MTH 410/514/620: Representation Theory Semester 2, 2016-2017

Dr. Prahlad Vaidyanathan

Contents

	0.1	Course Structure
	0.2	Instructor Notes
1	Cha	acter Tables 5
	1.1	Linear Characters
	1.2	Counting Conjugacy Classes
	1.3	Examples
		1.3.1 The symmetric group S_3
		1.3.2 Non-Abelian groups of order 8
		1.3.3 The Alternating Group A_4
2	Ten	or Products of Representations 14
	2.1	Tensor Products of Vector Spaces
	2.2	Direct Product of Groups 17
	2.3	Inner Tensor Products of Representations
		2.3.1 Symmetric and Alternating Squares
		2.3.2 Character Table of S_5
3	Rest	iction to a Subgroup 27
	3.1	Character Table of A_5
		3.1.1 Conjugacy classes in A_5
		3.1.2 Real Character Values
		3.1.3 Character Table of A_5
4	Indu	ced Representations 35
	4.1	Definition and Examples
	4.2	Frobenius Character Formula
	4.3	Examples
		4.3.1 A group of order 21
		4.3.2 A group of order $p(p-1)$

0.1 Course Structure

2/1: Section 3.1 of $[{\rm BS}]$ until 3.1.5

4	/1:	Until	Definition	3.1.14
---	-----	-------	------------	--------

5/1: Until Definition 3.2.1 (avoiding Definition 3.1.16)

- 9/1: Completed Chapter 3.
- 11/1: Started Chapter 4. Completed until Corollary 4.1.9.
- 12/1: Until Prop 4.2.3.

(End of Week 2)

- 16/1: Until Prop 4.2.10 (including examples of \widehat{G} for $\mathbb{Z}_n, \mathbb{Z}_n \times \mathbb{Z}_m$ and S_3)
- 18/1: Computed \widehat{G} for D_4 . Then started Section 4.3, and completed until Theorem 4.3.9
- 19/1: Completed Section 4.3

(End of Week 3)

- 23/1: Completed until Theorem 4.4.6. Then defined the Fourier coefficient of a function w.r.t. a representation as in [BS, Definition 5.5.2]. Then proved [T, Lemma 9.4].
- 25/1: Completed until Theorem 4.4.12, following [T, Theorem 9.3] for the proof of Theorem 4.4.7.
- 26/1: Completed Chapter 4. Discussed the character table of \mathbb{Z}_n , direct product of two Abelian groups. Also discussed the group structure on $\widehat{G} = \text{Hom}(G, S^1)$, and Pontrjagin duality for a finite Abelian group.

(End of Week 4)

- 30/1: Discussed linear characters (see additional notes below)
 - 1/2: Discussed a way of counting conjugacy classes, and then determined the character table for S_3 .
- 2/2: Calculated the character tables for non-abelian groups of order 8, and for A_4 .

(End of Week 5)

No classes. Quiz on 9/2/17.

(End of Week 6)

16/2: Started Chapter 5. Completed until Theorem 5.3.5.

(End of Week 7)

- 20/2: Skipped Section 5.4, and completed Chapter 5.
- 22/2: Started Chapter 6. Completed until Remark 6.2.2.
- 23/2: Completed until Corollary 6.2.5. Included [JL, Examples 22.12(i),(ii)].
- 24/2: Completed until Theorem 6.3.9.

(End of Week 8)

(End of Week 13)

1/3:	Started Chapter 7. Completed until Proposition 7.2.7, skipping parts of Section 7.1			
2/3:	Completed Section 7.1, and until Theorem 7.2.8.			
	(End of Week 9)			
20/3:	Completed Chapter 7.			
22/3:	Tensor products of vector spaces (see additional notes below for the remainder of the course)			
23/3:	Direct product of groups			
25/3:	Inner tensor product of representations from			
	(End of Week 10)			
27/3:	Character table of S_5 , and started restriction to a subgroup from			
29/3:	Continued restriction to a subgroup, and started the Character table of A_5			
30/3:	Completed the character table of A_5			
	(End of Week 11)			
3/4:	Started Induced representations			
5/4:	Proved the Frobenius Character formula			
6/4:	Proved Frobenius reciprocity			
	(End of Week 12)			
10/4:	Example of group of order 21			
12/4:	Example of group of order $p(p-1)$			
13/4:	Review.			

0.2 Instructor Notes

27/2: Completed Chapter 6.

Given below are some additional notes meant to supplement the material from the textbook.

1 Character Tables

The goal of these notes is to supplement the discussion at the end of [BS, Chapter 4] by computing the character tables for some non-abelian groups of small order.

1.1 Linear Characters

Remark. [BS, Exercise 4.6] Let G be a group, $H \triangleleft G$, and $\pi : G \rightarrow G/H$ be the natural quotient map. Observe that

- 1. If $\rho: G/H \to GL(V)$ is a representation, then $\rho \circ \pi: G \to GL(V)$ is a representation.
- 2. If $\rho: G/H \to GL(V)$ and $\psi: G \to GL(W)$ are two representations, then $\rho \sim \psi$ iff $\rho \circ \pi \sim \psi \circ \pi$.
- 3. ρ is irreducible if and only if $\rho \circ \pi$ is irreducible.

Hence, we get a well-defined map

$$\mu:\widehat{G/H}\to \widehat{G}$$

This is injective by (2) above, but not surjective in general.

Theorem 1.1.1. Let G be a group, $H \triangleleft G$, and $\pi : G \rightarrow G/H$ be the natural quotient map. If $\varphi : G \rightarrow GL(V)$ is a representation such that $H \subset \ker(\varphi)$, then \exists a unique representation $\rho : G/H \rightarrow GL(V)$ such that

$$\rho \circ \pi = \varphi$$

Proof. If $\varphi: G \to GL(V)$ such that $H \subset \ker(\varphi)$, then define

$$\rho: G/H \to GL(V)$$
 by $gH \mapsto \varphi(g)$

1. This is well-defined because if $g_1H = g_2H$, then $g_2^{-1}g_1 \in H$, so $g_2^{-1}g_1 \in \ker(\varphi)$ and hence

$$\varphi(g_1) = \varphi(g_2)$$

2. ρ is a homomorphism because if $g_1H, g_2H \in G/H$, then

$$\rho(g_1H \cdot g_2H) = \rho(g_1g_2H) = \varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) = \rho(g_1H)\rho(g_2H)$$

3. It is clear that $\rho \circ \pi = \varphi$ by definition

4. As for uniqueness, suppose ψ is another function such that $\psi \circ \pi = \varphi = \rho \circ \pi$, then $\psi(gH) = \varphi(g) = \rho(gH)$ for all $g \in G$.

Definition 1.1.2. A linear character is a representation of degree 1. Write \hat{G}^{lin} for the set of all linear characters of G.

Observe that if $\varphi: G \to \mathbb{C}^*$ is a linear character, then

$$G/\ker(\varphi) \cong \operatorname{Image}(\varphi) < \mathbb{C}^{*}$$

so $G/\ker(\varphi)$ is an Abelian group.

Definition 1.1.3. If G is any group, and $x, y \in G$, the commutator of x and y is given by

$$[x,y] := xyx^{-1}y^{-1}$$

The commutator subgroup of G, denoted by [G, G], is the smallest subgroup of G containing the set

$$S = \{[x, y] : x, y \in G\}$$

Equivalently,

$$[G,G] = \{u_1^{\epsilon_k} u_1^{\epsilon_k} \dots u_k^{\epsilon_k} : u_i \in S, \epsilon_i \in \{\pm 1\}\}$$

In fact, we can refine this further. If u = [x, y], then $u^{-1} = [y, x] \in S$, so

$$[G,G] = \{u_1u_2\ldots u_k : u_i \in S\}$$

In other words, [G, G] is the set of all products of commutators in G.

Theorem 1.1.4. Let G be a group, and [G,G] its commutator subgroup.

- 1. $[G,G] \triangleleft G$
- 2. If $H \triangleleft G$ such that G/H is Abelian, then $[G,G] \subset H$
- 3. In particular, G/[G,G] is Abelian.
- 4. G is Abelian iff $[G,G] = \{e\}$

Proof. 1. Note that if $x, y \in G$ and $g \in G$, then

$$g[x,y]g^{-1} = [gxg^{-1},gyg^{-1}]$$

Hence, $gSg^{-1} \subset S$, and so $[G, G] \lhd G$ by the description of elements of [G, G] given above.

2. G/H is abelian if and only if

$$(xH)(yH) = (yH)(xH) \quad \forall x, y \in H \Leftrightarrow (xy)H = (yx)H \quad \forall x, y \in G$$

This is equivalent to $[x, y] \in H$ for all $x, y \in H$, and so $[G, G] \subset H$

- 3. Follows from (1) and (2).
- 4. Trivial.

Theorem 1.1.5. Let $\overline{G} := G/[G,G]$, and let $\pi : G \to \overline{G}$ denote the natural quotient map.

- 1. If $\varphi: \overline{G} \to \mathbb{C}^*$ is a representation, then $\varphi \circ \pi$ is a representation of G
- 2. If $\rho: G \to \mathbb{C}^*$ is a linear character, then $\exists \varphi: \overline{G} \to \mathbb{C}^*$ such that $\rho = \varphi \circ \pi$
- 3. Consider the injective map

$$\mu:\widehat{\overline{G}}\to\widehat{G}$$

as described above. Then $Image(\mu) = \widehat{G}^{lin}$.

Proof. 1. By definition

- 2. If $\rho : G \to \mathbb{C}^*$ is a linear character, then $G/\ker(\rho)$ is abelian as mentioned above. Hence, $[G, G] \subset \ker(\rho)$ by the previous theorem. Hence, \exists unique $\overline{\rho} : \overline{G} \to \mathbb{C}^*$ such that $\rho = \overline{\rho} \circ \pi$.
- 3. The map $\widehat{\overline{G}} \to \widehat{G}$ is well-defined and injective as before. Furthermore, if $\varphi \in \widehat{\overline{G}}$, then $d_{\varphi} = 1$ since $\overline{\overline{G}}$ is abelian, so

$$\varphi:\overline{G}\to\mathbb{C}^*$$

Hence, $\varphi \circ \pi : G \to \mathbb{C}^*$ is a degree one representation. Equivalently,

$$\mu(\varphi) \in \widehat{G}^{lin}$$

Conversely, if $\rho \in \widehat{G}^{lin}$, then $\rho = \mu(\overline{\rho})$, where $\overline{\rho}$ is as in part (2). Hence, $\rho \in \operatorname{Image}(\mu)$.

Corollary 1.1.6. The number of linear characters of G is equal to the index of of [G, G] in G. In particular, this number divides |G|.

Proof. This follows from the above statement and the fact that \overline{G} is abelian, and so

$$|\overline{\overline{G}}| = |\overline{G}| = [G : [G, G]]$$

1.2 Counting Conjugacy Classes

Lemma 1.2.1. Let $H \triangleleft G$, then H is a disjoint union of conjugacy classes in G.

Lemma 1.2.2. Let $H \triangleleft G$ and $\pi : G \rightarrow G/H$ the quotient map. If $D \subset G/H$ is a conjugacy class, then

 $\pi^{-1}(D)$

is a disjoint union of conjugacy classes in G. Furthermore, if

- 1. If $D \neq \{\pi(e)\}$, then $\pi^{-1}(D) \cap H = \emptyset$
- 2. If D_1 and D_2 are two disjoint conjugacy classes of G/H, then $\pi^{-1}(D_1) \cap \pi^{-1}(D_2) = \emptyset$.

Proof. We wish to show that, if C is a conjugacy class in G, then either

$$C \cap \pi^{-1}(D) = \emptyset$$
 or $C \subset \pi^{-1}(D)$

_	_	_	
Г			
			r

By the previous lemma, if $H \triangleleft G$, we may write

$$H = \bigsqcup_{i=1}^{k} C_i$$

where C_i are conjugacy classes in G, and suppose

$$G/H = \sqcup_{j=1}^{\ell} D_j$$

where D_j are the conjugacy classes in G/H, then for each $1 \leq j \leq \ell$. Suppose $D_1 = \{\pi(e)\}$, we write

$$\pi^{-1}(D_j) = B_{j,1} \sqcup B_{j,2} \sqcup \ldots \sqcup B_{j,s_j}$$

where $B_{j,t}$ are conjugacy classes in G. Hence, we get

Lemma 1.2.3. The collection

$$\mathcal{F} = \{C_1, C_2, \dots, C_k, B_{2,1}, B_{3,1}, \dots, B_{\ell,1}\}$$

are disjoint conjugacy classes in G. Hence,

$$|Cl(G)| \ge k + \ell - 1$$

Note: A strict inequality may hold above.

1.3 Examples

We now construct the character tables for some non-Abelian groups. Given a non-abelian group G, we will follow these steps:

- 1. Determine [G, G] by examining normal subgroups H such that G/H is abelian.
- 2. Determine all linear characters on G by using information from $\overline{G} = G/[G,G]$
- 3. Use the degree formula to enumerate the number and degrees of all irreducible representations of G.
- 4. Determine the number of conjugacy classes of G using the previous section, and also their representatives.
- 5. Use this to build a partial character table, with some unknown entries.
- 6. Determine the unknown entries by using the orthogonality relations.

1.3.1 The symmetric group S_3

Let $G = S_3$.

1. Recall that $A_3 \triangleleft S_3$ and $S_3/A_3 \cong \mathbb{Z}_2$. Hence,

 $[G,G] \subset A_3$

Since G is non-abelian, $[G, G] \neq \{e\}$. Since A_3 is cyclic of prime order, we have

$$[G,G] = A_3$$

2. Since $\overline{G} = G/[G,G] \cong \mathbb{Z}_2$, G has two linear characters obtained by lifting the two irreducible representations of \mathbb{Z}_2 .

$$\rho_1 : 1 \mapsto 1 \\
\rho_2 : 1 \mapsto -1$$

write $\varphi_i: G \to \mathbb{C}^*$ to be maps, $\varphi_i = \rho_i \circ \pi$

3. The degree formula now reads

$$6 = |G| = 2 + \sum_{n_i > 1} n_i^2$$

Hence, it follows that G has exactly one irreducible representation of degree 2, and no other representations of higher degree. We denote this representation by ρ .

4. By the previous step, G has 3 conjugacy classes. Notice that $H = A_3$ has is the union of two conjugacy classes of G.

$$C_1 = \{e\}, C_2 = \{(123), (132)\}$$

Also, G/H is abelian, so it has conjugacy classes

$$D_1 = \{\pi(e)\}, D_2 = \{\pi((12))\}\$$

Hence, if \mathcal{F} is as in the previous section, then

$$\mathcal{F} = \{(e), ((123)), ((12))\}$$

Since |Cl(G)| = 3, it follows that $Cl(G) = \mathcal{F}$.

5. Note that if $\rho_i : \mathbb{Z}_2 \to \mathbb{C}^*$ is a representation, then

 $\varphi_i = \rho_i \circ \pi : G \to \mathbb{C}^*$

is a one-dimensional representation such that

$$\chi_{\varphi_i}(g) = \chi_{\rho_i}(\pi(g))$$

So we obtain a partial character table as follows

	e	(123)	(12)
φ_1	1	1	1
φ_2	1	1	-1
ρ	2	a	b

6. The orthogonality of columns now gives two equations

$$1 + 1 + 2a = 0 \Rightarrow a = -1$$
$$1 - 1 + 2b = 0 \Rightarrow b = 0$$

So the character table of S_3 is

	e	(123)	(12)
φ_1	1	1	1
φ_2	1	1	-1
$\chi_{ ho}$	2	-1	0

Note that this agrees with what he had obtained earlier.

1.3.2 Non-Abelian groups of order 8

1. If G is non-Abelian and |G| = 8, then $Z(G) \neq \{e\}$, and so $|Z(G)| \in \{2, 4, 8\}$. Since G is non-abelian, and **Proposition 1.3.1.** If G/Z(G) is cyclic, then G is abelian.

It follows that |Z(G)| = 2 and $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. In particular, since G/Z(G) is abelian, it follows that $[G, G] \subset Z(G)$. Since $[G, G] \neq \{e\}$ (since G is non-Abelian), we have

$$[G,G] = Z(G)$$

2. Since $\overline{G} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, we have 4 irreducible representations of \overline{G} given by

$$\rho_1 : \{(1,0), (0,1)\} \mapsto 1$$

$$\rho_2 : (1,0) \mapsto 1 \text{ and } (0,1) \mapsto -1$$

$$\rho_3 : (1,0) \mapsto -1 \text{ and } (0,1) \mapsto 1$$

$$\rho_4 : (1,0) \mapsto -1 \text{ and } (0,1) \mapsto -1$$

We write $\varphi_i := \rho_i \circ \pi : G \to \mathbb{C}^*$.

3. The degree formula gives

$$8 = 4 + \sum_{n_i > 1} n_i^2$$

Once again, we see that G has exactly one irreducible of representation of degree > 1. We denote this by ρ , and note that $d_{\rho} = 2$.

4. Since G has 5 irreducible representations, |Cl(G)| = 5. Note that H = Z(G) has 2 conjugacy classes of G, we denote them by

$$C_1 = \{e\}, C_2 = \{x\}$$

Since $G/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, we write

$$G/H = \{\pi(e), \pi(g_1), \pi(g_2), \pi(g_3)\}$$

Each singleton forms a conjugacy class in G/H, so we obtain

 $\mathcal{F} = \{\{e\}, \{x\}, (g_1), (g_2), (g_3)\}$

Since |Cl(G)| = 5, it follows that $Cl(G) = \mathcal{F}$.

5. Once again, if $\varphi_i = \rho_i \circ \pi$, then

$$\chi_{\varphi_i}(g) = \chi_{\rho_i}(\pi(g))$$

So we obtain a partial character table as

g	1	x	g_1	g_2	g_3
φ_1	1	1	1	1	1
φ_2	1	1	-1	1	-1
$arphi_3$	1	1	1	-1	-1
φ_4	1	1	-1	-1	1
ρ	2	a	b	с	d

6. Using the orthogonality of columns, we get 4 equations

$$1 + 1 + 1 + 1 + 2a = 0 \Rightarrow a = -2$$

$$2 - 2 + 2 - 2 + 2b = 0 \Rightarrow b = 0$$

$$2 + 2 - 2 - 2 + 2c = 0 \Rightarrow c = 0$$

$$2 - 2 - 2 + 2 + 2d = 0 \Rightarrow d = 0$$

Hence, any two non-Abelian groups of order 8 have the same character table, given by

g	1	x	g_1	g_2	g_3
φ_1	1	1	1	1	1
φ_2	1	1	-1	1	-1
φ_3	1	1	1	-1	-1
φ_4	1	1	-1	-1	1
$\chi_{ ho}$	2	-2	0	0	0

In particular, the groups D_4 and Q_8 are two non-isomorphic groups which have the same character table.

In fact, more is true: If p is a prime, then any two non-Abelian groups of order p^3 have the same character table. We will prove this later in the course.

1.3.3 The Alternating Group A_4

Let $G = A_4$,

1. Set $H = \{e, (12)(34), (13)(24), (14)(23)\}$. Then $H \triangleleft S_4$ since it consists of precisely two conjugacy classes. Hence, $H \triangleleft A_4$. Furthermore, G/H is a group of order 4, and hence is Abelian. By the earlier section,

$$[G,G] \subset H$$

Since A_4 is non-Abelian, $[G, G] \neq \{e\}$. However, the non-identity elements in H form a single conjugacy class in A_4 , so since $[G, G] \triangleleft A_4$ (it must be a union of conjugacy classes), it follows that [G, G] = H

2. Now $\overline{G} = G/H \cong \mathbb{Z}_3$, so G has 3 linear characters given by

$$\rho_i: 1 \to \omega^{i-1}, i = 1, 2, 3$$

where $\omega = e^{2\pi i/3}$. Let $\varphi_i = \rho_i \circ \pi$

3. Now the degree formula gives $12 = |G| = 3 + \sum_{d_i > 1} d_i^2$. Hence, G has exactly one more irreducible representation, ρ such that $d_{\rho} = 3$.

4. By the previous step, |Cl(G)| = 4. Notice that H is a union of two conjugacy classes

 $C_1 = \{e\}, C_2 = \{(12)(34), (13)(24), (14)(23)\}$

Also, write

$$G/H = \{\pi(e), \pi((123)), \pi((132))\}$$

then these yield singleton conjugacy classes in G/H. Hence we get

 $\mathcal{F} = \{\{e\}, ((12)(34)), ((123)), ((132))\}$

Since |Cl(G)| = 4, it follows that $Cl(G) = \mathcal{F}$.

5. As before, the character table now looks like:

g	1	(12)(34)	g_1	g_2
χ_{φ_1}	1	1	1	1
χ_{φ_2}	1	1	ω	ω^2
χ_{arphi_3}	1	1	ω^2	ω
$\chi_{ ho}$	3	a	b	с

where $\omega = e^{2\pi i/3}$.

6. Now the orthogonality of the columns yields

$3 + 3a = 0 \Rightarrow a = -1$
$1 + \omega + \omega^2 + 3b = 0 \Rightarrow b = 0$
$1 + \omega^2 + \omega + 3c = 0 \Rightarrow c = 0$

because $1 + \omega + \omega^2 = 0$. This gives the character table of A_4 as

g	1	(12)(34)	g_1	g_2
1_G	1	1	1	1
χ_w	1	1	ω	ω^2
χ_{w^2}	1	1	ω^2	ω
ρ	3	-1	0	0

2 Tensor Products of Representations

Towards the end of the course, we veered away from the textbook completely. I wanted to cover tensor products, restriction and induction - all topics which, I felt, were covered poorly in the textbook.

2.1 Tensor Products of Vector Spaces

Let U, V, W, X, etc. denote finite dimensional vector spaces over a field k

Definition 2.1.1. A map $f: V \times W \to X$ is said to be <u>bilinear</u> if for all $\alpha_i, \beta_j \in k, v_i \in V, w_j \in W$, we have

$$f\left(\sum_{i} \alpha_{i} v_{i}, \sum_{j} \beta_{j} w_{j}\right) = \sum_{i,j} \alpha_{i} \beta_{j} f(v_{i}, w_{j})$$

Example 2.1.2. 1. If V is an inner product space over \mathbb{R} , then the inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is bilinear.

- 2. Cross product $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
- 3. If V is a vector space, and V^* its dual, then $B: V \times V^* \to k$ defined by B(v, f) := f(v) is bilinear.
- 4. $\psi : \mathbb{C} \times \mathbb{R}^n \to \mathbb{C}^n$ given by $(z, \overline{v}) \mapsto (zv_1, zv_2, \dots, zv_n)$

Definition 2.1.3. 1. $B_k(V, W)$ is the vector space of all bilinear maps $f: V \times W \to k$

- 2. For $v \in V, w \in W$, define $v \otimes w : B_k(V, W) \to k$ by $v \otimes w(f) := f(v, w)$. Notice that $v \otimes w \in B_k(V, W)^*$, the dual space of $B_k(V, W)$
- 3. Define $V \otimes W := \operatorname{span}\{v \otimes w : v \in V, w \in W\}$

Lemma 2.1.4. The map $\varphi: V \times W \to V \otimes W$ given by $\varphi(v, w) := v \otimes w$ is bilinear.

Proof. We prove linearity in the first variable as the other variable is similar. So fix $v_1, v_2 \in V, w \in W$, and $\alpha \in k$, and we WTS:

$$\varphi(\alpha v_1 + v_2, w) = \alpha \varphi(v_1, w) + \varphi(v_2, w)$$

So fix $f \in B_k(V, W)$, then

$$\varphi(\alpha v_1 + v_2, w)(f) = f(\alpha v_1 + v_2, w)$$

= $\alpha f(v_1, w) + f(v_2, w)$
= $\alpha \varphi(v_1, w)(f) + \varphi(v_2, w)(f)$
= $[\alpha \varphi(v_1, w) + \varphi(v_2, w)](f)$

Theorem 2.1.5. If $\{v_i\}$ and $\{w_j\}$ are bases for V and W respectively, then $\{v_i \otimes w_j\}$ is a basis for $V \otimes W$. In particular, $\dim(V \otimes W) = \dim(V) \times \dim(W)$

Proof. Let $S = \{v_i \otimes w_j : 1 \le i \le n, 1 \le j \le m\}.$

1. S is linearly independent: If $\alpha_{i,j} \in k$ such that

$$\sum_{i,j} \alpha_{i,j} v_i \otimes w_j = 0 \qquad (*)$$

Fix i, j and let $f_{i,j}: V \times W \to k$ be given by

$$f_{i,j}(v_k, w_\ell) = \delta_{i,k} \delta_{k,\ell}$$

extended to a bilinear map on $V \times W$. Then $f_{i,j} \in B_k(V, W)$, and

$$(v_k \otimes w_\ell)(f_{i,j}) = f_{i,j}(v_k, w_\ell) = \delta_{i,k} \delta_{k,\ell}$$

Hence, applying (*) to $f_{i,j}$ gives

 $\alpha_{i,j} = 0$

This is true for all $1 \le i \le n, 1 \le j \le m$, so S is linearly independent.

2. S spans $V \times W$: By definition,

$$V \otimes W := \operatorname{span}\{v \otimes w : v \in V, w \in W\}$$

so it suffices to show that $v \otimes w \in \text{span}(S)$ for any $v \in V, w \in W$. So fix $v \in V, w \in W$, then write

$$v = \sum_{i} \alpha_{i} v_{i}$$
 and $w = \sum_{j} \beta_{j} w_{j}$

Then since the map $(v, w) \mapsto v \otimes w$ is bilinear, we get

$$v \otimes w = \sum_{i,j} \alpha_i \beta_j v_i \otimes w_j \in \operatorname{span}(S)$$

Proposition 2.1.6 (Universal Property - I). If X is a finite dimensional vector space, and $g: V \times W \to X$ is a bilinear map, then $\exists ! T : V \otimes W \to X$ linear such that $T \circ \varphi = g$. In other words, there is an isomorphism

$$B_X(V,W) \cong Hom_k(V \otimes W,X)$$

Proof. If $g: V \times W \to X$ is bilinear, define

$$T: V \otimes W \to X$$
 given by $T(v_i \otimes w_j) = g(v_i, w_j)$

extended linearly to $V\otimes W.$ This is well-defined by the previous theorem. Furthermore, T is linear and

$$T \circ \varphi(v_i, w_j) = g(v_i, w_j)$$

Since both sides are bilinear, they must agree on $V \times W$.

For uniqueness, note that if $S: V \otimes W \to X$ is a linear map such that

$$S \circ \varphi = g$$

Then

$$S(v_i \otimes w_j) = g(v_i, w_j) = T(v_i \otimes w_j) \quad \forall i, j$$

Since S and T are linear, it follows that S = T by the previous theorem.

Theorem 2.1.7 (Universal Property - II). Let U be a finite dimensional vector space and $\psi: V \times W \to U$ is a bilinear map such that, for any bilinear map $h: V \times W \to X$, $\exists !S: U \to X$ such that $S \circ \psi = h$, then there is an isomorphism $\mu: U \to V \otimes W$ such that $\mu \circ \psi = \varphi$

Proof. Let (U, ψ) be a pair as above. By the previous theorem $(V \otimes W, \varphi)$ is another pair that satisfies the same property. By the previous theorem, $\exists T : V \otimes W \to U$ such that

$$T \circ \varphi = \psi$$

Similarly, $\exists S: U \to V \otimes W$ such that

$$S \circ \psi = \varphi$$

Hence,

$$S \circ T \circ \varphi = \varphi$$
 and $T \circ S \circ \psi = \psi$

By the uniqueness, it follows that $S \circ T = id_{V \otimes W}$. Similarly,

$$T \circ S = \mathrm{id}_U$$

and hence S is the required isomorphism.

Example 2.1.8. 1. $\mathbb{C} \otimes \mathbb{R}^n \cong \mathbb{C}^n$

Proof. Define $\psi : \mathbb{C} \times \mathbb{R}^n \to \mathbb{C}^n$ by

$$(z,\overline{v}) = (zv_1, zv_2, \dots, zv_n)$$

This is a bilinear map. Hence, $\exists T : \mathbb{C} \otimes \mathbb{R}^n \to \mathbb{C}^n$ such that

$$T(z \otimes \overline{v}) = \psi(z, \overline{v})$$

Now note that

$$\psi(1, e_i) = e_i$$

so ψ is surjective. Hence, T is surjective. However,

$$\dim(\mathbb{C}^n) = 2n = \dim(\mathbb{C}) \times \dim(\mathbb{R}^n) = \dim(\mathbb{C} \otimes \mathbb{R}^n)$$

and so T must be injective and hence an isomorphism.

2. $\mathbb{C}^n \otimes \mathbb{C}^m \cong \mathbb{C}^{nm}$

Proof. Define $\psi : \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C}^{nm}$ by

$$\psi(\overline{x},\overline{y}) = (x_1y_1, x_1y_2, \dots, x_1y_m, x_2y_1, \dots, x_2y_m, \dots, x_ny_m)$$

Then follow the argument as above.

3.
$$V \otimes V^* \cong \operatorname{End}_k(V)$$

Proof. Define $\psi: V \times V^* \to \operatorname{End}_k(V)$ by

$$\psi(v, f)(w) = f(w)v$$

Then ψ is bilinear, so follow a similar argument as above.

Definition 2.1.9. Let $T: V_1 \to V_2$ and $S: W_1 \to W_2$ be two linear maps. Then define

 $\psi: V_1 \times W_1 \to V_2 \otimes W_2$ by $\psi(v, w) = T(v) \otimes S(w)$

Then ψ is clearly bilinear. So $\exists R : V_1 \otimes W_1 \to V_2 \otimes W_2$ such that

$$R(v \otimes w) = T(v) \otimes S(w) \quad \forall v \in V_1, w \in W_1$$

We write $R = T \otimes S$

2.2 Direct Product of Groups

Theorem 2.2.1. Let $\rho : G \to GL(V)$ and $\pi : H \to GL(W)$ be two representations. Then \exists a unique representations

$$\psi: G \times H \to GL(V \otimes W)$$

such that

$$\psi(g,h)(v\otimes w) = \rho_g(v)\otimes \pi_h(w)$$

This is called the outer tensor product of ρ and π and we write $\psi = \rho \widehat{\otimes} \pi$

Proof. 1. For each $(g, h) \in G \times H$ fixed, define

 $\varphi: V \times W \to V \otimes W$ given by $\varphi(v, w) = \rho_g(v) \otimes \pi_h(w)$

This map is clearly bilinear, so \exists a unique linear map

$$R_{(g,h)}: V \otimes W \to V \otimes W$$
 such that $R_{(g,h)}(v \otimes w) = \rho_g(v) \otimes \pi_h(w)$

So we define $\psi(g,h) := R_{(g,h)}$

2. We first check that ψ is well-defined: To see this, note that

$$R_{(g^{-1},h^{-1})}(v \otimes w) = \rho_{g^{-1}}(v) \otimes \pi_{h^{-1}}(w)$$

Hence, for any $v \in V, w \in W$, we have

$$R_{(g,h)} \circ R_{(g^{-1},h^{-1})}(v \otimes w) = v \otimes w = R_{(g^{-1},h^{-1})} \circ R_{(g,h)}(v \otimes w)$$

But $V \otimes W = \text{span}\{v \otimes w : v \in V, w \in W\}$, so since both sides are linear maps, we see that

$$R_{(g,h)} \circ R_{(g^{-1},h^{-1})} = I = R_{(g^{-1},h^{-1})} \circ R_{(g,h)}$$

Hence, $R_{(g,h)} \in GL(V \otimes W)$

3. Now we check that ψ is a homomorphism: As above, it suffices to show that

$$R_{(g_1,h_1)} \circ R_{(g_2,h_2)}(v \otimes w) = R_{(g_1g_2,h_1h_2)}(v \otimes w) \quad \forall v \in V, w \in W$$

This follows from the definition and the fact that ρ and π are representations.

4. Uniqueness follows from the uniqueness of the previous definition.

Theorem 2.2.2. With the notation as above,

$$\chi_{\rho\widehat{\otimes}\pi}(g,h) = \chi_{\rho}(g)\chi_{\pi}(h)$$

Proof. Fix $(g,h) \in G \times H$. Since ρ_g is diagonalizable, \exists a basis $S = \{v_1, v_2, \ldots, v_n\}$ of V such that

$$\rho_g(v_i) = \lambda_i v_i \quad \forall 1 \le i \le n$$

Similarly, \exists a basis $T = \{w_1, w_2, \dots, w_m\}$ of W such that

$$\pi_h(w_j) = \mu_j w_j \quad \forall 1 \le j \le m$$

Let $\mathcal{B} = \{v_i \otimes w_j : 1 \le i \le n, 1 \le j \le m\}$, then \mathcal{B} is a basis for $V \otimes W$. Furthermore, if $\psi = \rho \otimes \pi$, then

$$\psi_{(g,h)}(v_i \otimes w_j) = \lambda_i \mu_j (v_i \otimes w_j)$$

Taking a trace, we get

$$\chi_{\psi}(g,h) = \sum_{i,j} \lambda_{i} \mu_{j}$$
$$= \left(\sum_{i} \lambda_{i}\right) \left(\sum_{j} \mu_{j}\right)$$
$$= \chi_{\rho}(g) \chi_{\pi}(h)$$

Theorem 2.2.3. Let $\rho_i : G \to GL(V_i)$ and $\pi_i : H \to GL(W_i)$ for i = 1, 2. If $\psi_i = \rho_i \widehat{\otimes} \pi_i$, then

$$\langle \chi_{\psi_1}, \chi_{\psi_2} \rangle_{L(G \times H)} = \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle_{L(G)} \langle \chi_{\pi_1}, \chi_{\pi_2} \rangle_{L(H)}$$

Proof. We compute

$$\begin{split} \langle \chi_{\psi_1}, \chi_{\psi_2} \rangle_{L(G \times H)} &= \frac{1}{|G \times H|} \sum_{(g,h) \in G \times H} \chi_{\psi_1}(g,h) \overline{\chi_{\psi_2}(g,h)} \\ &= \frac{1}{|G||H|} \sum_{g \in G, h \in H} \chi_{\rho_1}(g) \chi_{\pi_1}(h) \overline{\chi_{\rho_2}(g)} \chi_{\pi_2}(h) \\ &= \left(\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_1}(g) \overline{\chi_{\rho_2}(g)}\right) \left(\frac{1}{|H|} \sum_{h \in H} \chi_{\pi_1}(h) \overline{\chi_{\pi_2}(h)}\right) \\ &= \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle_{L(G)} \langle \chi_{\pi_1}, \chi_{\pi_2} \rangle_{L(H)} \end{split}$$

- **Corollary 2.2.4.** 1. Let $\rho : G \to GL(V)$ and $\pi : H \to GL(W)$. Then $\rho \widehat{\otimes} \pi$ is irreducible if and only if both ρ and π are irreducible.
 - 2. Let $\rho_i : G \to GL(V_i)$ and $\pi_i : H \to GL(W_i)$ be irreducible. Then $\rho_1 \sim \rho_2$ and $\pi_1 \sim \pi_2$ if and only if

$$\rho_1 \widehat{\otimes} \pi_1 \sim \rho_2 \widehat{\otimes} \pi_2$$

Proof. 1. Recall that if φ is any representation of a group, then

$$\langle \chi_{\varphi}, \chi_{\varphi} \rangle \ge 1$$

and equality holds if and only if φ is irreducible. Now simply apply the previous theorem.

2. Note that for any $(g,h) \in G \times H$

$$\chi_{\psi_i}((g,h)) = \chi_{\rho_i}(g)\chi_{\pi_i}(h)$$

Hence, if $\rho_1 \sim \rho_2$ and $\pi_1 \sim \pi_2$, it follows that

$$\chi_{\psi_1} = \chi_{\psi_2}$$

and so $\psi_1 \sim \psi_2$.

3. Conversely, if $\psi_1 \sim \psi_2$, then by part (1)

$$\langle \chi_{\psi_1}, \chi_{\psi_2} \rangle = 1$$

From this it follows that

$$\langle \chi_{\rho_1}, \chi_{\rho_2} \rangle = \langle \chi_{\pi_1}, \chi_{\pi_2} \rangle = 1$$

By Schur orthogonality, it follows that $\rho_1 \sim \rho_2$ and $\pi_1 \sim \pi_2$.

Theorem 2.2.5. The map

$$\alpha:\widehat{G}\times\widehat{H}\to\widehat{G\times H}\ given\ by\ ([\rho],[\pi])\mapsto [\rho\widehat{\otimes}\pi]$$

is a well-defined bijection.

Proof. 1. α is well-defined by the previous Corollary

- 2. To see that α is injective by the previous corollary, part 2.
- 3. To see that α is surjective, we show that

$$|Cl(G)||Cl(H)| = |Cl(G \times H)|$$

If $(g, h), (x, y) \in G \times H$, then

$$(x,y)^{-1}(g,h)(x,y) = (x^{-1}gx, y^{-1}hy)$$

Hence, $(g,h) \sim (g',h')$ if and only if $g \sim g'$ and $h \sim h'$. Hence the map

$$\alpha: Cl(G) \times Cl(H) \to Cl(G \times H)$$
 given by $([g], [h]) \mapsto [(g, h)]$

is a well-defined bijection.

Example 2.2.6. We determine the character table of $S_3 \times \mathbb{Z}_2$. We have the character table of $G = S_3$ as

	e	(12)	(123)
χ_1	1	1	1
χ_2	1	-1	1
χ_3	2	0	-1

and that of \mathbb{Z}_2 is given by

	0	1
χ_1	1	1
χ_2	1	-1

Now the representatives of the conjugacy classes of $S_3 \times \mathbb{Z}_2$ are

$$\{(e, 0), (e, 1), ((12), 0), ((12), 1), ((123), 0), ((123), 1)\}$$

We multiply characters to get the character table of $S_3 \times \mathbb{Z}_2$ to be

	(e,0)	(e, 1)	((12), 0)	((12), 1)	((123), 0)	((123),1))
$\chi_1 \times \chi_1$	1	1	1	1	1	1
$\chi_1 \times \chi_2$	1	-1	1	-1	1	-1
$\chi_2 \times \chi_1$	1	1	-1	-1	1	1
$\chi_2 \times \chi_2$	1	-1	-1	1	1	-1
$\chi_3 \times \chi_1$	2	2	0	0	-1	-1
$\chi_3 \times \chi_2$	2	-2	0	0	-1	1

Compare this with the discussion in [BS, Section 4.5]. This is, in fact, the tensor product of two square matrices representing the character tables of S_3 and \mathbb{Z}_2 .

2.3 Inner Tensor Products of Representations

Theorem 2.3.1. Let $\rho : G \to GL(V)$ and $\pi : G \to GL(W)$ be two representations of a group G. Then \exists ! representation $\varphi : G \to GL(V \otimes W)$ such that

$$\varphi_g(v \otimes w) = \rho_g(v) \otimes \pi_g(w)$$

This is called the inner tensor product of ρ and π and is denote by by $\rho \otimes \pi$.

Proof. Consider the outer tensor product

$$\rho \widehat{\otimes} \pi : G \times G \to GL(V \otimes W)$$

and the diagonal homomorphism $\Delta: G \to G \times G$ given by $g \mapsto (g, g)$. Then define

$$\varphi = (\rho \widehat{\otimes} \pi) \circ \Delta$$

Then φ satisfies the required condition. Uniqueness also holds as before.

Theorem 2.3.2. If ρ, π as above, then

$$\chi_{\rho\otimes\pi}(g) = \chi_{\rho}(g)\chi_{\pi}(g) \quad \forall g \in G$$

In particular, the product of two characters is a character.

Proof. By the earlier theorem,

$$\chi_{\rho\otimes\pi}(g) = \chi_{\psi}(g,g) = \chi_{\rho}(g)\chi_{\pi}(g)$$

Example 2.3.3. The character table of S_4 described in [BS, Example 7.2.13] is given below. Let π denote the augmentation representation of S_4 and ρ the irreducible representation of degree 2.

	1	(12)	(123)	(1234)	(12)(34)
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
$\chi_3 = \chi_\pi$	3	1	0	-1	-1
$\chi_4 = \chi_2 \chi_3$	3	-1	0	1	-1
$\chi_5 = \chi_{\rho}$	2	0	-1	0	2
$\chi_{ ho}\chi_{\pi}$	6	0	0	0	-2
$\chi_2 \chi_{ ho}$	2	0	-1	0	2

Hence,

- 1. If $\eta = \rho \otimes \pi$, then η has degree 6. In particular, η is not irreducible, so the inner tensor product of irreducible representations need not be irreducible.
- 2. Also, if $\mu = \chi_2 \otimes \rho$, then

$$\chi_{\mu}(g) = \operatorname{sgn}(g)\chi_{\rho}(g) = \chi_{\rho}(g)$$

since $\chi_{\rho}(g) = 0$ for all $g \notin A_4$. Hence, $\mu \sim \rho$. In particular,

$$\chi_2 \otimes \rho \sim \chi_1 \otimes \rho$$

but χ_2 is not equivalent to χ_1 .

Compare these examples with Corollary 2.2.4.

2.3.1 Symmetric and Alternating Squares

Definition 2.3.4. Let V be a vector space, then $\exists!$ linear map $T: V \otimes V \to V \otimes V$ such that $T(v \otimes w) = w \otimes v$

$$I(v\otimes w)=v$$

Write

$$S^{2}(V) = \{x \in V \otimes V : Tx = x\}$$
$$A^{2}(V) = \{x \in V \otimes V : Tx = -x\}$$

Lemma 2.3.5. *1.* $V \otimes V = S^2(V) \oplus A^2(V)$

2. Let $\rho: G \to GL(V)$ be a representation. Write $\varphi = \rho \otimes \rho$. If T as above, then

$$T\varphi_g=\varphi_gT\quad \forall g\in G$$

Proof. HW

Definition 2.3.6. Let $\rho: G \to GL(V)$ be a representation of G. Then by the previous two lemmas, we may define

$$\rho_S = (\rho \otimes \rho)|_{S^2(V)}$$
 and $\rho_A = (\rho \otimes \rho)|_{A^2(V)}$

Then

$$\rho \otimes \rho \sim \rho_S \oplus \rho_A$$

These are called the symmetric square and alternating square of ρ respectively.

Lemma 2.3.7. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. Then

- 1. $\{v_i \otimes v_j + v_j \otimes v_i : 1 \le i \le j \le n\}$ is a basis for $S^2(V)$
- 2. dim $(S^2(V)) = n(n+1)/2$
- 3. $\{v_i \otimes v_j v_j \otimes v_i : 1 \le i \le n\}$ is a basis for $A^2(V)$
- 4. dim $(A^2(V)) = n(n-1)/2$

Proof. Let $S = \{v_i \otimes v_j + v_j \otimes v_i : 1 \le i \le j \le n\}$, then $S \subset S^2(V)$. Similarly, if $T = \{v_i \otimes v_j - v_j \otimes v_i : 1 \le i < j \le n\}$, then $T \subset A^2(V)$. Furthermore, S and T are linearly independent since the set $\{v_i \otimes v_j : 1 \le i, j \le n\}$ is linearly independent. Hence,

$$\dim(S^2(V)) \ge n(n+1)/2$$
 and $\dim(A^2(V)) \ge n(n-1)/2$

However,

$$\dim(S^2(V)) + \dim(A^2(V)) = \dim(V \otimes V) = n^2$$

So both the above inequalities are equalities and the results follow.

Proposition 2.3.8. Let $\rho : G \to GL(V)$ be a representation with character χ . Suppose χ_S and χ_A denote the characters of ρ_S and ρ_A respectively, then

$$\chi_S(g) = \frac{1}{2}(\chi^2(g) + \chi(g^2)) \quad \forall g \in G$$

$$\chi_A(g) = \frac{1}{2}(\chi^2(g) - \chi(g^2)) \quad \forall g \in G$$

Proof. Fix $g \in G$, then ρ_g is diagonalizable. So choose a basis $\{v_1, v_2, \ldots, v_n\}$ of V such that

$$\rho_g(v_i) = \lambda_i v_i \quad \forall 1 \le i \le n$$

Hence,

$$\chi(g) = \sum_{i=1}^{n} \lambda_i \text{ and } \chi(g^2) = \sum_{i=1}^{n} \lambda_i^2$$

If $w_{i,j} = v_i \otimes v_j + v_j \otimes v_i$, then

$$\rho_S(g)(w_{i,j}) = \rho_g(v_i) \otimes \rho_g(v_j) + \rho_g(v_j) \otimes \rho_g(v_i) = \lambda_i \lambda_j w_{i,j}$$

Similarly, taking $t_{i,j} = v_i \otimes v_j - v_j \otimes v_i$, then

$$\rho_A(g)(t_{i,j}) = \lambda_i \lambda_j t_{i,j}$$

Hence,

$$\chi_{S}(g) = \sum_{1 \le i \le j \le n} \lambda_{i} \lambda_{j}$$
$$\chi_{A}(g) = \sum_{1 \le i < j \le n} \lambda_{i} \lambda_{j}$$
$$\Rightarrow \chi_{S}(g) = \sum_{i=1}^{n} \lambda_{i}^{2} + \chi_{A}(g)$$
$$= \chi(g^{2}) + \chi_{A}(g)$$
$$\Rightarrow \chi(g^{2}) = \chi_{S}(g) - \chi_{A}(g) \qquad (*)$$

Also,

$$\chi(g)^2 = \left(\sum_{i=1}^n \lambda_i\right)^2 = \sum_{i=1}^n \lambda_i^2 + 2\sum_{i
$$= \chi(g^2) + 2\chi_A(g)$$
$$\Rightarrow \chi(g)^2 = \chi_S(g) + \chi_A(g) \quad (**)$$$$

Solving (*) and (**) gives the required result.

2.3.2 Character Table of S₅

We now determine the character table of S_5 . Let $G = S_5$

1. As done for S_4 , we see that $[G,G] = A_5$. Hence, G has two linear characters

$$\chi_1$$
 and $\chi_2 = \text{sgn}$

2. The augmentation representation ρ is a degree 4 irreducible representation with character

$$\chi_3(g) = |\operatorname{Fix}(g)| - 1$$

3. Let $\varphi_g = \chi_2(g)\rho_g$ is another irreducible degree 4 representation with character

$$\chi_4(g) = \operatorname{sgn}(g)(|\operatorname{Fix}(g)| - 1)$$

4. The conjugacy classes of S_5 are given as

е	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
1	10	20	15	30	20	24

	е	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1
χ_3	4	2	1	0	0	-1	-1
χ_4	4	-2	1	0	0	1	-1

Hence, S_5 has 7 irreducible representations. We have determined 4 so far, so we have a partial character table as below

5. Let ρ be as above, then if χ_S and χ_A are the characters of the symmetric and alternating squares of ρ , then we can obtain their values by the previous theorem. For instance,

$$\chi_S((123)) = \frac{1}{2}(\chi((123))^2 + \chi((123)^2)) = \frac{1}{2}(1^2 + \chi((132))) = \frac{1}{2}(1+1) = 1$$

Similarly, we obtain the values of χ_S and χ_A as below

	e	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
χ_S	10	4	1	2	0	1	0
χ_A	6	0	0	-2	0	0	1

6. Now,

$$\langle \chi_A, \chi_A \rangle = \frac{1}{120} [(1 \cdot 36) + (20 \cdot 0) + (15 \cdot 4) + (30 \cdot 0) + (20 \cdot 0) + (24 \cdot 1)] = 1$$

So χ_A is the character of an irreducible representation. This must necessarily be different from the ones already obtained since it has degree 6. We write $\chi_5 = \chi_A$.

7. Now,

$$\langle \chi_S, \chi_S \rangle = 3$$

so it does not correspond to an irreducible representations, but calculating inner products gives

$$\langle \chi_S, \chi_i \rangle = 1$$
 $i \in \{1, 3\}$, and
 $\langle \chi_S, \chi_j \rangle = 0$ $j \in \{2, 4, 5\}$

Hence, \exists a sixth irreducible representation ψ such that

$$\chi_S = \chi_1 + \chi_3 + \chi_\psi$$

We write $\chi_6 = \chi_{\psi}$ and note that

$$\chi_6 = \chi_S - \chi_1 - \chi_3 \qquad (*)$$

In particular, $\chi_6(1) = 10 - 1 - 4 = 5$.

8. Now if $\varphi_g = \chi_2(g)\psi_g$, then φ is an irreducible representation of degree 5 such that

$$\chi_{\varphi}(g) = \chi_2(g)\chi_{\psi}(g) \qquad (**)$$

In this case, using equation (*), we see that

$$\chi_{\psi}((12)) = \chi_{S}((12)) - \chi_{1}((12)) - \chi_{3}((12)) = 4 - 1 - 2 = 1 \neq \chi_{\varphi}((12))$$

Hence, φ is not equivalent to ψ . We write $\chi_7 = \chi_{\varphi}$, so equations (*) and (**) allow us to complete the character table of S_5 .

	e	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1
χ_3	4	2	1	0	0	-1	-1
χ_4	4	-2	1	0	0	1	-1
χ_5	6	0	0	-2	0	0	1
χ_6	5	1	-1	1	-1	1	0
χ_7	5	-1	-1	1	1	-1	0

3 Restriction to a Subgroup

Definition 3.0.1. Let G be a group, H < G and $\rho : G \to GL(V)$ be a representation. We may restrict ρ to obtain a representation

$$\rho|_H: H \to GL(V)$$

This is called the <u>restriction</u> of ρ to *H*.

Note that even if ρ is irreducible, $\rho|_H$ may not be.

Proposition 3.0.2. Suppose $\exists H < G$ such that H is Abelian, then

$$d_{\rho} \leq [G:H] \quad \forall \rho \in \widehat{G}$$

Proof. Let $\rho : G \to GL(V)$ be irreducible and $d = d_{\rho}$, then $\rho|_{H}: H \to GL(V)$ is a representation. Hence, \exists one dimensional representations $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d}: H \to \mathbb{C}^{*}$ such that

$$\rho \sim \varphi_1 \oplus \varphi_2 \oplus \ldots \oplus \varphi_d$$

In particular, $\exists W < V$ such that $\dim(W) = 1$, which is invariant under $\rho|_H$. Write $W = \operatorname{span}\{v\}$, and set

$$W' = \operatorname{span}\{\rho_g(v) : g \in G\}$$

Then, W' < V is $\rho(G)$ -invariant. Since ρ is irreducible,

$$V = W' = \operatorname{span}\{\rho_g(v) : g \in G\}$$

Now suppose $g \in G, h \in H$, then

$$\rho(gh)(v) = \rho(g)\rho(h)(v) = \lambda\rho(g)(v)$$

and so $\rho(gh)(v) \in \operatorname{span}\{\rho(g)(v)\}$. Hence, if $G/H = \{g_1H, g_2H, \ldots, g_\ell H\}$, with $\ell = [G : H]$, then

$$V = \operatorname{span}\{\rho(g_i)v : 1 \le i \le \ell\}$$

In particular, $d = \dim(V) \le \ell = [G:H].$

Example 3.0.3. Let $G = D_n$ be the dihedral group of order 2n. Then any irreducible representation of G has degree 1 or 2. If n = p, prime, we describe all the irreducible representations of G.

1. Write $G = D_p = \langle a, b : a^p = b^2 = 1, bab = a^{p-1} \rangle$, and $H = \langle a \rangle$. Then $H \triangleleft G$ and $G/H \cong \mathbb{Z}_2$, so $[G, G] \subset H$. However, |H| = p and G is non-abelian, so [G, G] = H. Hence, G has exactly two linear characters given by

$$\chi_1 : a \mapsto 1, b \mapsto 1$$
$$\chi_2 : a \mapsto 1, b \mapsto -1$$

2. Since every other irreducible representation has degree 2, the degree formula gives

$$2p = 2 + 4k \Rightarrow k = (p-1)/2$$

and so G has exactly (p-1)/2 irreducible representations of degree 2.

3. For $1 \leq j \leq (p-1)/2$, define $\psi_j : G \to GL_2(\mathbb{C})$ by

$$a \mapsto \begin{pmatrix} \zeta^j & 0\\ 0 & \zeta^{-j} \end{pmatrix}$$
 and $b \mapsto \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$

As in the earlier HW, ψ_j is irreducible. Furthermore, if $\zeta^j = \zeta^{\pm i}$, then

 $p \mid (j \pm i)$

This is impossible if $1 \le i, j \le (p-1)/2$, and so for such i, j, we have that $\psi_j(a)$ and $\psi_i(a)$ have different eigen-values. In particular, ψ_j is not equivalent to ψ_i .

4. Thus, the irreducible representations of G are

$$\hat{G} = \{\chi_1, \chi_2, \psi_j : 1 \le j \le (p-1)/2\}$$

Definition 3.0.4. As observed above, even if $\rho : G \to GL(V)$ is irreducible, its restriction $\rho|_H: H \to GL(V)$ may not be irreducible. Write $\widehat{H} = \{\psi_1, \psi_2, \dots, \psi_r\}$, and set

$$s_i = \langle \chi_{\rho|_H}, \chi_{\psi_i} \rangle_{L(H)}$$

Then s_i are the multiplicities of ψ_i in $\rho|_H$. We say that ψ_i is a <u>constituent</u> of $\rho|_H$ if $s_i \neq 0$. Note that

$$\chi_{\rho|_H} = \sum_{i=1}^r s_i \chi_{\psi_i}$$

Theorem 3.0.5. Let H < G, and let $\psi : H \to GL(W)$ be a non-zero representation of H. Then \exists an irreducible representation $\rho : G \to GL(V)$ such that

$$\langle \chi_{\rho|_H}, \chi_{\psi} \rangle_{L(H)} \neq 0$$

In particular, every irreducible representation of H occurs as a constituent of an irreducible representation of G.

Proof. Write $\widehat{G} = \{\varphi^{(1)}, \varphi^{(2)}, \dots, \varphi^{(s)}\}, d_i = d_{\varphi^{(i)}}, \text{ and let } \chi_i = \chi_{\varphi^{(1)}}.$ Let $L : G \to GL(L(G))$ denote the left regular representation, then

$$\chi_L = \sum_{i=1}^s d_i \chi_i$$

Let $\psi: H \to GL(W)$ as above, then

$$\sum_{i=1}^{5} d_i \langle \chi_{\varphi^{(i)}|_H}, \chi_{\psi} \rangle = \langle \chi_L|_H, \chi_{\psi} \rangle_{L(H)}$$
$$= \frac{1}{|H|} \sum_{h \in H} \chi_L(h) \overline{\chi_{\psi}(h)}$$
$$= \frac{1}{|H|} \chi_L(e) \overline{\chi_{\psi}(e)} = \frac{|G|}{|H|} d_{\psi} \neq 0$$

Hence, $\exists 1 \leq i \leq s$ such that

$$\langle \chi_{\varphi^{(i)}|_H}, \chi_{\psi} \rangle_{L(H)} \neq 0$$

Proposition 3.0.6. Let $H < G, \rho : G \to GL(V)$ be an irreducible representation of G. Let $\hat{H} = \{\psi_1, \psi_2, \dots, \psi_r\}$, and write

$$s_i = \langle \chi_{\rho|_H}, \chi_{\psi_i} \rangle_{L(H)}$$

Then

$$\sum_{i=1}^r s_i^2 \le [G:H]$$

and equality holds if and only if

$$\chi_{\rho}(g) = 0 \quad \forall g \in G \setminus H$$

Proof. We know that

$$\sum_{i=1}^{\prime} s_i^2 = \langle \chi_{\rho|_H}, \chi_{\rho|_H} \rangle_{L(H)} = \frac{1}{|H|} \sum_{h \in H} \chi_{\rho}(h) \overline{\chi_{\rho}(h)}$$

Since ρ is irreducible on G, we have

$$1 = \langle \chi_{\rho}, \chi_{\rho} \rangle_{L(G)} = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \overline{\chi_{\rho}(g)}$$
$$= \frac{1}{|G|} \sum_{h \in H} \chi_{\rho}(h) \overline{\chi_{\rho}(h)} + \frac{1}{|G|} \sum_{g \in G \setminus H} \chi_{\rho}(g) \overline{\chi_{\rho}(g)}$$
$$= \frac{|H|}{|G|} \sum_{i=1}^{r} s_{i}^{2} + K$$

Hence,

$$\sum_{i=1}^{r} s_i^2 = \frac{(1-K)|G|}{|H|}$$

Note that $K \ge 0$ and K = 0 if and only if $\chi_{\rho}(g) = 0$ for all $g \in G \setminus H$. This gives the result.

Corollary 3.0.7. Let H < G be a subgroup of index 2, and let $\rho : G \to GL(V)$ be an irreducible representation of G. Then one of the following happens:

1. $\rho|_H$ is an irreducible representation of H.

2.
$$\exists \psi_1, \psi_2 \in H$$
 such that $\rho|_H = \psi_1 \oplus \psi_2$

Furthermore, part (2) occurs if and only if $\chi_{\rho}(g) = 0$ for all $g \in G \setminus H$.

3.1 Character Table of A_5

3.1.1 Conjugacy classes in A_5

Definition 3.1.1. Let G be a group and $x \in G$.

- 1. The conjugacy class of x in G is denoted by $x^G = \{yxy^{-1} : y \in G\}$
- 2. The centralizer of x in G is

$$C_G(x) = \{y \in G : yx = xy\} = \{y \in G : yxy^{-1} = x\}$$

Note that if we let G act on itself by conjugation, then the conjugacy class of G is the orbit of x, while the centralizer of x is the stabilizer of x. So by the orbit-stabilizer theorem,

$$|x^G| = [G: C_G(x)]$$

Now, for any $\sigma \in A_n$, write

$$\sigma^{S_n}$$
 and σ^{A_n}

to denote the conjugacy classes of σ in S_n and A_n respectively. Clearly,

$$\sigma^{A_n} \subset \sigma^{S_n}$$

Note that since $A_n \triangleleft S_n$, we have $\sigma^{S_n} \subset A_n$

Proposition 3.1.2. For $\sigma \in A_n$ with n > 1, we have

- 1. If σ commutes with an odd permutation, then $\sigma^{A_n} = \sigma^{S_n}$
- 2. If σ does not commute with some odd permutation, then

$$\sigma^{S_n} = \sigma^{A_n} \sqcup ((12)\sigma(12))^{A_n}$$

and

$$|\sigma^{A_n}| = |((12)\sigma(12))^{A_n}| = \frac{|\sigma^{S_n}|}{2}$$

Proof. 1. Suppose $\tau \in S_n$ is an odd permutation which commutes with σ , then we WTS: $\sigma^{S_n} \subset \sigma^{A_n}$. So fix $\eta \in \sigma^{S_n}$ and $\delta \in S_n$ such that

$$\eta = \delta \sigma \delta^{-1}$$

If $\delta \in A_n$, then $\eta \in \sigma^{A_n}$. If not, then $\delta' = \delta \tau \in A_n$ and

$$\delta'\sigma\delta'^{-1} = \delta\sigma\delta^{-1} = \eta \Rightarrow \eta \in \sigma^{A_n}$$

2. Suppose σ does not commute with any odd permutation. Then, by definition,

$$C_{S_n}(\sigma) = C_{A_n}(\sigma)$$

Hence,

$$|\sigma^{A_n}| = [A_n : C_{A_n}(\sigma)] = \frac{|A_n|}{|C_{A_n}(\sigma)|} = \frac{|S_n|}{2|C_{S_n}(\sigma)|} = \frac{|\sigma^{S_n}|}{2}$$

Now observe that

$$\sigma^{S_n} = \{\delta\sigma\delta^{-1} : \delta \in A_n\} \sqcup \{\delta\sigma\delta^{-1} : \delta \in S_n \setminus A_n\}$$

Now δ is odd if and only if $\eta = \delta(12) \in A_n$. Hence,

$$\{\delta\sigma\delta^{-1} : \delta \in S_n \setminus A_n\} = \{\eta(12)\sigma(12)\eta^{-1} : \eta \in A_n\} = ((12)\sigma(12))^{A_n}$$

The theorem now follows.

We now examine the conjugacy classes in S_5

e	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
1	10	20	15	30	20	24

Of these, $(12) \notin A_5$, $(1234) \notin A_5$, $(123)(45) \notin A_5$. Also,

$$(45)(123)(45) = (123) \Rightarrow (123)^{S_5} = (123)^{A_5}$$
$$(12)(12)(34)(12) = (12)(34) \Rightarrow ((12)(34))^{S_5} = ((12)(34))^{A_5}$$

and

$$C_{S_n}((12345)) = \frac{120}{24} = 5$$

is not divisible by two. Hence, $(12345)^{A_n} \neq (12345)^{S_n}$. Hence,

(12)(12345)(12) = (13452)

is another representative of a conjugacy class in A_5 . So we get the conjugacy classes in A_5 are

е	(123)	(12)(34)	(12345)	(13452)
1	20	15	12	12

3.1.2 Real Character Values

Lemma 3.1.3. If $\rho : G \to GL(V)$ is a unitary representation and $g \in G$, then

$$\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$$

 $\mathit{Proof.}$ Since ρ_g is diagonalizable, write

$$[\rho_g]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where each $\lambda_i \in S^1$. Hence,

$$[\rho_g^{-1}]_{\mathcal{B}} = \operatorname{diag}(\lambda_1^{-1}, \dots, \lambda_n^{-1})$$

But $\lambda_i^{-1} = \overline{\lambda_1}$, so the result follows by taking traces.

Theorem 3.1.4. Let G be a group and $g \in G$. If g is conjugate to g^{-1} if and only if $\chi_{\rho}(g) \in \mathbb{R}$ for all $\rho \in \widehat{G}$

Proof. By the previous lemma

$$\chi_{\rho}(g^{-1}) = \chi_{\rho}(g) \Leftrightarrow \chi_{\rho}(g) \in \mathbb{R}$$

So the corollary follows from Mid-Sem Exam, Problem 2.

Corollary 3.1.5. For very representation ρ of A_5 , $\chi_{\rho}(g) \in \mathbb{R}$

Proof. It suffices to show that every element in $\{e, (123), (12)(34), (12345), (13452)\}$ is conjugate to its own inverse. This is evident for elements in $\{e, (123), (12)(34)\}$. For the other two, check that

$$(12345)^{-1} = (54321) = (15)(24)(12345)(15(24))$$

and

$$(13452)^{-1} = (25431) = (12)(35)(13452)(12)(35)$$

3.1.3 Character Table of A₅

Now consider the character table of S_5 obtained in the previous section.

	е	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1
$\chi_3 = \chi_{ ho}$	4	2	1	0	0	-1	-1
$\chi_4 = \chi_{\chi_2 \otimes \rho}$	4	-2	1	0	0	1	-1
$\chi_5 = \chi_{ ho_A}$	6	0	0	-2	0	0	1
$\chi_6 = \chi_\psi$	5	1	-1	1	-1	1	0
$\chi_7 = \chi_{\chi_2 \otimes \psi}$	5	-1	-1	1	1	-1	0

Restricting to $H = A_5$, we see that

1. $\chi_1((12)) \neq 0$, so $\chi_1|_H$ is irreducible.

 $\chi_2((12)) \neq 0$, so $\chi_2|_H$ is irreducible. However, $\chi_2|_H = \chi_1|_H$

2. $\chi_3((12)) \neq 0$, so $\rho|_H$ is irreducible.

 $\chi_4((12)) \neq 0$, so $(\chi_2 \otimes \rho)|_H$ is irreducible. However,

$$\chi_4(g) = \chi_3(g) \quad \forall g \in A_5$$

so $\rho|_{H} \sim (\chi_2 \otimes \rho)|_{H}$

- 3. $\chi_5(g) = 0$ for all $g \in S_5 \setminus A_5$, so $\rho_A = \psi_1 \oplus \psi_2$ for two irreducible representations ψ_1 and ψ_2 of A_5
- 4. $\chi_6((12)) \neq 0$, so $\psi|_H$ is irreducible.

As above, $\psi|_{H} \sim (\chi_2 \otimes \psi)|_{H}$.

So we obtain a partial character table

	e	(123)	(12)(34)	(12345)	(13452)
	1	20	15	12	12
$\varphi_1 = \chi_1 _H$	1	1	1	1	1
$\varphi_2 = \chi_3 _H$	4	1	0	-1	-1
$\varphi_3 = \chi_6 _H$	5	-1	1	0	0
$\varphi_4 = \chi_{\psi_1}$	n_1	a_1	a_2	a_3	a_4
$\varphi_5 = \chi_{\psi_2}$	n_2	b_1	b_2	b_3	b_4

Note that if $n_i = d_{\psi_i}$, i = 1, 2, then

$$1 + 16 + 25 + n_1^2 + n_2^2 = 60 \Rightarrow n_1^2 + n_2^2 = 18 \Rightarrow n_1 = n_2 = 3$$

Furthermore,

$$\chi_{\psi_1} + \chi_{\psi_2} = \chi_{\rho_A}$$

Hence, we get

$$a_1 + b_1 = \chi_{\rho_A}((123)) = 0 \Rightarrow b_1 = -a_1$$

$$a_2 + b_2 = \chi_{\rho_A}((12)(34)) = -2 \Rightarrow b_2 = -2 - a_2$$

$$a_3 + b_3 = \chi_{\rho_A}((12345)) = 1 \Rightarrow b_3 = 1 - a_3$$

$$\Rightarrow b_4 = 1 - a_4$$

So we get an incomplete table as

	e	(123)	(12)(34)	(12345)	(13452)
	1	20	15	12	12
$\varphi_1 = \chi_1 _H$	1	1	1	1	1
$\varphi_2 = \chi_3 _H$	4	1	0	-1	-1
$\varphi_3 = \chi_6 _H$	5	-1	1	0	0
$\varphi_4 = \chi_{\psi_1}$	3	a_1	a_2	a_3	a_4
$\varphi_5 = \chi_{\psi_2}$	3	$-a_1$	$-2 - a_2$	$1 - a_3$	$1 - a_4$

Orthonormality of columns gives

$$\frac{20}{60}[1+1+1+a_1^2+a_1^2] = 1 \Rightarrow a_1 = 0$$
$$\frac{15}{60}[1+1+a_2^2+b_2^2] = 1 \Rightarrow a_2^2+b_2^2 = 2$$
$$\frac{12}{60}[1+1+a_3^2+b_3^2] = 1 \Rightarrow a_3^2+b_3^2 = 3$$
$$\frac{12}{60}[1+1+a_4^2+b_4^2] = 1 \Rightarrow a_4^2+b_4^2 = 3$$

Since $b_2 = -2 - a_2$ and $a_2^2 + b_2^2 = 2$, it follows that

 $a_2 = b_2 = -1$

Now since $b_3 = (1 - a_3)$, we see that a_3 and a_4 are both solutions to the equation

$$x^2 - x - 1 = 0 \Rightarrow x = \frac{1 \pm \sqrt{5}}{2}$$

Since $\varphi_4 \neq \varphi_5$, the character table of A_5 is

	e	(123)	(12)(34)	(12345)	(13452)
	1	20	15	12	12
$\varphi_1 = \chi_1 _H$	1	1	1	1	1
$\varphi_2 = \chi_3 _H$	4	1	0	-1	-1
$\varphi_3 = \chi_6 _H$	5	-1	1	0	0
$\varphi_4 = \chi_{\psi_1}$	3	0	-1	x	y
$\varphi_5 = \chi_{\psi_2}$	3	0	-1	y	x

where $x = \frac{1+\sqrt{5}}{2}$ and $y = \frac{1-\sqrt{5}}{2}$

4 Induced Representations

4.1 Definition and Examples

Definition 4.1.1. Let G be a group and H < G. Let $\rho : H \to GL(W)$ be a representation.

1. Define $X = \{f : G \to W\}$. Note that X is a vector space under the pointwise operations. Define

$$I(W) := \{ f \in X : f(gh) = \rho_{h^{-1}}(f(g)) \quad \forall g \in G, h \in H \}$$

Note that I(W) is a vector subspace of X.

2. For $g \in G$, define

$$T_g: I(W) \to I(W)$$
 given by $T_g(f)(x) := f(g^{-1}x)$

Then T_q is well-defined

Proof. If $f \in I(W)$, then for any $h \in H, x \in G$, $T_g(f)(xh) = f(g^{-1}xh) = \rho_{h^{-1}}(f(g^{-1}x)) = \rho_{h^{-1}}T_g(f)(x)$ Hence, $T_q(f) \in I(W)$

3. Moreover, $T_g \in GL(I(W))$

Proof. Simply check that

$$T_g \circ T_{g^{-1}}(f)(x) = T_{g^{-1}}(f)(g^{-1}x) = f(gg^{-1}x) = f(x) \quad \forall x \in G, f \in V$$

e, $T_g \circ T_{g^{-1}} = \mathrm{id}_{I(W)}$. Similarly, $T_{g^{-1}} \circ T_g = \mathrm{id}_{I(W)}$

Hence, $T_g \circ T_{g^{-1}} = \mathrm{id}_{I(W)}$. Similarly, $T_{g^{-1}} \circ T_g = \mathrm{id}_{I(W)}$

4. Finally, the map $\varphi: G \to GL(I(W))$ given by

$$\varphi(g) = T_g$$

is a representation of G.

Proof. For $g_1, g_2 \in G, f \in I(W)$, and $x \in G$, we have

$$(T_{g_1} \circ T_{g_2})(f)(x) = T_{g_2}(f)(g_1^{-1}x)$$

= $f(g_2^{-1}g_1^{-1}x)$
= $f((g_1g_2)^{-1}x)$
= $T_{g_1g_2}(f)(x)$

The representation $\varphi: G \to GL(I(W))$ is called the <u>induced representation</u> of $\rho: H \to GL(W)$, and is denoted by $\varphi = \operatorname{Ind}_{H}^{G}(\rho)$.

Proposition 4.1.2. $\dim(I(W)) = \dim(W)[G:H]$

Proof. Write $G/H = \{x_1H, x_2H, \ldots, x_\ell H\}$, so that $\ell = [G : H]$. Define a map

$$T: I(W) \to \bigoplus_{i=1}^{\ell} W$$
 given by $f \mapsto (f(x_1), f(x_2), \dots, f(x_{\ell}))$

T is clearly linear. We claim that T is bijective, which proves the theorem.

1. T is injective: Suppose T(f) = 0, then $f(x_i) = 0$ for all $1 \le i \le \ell$. Then if $g \in G, \exists 1 \le i \le \ell$ and $h \in H$ such that $g = x_i h$. Hence,

$$f(g) = f(x_i h) = \rho_{h^{-1}} f(x_i) = 0$$

Hence, f = 0

2. T is surjective: Given $(w_1, w_2, \ldots, w_\ell) \in \bigoplus_{i=1}^{\ell} W$, define $f: G \to W$ such that

$$f(x_ih) = \rho_{h^{-1}}(w_i) \quad \forall h \in H, 1 \le i \le \ell$$

This is well-defined since $G = \bigsqcup_{i=1}^{\ell} x_i H$. Furthermore, for any $g \in G, h \in H$, write $g = x_i h'$, so that $h'h \in H$, and

$$f(gh) = f(x_ih'h) = \rho_{(h'h)^{-1}}(w_i) = \rho_{h^{-1}}\rho_{(h')^{-1}}(w_i) = \rho_{h^{-1}}f(g)$$

Hence, $f \in I(W)$. Now clearly, $T(f) = (w_1, w_2, \ldots, w_\ell)$ holds.

Example 4.1.3. 1. Let $H = \{e\} < G$ and $\chi_1 : H \to \mathbb{C}^*$ be the trivial representation. Then, by the above definition, $W = \mathbb{C}$,

$$X = \{f : G \to \mathbb{C}\} = L(G) \text{ and } I(W) = X = L(G)$$

Finally,

$$T_q(f)(x) = f(g^{-1}x)$$

Hence, $\operatorname{Ind}_{H}^{G}(\chi_{1})$ is the left regular representation of G.

2. Let H = G and $\rho: G \to GL(W)$ be any representation. Then

$$X = \{f : G \to W\} \text{ and } I(W) = \{f \in X : f(xg) = \rho_{g^{-1}}(f(x)) \mid \forall g, x \in G\}$$

and let $\widehat{\rho} = \operatorname{Ind}_{H}^{G}(\rho)$. Define $T: I(W) \to W$ by $f \mapsto f(e)$. Then T is well-defined, and linear. Also, if $S: W \to I(W)$ given by

$$S(w)(x) := \rho_{x^{-1}}(w) \quad \forall x \in X$$

Then, for any $f \in I(W)$, and $x \in X$

$$(S \circ T)(f)(x) = S(f(e))(x) = \rho_{x^{-1}}(f(e)) = f(ex) = f(x)$$

Hence, $S \circ T = \mathrm{id}_{I(W)}$. Also,

$$(T \circ S)(w) = T(S(w)) = S(w)(e) = \rho_{e^{-1}}(w) = w$$

and so $T \circ S = \mathrm{id}_W$. Hence, T is an isomorphism. Furthermore, for any $g \in G, f \in I(W)$,

$$T(\widehat{\rho}_g(f)) = L_g(f)(e) = f(g^{-1}e) = f(eg^{-1}) = \rho_g(f(e)) = \rho_g(T(f))$$

Hence, $T \circ \widehat{\rho}_g = \rho_g \circ T$. Hence, $T \in \operatorname{Hom}_G(\widehat{\rho}, \rho)$. Hence,

$$\operatorname{Ind}_{H}^{G}(\rho) \sim \rho$$

3. Let $G = D_{2n} = \langle a, b : a^n = b^2 = 1, bab = a^{n-1} \rangle$ and let $H = \langle a \rangle$. Let $\rho \in \widehat{H}$ be an irreducible representation of H, then $H \cong \mathbb{Z}_n$, so $\exists k \in \{0, 1, \dots, n-1\}$ such that

$$\rho(a) = \zeta'$$

where $\zeta = e^{2\pi i/n}$. Here, $W = \mathbb{C}$, so $X = \{f : G \to \mathbb{C}\} = L(G)$. Also, I(W) < X is a space of dimension

$$\dim(\mathbb{C})[G:H] = 2$$

By the above proposition, we have an isomorphism

$$I(W) \to \mathbb{C}^2$$
 given by $f \mapsto (f(e), f(b))$

Let $\mathcal{B} = \{f_1, f_2\} \subset I(W)$ be functions such that

$$f_1(e) = 1, f_1(b) = 0$$
 and $f_2(e) = 0, f_2(b) = 1$

Write $\hat{\rho} = \operatorname{Ind}_{H}^{G}(\rho)$. Then,

$$\begin{aligned} \widehat{\rho}_a(f_1)(e) &= f_1(a^{-1}) = f_1(ea^{-1}) = \rho_{a^{-1}}(f_1(e)) = \rho_{a^{-1}}(1) = \zeta^{-k} \\ \widehat{\rho}_a(f_1)(b) &= f_1(a^{-1}b) = f_1(ba) = \rho_a(f_1(b)) = \rho_a(0) = 0 \\ \widehat{\rho}_a(f_2)(e) &= f_2(a^{-1}) = \rho_a(f_2(e)) = \rho_a(0) = 0 \\ \widehat{\rho}_a(f_2)(b) &= f_2(a^{-1}b) = f_2(ba) = \rho_a(f_2(b)) = \zeta^k \end{aligned}$$

Hence,

$$[\widehat{\rho}_a]_{\mathcal{B}} = \begin{pmatrix} \zeta^{-k} & 0\\ 0 & \zeta^k \end{pmatrix}$$

Also,

$$\widehat{\rho}_b(f_1)(e) = f_1(b^{-1}e) = f_1(b) = 0$$

$$\widehat{\rho}_b(f_1)(b) = f_1(b^{-1}b) = f_1(e) = 1$$

$$\widehat{\rho}_b(f_2)(e) = f_2(b^{-1}e) = f_2(b) = 1$$

$$\widehat{\rho}_b(f_2)(b) = f_2(b^{-1}b) = f_2(e) = 0$$

and so

$$[\widehat{\rho}_b]_{\mathcal{B}} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

4.2 Frobenius Character Formula

We fix some notation for this section:

1. Let $\rho: H \to GL(W)$ be a representation and $\widehat{\rho} = \operatorname{Ind}_{H}^{G}(\rho)$. We wish to determine the character of the induced representation. We write

$$\chi = \chi_{\rho} \text{ and } \operatorname{Ind}_{H}^{G}(\chi) = \chi_{\widehat{\rho}}$$

To do this, we assume that W has an inner product $\langle \cdot, \cdot \rangle$ and that ρ is a unitary representation of H.

2. A set $T = \{x_1, x_2, \dots, x_\ell\} \subset G$ is called a <u>transversal</u> of H in G if

$$G = \bigsqcup_{i=1}^{\ell} x_i H$$

3. If I(W) as above, we define an inner product on I(W) as

$$\langle f_1, f_2 \rangle = \sum_{k=1}^{\ell} \langle f_1(x_k), f_2(x_k) \rangle$$

Note that this defines an inner product on I(W) by the proof of Proposition 4.1.2.

4. Choose an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ of W and . For $1 \le i \le l, 1 \le j \le n$, let $f_{i,j} \in I(W)$ such that

$$f_{i,j}(x_k) = \delta_{i,k} e_j$$

Then $\{f_{i,j} : 1 \le i \le \ell, 1 \le j \le n\}$ forms an orthonormal basis for I(W) (using the isomorphism from Proposition 4.1.2)

Theorem 4.2.1 (Frobenius Character Formula). Let $\rho : H \to GL(W)$ be a representation with character χ , and let χ^G denoted the character of the induced representation $Ind_H^G(\rho)$. If $T = \{x_1, x_2, \ldots, x_\ell\}$ denotes a transversal of H in G, then

$$Ind_{H}^{G}(\chi)(g) = \sum_{x_{i}^{-1}gx_{i}\in H} \chi(x_{i}^{-1}gx_{i})$$

Proof. Let $f_{i,j}$ be the ONB of I(W) as defined above, then we wish to determine

$$\sum_{j=1}^{n} \langle \widehat{\rho}_g(f_{i,j}), f_{i,j} \rangle$$

1. Consider each term, then by definition

$$\langle \widehat{\rho}_g(f_{i,j}), f_{i,j} \rangle = \sum_{k=1}^{\ell} \langle \widehat{\rho}_g(f_{i,j})(x_k), f_{i,j}(x_k) \rangle = \langle \widehat{\rho}_g(f_{i,j})(x_i), e_j \rangle$$

Now,

$$\widehat{\rho}_g(f_{i,j})(x_i) = f_{i,j}(g^{-1}x_i)$$

Since $g^{-1}x_i \in G = \sqcup_{m=1}^{\ell} x_m H$, \exists unique $1 \leq m \leq \ell$ such that

$$g^{-1}x_i \in x_m H$$

and so \exists unique $h \in H$ such that $g^{-1}x_i = x_m h$. Hence,

$$\widehat{\rho}_{g}(f_{i,j})(x_{i}) = f_{i,j}(x_{m}h) = \rho_{h^{-1}}(f_{i,j}(x_{m}))$$
$$= \rho_{h^{-1}}(\delta_{i,m}e_{j}) = \begin{cases} 0 & : i \neq m \\ \rho_{h^{-1}}(e_{j}) & : i = m \end{cases}$$

Now,

$$i = m \Leftrightarrow g^{-1}x_i \in x_i H \Leftrightarrow x_i^{-1}g^{-1}x_i \in H \Leftarrow x_i^{-1}gx_i \in H$$

and in this case, $h = x_i^{-1}g^{-1}x_i$, so $h^{-1} = x_i^{-1}gx_i$. Hence,

$$\widehat{\rho}_g(f_{i,j})(x_i) = \begin{cases} 0 & : x_i^{-1}gx_i \in H\\ \rho_{x_i^{-1}gx_i}(e_j) & : \text{ otherwise} \end{cases}$$

Hence,

$$\operatorname{Ind}_{H}^{G}(g) = \sum_{i,j} \langle \widehat{\rho}_{g}(f_{i,j}), f_{i,j} \rangle$$
$$= \sum_{x_{i}^{-1}gx_{i} \in H} \sum_{j=1}^{n} \langle \rho_{x_{i}^{-1}gx_{i}}(e_{j}), e_{j} \rangle$$
$$= \sum_{x_{i}^{-1}gx_{i} \in H} \chi(x_{i}^{-1}gx_{i})$$

Example 4.2.2. Let $G = D_{2n} = \langle a, b : a^n = b^2 = 1, bab = a^{n-1} \rangle$, $H = \langle a \rangle$ and $\rho : H \to \mathbb{C}^*$ be the map

 $a \mapsto \zeta^k$

where $\zeta = e^{2\pi i/n}$ and $0 \le k \le n-1$. Then [G:H] = 2, and a transversal of H in G is $\{e, b\}$. Also,

$$eae = a \in H, \text{ and } bab = a^{n-1} \in H$$
$$ebe \notin H, \text{ and } bbb = b \notin H$$
$$\Rightarrow \operatorname{Ind}_{H}^{G}(\chi)(a) = \chi(a) + \chi(a^{n-1}) = \zeta^{k} + \zeta^{(n-1)k} = \zeta^{k} + \zeta^{-k}$$
$$\operatorname{Ind}_{H}^{G}(\chi)(b) = 0$$

This agrees with the calculation in the example at the end of the previous section.

For a function $f: H \to \mathbb{C}$, we write

$$\dot{f}(g) := \begin{cases} f(g) & : g \in H \\ 0 & : \text{ otherwise} \end{cases}$$

Then the Frobenius Character formula gives

$$\operatorname{Ind}_{H}^{G}(\chi)(g) = \sum_{i=1}^{\ell} \dot{\chi}(x_{i}^{-1}gx_{i})$$

Proposition 4.2.3. For any $g \in G$,

$$Ind_{H}^{G}(\chi)(g) = \frac{1}{|H|} \sum_{x \in G} \dot{\chi}(x^{-1}gx)$$

Proof. For any $x \in G, \exists$ unique $1 \leq i \leq \ell, h \in H$ such that $x = x_i h$. Then

$$\dot{\chi}(x^{-1}gx) = \dot{\chi}(x_i g x_i)$$

Hence,

$$\sum_{x \in G} \dot{\chi}(x^{-1}gx) = \sum_{i=1}^{\ell} \sum_{x \in x_i H} \dot{\chi}(x^{-1}gx) = \sum_{i=1}^{\ell} |H| \dot{\chi}(x_i^{-1}gx_i)$$

Definition 4.2.4. Let H < G, and Z(L(H)), Z(L(G)) denote the spaces of class functions on H and G respectively.

1. Define $\operatorname{Res}_{H}^{G}: Z(L(G)) \to Z(L(H))$ by

 $a \mapsto a|_H$

Note that if a is a class function, then so is $a|_H$.

2. Define $\operatorname{Ind}_{H}^{G}: Z(L(H)) \to Z(L(G))$ by

$$\operatorname{Ind}_{H}^{G}(b)(g) \mapsto \frac{1}{|H|} \sum_{x \in G} \dot{b}(x^{-1}gx)$$

Then this map is well-defined

Proof. Let $y \in G$, we wish to show that

$$\operatorname{Ind}_{H}^{G}(b)(ygy^{-1}) = \operatorname{Ind}_{H}^{G}(b)(g)$$

To see this, note that

$$\operatorname{Ind}_{H}^{G}(b)(ygy^{-1}) = \frac{1}{|H|} \sum_{x \in G} \dot{b}(x^{-1}ygy^{-1}x) = \frac{1}{|H|} \sum_{z \in G} \dot{b}(z^{-1}gz)$$

since the map $x \mapsto y^{-1}x$ is a bijection on G.

40

Proposition 4.2.5. If $\rho_i : H \to GL(W_i), i = 1, 2$ are two representations of H, then $Ind_H^G(\rho_1 \oplus \rho_2) \sim Ind_H^G(\rho_1) \oplus Ind_H^G(\rho_2)$

Proof. Let χ, φ , and ψ denote the characters of $\operatorname{Ind}_{H}^{G}(\rho_{1} \oplus \rho_{2})$, $\operatorname{Ind}_{H}^{G}(\rho_{1})$, and $\operatorname{Ind}_{H}^{G}(\rho_{2})$ respectively. Then by the Frobenius character formula and the fact that $\operatorname{Ind}_{H}^{G}$ is additive, we get

$$\chi = \operatorname{Ind}_{H}^{G}(\chi_{\rho_{1} \oplus \rho_{2}})$$

= $\operatorname{Ind}_{H}^{G}(\chi_{\rho_{1}} + \chi_{\rho_{2}})$
= $\operatorname{Ind}_{H}^{G}(\chi_{\rho_{1}}) + \operatorname{Ind}_{H}^{G}(\chi_{\rho_{2}})$
= $\varphi + \psi$

The result now follows from the fact that two representations of G with the same character must be equivalent.

Note that both $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$ are linear maps. Now recall that both Z(L(G)) and Z(L(H)) are inner product spaces.

Theorem 4.2.6 (Frobenius Reciprocity). For any $a \in Z(L(G)), b \in Z(L(H))$

$$\langle Res_H^G(a), b \rangle_{L(H)} = \langle a, Ind_H^G(b) \rangle_{L(G)}$$

Proof.

$$\langle a, \operatorname{Ind}_{H}^{G}(b) \rangle_{L(G)} = \frac{1}{|G|} \sum_{g \in G} a(g) \overline{\operatorname{Ind}_{H}^{G}(b)(g)}$$
$$= \frac{1}{|G|} \sum_{g \in G} a(g) \frac{1}{|H|} \sum_{x \in G} \dot{b}(x^{-1}gx)$$

Now, $x^{-1}gx \in H \Leftrightarrow \exists h \in H$ such that $g = xhx^{-1}$. So rearranging, we get

$$\langle a, \operatorname{Ind}_{H}^{G}(b) \rangle_{L(G)} = \frac{1}{|G||H|} \sum_{x \in G} \sum_{h \in H} a(xhx^{-1})\overline{b(h)}$$

$$= \frac{1}{|G||H|} \sum_{x \in G} \sum_{h \in H} a(h)\overline{b(h)}$$

$$= \frac{1}{|G|} \sum_{x \in G} \langle \operatorname{Res}_{H}^{G}(a), b \rangle_{L(H)}$$

$$= \langle \operatorname{Res}_{H}^{G}(a), b \rangle_{L(H)}$$

Definition 4.2.7. Let V, W be inner product spaces and $T: V \to W, S: W \to V$. We say that S is an adjoint of T if

$$\langle Tv, w \rangle_W = \langle v, Sw \rangle_V \quad \forall v \in V, w \in W$$

Hence, Frobenius Reciprocity states that $\operatorname{Res}_{H}^{G}$ and $\operatorname{Ind}_{H}^{G}$ are adjoint to each other. *Remark.* Let V, W be inner product spaces with ONB's $\mathcal{B}_{1} = \{e_{1}, e_{2}, \ldots, e_{n}\}$ and $\mathcal{B}_{2} = \{f_{1}, f_{2}, \ldots, f_{m}\}$ respectively. If $T: V \to W$ and $S: W \to V$ are adjoints of each other, then

$$\langle T(e_j), f_i \rangle = \langle e_j, S(f_i) \rangle = \overline{\langle S(f_i), e_j \rangle}$$

Hence, the matrix of S is the conjugate transpose of the matrix of T.

Example 4.2.8. Let $G = S_5, H = A_4$, let $\mathcal{B}_1 = \{\chi_1, \chi_2, \ldots, \chi_7\}$ denote the characters of irreducible representations of G, and let $\mathcal{B}_2 = \{\psi_1, \psi_2, \ldots, \psi_4\}$ be the irreducible characters of H. Recall the character table of G

	e	(12)	(123)	(12)(34)	(1234)	(123)(45)	(12345)
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1
χ_3	4	2	1	0	0	-1	-1
χ_4	4	-2	1	0	0	1	-1
χ_5	6	0	0	-2	0	0	1
χ_6	5	1	-1	1	-1	1	0
χ_7	5	-1	-1	1	1	-1	0

and the character table of H

g	e	(12)(34)	(123)	(132)
ψ_1	1	1	1	1
ψ_2	1	1	ω	ω^2
ψ_3	1	1	ω^2	ω
ψ_4	3	-1	0	0

Restriction gives

g	e	(12)(34)	(123)	(132)
$\chi_1 _H$	1	1	1	1
$\chi_2 _H$	1	1	1	1
$\chi_3 _H$	4	0	1	1
$\chi_4 _H$	4	0	1	1

and so on. Hence, taking inner products, we get

$$\chi_1|_H = \psi_1$$

$$\chi_2|_H = \psi_1$$

$$\chi_3|_H = \psi_1 + \psi_4$$

and so on. Hence, the matrix of $\operatorname{Res}_{H}^{G}$ with respect to these bases \mathcal{B}_{1} and \mathcal{B}_{2} can be computed to be

(1)	0	0	$0 \rangle$
1	0	0	0
1	0	0	1
1	0	0	1
0	0	0	2
0	1	1	1
$\setminus 0$	1	1	1/

Hence, the matrix of $\operatorname{Ind}_{H}^{G}$ is the transpose conjugate of this matrix. In particular, we can determine

$$\operatorname{Ind}_{H}^{G}(\psi_{2}) = \psi_{6} + \psi_{7}$$

and other such identities.

More generally if H < G, write $\widehat{G} = \{\rho_1, \rho_2, \dots, \rho_n\}$ and $\widehat{H} = \{\varphi_1, \varphi_2, \dots, \varphi_m\}$. Then restriction of irreducible representations gives

$$\operatorname{Res}_{H}^{G}(\rho_{i}) \sim \sum_{j=1}^{m} r_{i,j}\varphi_{j}$$

for some non-negative integers $r_{i,j} \in \mathbb{Z}$. Induction gives

$$\operatorname{Ind}_{H}^{G}(\varphi_{j}) \sim \sum_{i=1}^{n} s_{j,i} \rho_{i}$$

Frobenius Reciprocity states that $r_{i,j} = s_{j,i}$ for all i, j.

Corollary 4.2.9 (Induction in stages). Suppose H < K < G and $\rho : H \to GL(W)$ is a representation. Then

$$Ind_{K}^{G}(Ind_{H}^{K}(\rho)) \sim Ind_{H}^{G}(\rho)$$

Proof. Let $\hat{\rho} = \operatorname{Ind}_{H}^{K}(\rho)$, then by definition

$$\operatorname{Ind}_{H}^{K}(\chi_{\rho}) = \chi_{\widehat{\rho}}$$

for any class function $b \in Z(L(G))$

$$\langle \operatorname{Ind}_{K}^{G}(\chi_{\widehat{\rho}}), b \rangle_{L(G)} = \langle \chi_{\widehat{\rho}}, \operatorname{Res}_{K}^{G}(b) \rangle_{L(K)}$$

Furthermore,

$$\langle \chi_{\widehat{\rho}}, \operatorname{Res}_{K}^{G}(b) \rangle_{L(K)} = \langle \chi_{\rho}, \operatorname{Res}_{H}^{K}(\operatorname{Res}_{K}^{G}(b)) \rangle_{L(H)}$$

But $\operatorname{Res}_{H}^{K}(\operatorname{Res}_{K}^{G}(b)) = \operatorname{Res}_{H}^{G}(b)$. Hence,

$$\langle \operatorname{Ind}_{K}^{G}(\chi_{\widehat{\rho}}), b \rangle_{L(G)} = \langle \chi_{\rho}, \operatorname{Res}_{H}^{G}(b) \rangle_{L(H)} = \langle \operatorname{Ind}_{H}^{G}(\chi_{\rho}), b \rangle_{L(G)}$$

This is true for every $b \in Z(L(G))$, so

$$\chi_{\mathrm{Ind}_{K}^{G}(\mathrm{Ind}_{H}^{K}(\rho))} = \mathrm{Ind}_{K}^{G}(\mathrm{Ind}_{H}^{K}(\chi_{\rho})) = \mathrm{Ind}_{K}^{G}(\chi_{\widehat{\rho}}) = \mathrm{Ind}_{H}^{G}(\chi_{\rho}) = \chi_{\mathrm{Ind}_{H}^{G}(\rho)}$$

Hence the result.

4.3 Examples

4.3.1 A group of order 21

In S_7 , define

$$a = (1234567), b = (235)(476)$$
 and $G := \langle a, b \rangle$

Then $a^7 = b^3 = 1, b^{-1}ab = a^2$, hence

$$G = \{a^i b^j : 0 \le i \le 6, 0 \le j \le 2\} \Rightarrow |G| = 21$$

1. Let $H = \langle a \rangle$, then |H| = 7 and $b^{-1}ab \in H$, so $H \triangleleft G$. Finally, $G/H \cong \mathbb{Z}_3$ is abelian, so

$$[G,G] \subset H$$

Since |H| = 7 and $[G, G] \neq \{e\}$, we have [G, G] = H. Hence, G has 3 non-trivial characters, we denote by $\{\chi_1, \chi_2, \chi_3\}$.

2. Now we determine conjugacy classes in G: Recall that if $x \in G$, then x^G denotes the conjugacy class of x, $C_G(x)$ the centralizer of x in G, and

$$|x^G| = \frac{|G|}{|C_G(x)|}$$

by the orbit-stabilizer theorem.

- a) Note that $e^{G} = \{e\} = C_{1}$.
- b) If x = a, then $a \in C_G(a)$, so $H \subset C_G(a)$, so $7 \mid |C_G(a)|$. Since $b \notin C_G(a)$, it follows that $|C_G(a)| < 21$. Since $|C_G(a)| \mid 21$, it follows that

$$|C_G(a)| = 7 \Rightarrow C_G(a) = H$$

Hence, $|a^G| = 3$. The relation $b^{-1}ab = a^2$ implies that $a^2 \in a^G$. Hence, $a^4 \in a^G$. Thus it follows that

$$C_2 = a^G = \{a, a^2, a^4\}$$

c) Similarly, $|C_G(a^3)| = H$, and so $|(a^3)^G| = 3$, and as above

$$C_3 = (a^3)^G = \{a^3, a^5, a^6\}$$

d) As done for a above, $|b^G| = 7$. Check that

$$C_4 = (b)^G = \{a^i b : 0 \le i \le 6\}$$

e) Similarly,

$$C_5 = (b^2)^G = \{a^i b^2 : 0 \le i \le 6\}$$

These are all the conjugacy classes of G.

3. We have a partial character table given by

x	e	a	a^3	b	b^2
$ x^G $	1	3	3	7	7
χ_1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2
χ_3	1	1	1	ω^2	ω

4. Now we induce representations from H. Let $\zeta = e^{2\pi i/7}$, and define

$$\rho: H \to \mathbb{C}^*$$
 given by $a \mapsto \zeta$

and let $\psi = \chi_{\operatorname{Ind}_{H}^{G}(\rho)}$. By the Frobenius Character formula,

$$\psi(g) = \sum_{i=1}^{\ell} \dot{\rho}(x_i^{-1}gx_i)$$

where $\{x_1, x_2, \ldots, x_\ell\}$ are a set of representatives for G/H. Now |H| = 7, so |G/H| = 3, and we take

$$x_1 = e, x_2 = b, x_3 = b^2$$

Since *H* is normal, $x_i^{-1}gx_i \in H$ for all $g \in H$. Furthermore, if $g \notin H$, then $x_i^{-1}gx_i \notin H$ for all *i*. Hence,

$$\psi(g) = 0 \quad \forall g \notin H$$

Also,

$$\psi(e) = \rho(e) + \rho(b^{-1}eb) + \rho(b^{-2}eb^2) = 3\rho(e) = 3$$

$$\psi(a) = \rho(eae) + \rho(b^{-1}ab) + \rho(b^{-2}ab^2) = \rho(a) + \rho(a^2) + \rho(a^4) = \zeta + \zeta^2 + \zeta^4$$

$$\psi(a^3) = \zeta^3 + \zeta^5 + \zeta^6$$

So this gives us values in the table as

x	e	a	a^3	b	b^2
$ x^G $	1	3	3	7	7
ψ	3	$\zeta + \zeta^2 + \zeta^4$	$\zeta^3 + \zeta^5 + \zeta^6$	0	0

Now calculate

$$\langle \psi, \psi \rangle = \frac{1}{21} [3+3|\zeta+\zeta^2+\zeta^4|^2+3|\zeta^3+\zeta^5+\zeta^6|^2]$$

and check that

$$\begin{aligned} |\zeta + \zeta^2 + \zeta^4|^2 &= (\zeta + \zeta^2 + \zeta^4)(\zeta^{-1} + \zeta^{-2} + \zeta^{-4}) \\ &= 1 + \zeta^{-1} + \zeta^{-3} + \zeta + 1 + \zeta^{-2} + \zeta^3 + \zeta^2 + 1 \\ &= 3 + \zeta + \zeta^2 + \zeta^3 + \zeta^4 + \zeta^5 + \zeta^6 \\ &= 3 + (-1) = 2 \end{aligned}$$

Similarly for the third term, so we get

$$\langle \psi, \psi \rangle = \frac{1}{21}[3+6+6] = 1$$

Hence, ψ is irreducible.

5. Now let $\varphi: H \to \mathbb{C}^*$ be given by

$$\rho(a) = \zeta^2$$

Then if $\eta = \operatorname{Ind}_{H}^{G}(\rho)$, we get, by a similar calculation

x	e	a	a^3	b	b^2
$ x^G $	1	3	3	7	7
η	3	$\zeta^3 + \zeta^5 + \zeta^6$	$\zeta + \zeta^2 + \zeta^4$	0	0

Hence,

$$\langle \eta, \eta \rangle = 1$$

so η is also irreducible. This gives the character table of G as

x	e	a	a^3	b	b^2
$ x^G $	1	3	3	7	7
χ_1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2
χ_3	1	1	1	ω^2	ω
ψ	3	$\zeta + \zeta^2 + \zeta^4$	$\zeta^3 + \zeta^5 + \zeta^6$	0	0
η	3	$\zeta^3+\zeta^5+\zeta^6$	$\zeta+\zeta^2+\zeta^4$	0	0

4.3.2 A group of order p(p-1)

Let $p \in \mathbb{N}$ prime, and let G be the group of matrices given by

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \right\}$$

Then G is a non-abelian group with |G| = p(p-1). Let H be the subgroup

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{Z}_p \right\}$$

Note that $H \lhd G$ and

$$G/H \cong \mathbb{Z}_p^*$$

which is cyclic (and hence abelian). Hence, $[G,G] \subset H$. Since G is non-Abelian,

 $[G,G] \neq \{e\}$

Since |H| = p, it follows that [G, G] = H. Hence, G has precisely (p-1) linear characters, denoted by $\{\chi_1, \chi_2, \ldots, \chi_{p-1}\}$.

G has conjugacy classes given by

1.
$$C_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

2. Let $x = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then we have
 $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a & a+b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/a & -b/a \\ 0 & 1 \end{pmatrix}$
 $= \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

Hence,

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in C_G(x) \Leftrightarrow a = 1$$
$$C_G(x) = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{Z}_p \right\}$$

In particular, $|x^G| = |G|/|C_G(x)| = (p-1).$

3. Now consider an element of the form

$$z := \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}, x \in \mathbb{Z}_p^*, x \neq 1$$

Then

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} ax & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/a & -b/a \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} x & -bx+b \\ 0 & 1 \end{pmatrix}$$

Hence,

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in C_G(z) \Leftrightarrow -bx + b = 0 \Leftrightarrow b = 0$$

Hence,

$$C_G(z) = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Z}_p^* \right\}$$

and so $|z^{G}| = |G|/|C_{G}(z)| = p$

4. Finally, if
$$\pi: G \to G/H$$
 denotes the quotient map, then if $x_1 \neq x_2$, then

$$\begin{pmatrix} x_1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x_2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1/x_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_2/x_1 & 0 \\ 0 & 1 \end{pmatrix} \notin H$$

and so

$$\pi\left(\begin{pmatrix} x_1 & 0\\ 0 & 1 \end{pmatrix}\right) \neq \pi\left(\begin{pmatrix} x_2 & 0\\ 0 & 1 \end{pmatrix}\right)$$

if $x_1 \neq x_2$. Since G/H is abelian, this implies

$$\pi\left(\begin{pmatrix} x_1 & 0\\ 0 & 1 \end{pmatrix}\right) \sim \pi\left(\begin{pmatrix} x_2 & 0\\ 0 & 1 \end{pmatrix}\right) \Leftrightarrow x_1 = x_2$$

and hence

$$\begin{pmatrix} x_1 & 0\\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} x_2 & 0\\ 0 & 1 \end{pmatrix} \Leftrightarrow x_1 = x_2$$

Hence, by part (3), we get (p-1) conjugacy classes

$$C_x = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}^G \text{ for } x \in \mathbb{Z}_p^*, x \neq 1$$

each of which have cardinality p.

5. Now calculating cardinalities, we get

$$1 + (p-1) + \sum_{x \in \mathbb{Z}_p^*, x \neq 1} p = p + (p-2)p = p(p-1)$$

and so these are all the conjugacy classes in G. In particular, G has p conjugacy classes.

Hence, G has exactly one more irreducible representation ψ . The degree formula reads

$$p(p-1) = p - 1 + d_{\psi}^2 \Rightarrow d_{\psi} = p - 1$$

Let $\varphi: H \to \mathbb{C}^*$ be the map

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mapsto e^{2\pi i/p}$$

and let $\eta = \operatorname{Ind}_{H}^{G}(\varphi)$. We claim that $\eta = \psi$ is the required irreducible representation. Note that $d_{\eta} = p - 1$. Furthermore, by Frobenius reciprocity

$$\langle \chi_{\eta}, \chi_i \rangle = \langle \chi_{\varphi}, \operatorname{Res}_H^G(\chi_i) \rangle$$

Now, $\operatorname{Res}_{H}^{G}(\chi_{i})$ is the trivial representation for all $1 \leq i \leq n$, and φ is a non-trivial irreducible representation. So by Schur Orthogonality,

$$\langle \chi_{\varphi}, \operatorname{Res}_{H}^{G}(\chi_{i}) \rangle = 0$$

Hence, the Maschke decomposition of η has the form

$$\chi_{\eta} = m \chi_{\psi}$$

However, $d_{\eta} = d_{\psi}$, so m = 1 and η is irreducible.

Bibliography

- [A] Additional Notes http://home.iiserb.ac.in/~prahlad/current_course/ additional_notes.pdf
- [B] A. Baker, http://www.maths.gla.ac.uk/~ajb/dvi-ps/groupreps.pdf
- [BS] B. Steinberg, Representation Theory of Finite Groups, Springer 2012
- [JL] G. James, M. Liebeck, Representations and Characters of Groups (2nd Ed), Cambridge Univ Press (2001)
- [T] Teleman, https://math.berkeley.edu/~teleman/math/RepThry.pdf