tuple ( f (1), f (2), . . . , f (n)) of scalars.
Therefore, we may identify

Kn = Lp(X, µ),

equipped with the norm

∥(xi)∥p :=

{
(∑n

i=1 |xi|p)1/p : if 1 ≤ p < ∞,
max1≤i≤n |xi| : if p = ∞
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(ii) If X = N, equipped with the counting measure, then a function f : X → K is
determined by a sequence ( f (n))∞

n=1. Therefore, elements in Lp(X, µ) are thought
of as sequences. For 1 ≤ p < ∞, we define the little ℓp spaces by

ℓp := Lp(X, µ) =

{
(xn)

∞
n=1 : xi ∈ K for all i ∈ N, and

∞

∑
i=1

|xi|p < ∞

}
.

equipped with the norm given by

∥(xn)∥p :=

(
∞

∑
n=1

|xn|p
)1/p

.

For p = ∞, we define

ℓ∞ := L∞(X, µ) = {(xn)
∞
n=1 : xi ∈ K for all i ∈ N, and (xn) is bounded} .

equipped with the supremum norm ∥(xn)∥∞ := supn∈N |xn|.

2. Bounded Linear Operators

Let E be a normed linear space. For x ∈ E and r > 0, we write B(x, r) := {y ∈ E :
∥y − x∥ < r}, and B[x, r] := {y ∈ E : ∥y − x∥ ≤ r}. Note that B(x, r) is open and
B[x, r] is closed. When it is necessary to do so, we will write BE(x, r) instead of B(x, r)
to emphasize that this is a subset of E. The closed unit ball is the set B[0, 1] (which
we will also denote by BE) and the open unit ball is B(0, 1). The unit sphere is the set
SE = {x ∈ E : ∥x∥ = 1}.

Definition 2.1. Let E and F be normed linear spaces. A linear operator T : E → F is
said to be

(i) continuous if it is continuous with respect to the norm topologies on E and F.

(ii) bounded if there exists M ≥ 0 such that ∥T(x)∥ ≤ M∥x∥ for all x ∈ E.

Theorem 2.2. For a linear operator T : E → F between normed linear spaces, the following are
equivalent:

(i) T is continuous.

(ii) T is continuous at one point of E.

(iii) T is continuous at 0 ∈ E.

(iv) T is bounded.

(v) T is uniformly continuous.

Proof. Observe that (i) ⇒ (ii) and (v) ⇒ (i) hold by definition.
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(ii) ⇒ (iii): If T is continuous at a point x0 ∈ E, then for any ϵ > 0, choose δ > 0 such that

∥x − x0∥ < δ ⇒ ∥T(x)− T(x0)∥ < ϵ.

So if ∥x∥ < δ, then let z := x+ x0, so that ∥z− x0∥ < δ. Then, ∥T(z)− T(x0)∥ < ϵ,
which implies that ∥T(x)∥ < ϵ. Therefore, T is continuous at 0.

(iii) ⇒ (iv): Suppose T is continuous at 0, then for ϵ = 1, there exists δ > 0 such that

∥x∥ < δ ⇒ ∥T(x)∥ < 1.

So for any non-zero vector y ∈ E, let x := δ
2

y
∥y∥ . Then ∥x∥ < δ, and so ∥T(x)∥ < 1.

Therefore,

∥T(y)∥ <
2
δ
∥y∥.

Since this holds for any y ∈ E, T is bounded.

(iv) ⇒ (v): Suppose that there exists M > 0 such that ∥T(x)∥ ≤ M∥x∥ for all x ∈ E, then for
any ϵ > 0, choose δ := ϵ

2M . If ∥x − y∥ < δ, then

∥T(x)− T(y)∥ = ∥T(x − y)∥ ≤ M∥x − y∥ ≤ ϵ

2
< ϵ.

Therefore, T is continuous on E.

Example 2.3.

(i) Let E be any inner product space, and y ∈ E be fixed. Define φ : E → K by

φ(x) := ⟨x, y⟩.

Then |φ(x)| ≤ ∥x∥∥y∥ by the Cauchy-Schwarz Inequality, and so φ is bounded.

(ii) Let T : Kn → E be any operator, where Kn is endowed with the supremum
norm, and E is any normed linear space. Then, for any x = (x1, x2, . . . , xn) ∈ Kn,
x = ∑n

i=1 xiei, where {e1, e2, . . . , en} is the standard basis for Kn. Then,

∥T(x)∥ = ∥
n

∑
i=1

xiT(ei)∥ ≤
n

∑
i=1

|xi|∥T(ei)∥ ≤ ∥x∥
(

n

∑
i=1

∥T(ei)∥
)

.

If M := ∑n
i=1 ∥T(ei)∥, then ∥T(x)∥ ≤ M∥x∥. We have thus proved that any linear

operator T : Kn → E is continuous.

(iii) Let E = c00 and φ : E → K be given by

φ((xj)) =
∞

∑
n=1

xn.

(i) If E has the 1-norm, then φ is continuous since |φ(x)| ≤ ∥x∥1.
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(ii) If E has the supremum norm, let xk = (1, 1, . . . , 1, 0, 0, . . .), where the 1
appears k times. Then, ∥xk∥∞ = 1 for all k ∈ N, but |φ(xk)| = k. Hence,
there is no M > 0 such that |φ(x)| ≤ M∥x∥∞ for all x ∈ E, and so φ cannot
be continuous.

(iv) Let E = F = (C[0, 1], ∥ · ∥∞), and T : E → F be the operator

T( f )(x) =
∫ x

0
f (t)dt.

Then, for any x ∈ [0, 1],

|T( f )(x)| ≤
∫ x

0
| f (t)|dt ≤ x∥ f ∥∞ ≤ ∥ f ∥∞.

Hence, ∥T( f )∥∞ ≤ ∥ f ∥∞, and T is continuous.

(v) Let E = C[0, 1], and define φ : E → K by φ( f ) := f (0).

(i) If E has the supremum norm, then |φ( f )| ≤ ∥ f ∥∞, so φ is continuous.

(ii) If E has the 1-norm, then consider a sequence ( fk) of non-negative continuous
functions such that fk(0) = k, and

∫ 1
0 fk(t)dt = 1 (triangles of large height

but area 1). Thus, ∥ fk∥ = 1 for all k ∈ N, but |φ( fk)| = k. As before, this
implies that φ is not continuous.

(End of Day 7)

Definition 2.4. Let E and F be two normed linear spaces

(i) Write B(E, F) for the set of all bounded linear operators from E to F. Note that
B(E, F) is a subset of L(E, F). Furthermore, if S, T ∈ B(E, F), then S + T ∈ B(E, F)
because addition is a continuous operation on F. Similarly, αT ∈ B(E, F) for any
α ∈ K. Thus, B(E, F) is a vector space.

(ii) Write B(E) for the space B(E, E).

(iii) Write E∗ for the space B(E, K). This is called the (continuous) dual space of E.

For any T ∈ B(E, F), we write

ν(T) := inf{M > 0 : ∥T(x)∥ ≤ M∥x∥ for all x ∈ E}

Note that the set on the right hand side is not empty, and thus ν(T) < ∞.

Lemma 2.5. For any T ∈ B(E, F) and any x ∈ E, ∥T(x)∥ ≤ ν(T)∥x∥

Proof. For each n ∈ N, ν(T) + 1/n is not a lower bound for the set AT := {M > 0 :
∥T(x)∥ ≤ M∥x∥ for all x ∈ E}. Hence, there exists Mn ∈ AT such that ν(T) ≤ Mn <
ν(T) + 1/n, and

∥T(x)∥ ≤ Mn∥x∥
for all x ∈ E and n ∈ N. Fixing x ∈ E, we let n → ∞ to obtain ∥T(x)∥ ≤ ν(T)∥x∥.
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Proposition 2.6. The function ν : B(E, F) → R+ defined above is a norm on B(E, F).

Proof.

(i) Clearly, ν(T) ≥ 0 and ν(0) = 0. If ν(T) = 0, then the fact that T = 0 follows from
Lemma 2.5.

(ii) Fix T ∈ B(E, F) and 0 ̸= λ ∈ K, and define A1 := {M > 0 : ∥T(x)∥ ≤
M∥x∥ for all x ∈ E} and A2 := {K > 0 : ∥(λT)(y)∥ ≤ K∥y∥ for all y ∈ E}. For
any M ∈ A1,

∥λT(x)∥ = ∥T(λx)∥ ≤ M∥λx∥ = M|λ|∥x∥
for all x ∈ E. Therefore, M|λ| ∈ A2, and ν(λT) = inf A2 ≤ M|λ|. This is true for
any M ∈ A1, so

ν(λT) ≤ |λ| inf A1 = |λ|ν(T).
Replacing λ with 1/λ and T by λT, we conclude that

ν(T) = ν

(
1
λ

λT
)
≤ 1

|λ|ν(λT).

Hence, ν(λT) ≥ |λ|ν(T) as well.

(iii) Fix S, T ∈ B(E, F), then for any x ∈ E, we have

∥(S + T)(x)∥ = ∥S(x) + T(x)∥ ≤ ∥S(x)∥+ ∥T(x)∥
≤ ν(S)∥x∥+ ν(T)∥x∥ = (ν(S) + ν(T))∥x∥.

By definition, this implies that ν(S + T) ≤ ν(S) + ν(T).

As is customary, we write ∥T∥ := ν(T) from here on. An important inequality that
merits attention here is that, for any T ∈ B(E, F) and any x ∈ E, one has

∥T(x)∥ ≤ ∥T∥∥x∥

Proposition 2.7. If T ∈ B(E, F), then

∥T∥ = sup{∥T(x)∥ : x ∈ E, ∥x∥ = 1}
= sup{∥T(x)∥ : x ∈ E, ∥x∥ ≤ 1}

Proof. Let α := sup{∥T(x)∥ : x ∈ E, ∥x∥ = 1} and β := sup{∥T(x)∥ : x ∈ E, ∥x∥ ≤ 1},
then clearly α ≤ β.

For any x ∈ E with ∥x∥ ≤ 1, ∥T(x)∥ ≤ ∥T∥∥x∥ ≤ ∥T∥. Hence, β ≤ ∥T∥. To complete
the proof, it suffices to show that α ≥ ∥T∥. To that end, set

A := {M > 0 : ∥T(x)∥ ≤ M∥x∥ for all x ∈ E}.

For any n ∈ N, ∥T∥ − 1/n /∈ A, so there exists xn ∈ E such that

∥T(xn)∥ > (∥T∥ − 1/n)∥xn∥.

In particular, xn ̸= 0, so if yn := xn/∥xn∥, then ∥yn∥ = 1 and ∥T(yn)∥ > ∥T∥ − 1/n.
Thus, α > ∥T∥ − 1/n for each n ∈ N. Hence, α ≥ ∥T∥ as well.
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Example 2.8.

(i) Let E be an inner product space, y ∈ E and define φ : E → K by x 7→ ⟨x, y⟩.
Then by the Cauchy-Schwarz Inequality, |φ(x)| ≤ ∥x∥∥y∥ for all x ∈ E. Hence,
∥φ∥ ≤ ∥y∥. Furthermore, if x = y, then ∥y∥2 = |φ(y)| ≤ ∥φ∥∥y∥, and so
∥φ∥ = ∥y∥.

(ii) Let E = Kn with the 1-norm and let {e1, e2, . . . , en} be the standard basis for E.
Let F be a normed linear space and T : E → F be a linear operator. Then for
x = ∑n

i=1 xiei, we have

∥T(x)∥ ≤
n

∑
i=1

|xi|∥T(ei)∥

and so T is continuous with ∥T∥ ≤ max1≤i≤n ∥T(ei)∥. If x = ei, then ∥x∥1 = 1
and ∥T(x)∥ = ∥T(ei)∥, and so by Proposition 2.7, ∥T∥ ≥ ∥T(ei)∥. This is true for
all 1 ≤ i ≤ n, so ∥T∥ = max1≤i≤n ∥T(ei)∥.

(iii) Let E = c00 with the 1-norm and φ : E → K be given by

φ((xj)) :=
∞

∑
n=1

xn,

then ∥φ∥ ≤ 1. Also, for x = e1, we have ∥x∥ = 1 and |φ(x)| = 1, so that ∥φ∥ = 1.

(iv) Define T : L1[0, 1] → L1[0, 1] by

T( f )(x) =
∫ x

0
f (t)dt.

Note that T is well-defined because∫ 1

0
|T( f )(x)|dx =

∫ 1

0

∣∣∣∣∫ x

0
f (t)dt

∣∣∣∣ dx

≤
∫ 1

0

∫ x

0
| f (t)|dtdx

≤
∫ 1

0

∫ 1

0
| f (t)|dtdx = ∥ f ∥1.

(II.2)

This also proves that T is bounded with ∥T∥ ≤ 1. To prove that ∥T∥ = 1, we set
fn = nχ[0,1/n]. Then, ∥ fn∥1 = 1, and

T( fn)(x) =
∫ x

0
nχ[0,1/n](t)dt =

{
1 : if x ≥ 1/n
nx : if x < 1/n.

Hence,

∥T( fn)∥1 =
∫ 1/n

0
ntdt +

∫ 1

1/n
dt = n

1
2n2 + 1 − 1

n
= 1 − 1

2n
.

Thus, ∥T( fn)∥1 → 1 as n → ∞, and therefore ∥T∥ = 1.

(End of Day 8)
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3. Banach Spaces

Definition 3.1.

(i) A normed linear space that is complete with respect to the induced metric is called
a Banach Space.

(ii) An inner product space that is complete with respect to the norm induced by the
inner product is called a Hilbert space.

Proposition 3.2. For 1 ≤ p ≤ ∞, (Kn, ∥ · ∥p) is a Banach space.

Proof. Assume p = ∞, as the case when p < ∞ is similar. Suppose (xm) is a Cauchy
sequence in (Kn, ∥ · ∥p) with xm = (xm

1 , xm
2 , . . . , xm

n ). Then for any 1 ≤ i ≤ n, the
sequence (xm

i ) is Cauchy in K. Since K is complete, there exists yi ∈ K such that
limm→∞ xm

i = yi. Thus, for any ϵ > 0, there exists Ni ∈ N such that

|xm
i − yi| < ϵ

for all m ≥ Ni. Let N0 = max{N1, N2, . . . , Nn}. Then, for all m ≥ N0,

∥xm − y∥∞ = sup
1≤i≤n

|xm
i − yi| < ϵ.

Thus, xm → y in norm.

Proposition 3.3. For 1 ≤ p ≤ ∞, ℓp is a Banach space.

Proof. We prove this if p < ∞ as the p = ∞ case is similar. Suppose (xk) is a Cauchy
sequence in ℓp with xk = (xk

1, xk
2, . . . , xk

n, . . .). We prove that (xk) converges in the
following steps.

(i) For any n ∈ N, |xk
n − xm

n | ≤ ∥xk − xm∥p, so (xk
n) is Cauchy in K. Since K is

complete, there exists yn ∈ K such that limn→∞ xk
n = yn.

(ii) We wish to prove that y = (yn) ∈ ℓp. Since (xk) is Cauchy, it is bounded, so there
exists R > 0 such that ∥xm∥p ≤ R for all m ∈ N. For any fixed j ∈ N, this implies(

j

∑
n=1

|xm
n |p
)1/p

≤ R.

Now let m → ∞ in the finite sum to conclude that
(

∑
j
n=1 |yn|p

)1/p
≤ R. This is

true for all j ∈ N, so (
∞

∑
n=1

|yn|p
)1/p

≤ R.

Hence, y ∈ ℓp as required.
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(iii) We wish to prove that xk → y in ∥ · ∥p. For any ϵ > 0, there exists N0 ∈ N such
that ∥xk − xm∥p < ϵ for all k, m ≥ N0. Now if j ∈ N is fixed, consider(

j

∑
n=1

|xk
n − xm

n |p
)1/p

≤ ∥xk − xm∥p < ϵ.

Let m → ∞ in the finite sum to obtain
(

∑
j
n=1 |xk

n − yn|p
)1/p

≤ ϵ. This is true for
all j ∈ N, so (

∞

∑
n=1

|xk
n − yn|p

)1/p

≤ ϵ

for all k ≥ N0. Thus, ∥xk − y∥p → 0 as desired.

Proposition 3.4. For 1 ≤ p < ∞, c00 is dense in ℓp. In particular, (c00, ∥ · ∥p) is not complete.

Proof. Fix x = (xn) ∈ ℓp, and ϵ > 0. Then there exists N0 ∈ N such that ∑∞
n=N0

|xn|p <

ϵ. Hence, y := (x1, x2, . . . , xN0 , 0, 0, . . .) ∈ c00 and ∥x − y∥p
p < ϵ.

Note that, in contrast to Proposition 3.4, c00 is not dense in ℓ∞. Even so, (c00, ∥ · ∥∞) is
not complete (Try to prove these statements).

Proposition 3.5. L∞[a, b] is a Banach space.

Proof. Let ( fn) ⊂ L∞[a, b] be a Cauchy sequence, then define

Ak := {x ∈ [a, b] : | fk(x)| > ∥ fk∥∞}, and
Bk,m := {x ∈ [a, b] : | fk(x)− fm(x)| > ∥ fk − fm∥∞}

By Lemma 1.14, each of these sets has measure zero, so

C :=

(
∞⋃

k=1

Ak

)
∪
(

∞⋃
k,m=1

Bk,m

)

also has measure zero. Furthermore, on D := [a, b] \ C, each fk is bounded and
uniformly Cauchy. So for any x ∈ D, the inequality

| fk(x)− fm(x)| ≤ ∥ fk − fm∥∞

implies that ( fm(x))∞
m=1 is a Cauchy sequence in K. Hence, we may define f : D → K

by
f (x) = lim

m→∞
fm(x)

We may extend f to all of [a, b] by defining f ≡ 0 on C. Furthermore, for ϵ > 0, there
exists N0 ∈ N such that ∥ fk − fm∥∞ < ϵ for all k, m ≥ N0. For any fixed x ∈ D, and
k ≥ N0, | fk(x)− fm(x)| < ϵ, so that

| fk(x)− f (x)| ≤ ϵ.

26



Hence, f − fk is bounded on D and so f − fk ∈ L∞[a, b]. Therefore, f = ( f − fk) + fk ∈
L∞[a, b]. Finally, the above inequality also proves that ∥ fk − f ∥∞ ≤ ϵ for all k ≥ N0.
Therefore, fk → f in L∞[a, b].

(End of Day 9)

Notice that the essential supremum of a continuous function is the same as its supre-
mum. Therefore, we may think of (C[a, b], ∥ · ∥∞) as a subspace of L∞[a, b].

Proposition 3.6. (C[a, b], ∥ · ∥∞) is closed in L∞[a, b]. In particular, (C[a, b], ∥ · ∥∞) is a
Banach space.

Definition 3.7. Let E be a normed linear space and (xn) ⊂ E be a sequence.

(i) We say that the series ∑∞
n=1 xn is convergent if the sequence (sn) of partial sums

defined by sn := ∑n
k=1 xk converges to a point in E. In other words, there exists

s ∈ E such that for any ϵ > 0, there exists N0 ∈ N such that∥∥∥∥∥
(

n

∑
k=1

xk

)
− s

∥∥∥∥∥ < ϵ

for all n ≥ N0.

(ii) We say that the series ∑∞
n=1 xn is absolutely convergent if ∑∞

n=1 ∥xn∥ < ∞. Note
that this is a series of non-negative real numbers, so to say that the series ∑∞

n=1 xn
is absolutely convergent is the same as saying that there is a real number M ≥ 0
such that ∑n

i=1 ∥xi∥ ≤ M for all n ∈ N.

Proposition 3.8. A normed linear space E is a Banach space if and only if every absolutely
convergent series is convergent in E.

Proof. Let E be a Banach space and (xn) ⊂ E such that ∑∞
n=1 ∥xn∥ < ∞. Let sn :=

∑n
j=1 xj, then it suffices to show that (sn) is a Cauchy sequence. If ϵ > 0, there exists

N0 ∈ N such that ∑∞
n=N0

∥xn∥ < ϵ. Hence if n, m ≥ N0 with n > m, then

∥sn − sm∥ =

∥∥∥∥∥ n

∑
k=m+1

xk

∥∥∥∥∥ ≤
n

∑
k=m+1

∥xn∥ ≤
∞

∑
k=N0

∥xn∥ < ϵ.

Thus, the series ∑∞
n=1 xn is convergent.

Conversely, suppose every absolutely convergent series is convergent in E, choose a
Cauchy sequence (xn) ⊂ E. Since (xn) is Cauchy, it suffices (Does it?) to prove that
(xn) has a convergent subsequence. Now, for each j ∈ N, there exists Nj ∈ N such that
∥xk − xl∥ < 2−j for all k, l ≥ Nj. By induction, we may choose N1 < N2 < . . ., and so
we obtain a subsequence (xNj) such that ∥xNj+1 − xNj∥ < 2−j for all j ∈ N. Thus,

∞

∑
j=1

∥xNj+1 − xNj∥ < ∞.
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By hypothesis, the series ∑∞
j=1(xNj+1 − xNj) converges in E. But this is a telescoping

series. Consider the partial sum, and it collapses as ∑n
j=1(xNj+1 − xNj) = xNn+1 − xN1 .

So if the partial sums converge, so does (xNj).

Theorem 3.9 (F. Riesz and Fischer, 1907). For 1 ≤ p < ∞, Lp[a, b] is a Banach space.

Proof. If ( fn) ∈ Lp[a, b] is such that M := ∑∞
n=1 ∥ fn∥p < ∞. Define gk := ∑k

n=1 | fn| and
g := ∑∞

n=1 | fn|. By Minkowski’s Inequality, ∥gk∥p ≤ M, and so by Fatou’s Lemma,∫ b

a
gp ≤ lim inf

∫ b

a
gp

k ≤ Mp.

In particular, g(x) < ∞ a.e. Hence, we may define

f :=
∞

∑
n=1

fn,

and this converges a.e. (we may define f ≡ 0 on the set of measure zero where the
series does not converge). Then, f is measurable and | f | ≤ g, so f ∈ Lp[a, b] by the
above inequality. Now define sk := ∑k

n=1 fn, then sk ∈ Lp[a, b] and we want to prove
that ∥sk − f ∥p → 0. Observe that sk → f pointwise and | f − sk|p ≤ (2g)p ∈ L1[a, b].
Therefore, by the Dominated Convergence Theorem,

∥ f − sk∥
p
p =

∫ b

a
| f − sk|p → 0.

Thus, we have verified that any absolutely convergent series in Lp[a, b] converges. By
Proposition 3.8, Lp[a, b] is complete.

Remark 3.10. Let (X, d) be a metric space.

(i) If A ⊂ X is a set, then for any x ∈ X, define d(x, A) := inf{d(x, y) : y ∈ A}. The
function x 7→ d(x, A) is continuous, and d(x, A) = 0 if and only if x ∈ A.

(ii) If A, B ⊂ X are two disjoint closed sets, then define

f (x) :=
d(x, A)

d(x, A) + d(x, B)
.

Then, f : X → [0, 1] is continuous, f ≡ 0 on A, and f ≡ 1 on B.

Lemma 3.11. Let K ⊂ [a, b] be a compact set. Then, there exists g ∈ C[a, b] such that g ≡ 1
on K and g < 1 on [a, b] \ K.

Proof. Let d denote the usual metric on [a, b]. For each n ∈ N, consider Gn = {x ∈
[a, b] : d(x, K) ≥ 1/n}. Then, Gn is closed, and Gn ∩ K = ∅. Hence, by Remark 3.10,
there exists gn ∈ C[a, b] such that 0 ≤ gn ≤ 1, gn ≡ 1 on K, and gn ≡ 0 on Gn. Now, the
series

g :=
∞

∑
n=1

1
2n gn

converges in C[a, b] (since C[a, b] is a Banach space and the series is absolutely conver-
gent). The function g satisfies the required properties.
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(End of Day 10)

Proposition 3.12. If 1 ≤ p < ∞, then C[a, b] is dense in Lp[a, b]. In particular, (C[a, b], ∥ ·
∥p) is not complete.

Proof. Given f ∈ Lp[a, b], and ϵ > 0, we want to prove that there exists g ∈ C[a, b] such
that ∥ f − g∥p < ϵ.

(i) Suppose f = χK where K ⊂ [a, b] is compact: Let g ∈ C[a, b] be as in Lemma 3.11.
For n ∈ N, define gn ∈ C[a, b] by the pointwise product gn(x) = g(x)n. Then,
gn → f pointwise. Furthermore, |gn − f |p ≤ 2p ∈ L1[a, b] for all n ∈ N. By the
Dominated Convergence Theorem, ∥gn − f ∥p

p =
∫ b

a |gn − f |p → 0. Hence, there
exists N ∈ N such that ∥gN − f ∥p < ϵ.

(ii) If f = χE where E ⊂ [a, b] measurable, then for ϵ > 0, there exists a compact set
K ⊂ E such that m(E \ K) < ϵ. Hence, ∥χK − χE∥

p
p < ϵ. Now apply part (i).

(iii) If f = ∑n
i=1 αiχEi ∈ L1[a, b] is a simple function, then apply part (ii) to each Ei and

take a linear combination.

(iv) If f ∈ Lp[a, b] is non-negative, then choose a sequence of simple functions (sn)
such that 0 ≤ sn ≤ sn+1 → f pointwise (from Theorem 2.6). Since |sn − f |p ≤
(2 f )p ∈ L1[a, b], the Dominated Convergence Theorem implies that ∥sn − f ∥p → 0.
Now, apply part (iii) to sN for N large enough.

(v) If f ∈ Lp[a, b] is real-valued, then write it as f = f+ − f− and apply part (iv) to
each of f+ and f−.

(vi) If f ∈ Lp[a, b] is complex-valued, then apply part (v) to the real and imaginary
parts of f .

Theorem 3.13. Let E be a normed linear space.

(i) If F is complete, then B(E, F) is complete.

(ii) In particular, E∗ is a Banach space.

Proof. Suppose (Tn) ⊂ B(E, F) is a Cauchy sequence, then for any x ∈ E, the inequality
∥Tn(x) − Tm(x)∥ ≤ ∥Tn − Tm∥∥x∥ implies that (Tn(x)) ⊂ F is a Cauchy sequence.
Since F is complete, this sequence converges in F. Hence we may define T : E → F by

T(x) = lim
n→∞

Tn(x).

It is clear that T is linear. Furthermore, since (Tn) is Cauchy, there exists M > 0 such
that ∥Tn∥ ≤ M for all n ∈ N. Hence ∥T(x)∥ ≤ M∥x∥ for all x ∈ E, so T ∈ B(E, F). We
now want to prove that ∥Tn − T∥ → 0. To this end, choose ϵ > 0 and N0 ∈ N such that
∥Tn − Tm∥ < ϵ for all n, m ≥ N0. Then, for any x ∈ E and n ≥ N0 fixed,

∥T(x)− Tn(x)∥ = lim
m→∞

∥Tm(x)− Tn(x)∥ ≤ lim
m→∞

∥Tm − Tn∥∥x∥ ≤ ϵ∥x∥.

Therefore, ∥T − Tn∥ ≤ ϵ for all n ≥ N0. Thus, Tn → T in B(E, F) as required.
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Definition 3.14. A topological space is said to be separable if it has a countable dense
subset.

Remark 3.15. Let E be an normed linear space.

(i) If E has a dense, separable subspace, then E is separable.

(ii) If E contains an uncountable family of disjoint open sets, then E is not separable.

Example 3.16.

(i) Depending on whether K = R or K = C, we write K0 := Q or K0 = Q ×
Q. In either case, K0 is countable and dense in K, which makes K separable.
Furthermore, it allows us to prove separability for a number of other spaces.

(ii) (Kn, ∥ · ∥p) is separable (for any 1 ≤ p ≤ ∞) since Kn
0 is dense in Kn. In fact,

we will soon see (Theorem 4.5) that the norm is irrelevant; Kn is separable with
respect to any norm.

(iii) (c00, ∥ · ∥p) is separable (for any 1 ≤ p ≤ ∞) since we may choose sequences with
entries from K0. This would give a subset which has the same cardinality as

∞⋃
n=1

Kn
0

which is countable and dense in c00.

(iv) By Proposition 3.4, and Example (iii), ℓp is separable if 1 ≤ p < ∞.

(v) ℓ∞ is not separable.

Proof. For each subset A ⊂ N, choose χA ∈ ℓ∞. Then if A ̸= B, then ∥χA −
χB∥∞ = 1. Thus, {B(χA; 1/3) : A ⊂ N} forms an uncountable family of disjoint
open sets (because the power set of an infinite set is necessarily uncountable).

(End of Day 11)

(vi) By the Weierstrass Approximation Theorem, polynomials with coefficients in K0
form a dense subset of (C[a, b], ∥ · ∥∞). For any 1 ≤ p < ∞ and any f ∈ C[a, b],

∥ f ∥p ≤ ∥ f ∥∞(b − a)1/p.

Therefore, this set is also dense in C[a, b] with respect to ∥ · ∥p. Hence, (C[a, b], ∥ ·
∥p) is separable for all 1 ≤ p ≤ ∞.

(vii) By Proposition 3.12 and Example (vi), Lp[a, b] is separable for 1 ≤ p < ∞.

(viii) L∞[a, b] is not separable.

Proof. For each t ∈ [a, b], consider ft = χ[a,t], then if s ̸= t, ∥ fs − ft∥∞ = 1. Once
again, we obtain an uncountable family of disjoint open sets.
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4. Finite Dimensional Spaces

Definition 4.1. Let E be a vector space and ∥ · ∥1 and ∥ · ∥2 be two norms on E. We say
that these norms are equivalent (In symbols, ∥ · ∥1 ∼ ∥ · ∥2) if they induce the same
metric topologies on E (See Remark 1.2).

Note that this is an equivalence relation on the class of norms on E.

Proposition 4.2. Two norms ∥ · ∥1 and ∥ · ∥2 are equivalent if and only if there exist two
constants α, β > 0 such that

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥1 (II.3)

for all x ∈ E.

Proof. Let τ1 and τ2 be the topologies generated by ∥ · ∥1 and ∥ · ∥2 respectively.

(i) Suppose ∥ · ∥1 ∼ ∥ · ∥2, then consider B1 := {x ∈ E : ∥x∥1 < 1}. By hypothesis,
B1 ∈ τ2. In particular, since 0 ∈ B1, there exists δ > 0 such that

B2 := {x ∈ E : ∥x∥2 < δ} ⊂ B1.

Now, we apply the scaling trick. For any 0 ̸= y ∈ E, consider z := δ
2

y
∥y∥2

. Then
∥z∥2 < δ, so ∥z∥1 < 1, and hence

δ

2
∥y∥1 < ∥y∥2

for all y ∈ E. Thus α := δ/2 satisfies the first inequality of Equation II.3. By
symmetry, there exists β ≥ 0 such that ∥y∥2 ≤ β∥y∥1 for all y ∈ E.

(ii) Now suppose that there exist constants α, β > 0 such that Equation II.3 holds.
Then choose U ∈ τ1. We want to prove that U ∈ τ2. For any x ∈ U, there exists
r > 0 such that

U1 := {y ∈ E : ∥y − x∥1 < r} ⊂ U.

Let U2 := {y ∈ E : ∥y − x∥2 < αr}, then for any y ∈ U2, ∥y − x∥1 ≤ ∥y−x∥2
α < r.

Therefore, U2 ⊂ U1 ⊂ U. This is true for every x ∈ U, and so U ∈ τ2. Hence,
τ1 ⊂ τ2. By symmetry, τ2 ⊂ τ1 as well.

Example 4.3.

(i) Let E = Kn, and consider ∥ · ∥2 and ∥ · ∥∞ on E. Then, for any x ∈ Kn,

∥x∥∞ ≤ ∥x∥2 ≤
√

n∥x∥∞,

and so ∥ · ∥2 ∼ ∥ · ∥∞.
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(ii) Let E = c00 and consider ∥ · ∥1 and ∥ · ∥∞ on E. Then ∥x∥∞ ≤ ∥x∥1 for all x ∈ E,
but if xk = (1, 1, . . . , 1, 0, 0, . . .), then ∥xk∥1 = k and ∥xk∥∞ = 1. Hence, there is no
constant β > 0 satisfying ∥x∥1 ≤ β∥x∥∞ for all x ∈ E. Thus, ∥ · ∥1 ≁ ∥ · ∥∞. Notice
that we knew this fact already, from a different point of view: In item (iii), we had
constructed a linear functional φ : E → K which is continuous with respect to
∥ · ∥1, but not with respect to ∥ · ∥∞. Therefore, the two topologies could not have
been the same!

(iii) Suppose E is a vector space with two equivalent norms ∥ · ∥1 and ∥ · ∥2. If E is
complete with respect to ∥ · ∥1, then it is complete with respect to ∥ · ∥2 (do check
this fact!).

(iv) If E = C[a, b] then for any 1 ≤ p < ∞, ∥ · ∥p ≁ ∥ · ∥∞ (by Proposition 3.12 and
Proposition 3.6).

Lemma 4.4 (Heine-Borel Theorem (Borel, 1894)). Every closed and bounded subset of
(Kn, ∥ · ∥1) is compact.

Theorem 4.5. Any two norms on a finite dimensional vector space are equivalent.

Proof. Let (E, ∥ · ∥E) be a finite dimensional normed linear space with basis {e1, e2, . . . , en}.
For any x = ∑n

i=1 xiei ∈ E, define

∥x∥1 :=
n

∑
i=1

|xi|,

and note that ∥ · ∥1 is a norm on E. Since the equivalence of norms is an equivalence
relation, it suffices to show that ∥ · ∥E ∼ ∥ · ∥1.

If D := max{∥ej∥E : 1 ≤ j ≤ n}, then ∥x∥E ≤ D∥x∥1. This implies that, for any
x, y ∈ E,

|∥x∥E − ∥y∥E| ≤ ∥x − y∥E ≤ D∥x − y∥1.

Hence the function f : (E, ∥ · ∥1) → R+ given by x 7→ ∥x∥E is continuous. Note that the
unit sphere S = {x ∈ E : ∥x∥1 = 1} is a closed and bounded set, and hence compact by
Lemma 4.4. Thus, f : S → R+ attains its minimum on S. Therefore, there exists x0 ∈ S
and C ∈ R+ such that

C = ∥x0∥E ≤ ∥x∥E

for all x ∈ S. If C = 0, then x0 = 0, contradicting the fact that x0 ∈ S. Hence, C > 0.
Furthermore, for any non-zero x ∈ E, y := x/∥x∥1 ∈ S, so C ≤ ∥y∥E. Unwrapping this,
we see that

C∥x∥1 ≤ ∥x∥E

for all x ∈ E. We conclude that ∥ · ∥E ∼ ∥ · ∥1.

(End of Day 12)

Corollary 4.6. Let E be finite dimensional, and F be any normed linear space. Then, any linear
operator T : E → F is continuous.
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Proof. Define a norm on E by ∥x∥G := ∥x∥+ ∥T(x)∥. It is easy to see that this is a norm.
By Theorem 4.5, there exists M > 0 such that ∥T(x)∥ ≤ ∥x∥G ≤ M∥x∥ for all x ∈ E.
Therefore, T is continuous by Theorem 2.2.

Definition 4.7. A linear operator T : E → F is said to be a

(i) topological isomorphism if T is an isomorphism of vector spaces and a homeo-
morphism (i.e. T and T−1 are both continuous).

(ii) isometric isomorphism if it is a topological isomorphism that is isometric.

We write E ∼= F if they are isometrically isomorphic.

Corollary 4.8. Let E be a finite dimensional normed linear space with dim(E) = n, then there
is a topological isomorphism T : (Kn, ∥ · ∥1) → E.

Proof. Choose any linear bijection T : Kn → E and apply Corollary 4.6 to both T and
T−1.

The next result follows directly from Corollary 4.8 and the fact that (Kn, ∥ · ∥1) is
complete.

Corollary 4.9. Every finite dimensional normed linear space is a Banach space.

Corollary 4.10. Let E be an normed linear space and F < E be a finite dimensional subspace.
Then, F is closed in E.

Lemma 4.11 (F. Riesz, 1918). Let E be an normed linear space and F < E be a proper, closed
subspace. Then for any 0 < t < 1, there is a vector xt ∈ E such that ∥xt∥ = 1 and d(xt, F) ≥ t.

Proof. Since F < E is a proper closed subspace, there exists x ∈ E \ F, whence d :=
d(x, F) > 0. If 0 < t < 1, then d/t > d so there exists y ∈ F such that ∥x − y∥ ≤ d/t.
Now, xt := x−y

∥x−y∥ satisfies ∥xt∥ = 1 and

d(xt, F) =
1

∥x − y∥d(x, F) ≥ t.

Definition 4.12. A topological space is said to be locally compact if every point has an
open neighbourhood with compact closure.

Theorem 4.13. For a normed linear space E, the following are equivalent:

(i) E is finite dimensional.

(ii) Every closed and bounded subset of E is compact.

(iii) E is locally compact.

(iv) The closed unit ball B[0, 1] is compact.

(v) The unit sphere SE = {x ∈ E : ∥x∥ = 1} is compact.
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Proof.

(i) ⇒ (ii): If dim(E) = n, let T : (Kn, ∥ · ∥1) → E be a topological isomorphism (which exists
by Corollary 4.8). Let B ⊂ E be a closed bounded set, then T−1(B) is closed and
bounded in Kn. Hence, T−1(B) is compact by the Heine-Borel Theorem. Since T
is continuous, B = T(T−1(B)) is compact.

(ii) ⇒ (iii): If every closed and bounded subset of E is compact, then B[x, 1] is compact for all
x ∈ E. Since B[x, 1] = B(x, 1), it follows that E is locally compact.

(iii) ⇒ (iv): If E is locally compact, then there exists an open set U such that 0 ∈ U and
U is compact. Hence, there exists r > 0 such that B(0, r) ⊂ U. Therefore,
B[0, r] ⊂ U, and so B[0, r] is compact. But B[0, r] = rB[0, 1] and the map x 7→ rx is
a homeomorphism. We conclude that B[0, 1] is compact.

(iv) ⇒ (v): Obvious, since SE is closed subset of B[0, 1].

(v) ⇒ (i): Suppose SE is compact and E is infinite dimensional, then we repeatedly apply
Riesz’ Lemma to arrive at a contradiction. Choose 0 ̸= x1 ∈ E with ∥x1∥ = 1, and
let F1 := span{x1}. Then, F1 < E is a closed proper subspace (by Corollary 4.10),
and hence there exists x2 ∈ E such that ∥x2∥ = 1, and d(x2, F1) ≥ 1/2. Let
F2 := span{x1, x2}, which is again a proper, closed subspace of E. Once again,
there exists x3 ∈ E such that ∥x3∥ = 1, and d(x3, F2) ≥ 1/2. Thus proceeding, we
get a sequence (xn) such that ∥xn∥ = 1, and

d(xn, Fn−1) ≥ 1/2,

where Fk := span{x1, x2, . . . , xk}. In particular,

∥xn − xm∥ ≥ 1/2

for all n ≥ m. Hence, (xn) ⊂ SE cannot have a convergent subsequence. This
contradicts the assumption that SE is compact. Hence, E must have been finite
dimensional to begin with.

(End of Day 13)
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III. Hilbert Spaces

1. Orthogonality

Throughout this section, we will use the letter H to denote a Hilbert space, and ⟨·, ·⟩ to
denote the inner product on H.

Definition 1.1.

(i) We say that two elements x, y ∈ H are orthogonal if ⟨x, y⟩ = 0. If this happens,
we write x ⊥ y.

(ii) For two subsets A, B ⊂ H, we write A ⊥ B if x ⊥ y for all x ∈ A and y ∈ B.

(iii) For any set A ⊂ H, write A⊥ := {x ∈ H : x ⊥ y for all y ∈ A}. If A = {x}, then
we simply write x⊥ instead of {x}⊥.

Remark 1.2. Let A be any subset of H.

(i) For each y ∈ H, the linear functional φy : H → K given by φy(x) := ⟨x, y⟩ is
continuous (see Example 2.3), and

A⊥ =
⋂

y∈A
ker(φy).

Thus, regardless of what A is, A⊥ is always closed, and a subspace of H.

(ii) For any A ⊂ H, it is easy to check that A ∩ A⊥ ⊂ {0}, and that A ⊂ (A⊥)⊥.

(iii) Note that (A⊥)⊥ is always a closed subspace of H, so one cannot expect the
equality A = (A⊥)⊥ unless A were also a closed subspace (see Proposition 1.10).

Proposition 1.3. Let x, y ∈ H, then

(i) (Polarization Identity): ∥x + y∥2 = ∥x∥2 + 2 Re⟨x, y⟩+ ∥y∥2.

(ii) (Pythagoras’ Theorem): If x ⊥ y, then ∥x + y∥2 = ∥x∥2 + ∥y∥2.

(iii) (Parallelogram law): ∥x + y∥2 + ∥x − y∥2 = 2(∥x∥2 + ∥y∥2).

Example 1.4. Fix 1 ≤ p ≤ ∞.

(i) Let E = ℓp, and set x := e1 + e2 and y := e1 − e2. Then, ∥x + y∥p = ∥2e1∥p = 2
and ∥x − y∥p = ∥2e2∥p = 2, and

∥x∥p = ∥y∥p =

{
21/p : if 1 ≤ p < ∞
1 : if p = ∞

Hence, the parallelogram law holds if and only if 8 = 4 × 22/p, which happens
only when p = 2.
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(ii) Let E = Lp[0, 1], and f (t) := t and g(t) := 1 − t. Then, ∥ f + g∥p = 1 and

∥ f − g∥p = ∥ f ∥p = ∥g∥p =

{
1

(1+p)1/p : if 1 ≤ p < ∞

1 : if p = ∞
.

Once again, parallelogram law holds if and only if p = 2.

Definition 1.5. Let E be a vector space. A subset A ⊂ E is said to be convex if, for any
x, y ∈ A, the set [x, y] := {tx + (1 − t)y : 0 ≤ t ≤ 1} is contained in A.

There are two kinds of convex sets we will be most interested in: The closed (or open)
unit ball in a normed linear space E, and any vector subspace of E. Also, if A is a
convex set, then A + x is also a convex set for any x ∈ E. Therefore, when dealing with
(non-empty) convex sets, we may often assume that 0 ∈ A by translating.

Theorem 1.6 (Best Approximation Property). Let A ⊂ H be a non-empty, closed, convex
set, and x ∈ H. Then, there exists a unique vector x0 ∈ A such that

∥x − x0∥ = d(x, A) = inf{∥x − y∥ : y ∈ A}.

This vector x0 is called the best approximation of x in A.

Proof. Since d(x, A) = d(0, A − x), replacing A by A − x (which is also convex), we
may assume without loss of generality that x = 0.

(i) Existence: By definition, there exists a sequence (yn) ⊂ A such that d := d(0, A) =
limn→∞ ∥yn∥. We wish to prove that (yn) is Cauchy. By the parallelogram law,∥∥∥∥yn − ym

2

∥∥∥∥2

=
1
2
(∥yn∥2 + ∥ym∥2)−

∥∥∥∥yn + ym

2

∥∥∥∥2

.

Since A is convex, (yn + ym)/2 ∈ A, so ∥(yn + ym)/2∥2 ≥ d2. For ϵ > 0, choose
N0 ∈ N such that ∥yn∥2 < d2 + ϵ for all n ≥ N0. Then, for n, m ≥ N0, we have∥∥∥∥yn − ym

2

∥∥∥∥2

<
1
2
(2d2 + 2ϵ)− d2 = ϵ,

and so ∥yn − ym∥ < 2
√

ϵ for all n, m ≥ N0. Thus, (yn) is Cauchy, and hence
convergent in H. Since A is closed, there exists x0 ∈ A such that yn → x0. By the
continuity of the norm (Remark 1.2), d = limn→∞ ∥yn∥ = ∥x0∥.

(ii) Uniqueness: Suppose x0, x1 ∈ A are such that ∥x0∥ = ∥x1∥ = d. Then, (x0 +
x1)/2 ∈ A, and hence

d ≤
∥∥∥∥1

2
(x0 + x1)

∥∥∥∥ ≤ 1
2
(∥x0∥+ ∥x1∥) ≤ d,

and so ∥ 1
2(x0 + x1)∥ = d. The parallelogram law then implies that

d2 =

∥∥∥∥x0 + x1

2

∥∥∥∥2

= d2 −
∥∥∥∥x0 − x1

2

∥∥∥∥2

.

Therefore, x0 = x1.
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Proposition 1.7. Let M < H be a closed subspace and x ∈ H. Then x0 ∈ M is the best
approximation of x in M if and only if (x − x0) ⊥ M.

Proof. If x0 is the best approximation of x in M, then we wish to prove that ⟨x − x0, y⟩ =
0 for all y ∈ M. It suffices to prove this when ∥y∥ = 1, so fix y ∈ M with ∥y∥ = 1 and
let α := ⟨x − x0, y⟩. Then, z := x0 + αy ∈ M, so

∥x − x0∥2 ≤ ∥x − z∥2 = ∥(x − x0)− αy∥2

= ∥x − x0∥2 + ∥αy∥2 − 2 Re⟨x − x0, αy⟩
= ∥x − x0∥2 + |α|2∥y∥2 − 2|α|2

= ∥x − x0∥2 − |α|2.

Hence, |α|2 = 0, which implies that x − x0 ⊥ y.

Conversely, suppose (x − x0) ⊥ M, then we wish to prove that ∥x − x0∥ = d(x, M). In
other words, we wish to prove that ∥x − x0∥ ≤ ∥x − y∥ for all y ∈ M. For any y ∈ M,
we have (x0 − y) ∈ M, so (x − x0) ⊥ (x0 − y). By Pythagoras’ Theorem,

∥x − y∥2 = ∥(x − x0) + (x0 − y)∥2 = ∥x − x0∥2 + ∥x0 − y∥2 ≥ ∥x − x0∥2.

Therefore, ∥x − x0∥ ≤ ∥x − y∥ for all y ∈ M.

Definition 1.8. Let M < H be a closed subspace. For x ∈ H, let PM(x) ∈ M denote the
best approximation of x in M. In other words, PM(x) is the unique vector in M such
that ∥x − PM(x)∥ = d(x, M). By Proposition 1.7, this is equivalent to requiring that
x − PM(x) ∈ M⊥. The map PM : H → M is called the orthogonal projection of H onto
M (and we will often think of it as a map from H to itself, and denote it by P when the
subspace is implicit).

(End of Day 14)

Proposition 1.9. Let P : H → M be the orthogonal projection onto a closed subspace M < H.
Then

(i) P is a linear transformation.

(ii) P is bounded and ∥P∥ ≤ 1. If M ̸= {0}, then ∥P∥ = 1.

(iii) P ◦ P = P.

(iv) ker(P) = M⊥ and Range(P) = M.

Proof.

(i) Let x1, x2 ∈ H and α ∈ K. Set z = x1 + αx2 and z0 = P(x1) + αP(x2). We wish to
prove that P(z) = z0. For any y ∈ M,

⟨z − z0, y⟩ = ⟨x1 − P(x1), y⟩+ α⟨x2 − P(x2), y⟩ = 0.

Hence, z − z0 ∈ M⊥. Since z0 ∈ M, it follows from Proposition 1.7 that P(z) = z0.
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(ii) For any x ∈ H, x = (x − P(x)) + P(x) and (x − P(x)) ⊥ P(x). Therefore, by
Pythagoras’ Theorem,

∥x∥2 = ∥x − P(x)∥2 + ∥P(x)∥2 ≥ ∥P(x)∥2.

Hence, P is continuous and ∥P∥ ≤ 1. Moreover, if M ̸= {0}, then choose a
non-zero vector y ∈ M. Then, P(y) = y (by definition of the best approximation),
and thus ∥P(y)∥ = ∥y∥. This proves that ∥P∥ = 1.

(iii) Now, if y ∈ M then P(y) = y (as above). If x ∈ M then y = P(x) ∈ M, so
P(P(x)) = P(x).

(iv) If P(x) = 0, then x = x − P(x) ∈ M⊥. Hence ker(P) ⊂ M⊥. Conversely, if
x ∈ M⊥, then 0 ∈ M satisfies the conditions of Proposition 1.7. By uniqueness
of the best approximation, it follows that P(x) = 0. Hence, ker(P) = M⊥. That
Range(P) = M is evident from part (iii) and the definition.

Proposition 1.10. Let M < H be a subspace, then (M⊥)⊥ = M.

Proof. If x ∈ M, then for any y ∈ M⊥, ⟨x, y⟩ = 0. Hence, x ∈ (M⊥)⊥. Thus,
M ⊂ (M⊥)⊥. However, (M⊥)⊥ is closed, so M ⊂ (M⊥)⊥.

Conversely, if x ∈ (M⊥)⊥, then let x0 = PM(x) denote the best approximation of

x in M. Then x0 ∈ M and x − x0 ∈ M⊥. However, M⊥ = M⊥ (by continuity of
the inner product), so it follows that ⟨x, x − x0⟩ = 0 and ⟨x0, x − x0⟩ = 0. Thus,
∥x − x0∥2 = ⟨x − x0, x − x0⟩ = 0, whence x = x0 ∈ M.

From now on, when S and T are two operators, ‘ST’ will be used to denote the compo-
sition S ◦ T.

Proposition 1.11. Let M < H be a closed subspace, and P = PM. Since M⊥ is a closed
subspace, we may set Q = PM⊥ . Then

(i) PQ = QP = 0.

(ii) P + Q = I where I : H → H denotes the identity map.

Proof.

(i) If x ∈ H, then Q(x) ∈ M⊥. By Proposition 1.9, ker(P) = M⊥, and hence
PQ(x) = 0. Since (M⊥)⊥ = M (by Proposition 1.10), the fact that QP = 0 follows
by symmetry.

(ii) If x ∈ H, then (x − P(x)) ∈ M⊥ and Q(x) ∈ M⊥, so

x − P(x)− Q(x) ∈ M⊥

However, x − Q(x) ∈ (M⊥)⊥ = M by Proposition 1.10, and P(x) ∈ M, so
x − Q(x)− P(x) ∈ M. Since M ∩ M⊥ = {0}, it follows that x − P(x)− Q(x) = 0.
Hence, x = (P + Q)(x). This is true for any x ∈ H, and thus (P + Q) = I.
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Definition 1.12. Given two Hilbert spaces (H1, ⟨·, ·, ⟩H1) and (H2, ⟨·, ·, ⟩H2), there is a
natural inner product on the direct product H1 × H2, given by

⟨(x1, y1), (x2, y2)⟩ := ⟨x1, x2⟩H1 + ⟨x2, y2⟩H2 .

Under this inner product, one can prove that H1 × H2 is a Hilbert space (see ??). This is
called the Hilbert space direct sum of H1 and H2, and is denoted by H1 ⊕ H2.

Corollary 1.13. Let M < H be a closed subspace, then the map T : M ⊕ M⊥ → H given by
T(x, y) := x + y is an isometric isomorphism.

Proof. Let P : H → M and Q : H → M⊥ be the orthogonal projections onto M and M⊥

respectively. Then, by Proposition 1.11,

H = (P + Q)(H) = P(H) + Q(H) = M + M⊥.

Furthermore, M ∩ M⊥ = {0}. From this, it is clear that T is a linear bijection. Finally,
the parallelogram law shows that, for any x ∈ M and y ∈ M⊥,

∥T(x, y)∥2 = ∥x + y∥2 = ∥x∥2 + ∥y∥2 = ∥(x, y)∥2
M⊕M⊥ .

Thus, T is isometric as well.

The proof of the next corollary is an easy consequence, and is relegated to the exercises.

Corollary 1.14. If M < H is any subspace, then M is dense in H if and only if M⊥ = {0}.

2. The Riesz Representation Theorem

Definition 2.1. If y ∈ H, define φy : H → K by x 7→ ⟨x, y⟩. Then, φy ∈ H∗ and
∥φy∥ = ∥y∥ (see Example 2.8). Hence, we get a map ∆ : H → H∗ given by

∆(y) := φy.

Note that ∆(αy) = α∆(y) and ∆(y1 + y2) = ∆(y1) + ∆(y2). In other words, ∆ is a
conjugate-linear isometry.

(End of Day 15)

Theorem 2.2 (Riesz Representation Theorem (F. Riesz and M. Fréchet, 1907)). For any
φ ∈ H∗, there exists a unique vector y ∈ H such that

φ(x) = ⟨x, y⟩

for all x ∈ H. Hence, ∆ : H → H∗ is a conjugate-linear isometric isomorphism.
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Proof. Fix 0 ̸= φ ∈ H∗, then M := ker(φ) is a closed subspace of H. Since φ ̸= 0,
M ̸= H, and thus M⊥ ̸= {0} by Corollary 1.14. Choose y0 ∈ M⊥ such that φ(y0) = 1.
Now for any x ∈ H, if we set α := φ(x), then x − αy0 ∈ M. Hence,

0 = ⟨x − αy0, y0⟩ = ⟨x, y0⟩ − φ(x)∥y0∥2.

Note that y0 ̸= 0 since φ(y0) = 1. Hence, if y = y0/∥y0∥2, then for any x ∈ H,
φ(x) = ⟨x, y⟩. This completes the proof of existence. As for uniqueness, this follows
from the fact that ∆ is both linear and isometric (do check this!).

Remark 2.3. If H is a Hilbert space, then H∗ may be equipped with an inner product

(φy, φz) := ⟨z, y⟩.

Since H∗ is complete, it is a Hilbert space.

Proposition 2.4. Let E be a normed linear space, F a Banach space, and E0 < E be a dense
subspace. If T0 ∈ B(E0, F), then there exists a unique linear operator T ∈ B(E, F) such that

T|E0= T0.

Moreover, ∥T∥ = ∥T0∥, so T is called the norm-preserving extension of T0.

Proof. For any x ∈ E, choose a sequence (xn) ⊂ E0 such that xn → x. Then, (xn) is
Cauchy. Since T0 is bounded, it follows that (T0(xn)) is Cauchy in F. Since F is complete,
there exists y ∈ F such that T0(xn) → y. Define T : E → F by

T(x) := lim
n→∞

T0(xn).

(i) We have to prove that T is well-defined: Suppose (zn) ⊂ E is another sequence
such that zn → x, then ∥T0(zn) − T0(xn)∥ ≤ ∥T0∥∥zn − xn∥ → 0. Hence,
limn→∞ T0(zn) = limn→∞ T0(xn).

(ii) T is linear: If xn → x and yn → y, then xn + yn → x + y (see Remark 1.2). Since
T0 is linear, it follows that

T(x + y) = lim
n→∞

T0(xn + yn) = lim
n→∞

T0(xn) + lim
n→∞

T0(yn) = T(x) + T(y).

Similarly, T(αx) = αT(x) for all α ∈ K and x ∈ E.

(iii) T is bounded: If xn → x, then ∥xn∥ → ∥x∥, and so

∥T(x)∥ = lim
n→∞

∥T0(xn)∥ ≤ ∥T0∥ lim
n→∞

∥xn∥ = ∥T0∥∥x∥.

Therefore, T is bounded with ∥T∥ ≤ ∥T0∥. However, T is an extension of T0, and
so ∥T∥ ≥ ∥T0∥ holds trivially. Thus, ∥T∥ = ∥T0∥.
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(iv) Uniqueness: Let T1, T2 ∈ B(E, F) be two bounded linear operators such that
T1|E0= T0 = T2|E0 . Then, for any x ∈ E, choose (xn) ⊂ E0 such that xn → x, so
that

T1(x) = lim
n→∞

T1(xn) = lim
n→∞

T0(xn) = lim
n→∞

T2(xn) = T2(x).

Therefore, T1 = T2.

Corollary 2.5. Let E be a normed linear space and E0 < E be a dense subspace of E. Then, the
map E∗ → E∗

0 given by
φ 7→ φ|E0

is an isometric isomorphism of Banach spaces.

Proof. The map S : φ 7→ φ|E0 is clearly well-defined and linear. Furthermore, by
Proposition 2.4, for any ψ ∈ E∗

0 , there exists a unique element φ ∈ E∗ such that

φ|E0= ψ.

Hence, S is surjective. Also, since ∥φ∥ = ∥ψ∥, it follows that S is isometric and thus
injective.

Corollary 2.6. Let M < H be a subspace of H, and let φ : M → K be a bounded linear
functional. Then, there exists ψ ∈ H∗ such that

ψ|M= φ and ∥ψ∥ = ∥φ∥.

We say that ψ is a norm-preserving extension of φ. It may not be unique (see ??).

Proof. Let φ ∈ M∗, then by Corollary 2.5, there exists ψ0 : M → K linear such that
ψ0|M= φ and ∥ψ0∥ = ∥φ∥. Since M < H, it is a Hilbert space. By the Riesz Representa-
tion Theorem, there exists y ∈ M such that ψ0(x) = ⟨x, y⟩ for all x ∈ M. Now simply
define ψ : H → K by

ψ(x) := ⟨x, y⟩.
Then, ψ is clearly an extension of ψ0, and hence of φ. Furthermore, ∥ψ∥ = ∥y∥ =
∥ψ0∥ = ∥φ∥.

(End of Day 16)

3. Orthonormal Bases

Definition 3.1. Let H be a Hilbert space, and Λ be a subset of H.

(i) Λ is said to be orthogonal if x ⊥ y for all distinct x, y ∈ Λ.

(ii) Λ is said to be orthonormal if it is orthogonal and ∥x∥ = 1 for all x ∈ Λ.

(iii) A maximal orthonormal set is called an orthonormal basis of H.
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Warning: An orthonormal basis may not be a Hamel basis for H

Lemma 3.2. Every orthonormal set is linearly independent.

Proof. Let Λ be an orthonormal set, and {x1, x2, . . . , xn} ⊂ Λ satisfy ∑n
i=1 αixi = 0.

Then, for any fixed j ∈ {1, 2, . . . , n}, αj = ⟨∑n
i=1 αixi, xj⟩ = 0. Hence, {x1, x2, . . . , xn} is

linearly independent.

Lemma 3.3. Let Λ ⊂ H be an orthonormal set, then the following are equivalent:

(i) Λ is an orthonormal basis of H.

(ii) Λ⊥ = {0}.

(iii) span(Λ) is dense in H.

Proof. Let Λ ⊂ H be an orthonormal set.

(i) ⇒ (ii): Suppose Λ is an orthonormal basis, and Λ⊥ ̸= {0}, then choose x ∈ Λ⊥ such that
∥x∥ = 1, then Λ ∪ {x} is an orthonormal set. This contradicts the maximality of
Λ. Therefore, it must happen that Λ⊥ = {0}.

(ii) ⇒ (iii): Suppose Λ⊥ = {0}. Since span(Λ)⊥ ⊂ Λ⊥, it follows that span(Λ)⊥ = {0}. By
Corollary 1.14, span(Λ) is dense in H.

(iii) ⇒ (i): Suppose span(Λ) = H, and let Λ′ be an orthonormal set that contains Λ. We wish
to prove that Λ′ = Λ. Suppose not, then there is a vector x ∈ Λ′ \ Λ. Since Λ′ is
orthonormal, ∥x∥ = 1, and x ⊥ Λ. This implies that x ⊥ span(Λ). By continuity
of the inner product (Example 2.3), it follows that

x ⊥ span(Λ).

Hence, x ⊥ H and so x = 0. This contradicts the assumption that ∥x∥ = 1. We
must conclude that Λ′ = Λ.

The next result follows directly as in Theorem 1.3 by the use of Zorn’s Lemma.

Theorem 3.4. If Λ0 ⊂ H is any orthonormal set, then there is an orthonormal basis Λ ⊂ H
that contains Λ0.

Example 3.5.

(i) Let H = (Kn, ∥ · ∥2), then the standard basis is an orthonormal basis.

(ii) Let H = ℓ2, then {e1, e2, . . .} is an orthonormal basis.

Proof. Clearly, Λ = {e1, e2, . . .} is orthonormal. Furthermore, if x = (xn) ⊥ Λ,
then xn = ⟨x, en⟩ = 0 for all n, and hence Λ⊥ = {0}.
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(iii) Let H = L2[−π, π] and K = C. For n ∈ Z, define

en(t) :=
1√
2π

eint.

Then

⟨en, em⟩ =
1

2π

∫ π

−π
ei(n−m)tdt =

{
1 : if n = m,
0 : otherwise.

It is a fact {en : n ∈ Z} forms an orthonormal basis (without proof).

Theorem 3.6 (Gram-Schmidt Orthogonalization (Gram, 1883 and Schmidt, 1907)).
Let {x1, x2, . . . , xn} ⊂ H be linearly independent. Define {u1, u2, . . . , un} inductively by
u1 := x1, and

uj = xj −
j−1

∑
i=1

⟨xj, ui⟩
⟨ui, ui⟩

ui (III.1)

for j ≥ 2. Then, {u1, u2, . . . , un} is an orthogonal set, and span({u1, u2, . . . , un}) =
span({x1, x2, . . . , xn}).
Proof. We proceed by induction on n, since this is clearly true if n = 1. If n > 1,
suppose {u1, u2, . . . , un−1} is an orthogonal set such that span({u1, u2, . . . , un−1}) =
span({x1, x2, . . . , xn−1}). Then, if un is given by Equation III.1, then clearly un ∈
span({x1, x2, . . . , xn}) and un ̸= 0 since {x1, x2, . . . , xn} is linearly independent. Also,
⟨un, uj⟩ = 0 for all j < n, so {u1, u2, . . . , un} is orthogonal. In particular, {u1, u2, . . . , un}
is linearly independent (by Lemma 3.2). Hence,

span({u1, u2, . . . , un}) = span({x1, x2, . . . , xn}),
since both spaces have the same dimension.

Corollary 3.7. If H is a Hilbert space and {x1, x2, . . .} is a linearly independent set, then there
exists an orthonormal set {e1, e2, . . .} such that span({e1, e2, . . . , en}) = span({x1, x2, . . . , xn})
for all n ∈ N.

Example 3.8. Let H = L2[−1, 1] and xn(t) = tn, then {x0, x1, . . .} is a linearly indepen-
dent subset of H. The Gram-Schmidt process gives us an orthogonal set {P0, P1, . . .}
which is given explicitly as

Pn(t) =
1

2nn!

(
d
dt

)n
(t2 − 1)n.

These polynomials are called Legendre polynomials. Since span({Pn}) = span({xn}),
it follows by Weierstrass’ Approximation Theorem and Proposition 3.12 that

span({P1, P2, . . .}) = H.

Therefore, if we divide by their norms, the set{√
2n + 1

2
Pn : n = 0, 1, . . .

}
forms an orthonormal basis for H.
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(End of Day 17)

Proposition 3.9. Let {e1, e2, . . . , en} be an orthonormal set in H, and let M := span{e1, e2, . . . , en}.
If P : H → M denotes the orthogonal projection onto M, then

P(x) =
n

∑
k=1

⟨x, ek⟩ek.

for any x ∈ H.

Proof. Let x ∈ H, and set x0 := ∑n
k=1⟨x, ek⟩ek. Then, x0 ∈ M, and ⟨x − x0, ej⟩ = 0 for

any 1 ≤ j ≤ n. Hence, x − x0 ∈ M⊥. Proposition 1.7 then implies that P(x) = x0.

Theorem 3.10 (Bessel’s Inequality). If {e1, e2, . . .} is an orthonormal set and x ∈ H, then
∑∞

n=1 |⟨x, en⟩|2 ≤ ∥x∥2.

Proof. For each n ∈ N, write xn := x − ∑n
i=1⟨x, ei⟩ei. Then, xn ⊥ ei for all 1 ≤ i ≤ n, so

xn ⊥ ∑n
i=1⟨x, ei⟩ei. Thus, by Pythagoras’ Theorem,

∥x∥2 = ∥xn∥2 +

∥∥∥∥∥ n

∑
i=1

⟨x, ei⟩ei

∥∥∥∥∥
2

= ∥xn∥2 +
n

∑
i=1

|⟨x, ei⟩|2 ≥
n

∑
i=1

|⟨x, ei⟩|2.

This is true for all n ∈ N, which implies the result.

If a series of complex numbers converge, then the nth term goes to zero as n → ∞. This
observation gives us an important consequence of Bessel’s Inequality.

Corollary 3.11 (Riemann-Lebesgue Lemma). Let {e1, e2, . . .} be an orthonormal set, and
x ∈ H. Then, limn→∞⟨x, en⟩ = 0.

Corollary 3.12. Let Λ be an orthonormal set in H and x ∈ H. Then, {e ∈ Λ : ⟨x, e⟩ ̸= 0} is
a countable set.

Proof. For each n ∈ N, define Λn := {e ∈ Λ : |⟨x, e⟩| ≥ 1/n}. If {e1, e2, . . . , eN} ⊂ Λn,
then by Bessel’s Inequality,

N
n2 =

N

∑
k=1

1
n2 ≤

N

∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2.

Thus, Λn must be finite, and {e ∈ Λ : ⟨x, e⟩ ̸= 0} =
⋃∞

n=1 Λn must be countable.

Remark 3.13. Let {xα : α ∈ J} be a (possibly uncountable) set in an normed linear
space E. We want to make sense of an expression of the form

∑
α∈J

xα. (III.2)
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If J is countable, we can do this by enumerating J = N and treating Equation III.2 as a
series in the usual sense. However, if J is uncountable, we need to make some changes.
Define F := {F ⊂ J : F is finite}. For each F ∈ F , we define a partial sum

sF := ∑
α∈F

xα.

We say that the expression in Equation III.2 exists if there is a vector s ∈ E with the
property that, for all ϵ > 0, there exists a finite set F0 ∈ F such that, for any F ∈ F
containing F0, one has ∥sF − s∥ < ϵ.

In other words, F is a (directed) partially ordered set under inclusion and {sF : F ∈ F}
forms a net. Our requirement is that this net be convergent in E.

Corollary 3.14. Let Λ be an orthonormal set in H and x ∈ H, then ∑e∈Λ |⟨x, e⟩|2 ≤ ∥x∥2.

Proof. Clearly, the sum is the same as the sum over the set {e ∈ Λ : ⟨x, e⟩ ̸= 0}. By
Corollary 3.12, this set is countable, and so it reduces to a countable sum. The result
now follows from Bessel’s Inequality.

Lemma 3.15. Let Λ be an orthonormal set in H. Then, for any x ∈ H, the series

∑
e∈Λ

⟨x, e⟩e

converges in H.

Proof. By Corollary 3.12, the set {e ∈ Λ : ⟨x, e⟩ ̸= 0} is countable. Denote this set by
{en : n ∈ N}, then

∑
e∈Λ

⟨x, e⟩e =
∞

∑
n=1

⟨x, en⟩en.

Define xn := ∑n
i=1⟨x, ei⟩ei, and it now suffices to prove that (xn) is Cauchy. By Bessel’s

Inequality, ∑∞
i=1 |⟨x, ei⟩|2 ≤ ∥x∥2 < ∞. Hence if ϵ > 0, there exists N0 ∈ N such that

∑∞
i=N0

|⟨x, ei⟩|2 < ϵ. If n > m ≥ N0, Pythagoras’ Theorem tells us that

∥xn − xm∥2 =

∥∥∥∥∥ n

∑
i=m+1

⟨x, ei⟩ei

∥∥∥∥∥
2

=
n

∑
i=m+1

|⟨x, ei⟩|2 ≤
∞

∑
i=N0

|⟨x, ei⟩|2 < ϵ.

Hence, (xn) is Cauchy and converges in H.

Theorem 3.16. Let Λ be an orthonormal basis of H. Then, for each x, y ∈ H, we have

(i) Fourier Expansion: x = ∑e∈Λ⟨x, e⟩e.

(ii) ⟨x, y⟩ = ∑e∈Λ⟨x, e⟩⟨y, e⟩.
(iii) Parseval’s identity: ∥x∥2 = ∑e∈Λ |⟨x, e⟩|2.
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Proof. Let x, y ∈ H be fixed, then by Corollary 3.12, the set {e ∈ Λ : ⟨x, e⟩ ̸= 0} ∪
{e ∈ Λ : ⟨y, e⟩ ̸= 0} is countable. Replacing Λ by this set, we may assume that
Λ = {en : n ∈ N} is countable.

(i) Write z := ∑∞
n=1⟨x, en⟩en, which exists by Lemma 3.15. By continuity and linearity

of the inner product, it follows that ⟨z, ej⟩ = ⟨x, ej⟩ for any j ∈ N. Hence,
x − z ∈ Λ⊥. Since Λ⊥ = {0}, x = z.

(ii) By part (i), write x = ∑∞
n=1⟨x, en⟩en, and y = ∑∞

m=1⟨y, em⟩em. Then, by the conti-
nuity of the inner product in both variables, we see that

⟨x, y⟩ =
∞

∑
n,m=1

⟨⟨x, en⟩en, ⟨y, em⟩em⟩ .

Since en ⊥ em if n ̸= m, we get ⟨x, y⟩ = ∑∞
n=1⟨x, en⟩⟨y, en⟩.

(iii) Follows directly from part (ii).

(End of Day 18)

4. Isomorphisms of Hilbert Spaces

Lemma 4.1. Any two orthonormal bases of a Hilbert space have the same cardinality.

This common number is called the dimension of the Hilbert space.

Proof. If H is finite dimensional, then this statement is familiar from linear algebra
(see [1, Section I.8], for instance). Therefore, we will assume H is infinite dimensional.
Let Λ1 and Λ2 be two orthonormal bases of H. If f ∈ Λ1, then there exists e ∈ Λ2
such that ⟨ f , e⟩ ̸= 0. Furthermore, Λe := { f ∈ Λ1 : ⟨ f , e⟩ ̸= 0} is a countable set by
Corollary 3.12. Since

Λ1 ⊂
⋃

e∈Λ2

Λe,

we conclude that |Λ1| ≤ |Λ2 ×N| = |Λ2|. By symmetry, |Λ2| ≤ |Λ1| holds as well.

There is a clash of terminology here that you need to be aware of. The Hilbert space
dimension of H is not necessarily the same as the dimension of H as a vector space.
For instance, dim(ℓ2) = ℵ0 (countable infinity), but its vector space dimension is
uncountable. Proceed with caution!

Definition 4.2. Let I be any set, and 1 ≤ p < ∞

(i) A function f : I → K is said to be p-summable if supp( f ) := {i ∈ I : f (i) ̸= 0}
is countable, and ∑i∈I | f (i)|p < ∞ (where the series is defined in the sense of
Remark 3.13).
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(ii) Let ℓp(I) denote the set of all p-summable functions on I. Then the inequality

| f + g|p ≤ [2 max{| f |, |g|}]p ≤ 2p[| f |p + |g|p]

shows that ℓp(I) is a vector space. If f ∈ ℓp(I), we define

∥ f ∥p :=

(
∑
i∈I

| f (i)|p
)1/p

,

and this satisfies Minkowski’s Inequality since the verification only requires a
countable sum. Hence, ℓp(I) is a normed linear space. Furthermore, ℓp(I) is a
Banach space as before.

(iii) Also, ℓ2(I) has an inner product given by

⟨ f , g⟩ = ∑
i∈I

f (i)g(i).

Once again this is well-defined since supp( f ) ∪ supp(g) is countable. Hence,
ℓ2(I) is a Hilbert space.

Lemma 4.3. Let I be any set. Then, dim(ℓ2(I)) = |I|.

Proof. For each i ∈ I, define ei : I → K by

ei(j) = δi,j =

{
1 : if i = j
0 : if i ̸= j

Then, the set Λ := {ei : i ∈ I} forms an orthonormal set in ℓ2(I). If f ∈ ℓ2(I) satisfies
f ⊥ Λ, then for any i ∈ I,

f (i) = ⟨ f , ei⟩ = 0,

and so f ≡ 0. Hence, Λ⊥ = {0} and we conclude that Λ is an orthonormal basis for
ℓ2(I). In particular, dim(ℓ2(I)) = |Λ| = |I|.

The basis Λ constructed as above is called the standard orthonormal basis for ℓ2(I).

Lemma 4.4. Let H and K be Hilbert spaces. A linear map T : H → K is an isometry if and
only if ⟨Tx, Ty⟩K = ⟨x, y⟩H for all x, y ∈ H.

A simple example of an isometry that is not an isomorphism is the right shift operator
S : ℓ2 → ℓ2 given by

S(x1, x2, x3, . . .) := (0, x1, x2, x3, . . .).

Clearly, the only thing that prevents an isometry from being an isomorphism is surjec-
tivity.

Definition 4.5. An operator U : H → K is called a unitary operator if U is a surjective
isometry. H is said to be isomorphic to K if there is a unitary map U : H → K. If such a
map exists, we write H ∼= K.
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Clearly, If U is a unitary, then U−1 is also a unitary. Also, if U and V are unitaries
(with appropriate range and domain), then UV is a unitary. Therefore, the notion of
isomorphism is indeed an equivalence relation on the collection of Hilbert spaces.

Theorem 4.6. Let H be a Hilbert space and Λ be an orthonormal basis of H, then H ∼= ℓ2(Λ).

Proof. For any x ∈ H, define x̂ : Λ → K by

x̂(e) := ⟨x, e⟩
By Corollary 3.12, supp(x̂) is countable and by Bessel’s Inequality, x̂ ∈ ℓ2(Λ). Thus, we
define U : H → ℓ2(Λ) given by x 7→ x̂. Note that U is linear by the axioms of the inner
product. Furthermore, by Theorem 3.16, we see that

⟨U(x), U(y)⟩ = ∑
e∈Λ

⟨x, e⟩⟨y, e⟩ = ⟨x, y⟩

and so U is an isometry by Lemma 4.4. Finally, for each f ∈ Λ, f̂ (e) = ⟨ f , e⟩ = δe, f .
Therefore, {U( f ) : f ∈ Λ} is the standard orthonormal basis for ℓ2(Λ) and hence
Range(U)⊥ = {0}. By Corollary 1.14, Range(U) is dense in ℓ2(Λ). However, U is an
isometry, and so Range(U) is a complete subspace of ℓ2(Λ). Thus, Range(U) is closed,
and U is surjective.

Corollary 4.7. Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof. Suppose U : H → K is an isomorphism, and ΛH ⊂ H is any orthonormal basis
for H, then U(ΛH) ⊂ K is an orthonormal set. Hence, by Theorem 3.4, there is an
orthonormal basis ΛK of K such that U(ΛH) ⊂ ΛK. In particular,

dim(H) = |ΛH| = |U(ΛH)| ≤ |ΛK| = dim(K).

By symmetry, dim(K) ≤ dim(H) as well.

Conversely, suppose dim(H) = dim(K), let ΛH and ΛK denote two orthonormal bases
of H and K respectively. Then |ΛH| = |ΛK|, and hence there is a natural isomorphism

ℓ2(ΛH)
∼=−→ ℓ2(ΛK). Now apply Theorem 4.6 to conclude that H ∼= K.

(End of Day 19)

Theorem 4.8. A Hilbert space H is separable if and only if dim(H) is countable.

Proof. If H is separable, and Λ ⊂ H is an orthonormal set, then for any pair of distinct
vectors e, f ∈ Λ, we have

∥e − f ∥ =
√

2.

Hence, the balls {B(e;
√

2/2) : e ∈ Λ} form a family of disjoint open sets in H. Since H
is separable, this family must be countable, and hence Λ must be countable.

Conversely, if H has a countable orthonormal basis Λ := {en : n ∈ N}, then span(Λ)
is dense in H. Now, set K0 = Q or K0 = Q × Q, according as K = R or K = C. Then,
A := spanK0

(Λ) is countable, and A = H. Therefore, H is separable.

Corollary 4.9. Any two separable, infinite dimensional Hilbert spaces are isomorphic.
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5. Fourier Series of L2 Functions

We will assume that K = C throughout this section. Back in Example 3.5, we had
defined an orthonormal set {en : n ∈ Z} in L2[−π, π] by

en(t) =
1√
2π

eint.

Remark 5.1. Let X be a compact Hausdorff space, and let C(X) denote the space of all
complex-valued, continuous functions on X. Given f , g ∈ C(X), we may define the
product of f and g by

( f · g)(x) := f (x)g(x).

Clearly, C(X) is closed under this operation and has the structure of a ring. Moreover,

( f + g) · h = ( f · h) + (g · h), and α( f · g) = (α f ) · g

for all f , g, h ∈ C(X) and α ∈ C. This gives C(X) the structure of an algebra. Therefore,
we may now speak of a subalgebra of C(X) - namely, a vector subspace of C(X) that is
closed under this multiplication operation.

Theorem 5.2 (Stone-Weierstrass). Let X be a compact Hausdorff space, and let C(X) be the
algebra of continuous, complex-valued functions on X, equipped with the supremum norm. Let
A be a subalgebra of C(X) satisfying the following properties:

(P1) A contains the constant function 1.

(P2) For any pair of distinct points x, y ∈ X, there is a function f ∈ A such that f (x) ̸= f (y).
In other words, A separates points of X.

(P3) If f ∈ A, then f ∈ A, where
f (x) := f (x).

Then, A is dense in C(X).

Proposition 5.3. Let S1 := {z ∈ C : |z| = 1}, and let C(S1) be equipped with the supremum
norm. Let F denote the space of all polynomials in z and z, thought of as a subspace of C(S1).
Then, F is dense in C(S1).

Fix E := { f ∈ C[−π, π] : f (−π) = f (π)}. For n ∈ Z, define en ∈ E as above, and set
A := span({en}) ⊂ E. Note that

A = span({cos(nt), sin(nt) : n ∈ Z}).

Hence, an element of A is called a trigonometric polynomial.

Now, if f ∈ C[−π, π] and 1 ≤ p < ∞, then ∥ f ∥p ≤ (2π)1/p∥ f ∥∞. Hence, if a subset of
C[−π, π] is dense with respect to the supremum norm, then it is dense with respect
to any p-norms. We wish to prove that the set A defined above is dense in C[−π, π]
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with respect to ∥ · ∥2. In order to do this, we need one fact about S1. It is the quotient
space of the interval [−π, π] via the identification −π ∼ π. Specifically, the map
q : [−π, π] → S1 given by

t 7→ eit

is the quotient map. Therefore, a function F : S1 → C is continuous if and only if
F ◦ q : [−π, π] → C is continuous. We use this fact below.

Proposition 5.4. A is dense in E with respect to the supremum norm. Therefore, it is dense
with respect to ∥ · ∥p for all 1 ≤ p ≤ ∞.

Proof. Define θ : C(S1) → E by

θ( f )(t) := f (eit).

Then θ is linear, and, since the function q : [−π, π] → S1 is surjective, it follows that
∥θ( f )∥∞ = ∥ f ∥∞. Therefore, θ is isometric, and hence injective.

Given f ∈ E, define F : S1 → C by F(eit) := f (t). Since f (−π) = f (π), F is well-
defined and continuous (by the discussion preceding this proof). Hence, F ∈ C(S1) and
θ(F) = f . Therefore, θ is an isometric isomorphism.

If ζ ∈ C(S1) denotes the identity function ζ(z) = z, we have θ(ζ)(t) = eit and θ(ζ)(t) =
e−it. Therefore, if F is the subspace of C(S1) defined in Proposition 5.3, then θ(F) = A.
Since F is dense in C(S1), A is dense in E.

(End of Day 20)

Lemma 5.5. E is dense in Lp[−π, π] with respect to ∥ · ∥p for all 1 ≤ p < ∞.

Proof. For n ∈ N, define

fn(t) =


1 : if − π + 1/n ≤ t ≤ π − 1/n,
0 : if t ∈ {−π, π},
linear : otherwise

Then ∥ fn − 1∥p ≤ 2
n . For any g ∈ C[−π, π], note that fng ∈ E and ∥ fng − g∥p ≤

2
n∥g∥∞ → 0. Hence, C[−π, π] ⊂ E∥·∥p . Now, the result follows from the fact that
C[−π, π] is dense in Lp[−π, π] (Proposition 3.12).

Theorem 5.6. If

en(t) :=
1√
2π

eint,

then the set {en : n ∈ Z} forms an orthonormal basis of L2[−π, π].

Proof. By Example 3.5, we know that it is an orthonormal set. By Proposition 5.4 and
Lemma 5.5, span({en}) = L2[−π, π]. By Lemma 3.3, it is an orthonormal basis.
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Theorem 5.7. Let f ∈ L2[−π, π]. For n ∈ Z, the nth Fourier coefficient of f is defined as

f̂ (n) := ⟨ f , en⟩ =
1

2π

∫ π

−π
f (t)e−intdt.

Then, we have

(i) Fourier Expansion: f (t) ∼ ∑∞
n=−∞ f̂ (n)eint.

Note: It is traditional to use the symbol ∼ here to indicate that the convergence is in the
L2 norm, but not necessarily pointwise.

(ii) Fourier Series: The map U : L2[−π, π] → ℓ2(Z) given by f 7→ f̂ is an isomorphism of
Hilbert spaces.

(iii) Parseval’s identity: ∥ f ∥2
2 = ∑∞

n=−∞ | f̂ (n)|2.

(iv) Riemann-Lebesgue Lemma:

lim
n→±∞

∫ π

−π
f (t)eintdt = lim

n→±∞

∫ π

−π
f (t) cos(nt)dt = lim

n→±∞

∫ π

−π
f (t) sin(nt)dt = 0.

(v) Riesz-Fischer Theorem: For any (cn) ∈ ℓ2(Z), there exists f ∈ L2[−π, π] such that
f̂ (n) = cn for all n ∈ N.
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IV. Dual Spaces

1. The Duals of Lp Spaces

Definition 1.1. Throughout this section, fix 1 ≤ p, q ≤ ∞, where q is the conjugate
exponent of p (In other words, 1

p + 1
q = 1 if 1 < p < ∞, q = ∞ when p = 1, and

vice-versa).

(i) For each y ∈ ℓq, define φy : ℓp → K by

φy((xj)) :=
∞

∑
n=1

xnyn.

For 1 < p < ∞, φy is well-defined by Hölder’s Inequality (Theorem 1.11), and

|φy(x)| ≤ ∥x∥p∥y∥q.

If p = 1 or p = ∞, the inequality is obvious. Hence, φy ∈ (ℓp)∗ and ∥φy∥ ≤ ∥y∥q.
Furthermore, for any y, z ∈ ℓq, and α ∈ K, we have

φy+z = φy + φz, and φαy = αφy.

Therefore, we obtain a linear operator ∆ : ℓq → (ℓp)∗ given by

y 7→ φy,

satisfying ∥∆(y)∥ ≤ ∥y∥q for all y ∈ ℓq.

(ii) Similarly, for each g ∈ Lq[a, b], we define φg : Lp[a, b] → K by

f 7→
∫ b

a
f (t)g(t)dt

Once again, φg is well-defined by Hölder’s Inequality, and we get a linear operator

∆ : Lq[a, b] → (Lp[a, b])∗,

satisfying ∥∆(g)∥ ≤ ∥g∥q for all g ∈ Lq[a, b].

For x ∈ K, we write

sgn(x) :=

{
|x|
x : if x ̸= 0

0 : if x = 0

so that sgn(x)x = |x| for all x ∈ K. For j ∈ N, we will write ej = (0, 0, . . . , 0, 1, 0, . . .)
(with 1 in the jth position) as in Example 1.4. Note that ej ∈ ℓp for all 1 ≤ p ≤ ∞.
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Proposition 1.2. For 1 ≤ p ≤ ∞, the map ∆ : ℓq → (ℓp)∗ is isometric.

Proof. In all cases, we know that ∥φy∥ ≤ ∥y∥q, so it suffices to prove the reverse
inequality. We break the proof into three cases.

(i) If p = 1 and q = ∞: Let y = (y1, y2, . . .) ∈ ℓ∞, then

|yj| = |φy(ej)| ≤ ∥φy∥∥ej∥1 = ∥φy∥.

Hence, ∥y∥∞ ≤ ∥φy∥ as required.

(ii) If p = ∞ and q = 1: Let y = (y1, y2, . . .) ∈ ℓ1, then for each n ∈ N, define
xn = (xn

j ) by

xn
j =

{
sgn(yj) : if 1 ≤ j ≤ n,
0 : otherwise.

Then, xn ∈ ℓ∞ and ∥xn∥∞ ≤ 1. Furthermore,

n

∑
j=1

|yj| =
n

∑
j=1

xn
j yj = φy(xn) ≤ ∥φy∥∥xn∥∞ ≤ ∥φy∥.

Hence, ∥y∥1 ≤ ∥φy∥.

(iii) If 1 < p < ∞: Let y = (y1, y2, . . .) ∈ ℓq, then for each n ∈ N, define xn = (xn
j ) by

xn
j =

{
sgn(yj)|yj|q−1 : if 1 ≤ j ≤ n,
0 : otherwise.

Then, xn ∈ ℓp and

n

∑
j=1

|yj|q =
n

∑
j=1

xn
j yj =

∞

∑
j=1

xn
j yj = φy(xn).

Also,

|φy(xn)| ≤ ∥φy∥∥xn∥p = ∥φy∥
(

n

∑
j=1

|yj|qp−p

)1/p

= ∥φy∥
(

n

∑
j=1

|yj|q
)1/p

,

because qp − p = p(q − 1) = q. Therefore, we conclude that(
n

∑
j=1

|yj|q
)1/q

≤ ∥φy∥.

This is true for all n ∈ N, and so ∥y∥q ≤ ∥φy∥.
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(End of Day 21)

Theorem 1.3. If 1 ≤ p < ∞, then the map ∆ : ℓq → (ℓp)∗ is an isometric isomorphism.

Proof. By Proposition 1.2, it suffices to show that ∆ is surjective. So fix φ ∈ (ℓp)∗, and
we want to construct y ∈ ℓq such that φ = φy. If ej ∈ ℓp are defined as above, we set

y := (φ(e1), φ(e2), . . .).

(i) If p = 1, then q = ∞: For each i ∈ N,

|yi| = |φ(ei)| ≤ ∥φ∥∥ei∥1 = ∥φ∥.

Hence, y ∈ ℓ∞, and so φy ∈ (ℓ1)∗. Now if x ∈ c00, write x = (x1, x2, . . . , xn, 0, 0, . . .),
then

φ(x) =
n

∑
i=1

xi φ(ei) =
n

∑
i=1

xiyi = φy(x).

Now, φ and φy are both continuous functions that agree on c00, which is dense in
ℓ1 (Proposition 3.4). It follows that φ = φy.

(ii) If 1 < p < ∞, then 1 < q < ∞: For n ∈ N, write

yn := (y1, y2, . . . , yn, 0, 0, . . .).

Then, yn ∈ c00 ⊂ ℓq, so we may consider the corresponding linear functional
φyn ∈ (ℓp)∗. For each n ∈ N, and x ∈ ℓp, let xn := (x1, x2, . . . , xn, 0, 0, . . .). Then,

φyn(x) =
n

∑
j=1

xjyj = φ

(
n

∑
j=1

xjej

)
= φ(xn).

Hence, for any x ∈ ℓp, we have

|φyn(x)| ≤ ∥φ∥∥xn∥p ≤ ∥φ∥∥x∥p,

and therefore ∥φyn∥ ≤ ∥φ∥ for all n ∈ N. Since ∆ is an isometry, it follows that(
n

∑
i=1

|yi|q
)1/q

= ∥yn∥q ≤ ∥φ∥

for all n ∈ N. We conclude that y ∈ ℓq, and that ∥y∥q ≤ ∥φ∥. Now that
y ∈ ℓq, we know that φy ∈ (ℓp)∗. Furthermore, for any x ∈ c00, write x =
(x1, x2, . . . , xn, 0, 0, . . .), then

φ(x) =
n

∑
i=1

xi φ(ei) = φy(x)

and so φ = φy on c00. Once again, since c00 is dense in ℓp, it follows that φ = φy.
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Corollary 1.4. Let 1 ≤ p ≤ ∞, and let q be the conjugate exponent of p. If E = (Kn, ∥ · ∥p),
then E∗ ∼= (Kn, ∥ · ∥q).

Proposition 1.5. For 1 ≤ p ≤ ∞, the map ∆ : Lq[a, b] → (Lp[a, b])∗ is isometric.

Proof. Fix g ∈ Lq[a, b]. We know that ∥φg∥ ≤ ∥g∥q, so it suffices to prove the reverse
inequality. Once again, we break it into three cases.

(i) If p = 1 and q = ∞: For n ∈ N, define

En = {t ∈ [a, b] : |g(t)| > ∥φg∥+ 1/n},

and set fn = sgn(g)χEn . Then, ∥ fn∥1 = m(En) < ∞, and

|φg( fn)| =
∫

En
|g(t)|dt >

(
∥φg∥+ 1/n

)
m(En).

However, |φg( fn)| ≤ ∥φg∥m(En), and so m(En) = 0 for each n ∈ N. Therefore,

m({t ∈ [a, b] : |g(t)| > ∥φg∥}) = m

(
∞⋃

n=1

En

)
= 0.

Thus, ∥g∥∞ ≤ ∥φg∥ as required.

(ii) If p = ∞ and q = 1: Let f = sgn(g), then ∥ f ∥∞ ≤ 1, and

∥g∥1 =
∫ b

a
|g(t)|dt = φg( f ) = |φg( f )| ≤ ∥φg∥∥ f ∥∞.

Therefore, ∥g∥1 ≤ ∥φg∥.

(iii) If 1 < p < ∞: If we set f = sgn(g)|g|q−1, then∫ b

a
| f (t)|pdt =

∫ b

a
|g(t)|(q−1)pdt = (∥g∥q)

q =
∫ b

a
|g(t)|qdt = φg( f ).

In particular, f ∈ Lp[a, b] and ∥ f ∥p = ∥g∥q/p
q . Also, (∥g∥q)q ≤ ∥φg∥∥ f ∥p, which

implies that
∥g∥q = (∥g∥q)

q−q/p ≤ ∥φg∥.

(i) Let f ∈ C[a, b], and define

F(x) =
∫ x

a
f (t)dt.

Then, F is differentiable on (a, b), and F′ = f .
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(ii) If F : [a, b] → K is continuously differentiable on [a, b], then F′ is Riemann-
integrable, and for all x ∈ [a, b],

F(x) = F(a) +
∫ x

a
F′(t)dt.

Lebesgue’s Fundamental Theorem of Calculus is an answer to the the corresponding
questions for L1 functions:

(i) Suppose f ∈ L1[a, b], then we may define

F(x) =
∫ x

a
f (t)dt.

Is F differentiable, and, if so, is it true that F′ = f ?

(ii) Suppose F : [a, b] → C is a function, under what conditions is F differentiable,
and F′ ∈ L1[a, b]? Furthermore, if this is true, then does it follow that

F(x) = F(a) +
∫ x

a
F′(t)dt

holds for all x ∈ [a, b]?

The answer to the first of these questions is the Lebesgue Differentiation Theorem (see
[2, Section 5.3] for the proof).

Theorem 1.6 (Lebesgue’s Differentiation Theorem). Let f ∈ L1[a, b] and define

F(x) =
∫ x

a
f (t)dt

Then F is differentiable a.e., and F′ = f a.e.

(End of Day 22)

Lemma 1.7. Let f ∈ L1[a, b]. Then, for any ϵ > 0, there exists δ > 0 such that, for any
measurable set E ⊂ [a, b],

m(E) < δ ⇒
∫

E
| f | < ϵ.

Definition 1.8. A function F : [a, b] → K is said to be absolutely continuous if for any
ϵ > 0, there exists δ > 0 such that, for any finite collection {[ai, bi] : 1 ≤ i ≤ n} of
non-overlapping subintervals of [a, b],

n

∑
i=1

(bi − ai) < δ ⇒
n

∑
i=1

|F(bi)− F(ai)| < ϵ.

Example 1.9. Let F : [a, b] → K be a function.
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(i) If F is Lipschitz continuous, then F is absolutely continuous. This is because if
L > 0 such that |F(x)− F(y)| ≤ L|x − y| for all x, y ∈ [a, b], then for ϵ > 0, we
may choose δ := ϵ/2L.

(ii) If F is continuously differentiable on [a, b], then F is absolutely continuous. This
is because, by the Mean-Value Theorem, F is Lipschitz continuous with Lipschitz
constant L := supx∈[0,1] |F′(x)|.

(iii) If there exists f ∈ L1[a, b] such that

F(x) =
∫ x

a
f (t)dt.

Then, it follows from Lemma 1.7 that F is absolutely continuous.

Theorem 1.10 (Lebesgue’s Fundamental Theorem of Calculus). Let F : [a, b] → K be an
absolutely continuous function. Then

(i) F is differentiable a.e. and F′ ∈ L1[a, b].

(ii) Furthermore, for almost every x ∈ [a, b],

F(x) = F(a) +
∫ x

a
F′(t)dt.

Lemma 1.11. Let 1 ≤ p < ∞, and let g ∈ L1[a, b]. Suppose that there exists M > 0 such that∣∣∣∣∫ b

a
f (t)g(t)dt

∣∣∣∣ ≤ M∥ f ∥p

for all bounded functions f ∈ Lp[a, b]. Then, g ∈ Lq[a, b] and ∥g∥q ≤ M.

Proof. Once again, we break the proof into two cases.

(i) If p = 1: Let n ∈ N, and consider

En = {x ∈ [a, b] : |g(x)| > M + 1/n}.

We wish to prove that m(En) = 0. If we set let fn = sgn(g)χEn , then ∥ fn∥1 =
m(En), and ∣∣∣∣∫ b

a
fn(t)g(t)dt

∣∣∣∣ = ∫
En

|g(t)|dt ≥ (M + 1/n)m(En).

However, ∣∣∣∣∫ b

a
fn(t)g(t)dt

∣∣∣∣ ≤ M∥ fn∥1 = Mm(En),

and therefore m(En) = 0. This is true for all n ∈ N, and hence

m({t ∈ [a, b] : |g(t)| > M}) = m

(
∞⋃

n=1

En

)
= 0.

Thus, g ∈ L∞[a, b] and ∥g∥∞ ≤ M as required.
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(ii) If 1 < p < ∞: Since g ∈ L1[a, b], it follows that |g(x)| < ∞ a.e. For n ∈ N, define

gn(x) =

{
g(x) : if |g(x)| ≤ n
0 : otherwise.

Then, each gn is measurable, bounded, and gn → g pointwise a.e. If we set
fn := sgn(gn)|gn|q−1, then

∥ fn∥p
p =

∫ b

a
|gn(t)|(q−1)pdt =

∫ b

a
|gn(t)|qdt = ∥gn∥q

q.

In particular, fn ∈ Lp[a, b] and ∥ fn∥p = ∥gn∥q/p
q . Also, |gn|q = fngn = fng, and

hence

∥gn∥q
q =

∫ b

a
fn(t)g(t)dt ≤ M∥ fn∥p = M∥gn∥q/p

q .

Therefore, ∥gn∥q ≤ M for all n ∈ N. Finally, by Fatou’s Lemma,∫ b

a
|g(t)|qdt ≤ lim inf

∫ b

a
|gn(t)|qdt ≤ Mq.

We conclude that g ∈ Lq[a, b] and ∥g∥q ≤ M.

Lemma 1.12. Let 1 ≤ p < ∞ and φ ∈ (Lp[a, b])∗. Define F : [a, b] → K by

F(x) = φ(χ[a,x]).

Then, F is absolutely continuous.

Proof. We wish to show that, for any ϵ > 0, there exists δ > 0 such that, for any finite
collection {[ai, bi] : 1 ≤ i ≤ n} of non-overlapping subintervals of [a, b],

n

∑
i=1

(bi − ai) < δ ⇒
n

∑
i=1

|F(bi)− F(ai)| < ϵ.

So assume φ is non-zero, fix ϵ > 0, and let {[ai, bi] : 1 ≤ i ≤ n} be a finite collection of
non-overlapping intervals in [a, b]. Define

f =
n

∑
i=1

sgn(F(bi)− F(ai))χ[ai,bi]
.

Then, ∫ b

a
| f (t)|pdt =

n

∑
i=1

|bi − ai|,

and

φ( f ) =
n

∑
i=1

sgn(F(bi)− F(ai))φ(χ[bi,ai]
) =

n

∑
i=1

|F(bi)− F(ai)|,
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since φ(χ[bi,ai]
) = F(bi)− F(ai). Therefore,

n

∑
i=1

|F(bi)− F(ai)| ≤ ∥φ∥∥ f ∥p = ∥φ∥(
n

∑
i=1

|bi − ai|)1/p.

We conclude that δ := ϵp/2∥φ∥p works.

Recall that a function f : [a, b] → K is said to be a step function if it is a finite linear
combination of characteristic functions of sub-intervals of [a, b]. In particular, a step
function is a simple function. Let S denote the set of all step functions on [a, b], then
it is clear that S ⊂ Lp[a, b] for any 1 ≤ p ≤ ∞. The next lemma is a small piece of the
puzzle we need to complete our proof, and we leave it as an exercise for the reader.

Lemma 1.13. Let S denote the set of all step functions on an interval [a, b]. If 1 ≤ p < ∞,
then S is dense in Lp[a, b]. Furthermore, if f ∈ Lp[a, b] is a bounded function, then there is a
sequence ( fn) ⊂ S , and M > 0 such that fn → f in Lp[a, b], and | fn| ≤ M for all n ∈ N.

Theorem 1.14 (Riesz Representation Theorem (F. Riesz, 1909)). If 1 ≤ p < ∞, then the
map ∆ : Lq[a, b] → (Lp[a, b])∗ is an isometric isomorphism.

Proof. By Proposition 1.5, it suffices to prove that ∆ is surjective. So fix φ ∈ (Lp[a, b])∗,
and we want to construct g ∈ Lq[a, b] such that φ = φg. As you might expect, we start
with the function F : [a, b] → C given by

F(x) := φ(χ[a,x]).

By Lemma 1.12, F is absolutely continuous. Hence, by Lebesgue’s Fundamental Theo-
rem of Calculus, there exists g ∈ L1[a, b] such that

φ(χ[a,x]) = F(x) =
∫ x

a
g(t)dt =

∫ b

a
χ[a,x](t)g(t)dt

Hence, if f ∈ Lp[a, b] is a step function, then by linearity, it follows that

φ( f ) =
∫ b

a
f (t)g(t)dt.

Now, let S ⊂ Lp[a, b] denote the subspace of step functions. If f ∈ Lp[a, b] is a bounded
function, then, by Lemma 1.13, there is a sequence ( fn) ∈ S , and M > 0 such that
fn → f in Lp[a, b], and | fn| ≤ M for all n ∈ N. Replacing ( fn) by a subsequence if
necessary, we may assume that fn → f pointwise a.e. Hence, fng → f g pointwise a.e.,
and | fng| ≤ M|g| ∈ L1[a, b] for all n ∈ N. By the Dominated Convergence Theorem,∫ b

a
f (t)g(t)dt = lim

n→∞

∫ b

a
fn(t)g(t)dt = lim

n→∞
φ( fn).

Since ∥ fn∥p → ∥ f ∥p (by Remark 1.2), it follows that∣∣∣∣∫ b

a
f (t)g(t)dt

∣∣∣∣ = lim
n→∞

|φ( fn)| ≤ lim
n→∞

∥φ∥∥ fn∥p = ∥φ∥∥ f ∥p.
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Therefore, the inequality ∣∣∣∣∫ b

a
f (t)g(t)dt

∣∣∣∣ ≤ ∥φ∥∥ f ∥p

holds for all bounded measurable functions f ∈ Lp[a, b]. By Lemma 1.11, we conclude
that g ∈ Lq[a, b] and ∥g∥q ≤ ∥φ∥.

Now consider the bounded linear functional φg ∈ (Lp[a, b])∗, and observe that φ( f ) =
φg( f ) for all f ∈ S . Since S is dense in Lp[a, b], it follows that φ = φg. This concludes
the proof.

(End of Day 23)

2. The Hahn-Banach Extension Theorem

Suppose E is a normed linear space, and F < E a subspace. Given a bounded linear
functional φ : F → K, we would like to construct a bounded linear functional ψ : E →
K such that

ψ|F= φ.

In other words, ψ would be a continuous extension of φ. Furthermore, we would like
∥ψ∥ = ∥φ∥. Hence, ψ would be a norm-preserving extension of φ. We have already
seen two situations in which this is possible: If F = E, then there is a unique continuous
extension of φ by Proposition 2.4; and if E is a Hilbert space, then such is a continuous,
norm-preserving extension exists by Corollary 2.6.

Definition 2.1. A seminorm is a function p : E → R+ such that

p(αx) = |α|p(x) and p(x + y) ≤ p(x) + p(y)

for all x, y ∈ E and α ∈ K.

Lemma 2.2. Let E be a vector space over R, and p : E → R be a seminorm on E. Let F < E be
a subspace of E of codimension one, and let φ : F → R be a linear functional on F satisfying

φ(x) ≤ p(x)

for all x ∈ F. Then, there exists a linear functional ψ : E → R such that ψ|F= φ, and

ψ(x) ≤ p(x)

for all x ∈ E.

Proof. Since codim(F) = 1, there exists e ∈ E \ F such that every z ∈ E can be expressed
in the form z = x + αe for some (unique) x ∈ F and α ∈ R. As mentioned above, we
need to determine a real number

t := ψ(e)

so that ψ(z) ≤ p(z) may hold for all z ∈ E.
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(i) Suppose ψ : E → R exists such that ψ|F= φ and ψ(z) ≤ p(z) for all z ∈ E. Then
set t := ψ(e), so that ψ(x + αe) = φ(x) + αt ≤ p(x + αe). Consider the two cases:

(i) If α > 0, then t must satisfy the inequality

t ≤ p(x + αe)− φ(x)
α

for all x ∈ F. Hence,

t ≤ t1 := inf
{

p(x + αe)− φ(x)
α

: x ∈ F, α ∈ R>0

}
.

(ii) If α < 0, we write β = −α > 0. Then, for any y ∈ F,

ψ(y − βe) = φ(y)− βt ≤ p(y − βe).

Hence, t must satisfy the inequality

t ≥ φ(y)− p(y − βe)
β

for all y ∈ F. Therefore,

t ≥ t2 := sup
{

φ(y)− p(y − βe)
β

: y ∈ F, β ∈ R>0

}
.

However, this is only possible if t2 ≤ t1, so let us verify this fact.

(ii) We want to show that, for all x, y ∈ F, and all α, β > 0, the inequality

φ(y)− p(y − βe)
β

≤ p(x + αe)− φ(x)
α

holds. Cross-multiplying, this amounts to proving that

φ(αy) + φ(βx) ≤ βp(x + αe) + αp(y − βe).

Since p is a seminorm, this reduces to proving that

φ(αy + βx) ≤ p(βx + αβe) + p(αy − αβe).

Now, this last inequality follows from a calculation:

φ(αy + βx) = φ(αy − αβe + αβe + βx)
= φ(αy − αβe) + φ(βx + αβe)
≤ p(αy − αβe) + p(βx + αβe).

Therefore, we conclude that t2 ≤ t1 as desired.
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(iii) Having discussed the necessary condition in Step (i), we now construct the
extension. Consider t1 and t2 as above, so that t2 ≤ t1. We choose t ∈ R such that
t2 ≤ t ≤ t1, and define ψ : E → R by

ψ(x + αe) := φ(x) + αt.

Then, this map ψ is linear, and satisfies the condition that ψ(z) ≤ p(z) for all
z ∈ E.

Theorem 2.3 (Hahn-Banach Theorem - Real Case (Hahn, 1927 and Banach, 1929)). Let E
be a vector space over R, and p : E → R be a seminorm on E. Let F < E be a subspace, and
φ : F → R a linear functional such that

φ(x) ≤ p(x)

for all x ∈ F. Then, there exists a linear functional ψ : E → R such that

ψ|F= φ,

and ψ(x) ≤ p(x) for all x ∈ E.

Proof. If n := codim(F) < ∞, then we repeat Lemma 2.2 inductively.

If not, then we appeal to Zorn’s Lemma. Define F to be the set of all pairs (W, ψW),
where W < E is a subspace containing F, and ψW : W → R is a linear functional on W
such that

ψW|F= φ,

and ψW(x) ≤ p(x) for all x ∈ W. The set F is clearly non-empty since (F, φ) ∈ F .
Define a partial order ≤ on F by setting (W1, ψW1) ≤ (W2, ψW2) if and only if

W1 ⊂ W2 and ψW2 |W1= ψW1 .

It is easy to check that F now becomes a partially ordered set. We now verify that
Zorn’s Lemma is applicable: Let C be a totally ordered subset of F . Define

W0 :=
⋃

(W,ψW)∈C
W.

Then, since C is totally ordered, W0 is a subspace. Define ψ0 : W0 → R by

ψ0(x) := ψW(x)

if x ∈ W. Then, one can check that ψ0 is well-defined (again, since C is totally ordered).
Furthermore, ψ0(x) ≤ p(x) holds for all x ∈ W0. Hence, (W0, ψ0) ∈ F and it is clearly
an upper bound for C.
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Zorn’s Lemma now tells us that F has a maximal element, which we denote by (F0, φ0).
Now, we claim that F0 = E, and this is where we need the previous lemma. Suppose
not, then there exists e ∈ E \ F0. Define F1 := span(F0 ∪ {e}). Then, by Lemma 2.2, we
may extend φ0 to a linear map φ1 : F1 → R satisfying

φ1(x) ≤ p(x)

for all x ∈ F1. This would mean that (F1, φ1) ∈ F , which would contradict the
maximality of (F0, φ0). Hence, F0 = E, and ψ = φ0 is the required linear functional.

(End of Day 24)

Lemma 2.4. Let E be a complex vector space.

(i) If φ : E → R is an R-linear functional, then

φ̂(x) := φ(x)− iφ(ix)

is a C-linear functional

(ii) If ψ : E → C is a C-linear functional, then φ := Re(ψ) is a R-linear functional, and
φ̂ = ψ.

(iii) If p is a seminorm and φ and φ̂ are as in part (i), then the inequality

|φ(x)| ≤ p(x)

holds for all x ∈ E if and only if

|φ̂(x)| ≤ p(x)

holds for all x ∈ E.

(iv) If E is a normed linear space and φ and φ̂ are as above, then ∥φ∥ = ∥φ̂∥.

Proof. The proofs of the first two statements are left as an exercise.

(iii) Suppose that the inequality
|φ̂(x)| ≤ p(x)

holds for all x ∈ E. Then, clearly, the same inequality holds with φ. Conversely,
suppose

|φ(x)| ≤ p(x)

holds for all x ∈ E, then fix x ∈ E and choose λ ∈ C with |λ| = 1 such that
|φ̂(x)| = λφ̂(x). Then,

|φ̂(x)| = φ̂(λx) = Re(φ̂(λx)) = φ(λx) ≤ p(λx) = |λ|p(x) = p(x).

Thus, |φ̂(x)| ≤ p(x) for all x ∈ E.
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(iv) Let p(x) := ∥φ∥∥x∥, then |φ(x)| ≤ p(x) for all x ∈ E. By part (iii), |φ̂(x)| ≤ p(x)
for all x ∈ E, and so ∥φ̂∥ ≤ ∥φ∥. The reverse inequality is obvious since |φ(x)| =
|Re(φ̂(x))| ≤ |φ̂(x)| for all x ∈ E.

Theorem 2.5 (Hahn-Banach Theorem - General Case). Let E be a normed linear space, and
p : E → R+ be a seminorm on E. Let F < E be a subspace, and φ : F → K a linear functional
such that

|φ(x)| ≤ p(x)

for all x ∈ F. Then, there exists a linear functional ψ : E → K such that ψ|F= φ, and

|ψ(x)| ≤ p(x)

for all x ∈ E.

Proof.

(i) Suppose E is an R-vector space: By Theorem 2.3, there exists a linear functional
ψ : E → R such that

ψ(x) ≤ p(x)

for all x ∈ E. Then,

−ψ(x) = ψ(−x) ≤ p(−x) = p(x)

holds for all x ∈ E, and so |ψ(x)| ≤ p(x) holds.

(ii) Suppose E is a C-vector space: Define f : F → R by f = Re(φ). Then f is linear
and

| f (x)| ≤ p(x)

for all x ∈ F. By part (i), there is a linear functional g : E → R such that

g|F= f ,

and |g(x)| ≤ p(x) for all x ∈ E. Define ψ : E → C by ψ := ĝ as in Lemma 2.4,
then ψ is C-linear, and satisfies

|ψ(x)| ≤ p(x)

for all x ∈ E. This completes the proof.

Corollary 2.6. Let E be a normed linear space, and F < E a subspace. Then, for any bounded
linear functional φ ∈ F∗, there exists ψ ∈ E∗ such that

ψ|F= φ,

and ∥ψ∥ = ∥φ∥.
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Proof. Apply the Hahn-Banach Theorem with p(x) := ∥φ∥∥x∥

Corollary 2.7. Let E be a normed linear space, {e1, e2, . . . , en} ⊂ E be a finite, linearly
independent set, and {α1, α2, . . . , αn} ⊂ K be arbitrary scalars. Then there exists a bounded
linear functional ψ ∈ E∗ such that

ψ(ei) = αi

for all 1 ≤ i ≤ n.

Proof. Take F := span({e1, e2, . . . , en}) and define φ : F → K by

φ(ei) = αi,

extended linearly to all of F. Since F is finite dimensional, φ is a bounded linear
functional on F (by Corollary 4.6). We may now apply Corollary 2.6 to get a linear
functional ψ ∈ E∗ satisfying the required conditions.

Corollary 2.8. Let E be a normed linear space, and x ∈ E. Then,

∥x∥ = sup{|ψ(x)| : ψ ∈ E∗, ∥ψ∥ ≤ 1}.

Furthermore, this supremum is attained.

Proof. Set α := sup{|ψ(x)| : ψ ∈ E∗, ∥ψ∥ ≤ 1}. Then, is is easy to see that α ≤ ∥x∥.
Conversely, set F := span(x). Define φ : F → K by

βx 7→ β∥x∥.

Then, φ ∈ F∗; indeed, it is easy to check that ∥φ∥ = 1. By Corollary 2.6, there exists
ψ ∈ E∗ such that ψ(x) = ∥x∥, and ∥ψ∥ = 1. Hence, ∥x∥ = α as desired.

If E is a normed linear space, and φ ∈ E∗, then we know that

∥φ∥ = sup{|φ(y)| : y ∈ E, ∥y∥ ≤ 1}. (IV.1)

Corollary 2.8 may be thought of as a mirror image of this fact, except that the norm in
Equation IV.1 may not be attained.

Corollary 2.9. If x, y ∈ E are two vectors such that ψ(x) = ψ(y) for all ψ ∈ E∗, then x = y.

3. Quotient Spaces

Let us fix some notation we will use throughout this section: E will denote a fixed
normed linear space, F < E will be a subspace, and π : E → E/F is the natural quotient
map x 7→ x + F.

(End of Day 25)
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Proposition 3.1. Define p : E → R+ by

p(x) := d(x, F) = inf{∥x − y∥ : y ∈ F}.

Then,

(i) p defines a seminorm on E.

(ii) If F is closed, p induces a norm on E/F given by ∥x + F∥ := p(x).

Proof. By Homework 1.3, it suffices to prove (i).

(a) Clearly, p(x) ≥ 0, and p(x) = 0 if and only if x ∈ F.

(b) Now if α ∈ K, then consider d(αx, F) = inf{∥αx − y∥ : y ∈ F}. If α = 0, then
αx = 0 ∈ F, so p(αx) = 0. If α ̸= 0, then the map y 7→ αy is a bijection on F, and
hence

p(αx) = inf{∥αx − αy∥ : y ∈ F} = |α|p(x).

(c) Finally, if x1, x2 ∈ E, then for any y1, y2 ∈ F, we have ∥(x1 + x2)− (y1 + y2)∥ ≤
∥x1 − y1∥+ ∥x2 − y2∥. Since y1 + y2 ∈ F, it follows that

p(x1 + x2) ≤ ∥x1 − y1∥+ ∥x2 − y2∥.

Taking infimums independently, we conclude that p(x1 + x2) ≤ p(x1) + p(x2).

This proves that p is a seminorm.

Proposition 3.2. If F is a proper, closed subspace of E, then the quotient map π : E → E/F is
continuous, and ∥π∥ = 1.

Proof. If x ∈ E, we have

∥π(x)∥ = ∥x + F∥ = d(x, F) ≤ ∥x∥,

since 0 ∈ F. Hence π is continuous and ∥π∥ ≤ 1. Furthermore, by Riesz’ Lemma
(Lemma 4.11), for each 0 < t < 1, there exists xt ∈ E such that ∥xt∥ = 1, and
∥π(xt)∥ ≥ t. Hence, ∥π∥ ≥ 1.

Proposition 3.3. Let E be an normed linear space, F < E a subspace, x0 ∈ E \ F and suppose
that

d := d(x0, F) > 0.

Then, there exists φ ∈ E∗ such that

(a) φ(x) = 0 for all x ∈ F,

(b) φ(x0) = 1, and

(c) ∥φ∥ = d−1.
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Proof. Since d(x0, F) = d(x0, F) > 0, we may assume without loss of generality that F is
closed. If π : E → E/F denotes the natural quotient map, then ∥π(x0)∥ = d. Hence, by
Corollary 2.8, there exists ψ ∈ (E/F)∗ such that ∥ψ∥ = 1, and

ψ(x0 + F) = ∥x0 + F∥ = d.

Define φ : E → K by
φ := d−1ψ ◦ π.

Then, φ ∈ E∗ satisfies conditions (a) and (b). To verify condition (c), observe that
∥π∥ ≤ 1, and therefore

|φ(y)| ≤ d−1∥ψ∥∥π(y)∥ ≤ d−1∥y∥

for all y ∈ E. Hence, ∥φ∥ ≤ d−1. However, ∥ψ∥ = 1, and hence

sup{|ψ(z + F)| : ∥z + F∥ = 1} = 1.

Therefore, there exists a sequence (xn + F) ∈ E/F such that ∥xn + F∥ = 1 for all n ∈ N,
and

lim
n→∞

|ψ(xn + F)| = 1.

Let yn ∈ F such that ∥xn + yn∥ < 1 + 1/n for each n ∈ N, so that

d−1|ψ(xn + F)| = |φ(xn + yn)| ≤ ∥φ∥∥xn + yn∥ ≤ ∥φ∥(1 + 1/n).

Letting n → ∞, we conclude that d−1 ≤ ∥φ∥.

For any bounded linear functional φ ∈ E∗, it is clear that its restriction φ|F is a bounded
linear functional on F, and that ∥φ|F∥ ≤ ∥φ∥. This gives us a bounded linear map
R : E∗ → F∗ given by

φ 7→ φ|F.

The Hahn-Banach Theorem merely says that this map is surjective.

Definition 3.4. The space ker(R) := {φ ∈ E∗ : φ|F= 0} is called the annihilator of F,
and is denoted by F⊥. Note that F⊥ is a subspace of E∗, and that it is closed.

Corollary 3.5. Let E be an normed linear space, and F < E be a subspace. Then,

F =
⋂

φ∈F⊥

ker(φ).

In other words, a vector x ∈ E belongs to F if and only if φ(x) = 0 for all φ ∈ F⊥.

Proof. Clearly,
W :=

⋂
φ∈F⊥

ker(φ)

is a closed subspace containing F, and hence F ⊂ W. Conversely, if x0 /∈ F, then
d(x0, F) > 0. By Proposition 3.3, there exists φ ∈ E∗ such that F ⊂ ker(φ), and

φ(x0) ̸= 0.

Hence, x0 /∈ W. We conclude that W ⊂ F as well.
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Corollary 3.6. Let E be an normed linear space, and F < E a subspace. Then, F is dense in E if
and only if F⊥ = {0}.

(End of Day 26)

4. Separability and Reflexivity

Let us now return to an unresolved question from the first section of this chapter. Recall
that for each y = (yn) ∈ ℓ1, the map φy : ℓ∞ → K, given by (xk) 7→ ∑∞

n=1 xnyn is a
bounded linear functional. Furthermore, the map

∆ : ℓ1 → (ℓ∞)∗

given by ∆(y) := φy, is an isometry by Proposition 1.2. Similarly, we have an isometry

∆ : L1[a, b] → (L∞[a, b])∗.

We now show that these maps may not be surjective.

Proposition 4.1. Let E be an normed linear space. If E∗ is separable, then E is separable.

Proof. If E∗ is separable, then it is easy to see that the unit sphere

S := {φ ∈ E∗ : ∥φ∥ = 1}

is separable. We choose a countable set {φ1, φ2, . . .} ⊂ S that is dense in S. For each
n ∈ N, ∥φn∥ = 1. Therefore, there exist vectors xn ∈ E such that ∥xn∥ = 1 and

|φn(xn)| > 1/2.

Let F = span{xn : n ≥ 1}. If we set K0 = Q or Q × Q according as K = R or C, then

D := spanK0
{xn : n ≥ 1}

is countable, and dense in F. Hence, F is separable. We wish to prove that F = E, and
in order to do that, we would like to appeal to Corollary 3.6. Suppose φ ∈ F⊥ is a
non-zero bounded linear operator, then we may assume that ∥φ∥ = 1. Since φ(xn) = 0
for all n ∈ N, it follows that

∥φ − φn∥ ≥ |φ(xn)− φn(xn)| > 1/2

for all n ∈ N. This contradicts the fact that {φn : n ∈ N} is dense in S. Thus, F⊥ = {0},
and F is dense in E by Corollary 3.6. We conclude that E is separable.

Corollary 4.2. The maps

∆ : ℓ1 → (ℓ∞)∗, and

∆ : L1[a, b] → (L∞[a, b])∗

are not surjective
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Proof. If ∆ were an isomorphism, then (ℓ∞)∗ would be isomorphic to ℓ1. However, ℓ1

is separable, so this would imply ℓ∞ was separable, which contradicts Example 3.16.
Similarly, (L∞[a, b])∗ ≇ L1[a, b].

Let c denote the vector space of all convergent sequences in K (see Homework 2.5),
thought of as a closed subspace of ℓ∞. Define φ : c → K by

φ((xj)) := lim
n→∞

xn

This is well-defined, bounded, and linear. Therefore, by the Hahn-Banach Theorem, we
may extend this to a bounded linear functional on ℓ∞.

Example 4.3.

(i) Let ψ ∈ (ℓ∞)∗ be a linear functional such that

ψ((xn)) = lim
n→∞

xn

whenever (xn) ∈ c. We claim that ψ /∈ ∆(ℓ1): Suppose there exists y = (yj) such
that ψ = ∆(y) = φy, then

lim
i→∞

xi =
∞

∑
n=1

xnyn

for all (xj) ∈ c. In particular, for j ∈ N fixed, consider ej ∈ ℓ∞ (as defined in
Example 1.4). Then, ej ∈ c0 ⊂ c, so

yj = ψ(ej) = 0.

Thus, y = 0. But if this were true, it would imply that ψ = 0. However, ψ ̸= 0
since ψ(1) = 1. Therefore, there is no y ∈ ℓ1 such that φ = ∆(y).

(ii) Consider C[a, b] ⊂ L∞[a, b] and define φ : C[a, b] → K by

φ( f ) := f (b).

Then, φ is a bounded linear functional, so by the Hahn-Banach Theorem, there
exists a bounded linear functional ψ : L∞[a, b] → K such that

ψ( f ) = f (b)

for all f ∈ C[a, b]. We claim that ψ /∈ ∆(L1[a, b]). Suppose there exists g ∈ L1[a, b]
such that ψ = φg, then g would satisfy

f (b) =
∫ b

a
f (t)g(t)dt

for all f ∈ C[a, b]. For n ∈ N, let fn ∈ C[a, b] be given by

fn(t) =


0 : if a ≤ t ≤ b − 1/n
1 : if t = b
linear : otherwise
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Then, for any t ∈ [a, b),
lim

n→∞
fn(t) = 0

Hence, fn → 0 pointwise a.e. Since fn ∈ L∞[a, b], and g ∈ L1[a, b], we may apply
Dominated Convergence Theorem to conclude that

lim
n→∞

ψ( fn) = lim
n→∞

∫ b

a
fn(t)g(t)dt = 0.

However, ψ( fn) = fn(b) = 1 for all n ∈ N. This contradiction shows that ψ ̸= φg

for any g ∈ L1[a, b].

Definition 4.4. Let E be an normed linear space.

(i) The double dual of E is the dual of E∗, and is denoted by E∗∗ := (E∗)∗.

(ii) For each x ∈ E, define x̂ : E∗ → K by

x̂(φ) := φ(x).

Note that x̂ is a linear functional on E∗, and

∥x̂∥ = sup{|φ(x)| : φ ∈ E∗, ∥φ∥ = 1} = ∥x∥ (IV.2)

by Corollary 2.8. Therefore, x̂ ∈ E∗∗.

(iii) Define J : E → E∗∗ by
J(x) := x̂.

Then, J is a linear transformation, which is isometric by Equation IV.2.

(iv) E is said to be reflexive if J is an isomorphism from E to E∗∗.

Example 4.5.

(i) If E is finite dimensional, then it is reflexive.

Proof. If E is finite dimensional, then

dim(E) = dim(E∗) = dim(E∗∗).

Since J is injective, it must be surjective.

(End of Day 27)

(ii) Every Hilbert space is reflexive.

Proof. Given the Riesz Representation Theorem, this proof is almost tautological.
Let H be a Hilbert space, and define ∆ : H → H∗ by ∆(y) := φy where

φy(x) := ⟨x, y⟩.
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Then ∆ is an conjugate-linear isomorphism of normed linear spaces. In particular,
H∗ is a Hilbert space under the inner product

(φy, φz) := ⟨z, y⟩.

Hence, if T ∈ H∗∗, then, by the Riesz Representation Theorem applied to H∗,
there exists φ ∈ H∗ such that

T(ψ) = (ψ, φ)

for all ψ ∈ H∗. By the Riesz Representation Theorem, there exists y ∈ H such that
φ = φy. For any z ∈ H, taking ψ = φz in the above equation gives

T(φz) = (φz, φy) = ⟨y, z⟩.

Now consider ŷ ∈ H∗∗, and observe that

ŷ(φz) = φz(y) = ⟨y, z⟩.

Therefore, T = ŷ and so J is surjective.

(iii) For 1 < p < ∞, ℓp is reflexive.

Proof. Let q ∈ (1, ∞) such that 1/p + 1/q = 1, and let ∆p : ℓq → (ℓp)∗ be the
map from Definition 1.1. Similarly, let ∆q : ℓp → (ℓq)∗ denote the corresponding
map obtained by letting ℓp act on ℓq. Then, by Theorem 1.3, both maps induce
isomorphisms

∆p : ℓq ∼= (ℓp)∗ and ∆q : ℓp ∼= (ℓq)∗.

Now, suppose T ∈ (ℓp)∗∗, then T : (ℓp)∗ → K is bounded and linear. Hence,
T ◦ ∆p : ℓq → K is bounded and linear. Since ∆q is surjective, there exists x ∈ ℓp

such that
∆q(x) = T ◦ ∆p.

Hence, for any y ∈ ℓq, we have

∞

∑
n=1

xnyn = ∆q(x)(y) = T(∆(y)).

However, we observe that

x̂(∆(y)) = x̂(φy) = φy(x) =
∞

∑
n=1

xnyn.

Since ∆ is surjective, we conclude that x̂ = T. Therefore, J : ℓp → (ℓp)∗∗ is
surjective.

(iv) A similar argument shows that Lp[a, b] is reflexive, provided 1 < p < ∞.

Proposition 4.6. Let E be a reflexive space, then E is separable if and only if E∗ is separable.
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Proof. If E∗ is separable, then E is separable by Proposition 4.1. Conversely, if E is
separable and reflexive then E∗∗ = (E∗)∗ is separable. Hence, E∗ is separable by
Proposition 4.1.

Proposition 4.7. Let E be a reflexive space and F < E a closed subspace, then F is reflexive.

Proof. We have a isometric maps JF : F → F∗∗ and JE : E → E∗∗. Assuming JE is
surjective, we want to show that JF is surjective. So suppose T ∈ F∗∗, then we wish to
show that there exists x ∈ F such that T = JF(x). Consider T : F∗ → K as a bounded
linear functional, and define S : E∗ → K by

S(φ) := T(φ|F).

Then, S is clearly a linear functional, and

|S(φ)| = |T(φ|F)| ≤ ∥T∥∥φ|F∥ ≤ ∥T∥∥φ∥

Hence, S is a bounded, and therefore in E∗∗. Since E is reflexive, there exists x ∈ E such
that

S = JE(x).

We claim that x ∈ F, and that T = JF(x). Suppose x /∈ F, then, by Proposition 3.3, there
exists φ ∈ E∗ such that φ|F= 0, and φ(x) = 1. However, this would imply that

1 = φ(x) = JE(x)(φ) = S(φ) = T(φ|F) = T(0) = 0.

This is a contradiction, and therefore it must happen that x ∈ F. Now, for any φ ∈ F∗,
we choose a Hahn-Banach extension ψ ∈ E∗ of φ. Then, ψ(x) = φ(x) since x ∈ F.
Therefore,

T(φ) = T(ψ|F) = S(ψ) = JE(x)(ψ) = ψ(x) = φ(x) = JF(x)(φ).

We conclude that JF is surjective.

Example 4.8.

(i) Any reflexive space is necessarily complete, because the dual space of any normed
linear space is complete. Therefore, (c00, ∥ · ∥p) is not reflexive for any 1 ≤ p ≤ ∞
(see Proposition 3.4 and Mid-Sem Exam Q1).

(ii) For the same reason, (C[a, b], ∥ · ∥p) is not reflexive, if 1 ≤ p < ∞ (by Proposi-
tion 3.12).

(iii) ℓ1 is separable, but its dual space ℓ∞ is not separable (by Example 3.16). Therefore,
ℓ1 is not reflexive. Similarly, L1[a, b] is not reflexive either.

(iv) C[a, b] (equipped with the supremum norm) is not reflexive because C[a, b]∗ is
not separable (Homework 6.1), while C[a, b] itself is separable.

(v) L∞[a, b] is not reflexive since it has a closed subspace C[a, b] that is not reflexive.
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(vi) From Homework 6.3, there is an isometric isomorphism ℓ1 → (c0)
∗. Hence,

(c0)
∗∗ ∼= ℓ∞.

Now, c00 is dense in c0 (by Mid-Sem Exam Q1), which tells us that c0 is separable
(by Remark 3.15). Since ℓ∞ is not separable, it follows that c0 is not reflexive.

(vii) Since c0 is a closed subspace of ℓ∞, it follows from Proposition 4.7 that ℓ∞ is not
reflexive.

(End of Day 28)
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V. Operators on Banach Spaces

1. The Principle of Uniform Boundedness

Theorem 1.1 (Baire Category Theorem (Baire, 1899)). Let (X, d) be a complete metric space
and {Vn}∞

n=1 be a countable collection of open, dense subsets of X. Then,

G :=
∞⋂

n=1

Vn

is dense in X.

Proof. As is usual, we write B(x, r) := {y ∈ X : d(y, x) < r} and B[x, r] := {y ∈ X :
d(y, x) ≤ r}.

Let U be a non-empty open set. We wish to prove that G ∩ U ̸= ∅. We do this by
inductively constructing a sequence whose limit point lies in this intersection. To begin
with, U ∩ V1 is non-empty, and open. Hence, there exists x1 ∈ U ∩ V1 and r1 > 0 such
that B(x1, r1) ⊂ U ∩ V1. By shrinking r1 if need be, we may assume that r1 < 1, and

B(x1, r1) = B[x1, r1] ⊂ U ∩ V1.

Since V2 is dense in X, B(x1, r1) ∩ V2 ̸= ∅. Once again, there exists x2 ∈ X, and r2 > 0
such that r2 < 1

2 , and
B[x2, r2] ⊂ B(x1, r1) ∩ V2.

Observe that B[x2, r2] ⊂ U ∩ (V1 ∩ V2). Thus proceeding, we obtain a sequence (xn) ⊂
X and (rn) ⊂ R+ such that

(i) B[xn, rn] ⊂ B(xn−1, rn−1),

(ii) rn < 1/n, and

(iii) B[xn, rn] ⊂ U
⋂ [⋂n−1

i=1 Vi

]
.

Now, for m ∈ N fixed, and all n > m, we have d(xn, xm) < rm < 1/m, and hence (xn)
is Cauchy. Since X is complete, there exists x0 ∈ X such that xn → x0. We claim that
x0 ∈ U ∩ G. To see this, note that, for all n ≥ m,

xn ∈ B[xm, rm].

Since this set is closed, it follows that

x0 ∈ B[xm, rm] ⊂ U
⋂ [

∩m−1
i=1 Vi

]
.

This is true for all m ∈ N and hence x0 ∈ U ∩ G.
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Let (X, d) be a metric space and A ⊂ X. We say that A is nowhere dense if A has empty
interior (equivalently, if X \ A is a dense open set). Note that A is nowhere dense if and
only if A is nowhere dense. The Baire Category Theorem may now be restated as

Corollary 1.2. A complete metric space cannot be written as a countable union of nowhere
dense sets.

Lemma 1.3. Every closed, proper subspace of a normed linear space is nowhere dense.

Corollary 1.4. If E is an infinite dimensional Banach space, then E cannot have a countable
Hamel basis.

Proof. Suppose A := {en : n ∈ N} is a countable subset of E, then define Fn :=
span{e1, e2, . . . , en}. Since Fn is finite dimensional, Fn is both closed, and a proper
subspace of E. Therefore, it is nowhere dense by Lemma 1.3. By Corollary 1.2,

E ̸=
∞⋃

n=1

Fn.

In particular, E contains at least one element that cannot be expressed as a finite linear
combination of elements in A.

Example 1.5.

(i) Let H be an infinite dimensional separable Hilbert space, and Λ an orthonormal
basis for H, then Λ cannot be a Hamel basis for H (see ??).

(ii) There is no norm on c00 that makes it a Banach space.

Theorem 1.6 (Principle of Uniform Boundedness (Hahn, 1922, Banach and Steinhaus,
1927)). Let E be a Banach space, and F be any normed linear space. Let G ⊂ B(E, F) be a
collection of bounded linear operators such that

sup
T∈G

∥T(x)∥ < ∞

for each x ∈ E. Then, supT∈G ∥T∥ < ∞.

Proof. For n ∈ N, define

Bn :=
⋂

T∈G
{x ∈ E : ∥T(x)∥ ≤ n}.

Then, each Bn is closed, because it is the intersection of a family of closed sets. Further-
more, by hypothesis,

E =
∞⋃

n=1

Bn.
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By the Baire Category Theorem, there exists N ∈ N such that BN has non-empty
interior. Therefore, there exists x0 ∈ E, and r > 0 such that B(x0, r0) ⊂ BN. Now, we
apply the scaling trick: For any x ∈ E, set

z :=
r0x

2∥x∥ + x0 ∈ B(x0, r0).

Then, for any T ∈ G, ∥T(z)∥ ≤ N. Unwrapping this, we get

∥T(x)∥ =
2∥x∥

r0
∥T(z)− T(x0)∥ ≤ 2∥x∥

r0
(N + ∥T(x0)∥).

Hence, if M := 2
r0
(N + ∥T(x0)∥), then for any x ∈ E and any T ∈ G, we have ∥T(x)∥ ≤

M∥x∥. Thus, sup{∥T∥ : T ∈ G} ≤ M < ∞.

Theorem 1.7 (Banach-Steinhaus Theorem, 1927). Let E be a Banach space, and F be any
normed linear space. Suppose (Tn)∞

n=1 ⊂ B(E, F) is a sequence of bounded operators such that,
for each x ∈ E, the sequence (Tn(x))∞

n=1 is convergent in F. Then, the map T : E → F defined
by

T(x) := lim
n→∞

Tn(x)

is a bounded linear map. Furthermore, ∥T∥ ≤ lim infn→∞ ∥Tn∥.

Proof. It is easy to see that the map T defined above is linear; we need only prove that
it is bounded. For each x ∈ E, (Tn(x))∞

n=1 is convergent, and hence bounded. By the
Principle of Uniform Boundedness, there exists M > 0 such that ∥Tn∥ ≤ M for all
n ∈ N. Therefore, for each x ∈ E,

∥T(x)∥ = lim
n→∞

∥Tn(x)∥ ≤ M∥x∥.

Hence, T ∈ B(E, F) and ∥T∥ ≤ M. The norm inequality is a refinement of this argument,
and is left as an exercise.

(End of Day 29)

2. The Open Mapping and Closed Graph Theorems

For a normed linear space E, subsets A, B ⊂ E and a scalar λ ∈ K, we define A + B :=
{a + b : a ∈ A, b ∈ B}, and λA := {λa : a ∈ A}. We begin with a small observation.

Lemma 2.1. If A is convex, then A + A = 2A.

Proof. It is clear that 2A ⊂ A + A. For the reverse inclusion, let x, y ∈ A. Then, since A
is convex, x+y

2 ∈ A. Therefore,

x + y = 2
x + y

2
∈ 2A.

This proves the reverse inclusion as well.
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Lemma 2.2. Let E be an normed linear space, F be a Banach space and T ∈ B(E, F) be a
surjective, bounded linear map. Then, for every r > 0, there exists s > 0 such that

BF(0, s) ⊂ T(BE(0, r))

Proof. Fix r > 0. For n ∈ N, define

Bn := nT(BE(0, r)).

Then, Bn is closed, and

F = T(E) =
∞⋃

n=1

Bn.

Since F is complete, by the Baire Category Theorem (Corollary 1.2), there exists N ∈ N

such that BN has non-empty interior. Since the map y 7→ Ny is a homeomorphism of E,
B1 must contain an open set. Thus, there exists y0 ∈ F, and s0 > 0 such that

BF(y0, s0) ⊂ B1.

In particular, y0 ∈ B1 and so −y0 ∈ B1 as well. Now, for any y ∈ BF(0, s0), we have

y = (y + y0) + (−y0) ∈ BF(y0, s0) + B1 ⊂ B1 + B1

Since B1 is convex, Lemma 2.1 implies that BF(0, s0) ⊂ 2B1. Therefore, s = s0/2
works.

Lemma 2.3. Let E and F be Banach spaces, and T ∈ B(E, F) be a surjective, bounded linear
map. Then, for every r > 0, there exists s > 0 such that

BF(0, s) ⊂ T(BE(0, r)).

Proof. For each natural number n ∈ N, set rn := r/2n+1. By Lemma 2.2, there exists
sn > 0 such that

BF(0, sn) ⊂ T(BE(0, rn)). (V.1)

Furthermore, we may choose sn inductively in such a way that limn→∞ sn = 0. We
claim that

BF(0, s1) ⊂ T(BE(0, r)).

Fix y ∈ BF(0, s1), then y1 ∈ T(BE(0, r1)) by Equation V.1. Therefore, there exists
x1 ∈ BE(0, r1) such that

∥T(x1)− y∥ < s2.

Now, T(x1) − y ∈ BF(0, s2), and BF(0, s2) ⊂ T(BE(0, r2)). Therefore, there exists
x2 ∈ BE(0, r2) such that

∥T(x2) + T(x1)− y∥ < s3.

Thus proceeding, we obtain a sequence (xn) ⊂ E such that, for each n ∈ N, xn ∈
BE(0, rn), and

∥T(xn) + T(xn−1) + . . . + T(x1)− y∥ < sn+1 (V.2)
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Now, note that
∞

∑
n=1

∥xn∥ ≤
∞

∑
n=1

r
2n+1 =

r
2
< ∞.

Since E is a Banach space (by Proposition 3.8), there exists z ∈ E such that

z =
∞

∑
n=1

xn.

By Equation V.2, we have that∥∥∥∥∥T

(
n

∑
i=1

xi

)
− y

∥∥∥∥∥ < sn+1.

By assumption, limn→∞ sn = 0. Since T is continuous, it follows that T(z) = y. Note
that ∥z∥ ≤ r

2 < r, so y ∈ T(BE(0, r)). This proves that BF(0, s1) ⊂ T(BE(0, r)).

Theorem 2.4 (Open Mapping Theorem (Banach, 1932)). Let E and F be Banach spaces, and
T ∈ B(E, F) be a surjective, bounded linear map. Then T is an open map.

Proof. Let V ⊂ E be an open set. We wish to prove that T(V) is open. So let y ∈ T(V),
and write y = T(x) for some x ∈ V. Since V is open, there exists r > 0 such that
BE(x, r) ⊂ V. By Lemma 2.3, there exists s > 0 such that

BF(0, s) ⊂ T(BE(0, r)).

Hence,

BF(y, s) = y + BF(0, s) ⊂ y + T(BE(0, r)) = T(x + BE(0, r)) = T(BE(x, r)) ⊂ T(V).

Thus, for each y ∈ T(V), there exists s > 0 such that BF(y, s) ⊂ T(V). In other
words,T(V) is an open set.

Theorem 2.5 (Bounded Inverse Theorem). Let E and F be Banach spaces. If T ∈ B(E, F) is
bijective, then T−1 is continuous.

Proof. Since T is bijective, T−1 is a well-defined linear operator. That T−1 is continuous
follows from the Open Mapping Theorem.

Corollary 2.6 (First Isomorphism Theorem). Let E and F be Banach spaces, and T ∈ B(E, F)
be a surjective, bounded linear operator. Then, the map T̂ : E/ ker(T) → F given by

x + ker(T) 7→ T(x)

is a topological isomorphism.

(End of Day 30)

Example 2.7. The examples given below show that the completeness assumptions of
the Open Mapping Theorem cannot be avoided:
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(i) In Question 3 of the Mid-Sem Exam, we constructed an example of an injective
map T : ℓ2 → ℓ2, whose inverse (defined on Range(T)) is not continuous. The
reason for this, of course, is that Range(T) is not complete.

(ii) Let E := (C[0, 1], ∥ · ∥∞) and F be the subspace

F := { f ∈ C1[0, 1] : f (0) = 0},

equipped with the supremum norm. Note that F is not closed (and hence not
complete). Define T : E → F by

T( f )(x) :=
∫ x

0
f (t)dt

Then T is well-defined, bounded, and bijective. However, T−1 : F → E is the map

f 7→ f ′,

which is not bounded (See Question 2 on Quiz 1).

(iii) If ι : (c00, ∥ · ∥1) → (c00, ∥ · ∥∞) to be the identity map, then ι is clearly bijective
and bounded. However, the two norms are not equivalent (see Example 4.3).
Therefore, the inverse map is not continuous.

Definition 2.8. Let X and Y be topological spaces and f : X → Y be a function. The
graph of f is the set

G( f ) := {(x, f (x)) : x ∈ X} ⊂ X × Y

Lemma 2.9. Let X and Y be two metric spaces, and f : X → Y be a continuous map. Then,
G( f ) is closed in X × Y (where X × Y is equipped with a product metric).

Proof. Choose a sequence (xn, f (xn)) ∈ G( f ) such that (xn, f (xn)) → (x, y) in X × Y.
Then, by definition of the product topology, xn → x in X, and f (xn) → y in Y. Since f
is continuous, f (xn) → f (x) as well, and since Y is Hausdorff, it follows that

y = f (x).

Therefore, (x, y) ∈ G( f ).

It is quite easy to construct a discontinuous (non-linear) function f : R → R whose
graph is closed. However, the Closed Graph Theorem does provide a converse of
Lemma 2.9 in the context of linear maps.

Definition 2.10. Let E and F be normed linear spaces, and T : E → F be a linear
operator (not necessarily bounded). The function ∥ · ∥G : E → R+

∥x∥G := ∥x∥E + ∥T(x)∥F

defines a norm on E, and is called the graph norm on E with respect to T. Note that

(i) ∥x∥E ≤ ∥x∥G for all x ∈ E, and
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(ii) ∥ · ∥E ∼ ∥ · ∥G if and only if T is bounded.

Lemma 2.11. Let E be a vector space that is a Banach space with respect to two norms ∥ · ∥1
and ∥ · ∥2. Suppose that there exists c > 0 such that

∥x∥1 ≤ c∥x∥2

for all x ∈ E. Then, ∥ · ∥1 ∼ ∥ · ∥2.

There is an important caveat to Lemma 2.11: The space E must be complete with respect
to each norm independently. For instance, if we take E := C[0, 1], and equip it with
∥ · ∥∞ and ∥ · ∥1, then (C[0, 1], ∥ · ∥∞) is complete, and ∥ f ∥1 ≤ ∥ f ∥∞ for all f ∈ E.
However, the two norms are not equivalent.

Theorem 2.12 (Closed Graph Theorem (Banach, 1932)). Let E and F be Banach spaces, and
T : E → F be a linear operator. If G(T) is closed in E × F, then T is continuous.

Proof. Consider the Graph norm ∥ · ∥G on E with respect to T, as above. By Lemma 2.11,
it suffices to show that (E, ∥ · ∥G) is a Banach space. So, suppose (xn) ⊂ E is Cauchy
with respect to ∥ · ∥G. Then, ∥xn − xm∥E ≤ ∥xn − xm∥G, and

∥T(xn)− T(xm)∥F ≤ ∥xn − xm∥G.

Hence, (xn) is Cauchy in E, and (T(xn)) is Cauchy in F. Since both spaces are complete,
there exist x ∈ E and y ∈ F such that limn→∞ xn = x, and

lim
n→∞

T(xn) = y.

Since G(T) is closed, this implies that T(x) = y. We conclude that ∥xn − x∥G → 0.
Hence, (E, ∥ · ∥G) is a Banach space, and Lemma 2.11 implies that

∥ · ∥G ∼ ∥ · ∥E.

Therefore, T is bounded.
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VI. Weak Topologies

1. Weak Convergence

Definition 1.1. Let E be an normed linear space. A sequence (xn) ⊂ E is said to
converge weakly to x ∈ E if

φ(xn) → φ(x)

for all φ ∈ E∗. If this happens, we write xn
w−→ x.

In this chapter, if xn → x in the norm, then we say that xn → x strongly, and we write

xn
s−→ x.

Example 1.2.

(i) If xn
w−→ x and xn

w−→ y, then x = y. This is because E∗ separates points of E
(Corollary 2.9). Furthermore, if xn

w−→ x then any subsequence (xnk) of (xn) also
converges weakly to x.

(ii) If xn
s−→ x, then x w−→ x. This is because every element of E∗ is continuous with

respect to the norm topology.

(iii) If E is a finite dimensional normed linear space and xn
w−→ x, then xn

s−→ x.

Proof. By Corollary 4.8, we may assume without loss of generality that E =
(Km, ∥ · ∥1) for some m ∈ N. For each 1 ≤ i ≤ m, the projection maps πi : E → K

are bounded linear functionals. Hence, πi(xn) → πi(x). Then,

lim
n→∞

∥xn − x∥1 = lim
n→∞

m

∑
i=1

|πi(xn)− πi(x)| = 0.

Hence, xn
s−→ x.

(iv) If H is an infinite dimensional Hilbert space and (en) ⊂ H an orthonormal
sequence, then for any x ∈ H,

lim
n→∞

⟨en, x⟩ = 0

by the Riemann-Lebesgue Lemma (Corollary 3.11). By the Riesz Representation
Theorem, en

w−→ 0.
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However, we claim that (en) does not converge strongly to any point in H. If
x ∈ H were such that en

s−→ x, then en
w−→ x, whence x = 0. But ∥en∥ = 1 for all

n ∈ N, so the continuity of the norm (Remark 1.2) implies that ∥x∥ = 1. This
contradiction shows that (en) is not strongly convergent.

Lemma 1.3. Let E be an normed linear space and xn
w−→ x, then (xn) is bounded, and

∥x∥ ≤ lim inf
n→∞

∥xn∥.

Proof. Consider the map J : E → E∗∗ given by J(x) := x̂, where x̂ : E∗ → K is given by

x̂(φ) := φ(x).

By hypothesis, x̂n(φ) → x̂(φ) for all φ ∈ E∗. By the Banach-Steinhaus Theorem applied
to the Banach space E∗, (∥x̂n∥) is a bounded sequence, and

∥x̂∥ ≤ lim inf ∥x̂n∥.

Now the result follows from the fact that J is an isometry.

Proposition 1.4. Let E be an normed linear space, (xn) ⊂ E be a bounded sequence, and
G ⊂ E∗ be such that span(G) is a norm dense subset of E∗. Suppose x ∈ E is a vector such
that

φ(xn) → φ(x)

for all φ ∈ G. Then, xn
w−→ x

Proof. By assumption, φ(xn) → φ(x) for all φ ∈ F := span(G). Now, if ψ ∈ E∗, and
ϵ > 0, then there exists φ ∈ F such that ∥ψ − φ∥ < ϵ. Then, we look to exploit the
inequality

|ψ(xn)− ψ(x)| ≤ |ψ(xn)− φ(xn)|+ |φ(xn)− φ(x)|+ |φ(x)− ψ(x)| (VI.1)

By hypothesis, there exists M > 0 such that ∥xn∥ ≤ M for all n ∈ N. Also, there
exists N ∈ N such that |φ(xn)− φ(x)| < ϵ for all n ≥ N. Plugging all this back in
Equation VI.1, we get

|ψ(xn)− ψ(x)| ≤ Mϵ + ϵ + ϵ∥x∥,

which holds for all n ≥ N. Since this is true for any ϵ > 0, ψ(xn) → ψ(x).

Corollary 1.5. Let E = c0 or ℓp with 1 < p < ∞, and let (xn) ⊂ E be a bounded sequence
such that

xn
j → xj

for each j ∈ N. Then xn w−→ x.
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Proof. We first assume E = ℓp for 1 < p < ∞, since the other case is similar. For each
j ∈ N, the evaluation map φj : E → K is given by

φj((yn)) := yj,

and let G := {φj : j ∈ N}. By assumption, φ(xn) → φ(x) for each φ ∈ G, so we look
to apply Proposition 1.4. Recall that we have an isomorphism ∆ : ℓq → (ℓp)∗, where
1/p + 1/q = 1. Under this isomorphism,

ej 7→ φj.

Since 1 < q < ∞, c00 is dense in ℓq. Therefore, span(G) = ∆(c00) is dense in E∗. The
conclusion now follows from Proposition 1.4.

For the case of E = c0, the argument is identical, except we use the isomorphism
∆ : ℓ1 → (c0)

∗ proved in Homework 6.3.

Example 1.6. Let E = ℓ∞ and

xk := (1, 1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . .)

For j ∈ N, consider the evaluation linear functional φj ∈ E∗ given by φj((yn)) := yj.
Then, limk→∞ φj(xk) = 1. Therefore, if xk w−→ x, then it follows that

x = (1, 1, 1, . . .) = 1.

However, let ψ ∈ (ℓ∞)∗ be a Banach limit (Example 4.3), so that

ψ((xj)) = lim
n→∞

xn

for all (xn) ∈ c. Then, in particular, ψ(xk) = 0 for all n ∈ N. Since ψ(1) = 1, it follows
that (xk) is not weakly convergent.

However, (xk) is bounded in ℓ∞. Thus, the conclusion of Corollary 1.5 does not hold
for ℓ∞. Once again, this failure is down to the fact that c00 is not dense in (ℓ∞)∗, since
the latter is not separable.

(End of Day 31)

2. The Hahn-Banach Separation Theorem

In Chapter IV, we proved the Hahn-Banach Extension Theorem. The version for real
vector spaces relied on Lemma 2.2, where we extended the linear functional from a
subspace of codimension one to the whole space. Let us now revisit this argument, this
time paying attention to the seminorm p : E → R. A closer look at the proof tells us
that we needed two properties of p:
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(a) p(αx) = αp(x) for all x ∈ E, and α ≥ 0, and

(b) p(x + y) ≤ p(x) + p(y) for all x, y ∈ E.

We never used the fact that p(αx) = |α|p(x) for all α ∈ R (The analogous property was
needed, however, for complex vector spaces).

Definition 2.1. Let E be a vector space. A function p : E → R is said to be a
sublinear functional if it satisfies the properties (a) and (b) given above.

Theorem 2.2. Let C be a non-empty, convex, open subset of a normed linear space E such that
0 ∈ C. For x ∈ E, define

p(x) := inf{t > 0 : t−1x ∈ C}.

Then,

(i) There exists M > 0 such that 0 ≤ p(x) ≤ M∥x∥ for all x ∈ E. In particular, p(x) < ∞.

(ii) p is a sublinear functional.

(iii) For any x ∈ E, p(x) < 1 if and only if x ∈ C.

This function p is called the Minkowski functional (or gauge) of C.

Proof.

(i) Since 0 ∈ C and C is open, there exists r > 0 such that B(0, r) ⊂ C. Thus, for any
x ∈ E,

r
2∥x∥x ∈ C.

Hence, p(x) ≤ 2∥x∥
r , so M := 2/r works.

(ii) If x ∈ E, and α > 0, then t−1x ∈ C if and only if (tα)−1αx ∈ C. From this, it
follows that

p(αx) = αp(x).

Now, if x, y ∈ E, then we wish to prove that p(x + y) ≤ p(x) + p(y). To that end,
fix ϵ > 0. Then, there exist s, t > 0 such that s−1x ∈ C, and t−1y ∈ C such that
s < p(x) + ϵ, and t < p(y) + ϵ. Define

r :=
s

s + t
.

Then, 0 < r < 1. Since C is convex,

(s + t)−1(x + y) = r(s−1x) + (1 − r)(t−1y) ∈ C.

Hence, p(x + y) ≤ s + t < p(x) + p(y) + 2ϵ. This is true for all ϵ > 0, and thus
p(x + y) ≤ p(x) + p(y).
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(iii) If x ∈ E such that p(x) < 1, then there exists 0 < t < 1 such that t−1x ∈ C. Since
C is convex and 0 ∈ C,

x = (1 − t)0 + t(t−1x) ∈ C.

Conversely, if x ∈ C, then, since C is open, there exists r > 0 such that B(x, r) ⊂ C.
In particular,

x +
r

2∥x∥x ∈ C.

Therefore, if we set t := 1 + r
2∥x∥ , then t > 1 and p(x) ≤ t−1. In particular,

p(x) < 1. This completes the proof.

Proposition 2.3. Let E be a normed linear space over R, and let C ⊂ E be a non-empty, convex,
open set. If x0 /∈ C, then there exists ψ ∈ E∗ such that

ψ(x) < ψ(x0)

for all x ∈ C.

Proof. We first assume that 0 ∈ C. Let F := span(x0), and let p denote the Minkowski
functional of C. Define φ : F → R by φ(αx0) = α. Since x0 /∈ C, α−1(αx0) /∈ C for any
α > 0, and hence

p(αx0) > α = φ(αx0).

If α < 0, then this equation holds trivially since p(αx0) ≥ 0. Thus, by the Hahn-Banach
Theorem, there exists ψ : E → R such that ψ|F= φ, and

ψ(x) ≤ p(x)

for all x ∈ E. By Theorem 2.2, there exists M > 0 such that p(x) ≤ M∥x∥ for all x ∈ E.
Hence,

ψ(x) ≤ M∥x∥
for all x ∈ E. Replacing x by −x, the same inequality holds, so we conclude that ψ is a
bounded linear functional. Now, if x ∈ C, then

ψ(x) ≤ p(x) < 1 = ψ(x0).

Thus, ψ is the desired linear functional.

Now, we consider the case when 0 /∈ C. Fix x1 ∈ C, and consider D := C − x1, then D
is also open and convex, 0 ∈ D and x0 − x1 /∈ D. By the first part of the theorem, there
exists ψ ∈ E∗ such that

ψ(y) < ψ(x0 − x1)

for all y ∈ D. Since ψ is linear, we conclude that ψ(x) < ψ(x0) for all x ∈ C.
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(End of Day 32)

It is evident that convexity is necessary for Proposition 2.3 to work (simply visualize a
counterexample in R2). The next example shows that openness is also unavoidable.

Example 2.4. Let E := c0, and define

C = {(xn) ∈ c0 : there exists N ∈ N such that xN > 0, and xn = 0 for all n > N}.

Observe that C is convex, and 0 /∈ C. Now, suppose that there exists ψ ∈ E∗ such that
ψ(x) < ψ(0) = 0 for all x ∈ C. By Homework 6.3, there exists y = (yn) ∈ ℓ1 such that

ψ((xn)) =
∞

∑
n=1

xnyn.

for all (xn) ∈ c0. Therefore, for each j ∈ N, yj = ψ(ej) < 0. However, if x :=
(y2,−y1, 0, 0, . . .) ∈ C, then ψ(x) = y1y2 − y2y1 = 0. This contradicts our choice of ψ.

Definition 2.5. Let E be a vector space over R, φ : E → R a non-zero linear functional,
and α ∈ R. The set

[φ = α] := {x ∈ E : φ(x) = α}
is called an affine hyperplane of E.

Theorem 2.6 (Hahn-Banach Separation Theorem - I (Hahn, 1927, and Banach, 1929)).
Let E be a normed linear space over R, and let A and B be two non-empty, disjoint, convex
subsets of E. If A is open, then there exists ψ ∈ E∗, and α ∈ R, such that

ψ(a) ≤ α ≤ ψ(b)

for all a ∈ A and b ∈ B. In other words, the closed hyperplane [ψ = α] separates A from B.

Proof. Define C := A − B, then it is easy to see that C is convex because A and B are.
Furthermore, C is open because

C =
⋃

b∈B

(A − b),

which is a union of sets which are homeomorphic to A. Finally, since A and B are
disjoint, 0 /∈ C. By Proposition 2.3, there exists ψ ∈ E∗ such that ψ(x) < ψ(0) = 0 for
all x ∈ C. This implies that ψ(a) < ψ(b) for all a ∈ A and b ∈ B. Therefore, any α ∈ R

satisfying
sup
a∈A

ψ(a) ≤ α ≤ inf
b∈B

ψ(b)

will do the job.

Theorem 2.7 (Hahn-Banach Separation Theorem - II). Let E be a normed linear space over
R, and let A and B be two non-empty, disjoint, convex subsets on E. If A is closed, and B is
compact, then there exists ψ ∈ E∗, α ∈ R, and ϵ > 0, such that

ψ(a) ≤ α − ϵ < α + ϵ ≤ ψ(b)

for all a ∈ A and b ∈ B. In other words, the closed hyperplane [ψ = α] strictly separates A
from B.
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Proof. To begin with, we claim that there is a number r > 0 such that

[A + B(0, r)] ∩ [B + B(0, r)] = ∅

Geometrically, one may think of these sets as thickening both A and B, while still keeping
them disjoint. Suppose not, then for all n ∈ N, there exists un ∈ [A + B(0, 1/n)] ∩ [B +
B(0, 1/n)]. Write

un = an + xn, and bn + yn,

where an ∈ A, bn ∈ B, ∥xn∥ < 1/n, and ∥yn∥ < 1/n. Hence, ∥an − bn∥ ≤ 2
n . Since B is

compact, there is a subsequence (bnk) of (bn) and a point b ∈ B such that limk→∞ bnk = b.
Hence, limk→∞ ank = b as well. Since A is closed,

b ∈ A ∩ B.

This contradicts the fact that A and B are disjoint, thus proving the claim.

Now, choose r > 0 such that Ã := A + B(0, r) and B̃ := B + B(0, r) are disjoint. Note
that both Ã and B̃ are convex and open (as in the proof of the previous theorem). Hence,
by Theorem 2.6, there exists ψ ∈ E∗, and α ∈ R, such that

ψ(u) ≤ α ≤ ψ(v)

for all u ∈ Ã and v ∈ B̃. Now, for a ∈ A, and z ∈ B[0, 1], a + r
2 z ∈ Ã. Therefore,

ψ(a) +
r
2

ψ(z) ≤ α.

This is true for every z ∈ B[0, 1], so we conclude that

ψ(a) +
r
2
∥ψ∥ ≤ α.

Similarly, for any b ∈ B, α ≤ ψ(b)− r
2∥ψ∥. Therefore, ϵ := r

2∥ψ∥ works.

Theorem 2.8 (Hahn-Banach Separation Theorem - Complex Case). Let E be a normed
linear space over C, and let A and B be two non-empty, disjoint, convex subsets of E.

(i) If A is open, then there exists ψ ∈ E∗, and α ∈ R such that

Re(ψ)(a) ≤ α ≤ Re(ψ)(b)

for all a ∈ A, and b ∈ B.

(ii) If A is closed, and B is compact, then there exists ψ ∈ E∗, α ∈ R, and ϵ > 0 such that

Re(ψ)(a) ≤ α − ϵ < α + ϵ ≤ Re(ψ)(b)

for all a ∈ A, and b ∈ B.

(End of Day 33)
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3. The Weak Topology

Lemma 3.1. Let X be a set and B ⊂ 2X be a collection of subsets of X satisfying two conditions:

•
⋃

B∈B B = X.

• For every B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists B3 ∈ B such that x ∈ B3, and
B3 ⊂ B1 ∩ B2.

Then, there is a unique topology τB on X such that

(i) B ⊂ τB, and

(ii) if σ is any other topology such that B ⊂ σ, then τB ⊂ σ.

Furthermore, B is a basis for the topology τB.

Proof. Let U be the collection of all topologies on X which contain B. Then, 2X ∈ U , so
U ̸= ∅. Therefore, we may define

τB =
⋂

σ∈U
σ.

Then, it is easy to see that τB is a topology and it satisfies (i) and (ii). That B is a basis
for τB follows by the assumptions made on it.

Proposition 3.2. Let X be any set, (Y, τY) be a topological space, and let G denote a collection
of functions from X to Y. Then, there is a unique topology τG on X such that

(i) Each f ∈ G is continuous with respect to τG ,

(ii) If σ is any other topology on X such that f : (X, σ) → (Y, τY) is continuous for all
f ∈ G, then τG ⊂ σ.

In other words, τG is the smallest topology that makes every member of G continuous. This
topology is called the weak topology on X defined by G.

Proof. Define B ⊂ 2X to be the collection of all finite intersections of sets of the form
f−1(U), for some U ∈ τY, and f ∈ G. In other words, B ∈ B if and only if there exist
finitely many functions f1, f2, . . . , fn ∈ G, and open sets U1, U2, . . . , Un ∈ τY such that

B =
n⋂

i=1

f−1
i (Ui).

Note that f−1(Y) = X for any f ∈ G. Also, if B1, B2 ∈ B, then B1 ∩ B2 ∈ B. Therefore,
Lemma 3.1 applies, and we take τG := τB.

It is now clear that each f ∈ G is continuous with respect to τG (by construction).
Furthermore, if σ is any other topology on X such that f : (X, σ) → (Y, τY) is continuous
for each f ∈ G, then σ will necessarily contain every member of B. But B is a basis for
τG , so τG ⊂ σ must hold.
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Before we begin our journey, let us pause to prove a very useful result in this context;
one that will be used repeatedly throughout the book.

Proposition 3.3. Let X be a set, (Y, τY) be a topological space, and let G be a collection of
functions from X to Y. Let τG be the weak topology on X defined by G. If (Z, τZ) is any
topological space, then a function

g : (Z, τZ) → (X, τG)

is continuous if and only if f ◦ g : (Z, τZ) → (Y, τY) is continuous for each f ∈ G.

Proof. If g : (Z, τZ) → (X, τG) is continuous, then clearly f ◦ g : (Z, τZ) → (Y, τY) is
continuous because f : (X, τG) → (Y, τY) is continuous by construction.

Now suppose g : Z → X is function such that f ◦ g : (Z, τZ) → (Y, τY) is continuous
for each f ∈ G. To prove that g is continuous, we choose an open set U ∈ τG and prove
that g−1(U) ∈ τZ. We may assume that U is a basic open set, so there would exist
{ f1, f2, . . . , fn} ⊂ G and open sets {U1, U2, . . . , Un} ⊂ τY such that

U =
n⋂

i=1

f−1
i (Ui).

Then,

g−1(U) =
n⋂

i=1

g−1( f−1
i (Ui)) =

n⋂
i=1

( fi ◦ g)−1(Ui)

and this set belongs to τZ by hypothesis. Therefore, g is continuous.

Definition 3.4. Let E be a normed linear space, and Y = K equipped with the usual
topology. Let G := E∗, the set of all bounded linear functionals on E. The weak topology
on E is the topology defined by G by means of Proposition 3.2. This is denoted by

σ(E, E∗)

to indicate that it is the topology on E inherited from E∗. Elements of σ(E, E∗) are called
weakly open sets, and their complements are called weakly closed sets. A subset of E
is said to be weakly compact if it is compact with respect to σ(E, E∗).

For clarity, we will henceforth refer to the norm topology on E by σ(E, ∥ · ∥), members of
which will be referred to as norm-open (or strongly open) sets. The terms norm-closed
and norm-compact are defined analogously.

Remark 3.5. Some remarks are in order before we proceed:

(i) Since each φ ∈ E∗ is continuous with respect to the norm, it follows that

σ(E, E∗) ⊂ σ(E, ∥ · ∥),
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since σ(E, E∗) is the smallest topology with this property. In other words, we
have the following implications:

weakly open ⇒ norm-open,
weakly closed ⇒ norm-closed, and

weakly compact ⇐ norm-compact

(ii) For a set A ⊂ E, we write
Aw

to denote the intersection of all weakly closed set containing A. It is called the

weak closure of A. We denote the norm-closure of A by A∥·∥
, if the context

demands it. Observe that A∥·∥ ⊂ Aw
, since Aw

is a norm-closed set that contains
A.

(iii) We now describe basic open sets in σ(E, E∗).

(a) If φ ∈ E∗ and ϵ > 0, then

{x ∈ E : |φ(x)| < ϵ}

is a (sub-)basic open neighbourhood of 0, since it is inverse image under φ
of an open set in K.

(b) In general, if φ1, φ2, . . . , φn ∈ E∗ and ϵi > 0, then

{x ∈ E : |φi(x)| < ϵi for all 1 ≤ i ≤ n}

is a basic open neighbourhood of 0. If ϵ = min{ϵi : 1 ≤ i ≤ n}, then this
neighbourhood contains

{x ∈ E : |φi(x)| < ϵ for all 1 ≤ i ≤ n}.

(c) If x0 ∈ E, φ ∈ E∗, ϵ > 0, then

{x ∈ E : |φ(x)− φ(x0)| < ϵ}

is a (sub-)basic open neighbourhood of x0. As argued above, every basic
open neighbourhood of x0 will contain one of the form

{x ∈ E : |φi(x)− φi(x0)| < ϵ for all 1 ≤ i ≤ n},

for some φ1, φ2, . . . , φn ∈ E∗, and ϵ > 0 fixed.

(iv) Finally, one may use this description of open sets to prove that, for a sequence
(xn) in E, xn

w−→ x if and only if xn → x with respect to σ(E, E∗).

(End of Day 34)
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Proposition 3.6. The weak topology σ(E, E∗) is Hausdorff.

Proof. If x, y ∈ E are distinct, then by Corollary 2.9, there exists φ ∈ E∗ such that
φ(x) ̸= φ(y). Define

ϵ :=
|φ(x)− φ(y)|

3
,

and set U := BK(φ(x), ϵ), and V := BK(φ(y), ϵ). Then, φ−1(U) and φ−1(V) are
disjoint, weakly open neighbourhoods of x and y respectively.

Definition 3.7. A topological vector space is a vector space E equipped with a Haus-
dorff topology, such that the addition map a : E × E → E, and the scalar multiplication
map s : K × E → E are both continuous (here, K is equipped with the usual norm
topology, and the product spaces are equipped with the product topologies).

Proposition 3.8. The space (E, σ(E, E∗)) is a topological vector space.

Proof. We only prove that a is continuous, as the proof for s is similar. Let W ∈ σ(E, E∗)
denote a weakly open set, and a tuple (x, y) ∈ a−1(W) so that z = a(x, y) = x + y ∈ W.
Then, there exist φ1, φ2, . . . , φn ∈ E∗, and ϵ > 0 such that

W ′ := {w ∈ E : |φi(w)− φi(z)| < ϵ for all 1 ≤ i ≤ n} ⊂ W.

Define weakly open neighbourhoods U and V of x and y respectively by

U := {u ∈ E : |φi(u)− φi(x)| < ϵ/2 for all 1 ≤ i ≤ n}
V := {v ∈ E : |φi(v)− φi(y)| < ϵ/2 for all 1 ≤ i ≤ n}.

If (u, v) ∈ U × V, then |φi(u + v) − φi(z)| < ϵ for all 1 ≤ i ≤ n. Hence, a(u, v) =
u + v ∈ W ′. Thus, U × V ⊂ a−1(W) and (x, y) ∈ U × V. This is true for any (x, y) ∈
a−1(W), proving that a−1(W) is open.

Theorem 3.9. If E is finite dimensional, then the weak and norm topologies coincide.

Proof. Let σ(E, E∗) and σ(E, ∥ · ∥) denote the weak and norm topologies respectively.
By definition, σ(E, E∗) ⊂ σ(E, ∥ · ∥). If E is finite dimensional, we wish to prove that
σ(E, ∥ · ∥) ⊂ σ(E, E∗).

We may assume without loss of generality that E = (Kn, ∥ · ∥∞). For 1 ≤ i ≤ n, let
πi : E → K denote the coordinate projections. Then, for any x ∈ E and r > 0,

BE(x, r) = {y ∈ E : |πi(y)− πi(x)| < r for all 1 ≤ i ≤ n}.

Thus, BE(x, r) ∈ σ(E, E∗). This is true for any basic open set BE(x, r) ∈ σ(E, ∥ · ∥), and
hence σ(E, ∥ · ∥) ⊂ σ(E, E∗) as well.

Theorem 3.10. Let E be an normed linear space, and C ⊂ E be a convex set. Then, C is weakly
closed if and only if it is norm-closed.
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Proof. If C is weakly closed, then it is norm-closed by Remark 3.5. Conversely, if C
is convex and norm-closed, then we wish to prove that C is weakly closed. Suppose
x /∈ C, then, by the Hahn-Banach Separation Theorem, there exists ψ ∈ E∗, α ∈ R, and
ϵ > 0 such that Re(ψ)(x) < α − ϵ, and

Re(ψ)(y) > α + ϵ

for all y ∈ C. Note that ψ : (E, σ(E, E∗)) → K is continuous by the very definition of
the weak topology, and Re : K → R is continuous (it is the identity map if K = R).
Hence,

U = {u ∈ E : Re(ψ(u)) < α − ϵ}
is weakly open, x ∈ U and U ∩ C = ∅. This is true for any x /∈ C, which proves that
E \ C is weakly open, which is what we wanted to prove.

Theorem 3.11. Let E be an infinite dimensional subspace. If SE and BE denote the unit sphere
and closed unit ball respectively, then

SE
w
= BE.

In particular, SE is not weakly closed.

Proof. Since BE is convex and norm-closed, BE is weakly closed by Theorem 3.10. Since
SE ⊂ BE, it follows that

SE
w ⊂ BE.

To prove the converse, it suffices to choose x0 ∈ E such that ∥x0∥ < 1, and prove that
x0 ∈ SE

w
. So, let U ∈ σ(E, E∗) be any weakly open neighbourhood of x0. We wish to

prove that U ∩ SE ̸= ∅.

We may assume without loss of generality that

U = {x ∈ E : |φi(x)− φi(x0)| < ϵ for all 1 ≤ i ≤ n}
for some φ1, φ2, . . . , φn ∈ E∗ and ϵ > 0. Now, define T : E → Kn by

T(x) := (φ1(x), φ2(x), . . . , φn(x)).

Then, T cannot be injective since dim(E) = ∞. Hence, there exists a non-zero vector
y0 ∈ E such that φi(y0) = 0 for all 1 ≤ i ≤ n. This implies that x0 + ty0 ∈ U for all
t ∈ R. Now, consider g : E → R+ by

g(t) := ∥x0 + ty0∥.

Then, g is norm continuous (by Remark 1.2) and g(0) = ∥x0∥ < 1. Finally, since

t∥y0∥ ≤ ∥x0∥+ ∥x0 + ty0∥,

it follows that limt→∞ g(t) = ∞. By the Intermediate Value Theorem, there exists t0 ∈ R

such that ∥x0 + t0y0∥ = 1. Thus, x0 + t0y0 ∈ SE ∩ U and SE ∩ U ̸= ∅.

Corollary 3.12. If E is an infinite dimensional normed linear space, then σ(E, E∗) ̸= σ(E, ∥ ·
∥).

(End of Day 35)
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VII. Instructor Notes

(i) The course design remained the same, but more emphasis was placed on re-
viewing earlier material. This was to compensate for learning losses due to
Covid. Therefore, the total amount of material covered was much less than earlier
iterations.

(ii) Even so, I underestimated how much the students have missed out on due to the
two year break (and rampant cheating). Despite the repeated reviews, they were
still lost.

(iii) Finally, the attendance and interest of the students was never really there. Most
days, there was 5/20 students in class. This was reflected in their grades as well.
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