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0.1 Course Structure
2/1: Section 3.1 of [BS] until 3.1.5
4/1: Until Definition 3.1.14

5/1: Until Definition 3.2.1 (avoiding Definition 3.1.16)

=~ DN

DO © O oo ot



9/1:
11/1:

12/1:

16/1:
18/1:

19/1:

23/1:

25/1:

26/1:

30/1:
1/2:

2/2:

16/2:

20,/2:
22/2:
23,2:

24/2:

(End of Week 1)
Completed Chapter 3.
Started Chapter 4. Completed until Corollary 4.1.9.

Until Prop 4.2.3.
(End of Week 2)

Until Prop 4.2.10 (including examples of G for Z,,, 7, X Zom and S3)
Computed G for D,. Then started Section 4.3, and completed until Theorem 4.3.9

Completed Section 4.3
(End of Week 3)

Completed until Theorem 4.4.6. Then defined the Fourier coefficient of a function
w.r.t. a representation as in [BS, Definition 5.5.2]. Then proved [T, Lemma 9.4].

Completed until Theorem 4.4.12, following [T, Theorem 9.3] for the proof of The-
orem 4.4.7.

Completed Chapter 4. Discussed the character table of Z,, direct product of two

Abelian groups. Also discussed the group structure on G = Hom(G, S1), and
Pontrjagin duality for a finite Abelian group.

(End of Week 4)
Discussed linear characters (see additional notes below)

Discussed a way of counting conjugacy classes, and then determined the character
table for Ss.

Calculated the character tables for non-abelian groups of order 8, and for Ay.
(End of Week 5)

No classes. Quiz on 9/2/17.
(End of Week 6)

Started Chapter 5. Completed until Theorem 5.3.5.
(End of Week 7)

Skipped Section 5.4, and completed Chapter 5.
Started Chapter 6. Completed until Remark 6.2.2.
Completed until Corollary 6.2.5. Included [J1, Examples 22.12(i),(ii)].

Completed until Theorem 6.3.9.



(End of Week 8)
27/2: Completed Chapter 6.
1/3: Started Chapter 7. Completed until Proposition 7.2.7, skipping parts of Section 7.1

2/3: Completed Section 7.1, and until Theorem 7.2.8.
(End of Week 9)

20/3: Completed Chapter 7.

22/3: Tensor products of vector spaces (see additional notes below for the remainder of
the course)

23/3: Direct product of groups

25/3: Inner tensor product of representations from

(End of Week 10)
27/3: Character table of Sy, and started restriction to a subgroup from
29/3: Continued restriction to a subgroup, and started the Character table of Aj

30/3: Completed the character table of Aj
(End of Week 11)

3/4: Started Induced representations
5/4: Proved the Frobenius Character formula

6/4: Proved Frobenius reciprocity
(End of Week 12)

10/4: Example of group of order 21
12/4: Example of group of order p(p — 1)

13/4: Review.
(End of Week 13)

0.2 Instructor Notes

Given below are some additional notes meant to supplement the material from the text-
book.



1 Character Tables

The goal of these notes is to supplement the discussion at the end of [BS, Chapter 4] by
computing the character tables for some non-abelian groups of small order.

1.1 Linear Characters

Remark. [BS, Exercise 4.6] Let G be a group, H < G, and 7 : G — G /H be the natural
quotient map. Observe that

1. If p: G/H — GL(V) is arepresentation, then por : G — GL(V') is a representation.

2. If p: G/H — GL(V) and ¢ : G — GL(W) are two representations, then p ~ 1) iff
pom~1om.

3. p is irreducible if and only if p o 7 is irreducible.
Hence, we get a well-defined map
n:G/H — G
This is injective by (2) above, but not surjective in general.

Theorem 1.1.1. Let G be a group, H < G, and m : G — G/H be the natural quotient
map. If ¢ : G — GL(V) is a representation such that H C ker(y), then 3 a unique
representation p : G/H — GL(V') such that

pom =g
Proof. 1f ¢ : G — GL(V) such that H C ker(y), then define
p:G/H — GL(V) by gH — ¢(g)

1. This is well-defined because if gy H = goH, then g, 'g; € H, so g5 g1 € ker(p) and
hence

v(g1) = ¢(g2)

2. pis a homomorphism because if g1 H, goH € G/H, then
plgiH - g2 H) = p(gr92H) = 0(9192) = (91)0(g2) = p(g1H)p(g2H)

3. It is clear that p o m = ¢ by definition



4. As for uniqueness, suppose ¢ is another function such that ¥ om = ¢ = pom, then
V(gH) = ¢(g) = p(gH) for all g € G.

]

Definition 1.1.2. A linear character is a representation of degree 1. Write GUm for the
set of all linear characters of G.

Observe that if ¢ : G — C* is a linear character, then
G/ ker(p) = Image(p) < C*
so G/ ker(p) is an Abelian group.

Definition 1.1.3. If GG is any group, and z,y € GG, the commutator of z and y is given
by

[z, y] = wyz~ly ™
The commutator subgroup of G, denoted by [G,G], is the smallest subgroup of G con-
taining the set

S=A{lr,y] :z,y € G}

Equivalently,
G, G| = {ufuf ... uk cu; € S,¢; € {£1}}

In fact, we can refine this further. If u = [z, y], then u™! = [y, z] € S, so
G, G| ={wuy...u:u; €S}
In other words, [G, G] is the set of all products of commutators in G.
Theorem 1.1.4. Let G be a group, and [G, G| its commutator subgroup.
1. [G,G] < G
2. If H < G such that G/H is Abelian, then [G,G| C H
3. In particular, G/|G, G| is Abelian.
4. G is Abelian iff |G, G] = {e}
Proof. 1. Note that if x,y € G and g € G, then
gl ylg™ = lgrg ", gyg™"]

Hence, gSg~!' C S, and so [G, G] < G by the description of elements of [G, G] given
above.

2. G/H is abelian if and only if
(wH)(yH) = (yH)(zH) Vz,y € H < (zy)H = (yz)H Vr,y e

This is equivalent to [x,y] € H for all z,y € H, and so [G,G] C H



3. Follows from (1) and (2).

4. Trivial.
O]

Theorem 1.1.5. Let G := G/[G,G], and let 7 : G — G denote the natural quotient
map.

1. If ¢ : G — C* is a representation, then o is a representation of G
2. If p: G — C* is a linear character, then 3¢ : G — C* such that p= @ o

3. Consider the injective map R
10:G—G
as described above. Then Image(y) = G'™.
Proof. 1. By definition

2. If p: G — C* is a linear character, then G/ker(p) is abelian as mentioned above.
Hence, [G, G] C ker(p) by the previous theorem. Hence, 3 unique p : G — C* such
that p=pom.

3. The map G — G s well-defined and injective as before. Furthermore, if ¢ € G,
then d, = 1 since G is abelian, so

0:G—C*
Hence, pom: G — C* is a degree one representation. Equivalently,

() € G™

Conversely, if p € Glm, then p = w(p), where p is as in part (2). Hence, p €

Image(p).
[

Corollary 1.1.6. The number of linear characters of G is equal to the indez of of |G, G]
in G. In particular, this number divides |G]|.

Proof. This follows from the above statement and the fact that G is abelian, and so

Gl =[Gl =[G [G,G]]



1.2 Counting Conjugacy Classes
Lemma 1.2.1. Let H <1 G, then H is a disjoint union of conjugacy classes in G.

Lemma 1.2.2. Let H 9 G and 7 : G — G/H the quotient map. If D C G/H 1is a

conjugacy class, then
7 (D)

s a disjoint union of conjugacy classes in G. Furthermore, if
1. If D # {rn(e)}, then 7Y (D)NH =0

2. If Dy and Do are two disjoint conjugacy classes of G/H, then 7=Y(Dy)Nw~(Dy) =
0.

Proof. We wish to show that, if C' is a conjugacy class in GG, then either

CNnr ' (D)=0or Ccrn (D)

By the previous lemma, if H <1 G, we may write
H =" C;
where C; are conjugacy classes in GG, and suppose
G/H = U._,D;

where D; are the conjugacy classes in G/H, then for each 1 < j < ¢. Suppose D; =
{m(e)}, we write
W_I(Dj) = Bj71 L ng L...u Bj,sj-

where B;, are conjugacy classes in G. Hence, we get

Lemma 1.2.3. The collection
F={C,Cyq...,Cx,B21,B31,...,Be1}
are disjoint conjugacy classes in G. Hence,
ICIG)| > k+(—1

Note: A strict inequality may hold above.



1.3 Examples

We now construct the character tables for some non-Abelian groups. Given a non-abelian
group G, we will follow these steps:

1.

2.

Determine [G, G| by examining normal subgroups H such that G/H is abelian.
Determine all linear characters on G by using information from G = G/[G, G]

Use the degree formula to enumerate the number and degrees of all irreducible
representations of G.

Determine the number of conjugacy classes of G using the previous section, and
also their representatives.

Use this to build a partial character table, with some unknown entries.

Determine the unknown entries by using the orthogonality relations.

1.3.1 The symmetric group S;
Let G = S3.

1.

Recall that A3 < S5 and S3/A3 = Zs. Hence,
G,G] C A
Since G is non-abelian, [G, G] # {e}. Since Aj is cyclic of prime order, we have

[G7 G] = A3

Since G = G/[G, G] = Z,, G has two linear characters obtained by lifting the two
irreducible representations of Z,.

pr:1—1
p2:l— —1
write @; : G — C* to be maps, ¢; = p; o7
The degree formula now reads
6=|Gl=2+> n
ni>1

Hence, it follows that G has exactly one irreducible representation of degree 2, and
no other representations of higher degree. We denote this representation by p.



4. By the previous step, G has 3 conjugacy classes. Notice that H = Aj has is the
union of two conjugacy classes of G.

Cy ={e}, Cy = {(123), (132)}
Also, G/H is abelian, so it has conjugacy classes

Dy = {m(e)}, D2 = {m((12))}
Hence, if F is as in the previous section, then

F ={(e),((123)), ((12))}
Since |Cl(G)| = 3, it follows that Cl(G) = F.
5. Note that if p; : Zo — C* is a representation, then
pi=piom:G—C

is a one-dimensional representation such that

Xepi (g) = Xps (ﬂ—(g))

So we obtain a partial character table as follows

e [ (123) | (12)
o1 | 1] 1 1
oo | 1] 1 | -1
p |2 a b

6. The orthogonality of columns now gives two equations

1+14+42a=0=a=-1
1—-14+2b=0=0=0

So the character table of S3 is

e | (123) | (12)
w1 |1 1 1
we | 1 1 -1
Xp | 2| —1 0

Note that this agrees with what he had obtained earlier.

1.3.2 Non-Abelian groups of order 8

1. If G is non-Abelian and |G| = 8, then Z(G) # {e}, and so |Z(G)| € {2,4,8}. Since
G is non-abelian, and
Proposition 1.3.1. If G/Z(G) is cyclic, then G is abelian.
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It follows that |Z(G)| =2 and G/Z(G) = Zy x Zs. In particular, since G/Z(G) is
abelian, it follows that [G, G] C Z(G). Since [G, G| # {e} (since G is non-Abelian),

we have

G, G] = Z(G)
. Since G 2 Zy x Z, we have 4 irreducible representations of G' given by

p1:{(1,0),(0,1)} —1

p2: (1,0) — 1 and (0,1) — —1
p3:(1,0) — —1and (0,1) — 1
ps:(1,0) — —1 and (0,1) — —1

We write ¢; :== p;onm: G — C*.

. The degree formula gives

Once again, we see that GG has exactly one irreducible of representation of degree
> 1. We denote this by p, and note that d, = 2.

. Since G has 5 irreducible representations, |Cl(G)| = 5. Note that H = Z(G) has 2
conjugacy classes of G, we denote them by

Cl = {6}702 = {x}

Since G/H = Zy X Zgy, we write
G/H = {m(e),m(g1), m(92), 7(gs)}
Each singleton forms a conjugacy class in G/H, so we obtain
F={{e}, {7}, (1), (92), (93)}

Since |CI(G)| = 5, it follows that Cl(G) = F.
. Once again, if p; = p; o, then
Xe:(9) = X (7(9))

So we obtain a partial character table as

g |1z g1]|92]9s
pr 11111
wo | 1[1]-1]1]-1
w3 | 1[1]1]-1]-1
pe | 1|1 [-1(-1]1
pl2lalblc|d

11



6. Using the orthogonality of columns, we get 4 equations

1+14+1+14+2a=0=a= -2
2—242-2420=0=b=0
242-2-242c=0=c¢c=0
2-2-24242d=0=d=0

Hence, any two non-Abelian groups of order 8 have the same character table, given

by
g |1z |g|G92]|9
e |11 1]1]1
0 |11 -1]171-1
o3 |1 111 ]-1]-1
o |11 -1]-1]1
Xp |21-2]0]0]0

In particular, the groups D, and (g are two non-isomorphic groups which have the same
character table.

In fact, more is true: If p is a prime, then any two non-Abelian groups of order p* have
the same character table. We will prove this later in the course.

1.3.3 The Alternating Group A,
Let G = A4,

1. Set H = {e,(12)(34), (13)(24), (14)(23)}. Then H < S, since it consists of precisely
two conjugacy classes. Hence, H <1 A,. Furthermore, G/H is a group of order 4,
and hence is Abelian. By the earlier section,

G,G)C H

Since A4 is non-Abelian, [G, G] # {e}. However, the non-identity elements in H
form a single conjugacy class in Ay, so since [G,G] < A4 (it must be a union of
conjugacy classes), it follows that [G, G| = H

2. Now G = G/H = Zs, so G has 3 linear characters given by
piil—=w™i=123
where w = €2™/3. Let ¢; = pjom

3. Now the degree formula gives 12 = |G| =3+ )", ., d;. Hence, G has exactly one
more irreducible representation, p such that d, = 3.

12



4. By the previous step, |CI(G)| = 4. Notice that H is a union of two conjugacy
classes

Cr = {e}, Oy = {(12)(34), (13)(24), (14)(23)}

Also, write

G/H = {r(e),n((123)), 7((132)}

then these yield singleton conjugacy classes in G/H. Hence we get
F ={{e}, ((12)(34)), ((123)), ((132)) }
Since |CI(G)| = 4, it follows that CI(G) = F.

5. As before, the character table now looks like:

g |1](2)(34) | g1 | 9o
Xor | 1 1 1|1
Xego | 1 1 w | w?
Xos | 1 1 w? | w

Xp | 3 a b | c

where w = e2/3,

6. Now the orthogonality of the columns yields

3+3a=0=a=-1
l4w+w+3b=0=b=0
l+w’+w+3c=0=c=0

because 1 + w + w? = 0. This gives the character table of A4 as

g | 1](12)(34) | g1 | 92
1g |1 1 1 1
Xw | 1 1 w | w?
Xw? | 1 1 w? | w

p |3 -1 010

13



2 Tensor Products of Representations

Towards the end of the course, we veered away from the textbook completely. I wanted
to cover tensor products, restriction and induction - all topics which, I felt, were covered
poorly in the textbook.

2.1 Tensor Products of Vector Spaces

Let U, V,W, X, etc. denote finite dimensional vector spaces over a field £

Definition 2.1.1. A map f:V x W — X is said to be bilinear if for all o, 8; € k,v; €
V,w; € W, we have

f (Z Vi, Z ijj> = Z ;35 f (vi, wy)
i j i\
Example 2.1.2. 1. If V is an inner product space over R, then the inner product
(-,-) : V xV — R is bilinear.
2. Cross product R? x R® — R3

3. If V' is a vector space, and V* its dual, then B : V' x V* — k defined by B(v, f) :=
f(v) is bilinear.

4. ¢ : C x R* — C" given by (2,0) > (2v1, 202, ..., 2Uy)
Definition 2.1.3. 1. By(V, W) is the vector space of all bilinear maps f : VxW — k

2. Forv e Viw € W, define v @ w : Bp(V,W) — k by v ®@ w(f) := f(v,w). Notice
that v @ w € By (V, W)*, the dual space of B(V, W)

3. Define V@ W :=span{fv@w :v € V,w € W}
Lemma 2.1.4. The map ¢ : VX W =V @ W given by p(v,w) := v Q@ w is bilinear.

Proof. We prove linearity in the first variable as the other variable is similar. So fix
v, € V,w € W, and a € k, and we WTS:

ooy + v, w) = ap(vy, w) + @(va, W)

14



So fix f € Bp(V, W), then

o(avy + va, w)(f) = f(avy + ve, w)
= af(vi,w) + f(ve, w)
= ap(vi, w)(f) + ¢(v2, w)(f)
= [ap(v1, w) + (02, w)](f)

]

Theorem 2.1.5. If {v;} and {w;} are bases for V and W respectively, then {v; ® w;} is
a basis for V@ W. In particular, dim(V @ W) = dim(V) x dim(W)

Proof. Let S ={v; @ w; : 1 <i<n,1<j<m}
1. S is linearly independent: If a; ; € k such that

Z Oéiiji ® U)j =0 (*)
,J

Fix i, and let f;; : V x W — k be given by
fi,j(Uk, we) = 5i,k5k,z
extended to a bilinear map on V' x W. Then f;; € B,(V,W), and
(vr ® we)(fij) = fij(Vr, we) = 0 kOre

Hence, applying () to f;; gives
QG5 = 0

This is true for all 1 <7 <n,1 < j < m, so S is linearly independent.

2. S spans V x W: By definition,
VoW :=span{fv@w:veV,weW}

so it suffices to show that v ® w € span(S) for any v € V;w € W. So fix v € V,w €
W, then write
V= Z%‘Uz‘ and w = Zﬁjwj
{ J
Then since the map (v, w) — v ® w is bilinear, we get

VRwW = Zaiﬂjvi ® w; € span(S)

Z'7j

15



Proposition 2.1.6 (Universal Property - I). If X is a finite dimensional vector space,
and g : VxW — X is a bilinear map, then 3T : VW — X linear such that Toyp = g.
In other words, there is an isomorphism

Bx(V, W) = Homk(V & W, X)
Proof. If g : V x W — X is bilinear, define
T:V@W — X given by T'(v; ® w;) = g(vs, w;)

extended linearly to V ® W. This is well-defined by the previous theorem. Furthermore,
T is linear and

T o p(vi, wy) = g(vi, w;)

Since both sides are bilinear, they must agree on V' x W.

For uniqueness, note that if S : V @ W — X is a linear map such that

Sop=g
Then
S(vi @ wy) = g(vi,wy) =T(v; @wy) Vi, j
Since S and T are linear, it follows that S = T' by the previous theorem. n

Theorem 2.1.7 (Universal Property - II). Let U be a finite dimensional vector space
and ¢ : V. x W — U 1is a bilinear map such that, for any bilinear map h : V x W — X,
1S : U — X such that S o1 = h, then there is an isomorphism p: U — V @ W such

that po =

Proof. Let (U, 1) be a pair as above. By the previous theorem (V ® W, ¢) is another pair
that satisfies the same property. By the previous theorem, 37 : V @ W — U such that

Top=1
Similarly, 45 : U — V ® W such that
Sopp=¢

Hence,
SoTop=y and ToSoyy =1

By the uniqueness, it follows that S o T = idygy,. Similarly,
ToS= ldU
and hence S is the required isomorphism. ]

Example 2.1.8. 1. CQR*"=C"

16



Proof. Define ¢ : C x R* — C" by
(2,0) = (201, 202, . . ., 2Uy)
This is a bilinear map. Hence, 37 : C ® R™ — C™ such that
T(z®70) =1(z,70)

Now note that
¢(1, ei) =€

so v is surjective. Hence, T' is surjective. However,
dim(C") = 2n = dim(C) x dim(R") = dim(C ® R")

and so T must be injective and hence an isomorphism. O]
2.CrCr=Cmm

Proof. Define ¢ : C* x C™ — C™ by

V(T,Y) = (T1Y1, T1Y2s - -+ T1Yms T2Y1s - -+ s T2Yms -+ - s TnlYim)

Then follow the argument as above. O]
3. Ve V* = Endy(V)

Proof. Define ¢ : V x V* — Endg (V) by

(v, f)(w) = flw)v
Then ) is bilinear, so follow a similar argument as above. O

Definition 2.1.9. Let T': V; — V5 and S : W; — W5 be two linear maps. Then define
P Vi x Wy — Va® W by ¢(v,w) = T(v) ® S(w)
Then ) is clearly bilinear. So 'R : V; ® W; — V5 ® W5 such that
Rv@w)=Tw)® S(w) YveV,weW
We write R=T® S

2.2 Direct Product of Groups

Theorem 2.2.1. Let p: G — GL(V) and 7 : H — GL(W) be two representations. Then
d a unique representations

G x H—GLV@W)

such that
¥(g, h) (v ® w) = py(v) @ mp(w)

This is called the outer tensor product of p and m and we write ¢ = pRw

17



Proof. 1. For each (g,h) € G x H fixed, define
w: VW —=Ve@W given by p(v,w) = py(v) ® m,(w)
This map is clearly bilinear, so 3 a unique linear map
Rigpy : VOW =V ®W such that Ry p)(v® w) = pg(v) @ m4(w)
So we define ¥(g, h) := Ryn)
2. We first check that 1 is well-defined: To see this, note that
Rig—1p-1)(v @ w) = pg=1(v) ® mp—1 (w)
Hence, for any v € V,w € W, we have
Rygny o Rg1pn(v@w) =v@w = Ry-1,-1y0 Rigp(v®@w)

But V@ W =span{v®@w : v € V,w € W}, so since both sides are linear maps, we
see that

Rgpy © RBg-1p-1) = I = Rg-1,-1) 0 Rg p)
Hence, Ry p € GL(V @ W)

3. Now we check that 1 is a homomorphism: As above, it suffices to show that
R(gl,hl) © R(Qz,h2)(v ® ’LU) = R(91927h1h2)(v ® w) YORS V7 weW
This follows from the definition and the fact that p and 7 are representations.

4. Uniqueness follows from the uniqueness of the previous definition.

Theorem 2.2.2. With the notation as above,

Xp@w(.% h) = XP(g)XTF<h)

Proof. Fix (g,h) € G x H. Since p, is diagonalizable, 3 a basis S = {v1,vs,...,v,} of V
such that
pe(vi) =XNv; V1<i<n

Similarly, 3 a basis T' = {wy, ws, ..., w,} of W such that
mh(ws) = pyw; V1<j<m

Let B={v; @w; :1<i<mn,1<j<m}, then B is a basis for V ® W. Furthermore, if
Y = p®m, then
d’(gﬁ)(”z’ ® wj) = )\i,uj (Ui & wj)

18



Taking a trace, we get

= Z Aift

() (5

= Xp(9)X=(R)
0

Theorem 2.2.3. Let p; : G — GL(V;) and m; : H — GL(W;) fori=1,2. If{; = 0,
then

(sz, Xw2>L(GxH) = <Xp1 ) Xp2>L(G) (Xm, X7r2>L(H)
Proof. We compute

1 [
<X¢1’XTZJ2>L(GXH) = m Z le(%h)Xwg(%h)
(g,h)EGXH

> X (@)X ()X (9) X (B)

geG,he H

( > X (90X g )(Hme )X ( )
gEG | |h€H

= <Xp1 » Xp2 >L(G) <X7r1 y X >L(H)

1
|G| H]|

]

Corollary 2.2.4. 1. Let p : G — GL(V) and 7 : H — GL(W). Then p@n is
wrreducible if and only if both p and m are irreducible.

2. Let p; - G — GL(V;) and m; - H — GL(W;) be irreducible. Then p; ~ ps and
m ~ o if and only if
P1OTL ~ Pa&Ty

Proof. 1. Recall that if ¢ is any representation of a group, then

(X Xp) > 1

and equality holds if and only if ¢ is irreducible. Now simply apply the previous
theorem.

2. Note that for any (g,h) € G x H

Xe: (9 7)) = X, (9) X (D)

Hence, if p; ~ ps and m; ~ 7, it follows that

X1 = Xepa
and so Yy ~ s.
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3. Conversely, if 1); ~ 1, then by part (1)

<X¢1 ) X¢2> =1

From this it follows that

<Xp17Xp2> = <X7F17X7r2> =1

By Schur orthogonality, it follows that p; ~ py and m ~ 5.

]
Theorem 2.2.5. The map
a:Gx H— G xH given by ([o], [7]) = [p@m]
s a well-defined bijection.
Proof. 1. « is well-defined by the previous Corollary
2. To see that « is injective by the previous corollary, part 2.
3. To see that « is surjective, we show that
|CUG)|CI(H)| = [CU(G x H)|
If (g, h), (x,y) € G x H, then
(z,9) " (g, W) (@, y) = (27 g,y hy)
Hence, (g,h) ~ (¢', 1) if and only if g ~ ¢’ and h ~ h'. Hence the map
a:Cl(G) x Cl(H) — CI(G x H) given by ([g], [h]) — [(g,h)]
is a well-defined bijection.
O

Example 2.2.6. We determine the character table of S5 x Z,. We have the character
table of G = S5 as

e | (12) | (123)
X1 1 1 1
X2 1 -1 1
xs|2| O -1

and that of Z, is given by
0
x1|1]1
X2 | 1]-1
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Now the representatives of the conjugacy classes of S3 x Z, are

{(e,0), (e,1),((12),0), ((12), 1), ((123), 0), (123), 1)}

We multiply characters to get the character table of S3 X Zs to be

(¢,0) | (e,1) | ((12),0) | (12),1) | ((123),0) | ((123),1))
a1 1 1 1 1 1
iXxe| 1 | -1 1 1 1 1
Yox x| 1 1 1 1 1 1
Yaxxa| 1 | -1 1 1 1 1
X3 X X1 2 2 0 0 -1 -1
axxa| 2 | -2 0 0 1 1

Compare this with the discussion in [BS, Section 4.5]. This is, in fact, the tensor product
of two square matrices representing the character tables of S3 and Zs,.
2.3 Inner Tensor Products of Representations

Theorem 2.3.1. Let p: G — GL(V) and 7 : G — GL(W) be two representations of a
group G. Then 3! representation ¢ : G — GL(V ® W) such that

Pg(v @ w) = py(v) @ Ty(w)

This is called the inner tensor product of p and m and is denote by by p Q@ .

Proof. Consider the outer tensor product
pR1: G x G— GL(V @ W)
and the diagonal homomorphism A : G — G x G given by g — (g, g). Then define
p = (p&m) o A
Then ¢ satisfies the required condition. Uniqueness also holds as before. O

Theorem 2.3.2. If p, ™ as above, then

Xper(9) = Xo(9)Xx(9) Vg €G
In particular, the product of two characters is a character.

Proof. By the earlier theorem,

Xper(9) = Xu(9:9) = Xp(9)xx(9)

21



Example 2.3.3. The character table of S, described in [BS, Example 7.2.13] is given
below. Let m denote the augmentation representation of S; and p the irreducible repre-
sentation of degree 2.

1| (12) | (123) | (1234) | (12)(34)
X1 1] 1 1 1 1
X2 1] -1 1 -1 1
Xs=Xr |93] 1 0 -1 -1
Xa=X2X3 | 3| -1 0 1 -1
Xs=Xp |2] O -1 0 2
XpXr 6| O 0 0 -2
X2Xp 210 -1 0 2

Hence,

1. If n = p® 7, then n has degree 6. In particular, n is not irreducible, so the inner
tensor product of irreducible representations need not be irreducible.

2. Also, if i = x2 ® p, then
Xu(9) = sgn(g)x,(9) = Xx,(9)

since x,(g) = 0 for all g ¢ A,. Hence, i ~ p. In particular,

X2 ®p~x1Qp
but y» is not equivalent to y;.

Compare these examples with Corollary 2.2.4.

2.3.1 Symmetric and Alternating Squares

Definition 2.3.4. Let V be a vector space, then 3! linear map T : V®V — V®V such

that
TwvRw)=w®v

Write
SP(V)y={zeVaV:Tz=uz}

AV)={zeVeV Tz = -z}
Lemma 2.3.5. 1. V@V =S5%V)a A*(V)
2. Let p: G — GL(V) be a representation. Write p = p® p. If T as above, then
Tp,=p, I VgeG

Proof. HW O]
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Definition 2.3.6. Let p: G — GL(V) be a representation of G. Then by the previous
two lemmas, we may define

ps = (p @ p)|s2(vy and pa = (p @ p)|az(v)

Then
PP~ psDpa

These are called the symmetric square and alternating square of p respectively.

Lemma 2.3.7. Let {vy,va,...,v,} be a basis for V. THen
1 {v;®@uj+v;®v;: 1 <i<j<n}isa basis for S*(V)
2. dim(S*(V)) =n(n+1)/2
3. v @v; —v; @u; 1 1 <i < n}isa basis for A2(V)
4. dim(A*(V)) =n(n—1)/2

Proof. Let S = {v; @ v; +v; @v; : 1 < i < j < n}, then S C S*(V). Similarly, if
T={v®v,—v;®v;: 1 <i<j<n}, then T C A*(V). Furthermore, S and T are
linearly independent since the set {v; ® v; : 1 <14, j < n} is linearly independent. Hence,

dim(S*(V)) > n(n +1)/2 and dim(A*(V)) > n(n —1)/2

However,

dim(S?(V)) + dim(A*(V)) = dim(V @ V) = n?
So both the above inequalities are equalities and the results follow. O

Proposition 2.3.8. Let p: G — GL(V) be a representation with character x. Suppose
Xs and xa denote the characters of ps and pa respectively, then

xs(g) = %(xz(g) +x(¢%)) Vged

xalg) = 503(9) —x(¢?) Vged@

Proof. Fix g € G, then p, is diagonalizable. So choose a basis {v,vs,...,v,} of V such
that
pe(vi) = Aiv; V1 <i<n

Hence,
X(g) =) Aiand x(¢*) => N
i=1 i=1
If w; ; = v; ®v; +v; ®v;, then

ps(9)(wij) = pg(vi) @ pg(v;) + pg(vy) @ pg(vi) = Nidjw ;
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Similarly, taking ¢; ; = v; ® v; — v; ® v;, then
pa(9)(tiz) = Nijti
Hence,

> AN

1<i<j<n

> AN

1<i<j<n
= Xxs(9) = Z A+ xalg)
i=1

= x(9%) + xa(g)
= x(9%) = xs(9) —xale) (¥

Also,

1<j

(9°) + 2XA(9)
s(g) +xalg) (%)

X
= x(9)* = x

Solving (%) and (**) gives the required result.

2.3.2 Character Table of S;
We now determine the character table of S5. Let G = S5

1. As done for Sy, we see that [G,G] = As. Hence, G has two linear characters

x1 and x2 = sgn

2. The augmentation representation p is a degree 4 irreducible representation with

character
x3(g) = |Fix(g)| — 1

3. Let ¢, = x2(g)p, is another irreducible degree 4 representation with character

xa(g) = sgn(g)(|Fix(g)| — 1)

4. The conjugacy classes of S5 are given as

(n > ZA2+ZZ)\)\-

e | (12) [ (123) [ (12)(34) | (1234) | (123)(45)

(12345)

1] 10 20 15 30 20

24
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Hence, S5 has 7 irreducible representations. We have determined 4 so far, so we

have a partial character table as below

e | (12) [ (123) [ (12)(34) [ (1234) [ (123)(45) | (12345)
x| 1] 1 1 1 1 1 1
x| 1] -1 | 1 1 -1 -1 1
Xs | 4| 2 1 0 0 -1 -1
a4l 2| 1 0 0 1 -1

. Let p be as above, then if xg and x4 are the characters of the symmetric and
alternating squares of p, then we can obtain their values by the previous theorem.
For instance,

xs((123)) = S (x((123))? + x((123)%)) = Z(1* + x(132))) = 5(1 + 1) =1

Similarly, we obtain the values of xs and x4 as below

e | (12) [ (123) [ (12)(34) | (1234) | (123)(45) | (12345)
Xs |10 4 1 2 0 1 0
Xxa| 6] 0 0 -2 0 1

. Now,

<XA,XA>:1_;()[(1'36)+(20'0)+(15'4>+(30'0)+(20'0)+<24’1)]:1

So x4 is the character of an irreducible representation. This must necessarily be
different from the ones already obtained since it has degree 6. We write x5 = x4.

. Now,
<XS7 XS> =3

so it does not correspond to an irreducible representations, but calculating inner
products gives

(xs,xi) =1 i€e{l1,3}, and
<X57Xj> =0 j € {27475}
Hence, 3 a sixth irreducible representation 1 such that
Xs = X1+ X3+ Xy
We write x¢ = Xy and note that
X6 =Xs—X1—Xx3 (%)

In particular, x(1) =10 —1—4 =5.
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8. Now if ¢, = x2(9)1,, then ¢ is an irreducible representation of degree 5 such that

Xe(9) = x2(9)xwlg)  (+%)
In this case, using equation (x), we see that
xu((12)) = xs((12)) = x1((12)) — x3((12)) =4 =1 =2 =1 # x,((12))

Hence, ¢ is not equivalent to ¢). We write x7 = x.,, so equations (x) and (xx) allow
us to complete the character table of Ss.

e [ (12) [ (123) [ (12)(34) | (1234) | (123)(45) | (12345)
1| 1] 1 1 1 1 1 1
2 |1] -1 | 1 1 -1 -1 1
xs | 4] 2 1 0 0 -1 -1
xald] 2| 1 0 0 1 -1
X5 | 6] 0 0 -2 0 0 1
xe |5 1 | -1 1 -1 1 0
xr|5] -1 | -1 1 1 -1 0
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3 Restriction to a Subgroup

Definition 3.0.1. Let G be a group, H < G and p : G — GL(V) be a representation.
We may restrict p to obtain a representation

This is called the restriction of p to H.
Note that even if p is irreducible, p|y may not be.

Proposition 3.0.2. Suppose AH < G such that H is Abelian, then
d,<[G:H] VYped

Proof. Let p : G — GL(V) be irreducible and d = d,, then p|g: H — GL(V) is a
representation. Hence, 3 one dimensional representations 1, @s, ..., pq : H — C* such
that

p~P1DPrD... DYy

In particular, 3W < V such that dim(W) = 1, which is invariant under p|y. Write
W = span{v}, and set
W' = span{p,(v) : g € G}

Then, W' <V is p(G)-invariant. Since p is irreducible,
V =W'=span{p,(v) : g € G}
Now suppose g € G, h € H, then

p(gh)(v) = p(g)p(h)(v) = Ap(g)(v)
and so p(gh)(v) € span{p(g)(v)}. Hence, if G/H = {¢:1H, g2H,...,9¢H}, with { = |G :
H], then
V = span{p(g;)v:1<i</(}

In particular, d = dim(V) < /¢ =[G : H]. O
Example 3.0.3. Let G = D,, be the dihedral group of order 2n. Then any irreducible
representation of G has degree 1 or 2. If n = p, prime, we describe all the irreducible
representations of G.

1. Write G = D, = {a,b: a? = b* = 1,bab = a?™'), and H = (a). Then H < G and
G/H = Z, so [G,G]| C H. However, |H| = p and G is non-abelian, so [G,G| = H.
Hence, G has exactly two linear characters given by

xi1:a—1,0—1
Xe:ar— 10— —1
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2. Since every other irreducible representation has degree 2, the degree formula gives
2p=2+4+4k=k=(p—1)/2
and so G has exactly (p — 1)/2 irreducible representations of degree 2.
3. For 1 <j < (p—1)/2, define ¢; : G — GL(C) by

¢ 0 0 1
a > ( 0 ¢ and b — 10
As in the earlier HW, 9; is irreducible. Furthermore, if ¢/ = ¢(*', then

plG+i)

This is impossible if 1 < 4,7 < (p —1)/2, and so for such 4, j, we have that 1;(a)
and 1;(a) have different eigen-values. In particular, ¢; is not equivalent to ;.

4. Thus, the irreducible representations of G are

Definition 3.0.4. As observed above, even if p : G — GL(V') is irreducible, its restriction
plu: H — GL(V') may not be irreducible. Write H = {1, ¢s,...,1,}, and set

Si = (Xolu> Xoo) (1)
Then s; are the multiplicities of ¥; in p|y. We say that 1); is a constituent of p|y if s; # 0.

Note that

T

Xolg = Z SiXvy;

=1

Theorem 3.0.5. Let H < G, and let » : H — GL(W) be a non-zero representation of
H. Then 3 an irreducible representation p : G — GL(V') such that

<XP|H7 X¢>L(H) # 0

In particular, every irreducible representation of H occurs as a constituent of an irre-
ducible representation of G.

Proof. Write G = {0, @ . o) d; = d,, and let x; = x,m. Let L : G —
GL(L(G)) denote the left regular representation, then

S
XL = Z dixi
=1
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Let ¢ : H — GL(W) as above, then

Z di<X@(i>|H, xy) = (xzlm, sz)L(H)

- ﬁ S e (h)xu(h)

1 —— _ G|

= mm(ﬁ)xw(e) =

Hence, 41 <1 < s such that
(X)) Xeo) L) 7 0
O

Proposition 3.0.6. Let H < G,p : G — GL(V) be an irreducible representation of G.
Let H = {41, 1, ..., 0.}, and write

S; = <Xp\H7 Xw,->L(H)
Then

and equality holds if and only if
Xpl9) =0 VgeG\H
Proof. We know that

ZS? = Xp\H’XMH L(H) = ’ ZX'O

i=1 heH

Since p is irreducible on G, we have

1= (x,, Xp>L(G) |G| ZXP Xo(9)

geG
1
i pr e > Xo(9)x0(9)
heH gEC\H
|H| 9
G Z

Hence,

Z )\G|

Note that K > 0 and K = 0 if and only if Xp(g) =0 for all g € G\ H. This gives the
result. O
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Corollary 3.0.7. Let H < G be a subgroup of index 2, and let p : G — GL(V) be an
wrreducible representation of G. Then one of the following happens:

1. plg is an irreducible representation of H.

2. I,y € H such that plu= 11 & 1s.

Furthermore, part (2) occurs if and only if x,(g) =0 for allg € G\ H.

3.1 Character Table of A;

3.1.1 Conjugacy classes in A;
Definition 3.1.1. Let GG be a group and = € G.

1. The conjugacy class of z in G is denoted by 2% = {yzy~' : y € G}

2. The centralizer of z in G is
Colx)={yeG:yr=ay} ={y€G:yxy ' =2}

Note that if we let G act on itself by conjugation, then the conjugacy class of G is the
orbit of x, while the centralizer of x is the stabilizer of x. So by the orbit-stabilizer

theorem,
2] =[G : Cq()]

Now, for any o € A,,, write

Snand o4n

o
to denote the conjugacy classes of ¢ in S,, and A,, respectively. Clearly,

JA" C US"

Note that since A4,, < S,, we have ¢ C A,

Proposition 3.1.2. For o € A,, with n > 1, we have

An — Sn

1. If 0 commutes with an odd permutation, then o o

2. If o does not commute with some odd permutation, then
o =g U ((12)0(12))4
and
Sn|

2

o] = [((12)(12))*
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Proof. 1. Suppose 7 € S, is an odd permutation which commutes with o, then we
WTS: ¢ C 0. So fix n € ¢ and § € S, such that

n=0d06""
If § € Ay, then n € 0. If not, then & = d7 € A,, and

§od' P =60 =n=neot

2. Suppose ¢ does not commute with any odd permutation. Then, by definition,
Cs,(0) = Ca,(0)

Hence,

An‘ ’Sn| ‘O—S”|
on| =[A, : Cy (0)] = | = —

Now observe that
o ={0c5 6 A u{do6 " 0€ S, \ A}
Now ¢ is odd if and only if n = §(12) € A,,. Hence,
{6067 :0€ S, \ Ay} = {n(12)0(12)n7 ' : n € A} = ((12)0(12))4"

The theorem now follows.

We now examine the conjugacy classes in Sj

e | (12) [ (123) [ (12)(34) | (1234) | (123)(45) | (12345)
1] 10 | 20 15 30 20 24

Of these, (12) & As, (1234) ¢ As, (123)(45) ¢ As. Also,

(45)(123)(45) = (123) = (123)% = (123)%5
(12)(12)(34)(12) = (12)(34) = ((12)(34))* = ((12)(34))"
and 19
Cs, ((12345)) = 7 =5

is not divisible by two. Hence, (12345)4» # (12345)%". Hence,
(12)(12345)(12) = (13452)

is another representative of a conjugacy class in As. So we get the conjugacy classes in
As are

e | (123) [ (12)(34) | (12345) | (13452)
1] 20 15 12 12
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3.1.2 Real Character Values
Lemma 3.1.3. If p: G — GL(V) is a unitary representation and g € G, then

Xp(97") = X,(9)
Proof. Since p, is diagonalizable, write
gl = diag(A1, A2, ..., An)
where each )\; € S*. Hence,
[og ') = diag(AT", ..., A7)
But A\ = A1, so the result follows by taking traces. O]

Theorem 3.1.4. Let G be a group and g € G. If g is conjugate to gt if and only if
Xp(9) €ER forallpe G

Proof. By the previous lemma

Xo(97) = Xp(9) & Xo(9) €R
So the corollary follows from Mid-Sem Exam, Problem 2. O
Corollary 3.1.5. For very representation p of As, x,(9) € R

Proof. 1t suffices to show that every element in {e, (123), (12)(34), (12345), (13452)} is
conjugate to its own inverse. This is evident for elements in {e, (123), (12)(34)}. For the
other two, check that

(12345)71 = (54321) = (15)(24)(12345)(15(24)

and
(13452)" = (25431) = (12)(35)(13452)(12)(35)

3.1.3 Character Table of A;

Now consider the character table of S5 obtained in the previous section.

e | (12) | (123) | (12)(34) | (1234) | (123)(45) | (12345)

X1 1] 1 1 1 1 1 1

X2 1] -1 1 1 -1 -1 1

X3 = Xp 41 2 1 0 0 -1 -1
X4 = Xyoop | 4] -2 1 0 0 1 -1
Xs=Xpa |6 O 0 -2 0 0 1
X6 =X¢ | 0| 1 -1 1 -1 1 0
X7 = Xxe@u | O | -1 -1 1 1 -1 0
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Restricting to H = As, we see that

12)) # 0, so x1|g is irreducible.

1. X1

12)) # 0, so p|y is irreducible.

((12))
x2((12)) # 0, 80 Xa| g is irreducible. However, Xa|p= X1|#
2. xs((12))

((12))

12)) # 0, so (x2 ® p)|u is irreducible. However,

X4
xa(9) = x3(9) Vg€ As

s0 pla~ (X2 ® p)|u

3. x5(9) =0 for all g € S5\ As, s0 pa = 11 @ ¥y for two irreducible representations
1/}1 and lpg of A5

4. x6((12)) # 0, so |y is irreducible.

As above, ¥|g~ (x2 @ ¥)|q.

So we obtain a partial character table

e | (123) | (12)(34) | (12345) | (13452)

1 20 15 12 12
Y2 = X3|H 4 1 0 -1 -1
03 = Xelg | O -1 1 0 0
P4 = Xy; |1 ai Qs as ay
Y5 = Xopp | T2 by by b3 by

Note that if n; = dy,,7 = 1,2, then
1+16+25+n2+n3=60=ni+n3=18=mn, =ny =3

Furthermore,
Xy T Xo2 = Xpa
Hence, we get
ar +b1=x,,(123)) =0= by = —y
as +by = x,,((12)(34)) = 2= by = -2 —ay
as +bs =x,,((12345)) =1=bs =1 —ag
=bi=1—ay

So we get an incomplete table as

33



e | (123) | (12)(34) | (12345) | (13452)

11 20 15 12 12
o1=x1la |1 1 1 1 1
0o = X3l | 4 1 0 -1 -1
w3 =Xelu | 5| -1 1 0 0
P1= Xy, | 3] @ az as ay
©5 =Xy | 3| —a1 | —2—az | 1—a3 1—ay

Orthonormality of columns gives

%[1+1+1+a§+a$]=1:>a1=0
£[1+1+a§+b§]:1:a§+b§=2
g[1+1+a§+b§]—1:>a§+b§—3
%[1+1+ai+bi]:1:>ai+bi:3

Since by = —2 — ay and a2 + b3 = 2, it follows that
Ay = by = —1
Now since b3 = (1 — a3), we see that az and a4 are both solutions to the equation
_1xV5
2

?—r—-1=0=uz

Since ¢4 # 5, the character table of As is

e | (123) | (12)(34) | (12345) | (13452)

17 20 15 12 12
o1=x1lu |1 1 1 1 1
0o = x3lm | 4 1 0 -1 -1
03 =Xelu | 5| -1 1 0 0
©14 = Xy | 3 0 -1 T Y
©5 = Xepy | 3 0 -1 Y T

where ¢ = %5 and y = 1_2‘/5
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4 Induced Representations

4.1 Definition and Examples

Definition 4.1.1. Let G be a group and H < G. Let p: H — GL(W) be a representa-
tion.

1. Define X = {f : G — W}. Note that X is a vector space under the pointwise
operations. Define

IW):={feX:flgh)=pn1(f(9)) VgeG hecH}
Note that I(WW) is a vector subspace of X.
2. For g € G, define
Ty - I(W) — I(W) given by T,(f)(x) == f(g~')
Then T, is well-defined
Proof. 1f f € I(W), then for any h € H,x € G,
Ty (f)(xh) = f(g~ wh) = pp-1(f(g™ @) = pn1T,(f)(2)
Hence, T,(f) € I(W) O
3. Moreover, T, € GL(I(W))
Proof. Simply check that
TyoTy1(f)(@) = Ty (f)g™ ') = flgg @) = f(z) Vee€G, feV
Hence, Ty o Ty -1 = id . Similarly, Ty o Ty = idjw O
4. Finally, the map ¢ : G — GL(I(W)) given by
vl9) =T,
is a representation of G.

Proof. For g1,90 € G, f € I[(W), and = € G, we have

(Tyy 0 Ty, ) (f) () = Ty, (f) (91 ')
= fg; 91 ' @)
= f((9192) ")
=Ty, (f)()
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The representation ¢ : G — GL(I(W)) is called the induced representation of p : H —
GL(W), and is denoted by ¢ = Ind$(p).

Proposition 4.1.2. dim(I/(W)) = dim(W)|[G : H]|

Proof. Write G/H = {x1H,xoH, ..., x;H}, so that ¢ = [G : H|. Define a map
T:I(W) = @, W given by f — (f(z1), f(z2), ..., f(x))

T is clearly linear. We claim that T' is bijective, which proves the theorem.

1. T is injective: Suppose T'(f) = 0, then f(z;) = 0 for all 1 < i < ¢. Then if
g€ G,31 <i</{and h € H such that g = x;h. Hence,

f(g) = f(xih) = pp-1 f(2:) = 0
Hence, f =0
2. T is surjective: Given (wy,ws, ..., wy) € &, W, define f : G — W such that
f(zih) = pp-1(w;) Vhe H1<i<!{

This is well-defined since G = U{_,z;H. Furthermore, for any g € G, h € H, write
g = x;h', so that h'h € H, and

flgh) = f(z:ih'h) = pgony-1(wi) = pu-1pgy-1(wi) = pa-1f(9)
Hence, f € I(W). Now clearly, T'(f) = (w1, ws, ..., w,) holds.
]

Example 4.1.3. 1. Let H = {e} < G and x; : H — C* be the trivial representation.
Then, by the above definition, W = C,

X={f:G—C}=L(G) and (W) = X = L(G)

Finally,
T,(f)(x) = f(g™'x)

Hence, Ind% () is the left regular representation of G.

2. Let H=G and p: G — GL(WW) be any representation. Then
X=Af:G=>W}land IW) ={f € X: f(zg) = pg-1(f(z)) Vg,x€G}

and let p = Ind%(p). Define T : I(W) — W by f + f(e). Then T is well-defined,
and linear. Also, if S : W — I(W) given by

S(w)(z) := pp-1(w) VreX
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Then, for any f € I[(W), and x € X
(SoT)(f)(x) = S5(f(e)(x) = pa-1(f(e)) = flex) = f(x)
Hence, S o T' = id;uwy. Also,
(T'o5)(w) =T(S(w)) = S(w)(e) = pe-r (w) = w

and so T oS = idy . Hence, T is an isomorphism. Furthermore, for any g € G, f €

[(W)7
T(py(f) = Le(f)e) = flg™"e) = fleg™") = py(f(e)) = py(T(f))
Hence, T'o p, = p, 0 T. Hence, T' € Homeg(p, p). Hence,
Indf (p) ~ p

. Let G = Doy, = {(a,b: a” =% = 1,bab = a"*) and let H = (a). Let p € H be an
irreducible representation of H, then H = Z,, so 3k € {0,1,...,n — 1} such that

pla) =¢"
where ¢ = e>™/". Here, W = C,s0 X = {f : G — C} = L(G). Also, (W) < X is

a space of dimension

dim(C)[G : H| =2
By the above proposition, we have an isomorphism
I(W) — C* given by f — (f(e), f(b))
Let B = {f1, f2} C I(W) be functions such that
file) =1, f1(b) = 0 and fo(e) = 0, f2(b) =1
Write p = Ind% (p). Then,

pa(fi)(e) = fila™) = filea™) = pa-1(file)) = par(1) = C*
Pa(f1)(b) = fi(a™'b) = fi(ba) = pa(f1(b)) = pa(0) =0
Pa(f2)(€) = fa(a™ ) = pa(f2(€)) = pa(0) =0
pa(f2)(b) = fo(a™'b) = fo(ba) = pa(fa(b)) = !
Hence, .
0
[Pals = (CO Ck:)
Also,
po(fi)(e) = fi(b™e) = fi(b) =0
Po(f1)(0) = f(b7'0) = fi(e) =1
po(f2)(€) = fo(b7"e) = fo(b) =1
po(f2)(0) = fo(b7'0) = fae) =0
and so
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4.2 Frobenius Character Formula

We fix some notation for this section:

1. Let p: H — GL(W) be a representation and p = Ind%(p). We wish to determine
the character of the induced representation. We write
X = X, and Ind% (y) = X7

To do this, we assume that W has an inner product (-,-) and that p is a unitary
representation of H.

2. Aset T'={xy,29,...,2¢} C G is called a transversal of H in G if

14
=1

3. If I(W) as above, we define an inner product on I(W) as

¢

(fro fo) = D (i), folaw)

k=1
Note that this defines an inner product on (W) by the proof of Proposition 4.1.2.

4. Choose an orthonormal basis {e1,es,...,e,} of Wand . For 1 <i</,1<j<n,
let f;; € I(W) such that

fij(xr) = dire;
Then {f;; : 1 <i¢</¢,1<j<n} forms an orthonormal basis for I(W) (using the
isomorphism from Proposition 4.1.2)

Theorem 4.2.1 (Frobenius Character Formula). Let p : H — GL(W) be a representation
with character x, and let Y& denoted the character of the induced representation [ndg(p).
If T ={xy,29,...,24} denotes a transversal of H in G, then

Indg(x)(9) = Y x(7'gz:)
x;lgxiEH

Proof. Let f; ; be the ONB of I(W) as defined above, then we wish to determine

n

> By(fia): fig)

j=1
1. Consider each term, then by definition

L

Do fig): fid) =D _Palfig)@n), Frg(@e)) = (By(fi) (). €5)

k=1
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Now,
Py(fig)(xi) = fij(g " xy)
Since g7 'x; € G = LY _ 2, H,3 unique 1 < m < £ such that

g_lxi € x,,H
and so 3 unique h € H such that ¢ '2; = z,,h. Hence,
Py(fig)(@i) = fij(@mh) = pp=1(fi;j(zm))
= Ph*1(5i,m€j) = {0 : Z 7 m

pley) i=m
Now,
i=me gty enH S x;lgflxi € H< x;lg:vi cH
and in this case, h = z; 'g7'x;, so h™' = x; ' g;. Hence,

0 a7 gr; € H

Pa=t gz, (ej) : otherwise

Po(fig)(w:i) = {
Hence,

d%(g) = > (Pe(fi)s i)

0,

= > S lorgle e

z;lngH Jj=1

= > xlay'gm)

xi_lgxiEH

]

Example 4.2.2. Let G = Dy, = {a,b: a" = V> = 1,bab=a""'), H = (a) and p: H —
C* be the map
as C*

where ¢ = >™/™ and 0 < k < n — 1. Then [G : H] = 2, and a transversal of H in G is
{e,b}. Also,
eae =a € H,and bab = a" ' € H
ebe ¢ H, and bbb =0 ¢ H
= Indjj(x)(a) = x(a) + x(a"™") = ¢* + (" = ¢F 4 ¢
Ind (x)(b) = 0

This agrees with the calculation in the example at the end of the previous section.
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For a function f: H — C, we write

f) = {f(g) ged

0 : otherwise

Proposition 4.2.3. For any g € G,

[ndG Zxx gzx)

zEG

Proof. For any x € G,d unique 1 <1¢ < ¢, h € H such that x = z;h. Then
X(z7 gz) = X(wig;)

Hence,

4
S =3 Y 4l i) = 3 IliGor g

zeG i=1 x€x; H

]

Definition 4.2.4. Let H < G, and Z(L(H)), Z(L(G)) denote the spaces of class func-
tions on H and G respectively.

1. Define Res% : Z(L(G)) — Z(L(H)) by
a alg
Note that if a is a class function, then so is a|g.
2. Define Ind$, : Z(L(H)) — Z(L(G)) by
IndG Z bz 'gx)

xEG’
Then this map is well-defined
Proof. Let y € G, we wish to show that

Ind% (b)(ygy™") = Ind§(b)(g)

To see this, note that

Ind(b)(ygy ") Zb =gy ™) = T LY i g2)
xeG z€G
since the map = — y~ ' is a bijection on G. O
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Proposition 4.2.5. If p; : H — GL(W;),1 = 1,2 are two representations of H, then
Indsy(p1 & p2) ~ Indgi(pr) & Inds(ps)

Proof. Let x, ¢, and v denote the characters of Ind(py @ p2),Ind%(p1), and Ind%(ps)
respectively. Then by the Frobenius character formula and the fact that Indf] is additive,
we get

= Indg(Xm@m)

= Indg(Xm + sz)

= Indg(Xﬂl) + Indfl (sz)
=p+y

The result now follows from the fact that two representations of G with the same character
must be equivalent. O

Note that both Res% and Ind% are linear maps. Now recall that both Z(L(G)) and
Z(L(H)) are inner product spaces.

Theorem 4.2.6 (Frobenius Reciprocity). For any a € Z(L(G)),b € Z(L(H))
(Resty(a), b)) = {a, Indj; (b)) n(c)

Proof.

<a, Indg L(G) |G| Z IndG )

geG
b(
‘G,Z ,H,Z v ge)
geG zelG

Now, z 'gz € H < 3h € H such that g = xha~!. So rearranging, we get

(a,Ind% (b)) () = |G|| | Z Z (wha™"

x€G heH

!GH ZZ

JJEG heH

|G| Z Res% (a

zelG
= (ReSH(a), b) L)

O

Definition 4.2.7. Let V, W be inner product spaces and T : V — W, S : W — V. We
say that S is an adjoint of T if

(Tv,w)w = (v, Sw)y YveV,weW
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Hence, Frobenius Reciprocity states that Res$ and Indg are adjoint to each other.
Remark. Let V,W be inner product spaces with ONB’s By = {eq,e,...,¢,} and By =
{f1, foy .-, fm} respectively. If T: V. — W and S : W — V are adjoints of each other,
then

(T'(ej), fi) = (5, S(fi)) = (S(fi), €))
Hence, the matrix of S is the conjugate transpose of the matrix of 7.
Example 4.2.8. Let G = S5, H = Ay, let By = {x1,x2,---
ters of irreducible representations of G, and let By = {11, 1s, ...
characters of H. Recall the character table of G

,X7} denote the charac-
.4} be the irreducible

e | (12) | (123) | (12)(34) | (1234) | (123)(45) | (12345)
X1 | 1 1 1 1 1 1 1
x2 | 1| -1 1 1 -1 -1 1
x3 | 4| 2 1 0 0 - -1
X4 | 4| -2 1 0 0 1 -1
x5 6] 0 0 -2 0 0 1
X6 | D 1 -1 1 -1 1 0
x7 | 5| -1 -1 1 1 - 0
and the character table of H
g | e| (12)(34) | (123) | (132)
P |1 1 1 1
o | 1 1 w w?
P3| 1 1 w? w
Yy | 3 -1 0 0
Restriction gives
g e | (12)(34) | (123) | (132)
X3lm | 4 0 1 1

and so on. Hence, taking inner products, we get

X1|H :%
XQ\H =1
X3l =1 +

and so on. Hence, the matrix of Resg with respect to these bases B; and By can be
computed to be

S OO R P =
__0 OO OO OO
__0 OO OO OO
— NN = OO
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Hence, the matrix of Indg is the transpose conjugate of this matrix. In particular, we
can determine

Indf;(%) = Y6 + Y7

and other such identities.

More generally if H < G, write G = {p1,p2,...,pn} and H= {¢1,02,...,m}. Then
restriction of irreducible representations gives

Resf(pi) ~ Y rijeps
j=1

for some non-negative integers r; ; € Z. Induction gives

Indf (p;) ~ Y sipi
=1

Frobenius Reciprocity states that r; ; = s;; for all 4, j.

Corollary 4.2.9 (Induction in stages). Suppose H < K < G and p: H — GL(W) is a
representation. Then

Ind (Ind5 () ~ I (p)
Proof. Let p = Ind% (p), then by definition
Indj(x,) = X5
for any class function b € Z(L(G))
<Ind§<(Xﬁ)a b)) = Xz ReSIG((b)>L(K)

Furthermore,
(xp Res (b)) ) = (xp, Resy (Res (b)) 1)
But Resk (Res% (b)) = Res% (b). Hence,

(Ind% (x7), by () = (Xp» ResG () ey = (Ind§(x,), b))

This is true for every b € Z(L(G)), so

Xnd$ (ndX (p)) = Indg(lndg(Xp)) = Indg(Xﬁ) = Indg(Xp) = Xmd§ (p)

Hence the result. O
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4.3 Examples

4.3.1 A group of order 21

In S7, define
a = (1234567),b = (235)(476) and G := (a,b)

Then a” = b® = 1,b~'ab = a?, hence
G={aV:0<i<6,0<;j<2}= |G| =21

1. Let H = (a), then |H| = 7 and b~'ab € H, so H < G. Finally, G/H = Zj is
abelian, so

G,G]C H

Since |H| = 7 and [G, G| # {e}, we have |[G,G] = H. Hence, G has 3 non-trivial
characters, we denote by {x1, X2, X3}-

2. Now we determine conjugacy classes in G: Recall that if z € G, then 2% denotes
the conjugacy class of z, Cg(z) the centralizer of z in G, and

Gl
Ca(x)|

2] =

by the orbit-stabilizer theorem.
a) Note that e = {e} = (.

b) If x = a, then a € Cg(a), so H C Cg(a), so 7| |Cg(a)|. Since b ¢ Cg(a), it
follows that |Cg(a)| < 21. Since |Cg(a)| | 21, it follows that

Ca(a)| =7 = Cola) = H

Hence, |a“| = 3. The relation b~'ab = a? implies that a®> € a“. Hence,
a* € a®. Thus it follows that

Cy = a® = {a,ad* a'}
¢) Similarly, |Cq(a®)| = H, and so |(a®)¢| = 3, and as above
Cy = (a*)° = {d®,d°, a®)
d) As done for a above, [b%| = 7. Check that
Cy= ()% ={a'b:0<1i<6}

e) Similarly, _
Cs = (1*)¢ = {a'b? : 0 < i < 6}

These are all the conjugacy classes of G.

44



3. We have a partial character table given by

r |elala®| b |V
Gl l1]3] 3] 7|7
o 11111
x2 |11 1| w|w?
xs [1]1]1 |w?| w

4. Now we induce representations from H. Let ¢ = ¢*™/7, and define
p:H — C* given by a — (
and let ¢ = xp,q¢(,)- By the Frobenius Character formula,

l

v(g) =) pla; gmi)

=1

where {x1,x9,...,2,} are a set of representatives for G/H. Now |H| = 7, so
|G/H| = 3, and we take
T, =e,To=0b, 13 =07

Since H is normal, x;'gr; € H for all ¢ € H. Furthermore, if g ¢ H, then
x; gr; ¢ H for all i. Hence,

Y(g) =0 Vg¢ H

e) = ple) + p(b~'eb) + p(b~?eb?) = 3p(e) =
@) = pleac) + p(bab) + p(b™ ab2>:p<a> p(a®) + plat) = ¢ + ¢+ ¢*

So this gives us values in the table as

T e a a® b | b?

12C| | 1 3 3
Y |3 C+C+C[C+C+CC|0]0

J
\]

Now calculate
(0, p) = [3+3|C+<“ +CP 3+ P

and check that

CH+CHCP=(C+E+)CTT+C2 T
=14+ (P H I+ P+ C+ G+
=34+C+C+C+ P+ O+
=3+(-1)=2
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Similarly for the third term, so we get
1
(,6) = 5= [3+6+6] = 1

Hence, v is irreducible.

5. Now let ¢ : H — C* be given by

pa) = ¢*
Then if n = Ind%(p), we get, by a similar calculation
T |e a a’ b | b?
2% | 1 3 3 7|7
n 13| CHCHE [ (FEHC|0]0
Hence,
(n,m) =1
so 7 is also irreducible. This gives the character table of G as
x |e a a’ b | b
|z¢] | 1 3 3 77
Y1 |1 1 1 1] 1
Xz |1 1 1 w | w?
s |1 1 1 w? | w
Yo 3 C+CHC I E+HCHC 0|0
n [3|C+CHE ] +E+¢t 010

4.3.2 A group of order p(p — 1)
Let p € N prime, and let G be the group of matrices given by

a b N
G:{(O 1):aezp,bezp}

Then G is a non-abelian group with |G| = p(p — 1). Let H be the subgroup

({1 ) ren)

G/H=17,
which is cyclic (and hence abelian). Hence, [G, G| C H. Since G is non-Abelian,
[G.G] # {e}

Since |H| = p, it follows that [G,G] = H. Hence, G has precisely (p—1) linear characters,
denoted by {x1,x2,-- -, Xp-1}-

Note that H < G and

G has conjugacy classes given by
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)

. Let z = <(1) i), then we have

GGDED

(3 aTb> (1(/)@ —?/a)
(6 1)

(g 11’) € Culz) a1

Colx) = {(é ll’) :bez,,}

In particular, |2%| = |G|/|Ca(x)| = (p — 1).

Hence,

. Now consider an element of the form

z 0 .
z = (O 1),x€ZP,m7é1

Then
a b\ (xz 0O ab_l_ ar b\ (1/a —b/a
0 1/\0 1/\0 1 S \0 1 0 1
[z —brx+b
~\0 1
Hence,
(g f)ecg(z)@—bswb:o@b:o
Hence,

Ca(z) = {(g 2) :aez;}

and so |29 =|G|/|Ca(2)| =p

. Finally, if 7 : G — G/H denotes the quotient map, then if x; # x5, then

Gt ()= (0 G )= D)en
(5 5) (5 3)
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if 1 # x9. Since G/H is abelian, this implies

(5 ) =+((3 D)
(5 )~ mnme

Hence, by part (3), we get (p — 1) conjugacy classes

and hence

z 0\
O‘E:(O 1) forr € Z,,x #1

each of which have cardinality p.

5. Now calculating cardinalities, we get

I+(p-1+ > p=p+p-2p=pp-1)

TELS,x#1

and so these are all the conjugacy classes in G. In particular, G has p conjugacy
classes.

Hence, G has exactly one more irreducible representation ). The degree formula reads

p(p—l):p—1+di:>d¢:p—1

L b 27i/p
(6 1)

and let n = Ind%(¢). We claim that = 1 is the required irreducible representation.
Note that d,, = p — 1. Furthermore, by Frobenius reciprocity

Let ¢ : H — C* be the map

(Xn: Xi) = (X Resf (xi))

Now, Res%(y;) is the trivial representation for all 1 < i < n, and ¢ is a non-trivial
irreducible representation. So by Schur Orthogonality,

(Xps Res (xi)) = 0

Hence, the Maschke decomposition of 1 has the form

Xn = MXqyp

However, d, = dy, so m = 1 and 7 is irreducible.
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