MTH 404: Measure and Integration Semester 2, 2012-2013

Dr. Prahlad Vaidyanathan

Contents

I.	Introduction	
	1.	Motivation
	2.	The basic method of Lebesgue's theory 3
II.	The R	eal Number System
	1.	Extended Real Number System
	2.	Open and Closed subsets of \mathbb{R}
	3.	Continuous functions
	4.	Borel σ -algebra
III.	Lebes	gue Measure
	1.	Introduction
	2.	Outer Measure
	3.	Measurable Sets and Lebesgue measure
	4.	Measurable functions
	5.	Egoroff's theorem and Lusin's theorem
IV.	The L	ebesgue Integral
	1.	The Riemann integral
	2.	The Lebesgue Integral of a bounded function over a set of finite measure . 8
	3.	The Lebesgue Integral of a non-negative function
	4.	The General Lebesgue Integral
V.	Abstra	act Measures
	1.	Abstract Integration
	2.	Outer Measures
	3.	Lebesgue-Stieltjes Measure
	4.	Product Measures
	5.	Lebesgue Measure on \mathbb{R}^n
VI.	L^p spa	nces
	1.	The Banach space $L^1(X,\mu)$
	2.	The L^p spaces $\ldots \ldots \ldots$
	3.	Approximation in L^p
VII.	Differe	entiation and Integration 15
	1.	Differentiation of Monotone functions
	2.	Functions of Bounded Variation
	3.	Differentiation of an integral 16
	4.	Absolute Continuity
VIII	. Integr	ation as a Linear Functional
	1.	Bounded Linear Functionals
	2.	Dual of $L^{p}[0,1]$
	3.	Positive linear functionals on $C(X)$
	4.	Dual of $C(X)$
IX.	Instru	ctor Notes

I. Introduction

1. Motivation

- 1.1. Change in the use of integration from problems in geometry/classical mechanics to problems in differential equations/probability.
- 1.2. Goal: To develop a more robust integration theory, which builds on our intuition from Riemann integration, but provides some major improvements :
 - (i) To interchange the limit and the integral under much less stringent conditions than Riemann's theory. Example :

$$f_n(x) = \frac{e^{-nx}}{\sqrt{x}}, x > 0 \qquad \Rightarrow \qquad \lim_{n \to \infty} \int_0^\infty f_n(x) dx = 0$$

(ii) To differentiate under the integral sign. Example :

$$F(t) = \int_0^\infty x^2 e^{-tx} dx \qquad \Rightarrow \qquad F'(t) = -\int_0^\infty x^3 e^{-tx} dx$$

(iii) To enlarge the class of integrable functions. Example :

$$f(x) = \begin{cases} 1 & : x \in \mathbb{Q} \cap [0, 1] \\ 0 & : x \notin \mathbb{Q} \cap [0, 1] \end{cases}$$

is Lebesgue-integrable but not Riemann-integrable.

- (iv) To integrate functions over more general spaces than just \mathbb{R}^n
- (v) Lebesgue's theory simplifies the basic techniques of integration such as change of variables, double/triple integrals, etc.

2. The basic method of Lebesgue's theory

- 2.1. Recall Riemann Integration
 - (i) Open and half open intervals and their length.
 - (ii) Characteristic function of a set
 - (iii) Definition of a step function
 - (iv) Definition of integral of a step function
 - (v) Definition of lower integral for a bounded function $f : [a, b] \to \mathbb{R}$.
- 2.2. The definition of the Lebesgue integral is similar.
 - (i) Replace length by measure m(E) for measurable sets $E \subset \mathbb{R}$.
 - (ii) Definition of simple function
 - (iii) Definition of integral for measurable, real-valued functions.

II. The Real Number System

1. Extended Real Number System

- 1.1. Adjoin two symbols $-\infty$ and $+\infty$ to \mathbb{R} to form $\overline{\mathbb{R}}$
- 1.2. We do not define $(+\infty)+(-\infty), (-\infty)+(+\infty)$ or any ratio with $(\pm\infty)$ in the denominator.
- 1.3. If we denote $\inf(\emptyset) = +\infty$ and $\sup(\emptyset) = -\infty$, then every subset of $\overline{\mathbb{R}}$ has a supremum or infimum.
- 1.4. Definition of lim sup and lim inf of a sequence.

(End of Day 1)

2. Open and Closed subsets of \mathbb{R}

2.1. Definitions :

- (i) Open subset of \mathbb{R}
- (ii) Open subset of E for some set $E \subset \mathbb{R}$
- (iii) Closed set
- (iv) Closure of a set $A \subset \mathbb{R}$
- 2.2. Proposition :
 - (i) Finite intersection of open sets is open
 - (ii) Finite union of closed sets is closed
 - (iii) Arbitrary union of open sets is open
 - (iv) Arbitrary intersection of closed sets is closed
 - (v) \overline{A} is closed for any $A \subset \mathbb{R}$
- 2.3. [HLR, Proposition 2.8]
- 2.4. Definitions :
 - (i) Open cover of a set $A \subset \mathbb{R}$
 - (ii) Compact set
- 2.5. Proposition : If $F \subset \mathbb{R}$ closed and bounded, then F compact. (Converse on HW)

3. Continuous functions

- 3.1. Definition of continuous function (mentioned [HLR, Theorem 2.18] without proof)
- 3.2. Proposition : Continuous image of compact set is compact
- 3.3. Proposition (without proof) : If $E \subset \mathbb{R}$ compact, $f : E \to \mathbb{R}$ continuous then
 - (i) f is uniformly continuous on E
 - (ii) f is bounded, and attains its max and min on E

(End of Day 2)

- 3.4. Theorem: Intermediate value theorem (without proof)
- 3.5. Definitions :

- (i) $f_n \to f$ pointwise
- (ii) $f_n \to f$ uniformly

3.6. Proposition : If $f_n : E \to \mathbb{R}$ continuous, and $f_n \to f$ uniformly on E, then f is continuous.

4. Borel σ -algebra

- 4.1. Definitions :
 - (i) Boolean algebra
 - (ii) σ -algebra
- 4.2. Note : A σ -algebra \mathcal{A} is also closed under countable intersection.
- 4.3. [HLR, Proposition 1.2]
- 4.4. [HLR, Proposition 1.3]
- 4.5. Definition : Borel σ -algebra on a topological space X
- 4.6. Note : Let \mathcal{B} denote the Borel σ -algebra on \mathbb{R} , then
 - (i) \mathcal{B} contains all open and closed sets.
 - (ii) \mathcal{B} contains all countable sets
 - (iii) An F_{σ} is the union of a countable family of closed sets (Example: [a, b)). A G_{δ} is the intersection of a countable family of open sets. \mathcal{B} contains all F_{σ} 's and G_{δ} 's (It contains more than just these sets though).

III. Lebesgue Measure

1. Introduction

- 1.1. Definition : Positive, Countably additive measure m on a σ -algebra \mathcal{M} on \mathbb{R}
- 1.2. Goal : To define such a measure on the Borel σ -algebra \mathcal{B} on \mathbb{R} such that m(I) = length of I for all intervals $I \subset \mathbb{R}$
- 1.3. Examples :
 - (i) $m(E) = +\infty$ for all $E \subset \mathbb{R}$
 - (ii) m is the counting measure on \mathbb{R}
- 1.4. Lemma : Suppose $m : \mathcal{M} \to [0, \infty]$ is a positive, countably additive measure on a σ -algebra \mathcal{M} , then
 - (i) [Monotonicity] If $A, B \in \mathcal{M}$ such that $A \subset B$, then $m(A) \leq m(B)$
 - (ii) [Countable Sub-additivity] If $\{A_n\} \subset \mathcal{M}$, then

$$m(\cup A_n) \le \sum m(A_n)$$

(End of Day 3)

2. Outer Measure

- 2.1. Definition of Outer Measure
- 2.2. Note :
 - (i) If $A \subset B$, then $m^*(A) \leq m^*(B)$
 - (ii) If I is any interval, then $m^*(I) \leq l(I)$
- 2.3. [HLR, Proposition 3.1]
- 2.4. Corollary :
 - (i) [HLR, Corollary 3.3]
 - (ii) [HLR, Corollary 3.4]
- 2.5. Example : The Cantor set is uncountable, but has measure zero.
- 2.6. Proposition : m^* is translation invariant
- 2.7. [HLR, Proposition 3.2]
- 2.8. [HLR, \S 3.4] Example of a non-measurable set

(End of Day 4)

3. Measurable Sets and Lebesgue measure

3.1. Definition of measurable set (Caratheodory) and set \mathcal{M} of measurable sets.

3.2. Note :

- (i) Definition means that E is 'distributed well' over subsets of $\mathbb R$
- (ii) By definition, $E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$
- (iii) By definition, $\emptyset, \mathbb{R} \in \mathcal{M}$
- (iv) In the definition, one inequality $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$ is always true. Hence, it only suffices to show that $m^*(A) \geq m^*(A \cap E) + m^*(A \cap E^c)$
- 3.3. [HLR, Lemma 3.6]
- 3.4. [HLR, Lemma 3.7]
- 3.5. [HLR, Lemma 3.9]
- 3.6. [HLR, Theorem 3.10]
- 3.7. [HLR, Lemma 3.11, Theorem 3.12]
- 3.8. [HLR, Proposition 3.15]
- 3.9. Notation : m^* restricted to \mathcal{M} is denoted by m and is called the Lebesgue measure on \mathbb{R}
- 3.10. [Rudin, Theorem 1.19(d), (e)]
- 3.11. Example: $E_n = [n, +\infty)$, then $m(E_n) = +\infty$ for all n and $\cap E_n = \emptyset$

4. Measurable functions

- 4.1. Remark: Suppose $E \subset \mathbb{R}$ is measurable, then the collection $\Omega = \{F \subset E : \exists G \in \mathcal{M} \text{ such that } F = G \cap E\}$ [Check!] is a σ -algebra. Thus, the triple (E, Ω, m) is a measure space. We are often concerned with functions $f : E \to \mathbb{R}$ whose domain is a measurable set in \mathbb{R} . Hence, we consider a general *measurable space* (X, \mathcal{M}) and functions whose domain is X. We will later apply this to the case where X = E.
- 4.2. [Rudin, Definition 1.3(c)]
- 4.3. [Rudin, Theorem 1.7(b)]
- 4.4. [Rudin, Theorem 1.8]
- 4.5. Theorem: If $f, g: X \to \mathbb{R}$ measurable, then f + g, f g, cf, fg are measurable.
- 4.6. [Rudin, Theorem 1.12(a)]
- 4.7. [Rudin, Theorem 1.12(c)]
- 4.8. [Rudin, Theorem 1.14]

4.9. Examples :

- (i) Characteristic function of a measurable set
- (ii) Simple function (with definition of canonical representation)
- (iii) Continuous function
- (iv) Lower/Upper semi-continuous function
- (v) Cantor Ternary function [Wheeden/Zygmund, Page 35]
- (vi) A measurable set that is not Borel
- 4.10. Definition: Almost everywhere.
- 4.11. [HLR, Proposition 3.21]
- 4.12. Theorem: Let $f: E \to \overline{\mathbb{R}}$ be measurable, then there exists a sequence $\{\varphi_k\}$ of simple measurable functions such that
 - (i) $\varphi_k \to f$ pointwise
 - (ii) If $f \ge 0$, then $\varphi_k \le \varphi_{k+1}$ for all k
 - (iii) If f is bounded, then $\varphi_k \to f$ uniformly.

5. Egoroff's theorem and Lusin's theorem

- 5.1. Motivation for Egoroff's theorem
- 5.2. [Wheeden/Zygmund, Theorem 4.17] (Egoroff's Theorem)
- 5.3. [Wheeden/Zygmund, Lemma 4.18]

(End of Day 6)

- 5.4. [Wheeden/Zygmund, Theorem 4.19]
- 5.5. [Wheeden/Zygmund, Theorem 4.20] (Lusin's Theorem)

(End of Day 5)

IV. The Lebesgue Integral

1. The Riemann integral

- 1.1. Given $f : [a, b] \to \mathbb{R}$ bounded, we define
 - (i) Upper and Lower Riemann sums of f w.r.t. a partition \mathcal{P}
 - (ii) Upper and Lower Riemann integrals of f
 - (iii) f is Riemann-integrable iff these two values coincide. This common value is then denoted by $R \int_{a}^{b} f(x) dx$
- 1.2. Definition of step function, and integral of a step function.
- 1.3. Proposition: Upper integral is the infimum over integrals of all step functions $\psi \ge f$, and Lower integral is the supremum over integrals of all step functions $\varphi \le f$
- 1.4. Example : $f = \chi_{\mathbb{O} \cap [0,1]}$ is not Riemann-integrable.

2. The Lebesgue Integral of a bounded function over a set of finite measure

- 2.1. Definition of simple function, and its integral. Note that $\varphi \ge 0 \Rightarrow \int \varphi \ge 0$
- 2.2. [HLR, Lemma 4.1]

(End of Day 7)

- 2.3. [HLR, Proposition 4.2]
- 2.4. Definition of Upper and Lower Lebesgue integrals for a bounded function $f:E\to\mathbb{R}$ with $m(E)<\infty$
- 2.5. [HLR, Proposition 4.3]
- 2.6. [HLR, Proposition 4.4]
- 2.7. [HLR, Proposition 4.5] (without proof)

(End of Day 8)

- 2.8. [HLR, Proposition 4.6] (Bounded Convergence Theorem)
- 2.9. Lemma : If $f : [a, b] \to \mathbb{R}$ bounded, and g, h are its lower and upper envelopes respectively, then g is lower semi-continuous, h is upper semi-continuous and

$$\int_{a}^{b} g = R \underline{\int_{a}^{b}} f$$
 and $\int_{a}^{b} h = R \overline{\int_{a}^{b}} f$

- 2.10. Suppose $f: E \to [0,\infty)$ with $m(E) < +\infty$ and $\int_E f = 0$, then f = 0 a.e.
- 2.11. [HLR, Proposition 4.7]

3. The Lebesgue Integral of a non-negative function

3.1. Remark: We consider non-negative $f: E \to \overline{\mathbb{R}}$ to avoid situations such as $\infty - \infty$ that would occur, for example, with

$$\varphi(x) = \begin{cases} 1 & : x \ge 0\\ -1 & : x < 0 \end{cases}$$

- 3.2. Definition of integral of a measurable function $f: E \to [0, \infty]$
- 3.3. [HLR, Proposition 4.8]
- 3.4. [HLR, Proposition 4.9] (Fatou's Lemma)

(End of Day 9)

- 3.5. [HLR, Theorem 4.10] (Monotone Convergence Theorem)
- 3.6. [HLR, Corollary 4.11]
- 3.7. [HLR, Proposition 4.12]
- 3.8. Remark: Radon-Nikodym theorem gives a converse to the above proposition.

4. The General Lebesgue Integral

- 4.1. Definition
 - (i) f^+ and f^- . Note that $f = f^+ f^-$ and $|f| = f^+ + f^-$
 - (ii) f is integrable
 - (iii) $L(E) = \{ f : E \to \overline{\mathbb{R}} : f \text{ integrable} \}.$
- 4.2. Remark :
 - (i) If $f = f_1 f_2$ with $f_i \ge 0$, then $\int f = \int f_1 \int f_2$ because $f_1 + f^- = f^+ + f_2$. This is used in the next proof.
 - (ii) $f \in L(E) \Leftrightarrow |f| \in L(E)$ since $|f| = f^+ + f^-$
- 4.3. [HLR, Proposition 4.15] (without proof)
- 4.4. Definition: $L^1(E) = L(E) / \sim$, where $f \sim g$ iff f = g a.e. This ensures that $d(f,g) = \int_E |f-g|$ is a metric on $L^1(E)$.
- 4.5. [HLR, Theorem 4.16] (Dominated Convergence Theorem)
- 4.6. Dependence on a parameter
 - (i) Suppose $f : E \times [a, b] \to \mathbb{R}$ is such that $x \mapsto f(x, t)$ is measurable for all $t \in [a, b]$ and $t \mapsto f(x, t)$ is continuous for all $x \in [a, b]$. Define

$$F(t) = \int_E f(x,t)dx$$

(ii) [Bartle, Corollary 5.8]

(End of Day 10)

- (iii) [Bartle, Corollary 5.9]
- (iv) [Bartle, Corollary 5.10]

4.7. Improper Integrals

(i) Suppose $f \ge 0$ on some interval $[a, \infty)$ and integrable over all sub-intervals [a, b]. Suppose that the improper integral

$$I = \lim_{b \to \infty} \int_a^b f$$

exists and is finite, then $f \in L[a, \infty)$ and the Lebesgue integral

$$\int_{[a,\infty)} f = I$$

(ii) Similarly, If $f \ge 0$ on [a, b] is integrable over all sub-intervals $[\epsilon, b]$. Suppose that the improper integral

$$I = \lim_{\epsilon \to a} \int_{\epsilon}^{b} f$$

exists and is finite. Then $f \in L[a, b]$ and $\int_a^b f = I$

(iii) Example to show that $f \ge 0$ is important: Define $f : [0, \infty) \to \mathbb{R}$ by

$$f(x) = \frac{(-1)^n}{n}$$
 $n-1 \le x < n$ $\forall n \in \mathbb{N}$

(End of Day 11)

Quiz 1

(End of Day 12)

V. Abstract Measures

1. Abstract Integration

- 1.1. Definition of measure space (X, \mathcal{M}, μ)
- 1.2. [Rudin, Theorem 1.19] (without proof)
- 1.3. [Rudin, Definition 1.23]
- 1.4. [Rudin, Proposition 1.25]
- 1.5. [Rudin, Theorem 1.26] (Monotone Convergence Theorem)
- 1.6. [Rudin, Lemma 1.28] (Fatou's Lemma)
- 1.7. [Rudin, Theorem 1.29]
- 1.8. Remark:
 - (i) Note that if $\varphi(E) = \int_E f d\mu$ as above, then $\mu(E) = 0 \Rightarrow \varphi(E) = 0$. When this happens we say that φ is absolutely continuous with respect to μ . We denote this by $\varphi \ll \mu$.
 - (ii) The Radon-Nikodym theorem gives a converse to the above result.
- 1.9. Definition
 - (i) $\int_E f d\mu$ for any $f: X \to \overline{\mathbb{R}}$ measurable.
 - (ii) $\int_E f d\mu$ for any $f: X \to \mathbb{C}$ measurable.
 - (iii) Definition of $L(X, \mu)$
 - (iv) Note that if $f: X \to \overline{\mathbb{R}}$, then $f \in L(X, \mu)$ iff $|f| \in L(X, \mu)$.
 - (v) If $f: X \to \mathbb{C}$, then $|\int_X f d\mu| \leq \int_X |f| d\mu$
- 1.10. Dominated Convergence Theorem (Proof omitted. Same as before)

(End of Day 13)

2. Outer Measures

2.1. Remark: The construction of the Lebesgue measure on \mathbb{R} was done in the following steps

- (i) A length function $l: \mathcal{I} \to [0, \infty]$, where \mathcal{I} is the collection of intervals.
- (ii) An outer measure $m^* : \mathcal{P}(\mathbb{R}) \to [0,\infty]$
- (iii) Restricting m^* to a class \mathcal{M} of measurable sets to obtain a measure m

We apply this idea to an arbitrary set with a view to understand :

- (i) The Stieltjes integral : Replace l by the function $[a,b]\mapsto F(b)-F(a)$ for some increasing function F
- (ii) The Lebesgue measure on \mathbb{R}^n : Replace \mathcal{I} by the set of cubes in \mathbb{R} and l by the volume function.
- (iii) The Riesz Representation Theorem on locally compact, Hausdorff spaces
- (iv) What makes the Lebesgue measure on \mathbb{R}^n so special?
- 2.2. Definition :
 - (i) Definition of a pre-measure μ_0 on (X, \mathcal{A}) where \mathcal{A} is a Boolean algebra on X
 - (ii) Definition of outer measure μ^* on X
 - (iii) Definition of μ^* -measurable sets (Caratheodory's condition)
- 2.3. [Folland, Proposition 1.10, 1.13]
- 2.4. [Folland, Theorem 1.11] (without proof)
- 2.5. [Folland, Theorem 1.14]

(End of Day 14)

2.6. Definition :

- (i) Complete measure
- (ii) Finite measure
- (iii) σ -finite measure
- 2.7. Remark :
 - (i) The measure constructed in the previous theorem is complete.
 - (ii) If μ_0 is σ -finite, then μ is σ -finite, and unique.

3. Lebesgue-Stieltjes Measure

- 3.1. Remark :
 - (i) The Stieltjes Integral is meant to replace the Riemann integral $\int_a^b f(x)dx$ by $\int_a^b f(x)dF(x)$ where F is an increasing function. We approach this from the point of view of measure theory.
 - (ii) Let F be increasing, then F can be normalized so that F is right-continuous. Define $F(\pm \infty) = \lim_{x \to \pm \infty} F(x)$, where this limit is well-defined since F is increasing.
- 3.2. Definition: The Boolean algebra \mathcal{A} in this section is generated by sets of the form $\{(a, b], (a, \infty)\}$

- 3.3. [Folland, Proposition 1.15]
- 3.4. [Folland, Theorem 1.16]

(End of Day 15)

- 3.5. Definition :
 - (i) Lebesgue-Stieltjes measure μ_F associated to an increasing, right-continuous function F.
 - (ii) Given a measure μ as above, a function F such that $\mu(a,b] = F(b) F(a)$ for all a < b is called a (cumulative) distribution function of μ . Note that $\mu_F = \mu_G$ iff F G is constant. Hence, the distribution function is well-defined upto the addition of a constant.
- 3.6. Examples :
 - (i) If F(x) = x, then $\mu_F = m$, the usual Lebesgue measure on \mathbb{R}
 - (ii) If μ is a Borel measure on \mathbb{R} such that $\mu(\mathbb{R}) = 1$, then μ is called a probability measure on \mathbb{R} . In this case, the function $F(x) = \mu((-\infty, x])$ is called the probability distribution function associated to μ .
 - (iii) If F is continuously differentiable, then

$$\mu_F(E) = \int_E F'(x) dx$$

for any Borel set E. Hence, we often write

$$\int g(x)dF(x) = \int gd\mu_F$$

- (iv) If F(x) = 1 for $x \ge 0$ and 0 for x < 0, then $\mu_F = \delta_0$, the Dirac delta measure supported at 0.
- (v) If F is the Cantor ternary function extended to \mathbb{R} by defining F(x) = 1 for x > 1and F(x) = 0 for x < 0, then the associated measure μ_F satisfies $\mu_F(C) = 1$ and $\mu_F(C^c) = 1$ where C is the Cantor set. (HW 6)
- 3.7. Remark: We say that a measure μ is supported on a set $A \subset X$ if $\mu(E) = \mu(E \cap A)$ for all measurable sets E. We say that two measures μ and ν are mutually singular if they are supported on disjoint sets (In symbols, $\mu \perp \nu$). In our case, $\mu_F \perp m$ where F is the Cantor function described above.

4. Product Measures

- 4.1. Definition:
 - (i) Product σ -algebra $\mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \ldots \otimes \mathcal{M}_n$
 - (ii) Boolean algebra \mathcal{A} of finite disjoint unions of rectangles $\prod_{j=1}^{n} A_j$

4.2. Proposition :
$$\pi(\prod_{i=1}^{n} A_j) = \prod_{j=1}^{n} \mu_j(A_j)$$
 defines a pre-measure on \mathcal{A}

- 4.3. Definition of $\mu_1 \times \mu_2 \times \ldots \times \mu_n$
- 4.4. Definition: Lebesgue measure on \mathbb{R}^n

(End of Day 16)

- 4.5. Remark: If μ and ν are σ -finite, then $\mu \times \nu$ is σ -finite, and hence the unique measure such that $\mu \times \nu(A \times B) = \mu(A)\nu(B)$
- 4.6. Definition :
 - (i) If $E \subset X \times Y$, x-section E_x and y-section E^y
 - (ii) If $f: X \times Y \to \mathbb{R}$, x-section f_x and y-section f^y . Note that $(\chi_E)_x = \chi_{E_x}$ and $(\chi_E)^y = \chi_{E^y}$
- 4.7. [Folland, Proposition 2.34]

4.8. Definition :

- (i) Monotone class
- (ii) Monotone class generated by a set $\mathcal{E} \subset \mathcal{P}(X)$
- 4.9. [Folland, Lemma 2.35] (Monotone Class Lemma)
- 4.10. [Folland, Theorem 2.36]

(End of Day 17)

- 4.11. [Folland, Theorem 2.37] (Fubini-Tonelli Theorem)
- 4.12. Counterexamples :
 - (i) σ -finiteness is necessary : [Rudin, Example 8.9(b)]
 - (ii) $f \in L(X \times Y)$ is necessary : [Folland, Problem 2.48] (on HW 7)
- 4.13. Remark: We usually omit the brackets and write

$$\int \int f d\mu d\nu = \int \int f(x, y) d\mu(x) d\nu(y)$$

5. Lebesgue Measure on \mathbb{R}^n

- 5.1. Definition of $m = m^n$ and the σ -algebra $\mathcal{M} = \mathcal{M}^n$
- 5.2. [Folland, Theorem 2.40] (without proof)

(End of Day 18)

- 5.3. [Folland, Theorem 2.42] (Translation Invariance)
- 5.4. Theorem: Let μ and ν be nonzero translation invariant Borel measures on \mathbb{R}^n which assign finite values to compact sets. Then they are scalar multiples of one another.

(End of Day 19)

- 5.5. [Folland, Theorem 2.44]
- 5.6. [Folland, Theorem 2.46]
- 5.7. Remark: m is invariant under any rigid motion of \mathbb{R}^n

VI. L^p spaces

1. The Banach space $L^1(X, \mu)$

1.1. Definition :

(i) $L^1(X, \mu)$

- (ii) Normed Linear space
- 1.2. Examples :
 - (i) \mathbb{K}^n with Euclidean norm
 - (ii) C(X) for a compact Hausdorff space X
 - (iii) $L^1(X,\mu)$
 - (iv) C[a, b] with the L^1 norm is not complete.

(End of Day 20)

- 1.3. Definition
 - (i) Banach space
 - (ii) Convergence of a series in a NLS
 - (iii) Absolutely convergent series
- 1.4. [Folland, Theorem 5.1]
- 1.5. Corollary: $L^1(X,\mu)$ is a Banach space.

2. The L^p spaces

- 2.1. Definition :
 - (i) $L^p(X,\mu)$ with definition of $\|\cdot\|_p$
 - (ii) $l^p = L^p(X, \mu)$ where $X = \mathbb{N}$ and $\mu =$ the counting measure
- 2.2. Remark: L^p is not a NLS if 0
- 2.3. [Folland, Lemma 6.1]

(End of Day 21)

2.4. [Folland, Theorem 6.2] (Holder's Inequality)

2.5. Remark:

- (i) Definition of conjugate exponents
- (ii) Cauchy-Schwartz inequality
- (iii) L^2 is an inner-product space
- 2.6. [Folland, Theorem 6.5] (Minkowski's inequality)
- 2.7. [Folland, Theorem 6.6] (Riesz-Fischer Theorem)
- 2.8. Definition of L^{∞} and $||f||_{\infty}$
- 2.9. Theorem: $\|\cdot\|_{\infty}$ is a norm on L^{∞} and L^{∞} is complete w.r.t. this norm.

(End of Day 22)

3. Approximation in L^p

- 3.1. Note : Convergence in $L^p \Leftrightarrow$ Convergence a.e?
 - (i) X = [0,1] and $f_n = n\chi_{(0,1/n]}$ then $f_n \to 0$ a.e., but $||f_n||_1 = 1$ for all n
 - (ii) [Wheeden/Zygmund, Example after 4.21]
- 3.2. [Bartle, Theorem 7.2]
- 3.3. [Folland, Prop 6.7]
- 3.4. Definition of regular Borel measure
- 3.5. [Folland, Theorem 7.9]
- 3.6. Remark :
 - (i) The completion of C[a, b] w.r.t. $\|\cdot\|_1$ is $L^1[a, b]$
 - (ii) The completion of $C_c(X)$ w.r.t. $\|\cdot\|_{\infty}$ is $C_0(X)$
 - (iii) $L^p[0,1]$ is separable if $1 \le p < \infty$
 - (iv) $L^{\infty}[0,1]$ is not separable (on HW 9)

(End of Day 23)

- 3.7. Definition of convergence in measure. Note: $f_n \xrightarrow{m} f \Rightarrow f_n \to f$ a.e. (Example 3.1(ii))
- 3.8. [Folland, Theorem 6.17] (Tchebyshev's inequality)
- 3.9. Proposition: If $f_n \to f$ in L^p , then $f_n \xrightarrow{m} f$
- 3.10. Proposition: If $f_n \xrightarrow{m} f$ then there is a subsequence $f_{n_i} \to f$ pointwise.
- 3.11. Corollary: If $f_n \to f$ in L^p , then there is a subsequence $f_{n_j} \to f$ pointwise
- 3.12. Definition of almost uniform convergence.
- 3.13. [Folland, Theorem 2.33] (Egoroff's theorem)
- 3.14. [Folland, Theorem 7.10] (Lusin's theorem)

(End of Day 24)

VII. Differentiation and Integration

1. Differentiation of Monotone functions

Motivation: Let $f \in L^1[a, b]$ and define $F(x) = \int_a^x f(t)dt$.

- (i) Is F differentiable at a point $x \in [a, b]$? If so, is F'(x) = f(x)?
- (ii) We know this to be true if f is continuous at x. Hence, if f is Riemann-integrable, then F is differentiable and F'(x) = f(x) a.e. But what about the general case for any $f \in L^1[a, b]$
- (iii) Note that, if $f \ge 0$, then F is monotone increasing.
- 1.1. Definition of four Dini derivatives
- 1.2. Remark :
 - (i) $D^+f(x) \ge D_+f(x)$ and $D^-f(x) \ge D_-f(x)$

- (ii) If $D^+f(x) = D_+f(x)$, then we say that f has a right-hand derivative at x, which we denote by f'(x+). We define f'(x-) similarly.
- (iii) f is said to be differentiable iff $f'(x+) = f'(x-) \neq \pm \infty$
- 1.3. Example: If $f(x) = x \sin(1/x)$ for x > 0 and f(0) = 0, then $D^+f(0) = 1$ and $D_+f(0) = -1$
- 1.4. Lemma: If $f : [a,b] \to \mathbb{R}$ has a local max at a point $c \in (a,b)$, then $D_+f(c) \le D^+f(c) \le 0 \le D_-f(c) \le D^-f(c)$
- 1.5. [HLR, Prop 5.2] (Proof is HW)
- 1.6. [HLR, Lemma 5.1] (Vitali Covering Lemma) (without proof)
- 1.7. [HLR, Theorem 5.3 part (i)]
- 1.8. [HLR, Theorem 5.3 part (ii)]
- 1.9. Example : If f is the Cantor function, then $f' \equiv 0$ and hence $\int_0^1 f'(x) dx = 0 < 1 = f(1) f(0)$ (given as HW)

(End of Day 25)

2. Functions of Bounded Variation

- 2.1. Definition : Let $f : [a, b] \to \mathbb{R}$
 - (i) Given a partition \mathcal{P} , definition of p, n, and t
 - (ii) Definition of positive, negative and total variation of f
 - (iii) Definition of BV[a, b]
- 2.2. [HLR, Lemma 5.4]
- 2.3. [HLR, Theorem 5.5]
- 2.4. [HLR, Corollary 5.6, Problem 5.11]

3. Differentiation of an integral

3.1. [HLR, Lemma 5.7]

(End of Day 26)

- 3.2. [HLR, Proposition 4.14]
- 3.3. [HLR, Lemma 5.8]
- 3.4. [HLR, Lemma 5.9]
- 3.5. [HLR, Theorem 5.10]

4. Absolute Continuity

- 4.1. Remark: When is it true that $\int_a^b f'(x)dx = f(b) f(a)$?
- 4.2. Definition of absolutely continuous function and AC[a, b]

(End of Day 27)

4.3. Remark :
$$f \in L^1[a, b]$$
 and $F(x) = \int_a^x f(t)dt$, then $F \in AC[a, b]$ (by Prop 3.2)

- 4.4. [HLR, Lemm 5.11, Corollary 5.12]
- 4.5. [HLR, Lemma 5.13]

- 4.6. [HLR, Theorem 5.14] (Fundamental Theorem of Calculus)
- 4.7. Remark: Given $F \in AC[a, b]$ increasing $(\Leftrightarrow F' \ge 0)$, then $\int_{[a,b]} gd\mu_F = \int_a^b g(t)F'(t)dt$ for any $g \ge 0$ or $g \in L^1(\mu_F)$ [Compare with V.3.6(iii)]
- 4.8. [Folland, Theorem 3.36]

(End of Day 28)

VIII. Integration as a Linear Functional

1. Bounded Linear Functionals

- 1.1. Definition :
 - (i) Continuous linear map $T: V \to W$ between two normed linear spaces.
 - (ii) Continuous linear function $T: V \to \mathbb{C}$. Dual space V^*
- 1.2. Examples :
 - (i) If $V = \mathbb{C}^n$ with $\|\cdot\|_2$. For any fixed $w \in V$, define $T: V \to \mathbb{C}$ by $v \mapsto \langle v, w \rangle$
 - (ii) If μ is a regular Borel measure on X compact, and $V = C(X), T_{\mu} : V \to \mathbb{C}$ by $f \mapsto \int f d\mu$
 - (iii) V = C[0,1] with $\|\cdot\|_1$, then T(f) = f(1/2) is discontinuous (Homework 11)
- 1.3. [Folland, Proposition 5.2]
- 1.4. Definition of $\mathcal{B}(V, W)$ and ||T|| for $T \in \mathcal{B}(V, W)$.
- 1.5. [Folland, Exercise 5.2]
- 1.6. Remark :
 - (i) $\forall v \in V, ||Tv|| \le ||T|| ||v||$
 - (ii) If C > 0 such that $||Tv|| \le C ||v||$, then $||T|| \le C$. Furthermore, if $\exists v_0 \in V$ such that $||Tv_0|| = C ||v_0||$, then ||T|| = C
- 1.7. Examples : See Examples 1.2

(i)
$$||T_w|| = ||w||$$

(ii) $||T_{\mu}|| = \mu(X)$

(End of Day 29)

2. Dual of $L^p[0,1]$

- 2.1. [HLR, Proposition 6.11]
- 2.2. [HLR, Lemma 6.12]
- 2.3. Lemma : If $T \in (L^p[0,1])^*$ and $g \in L^1[0,1]$ such that $T(\psi) = \int \psi g$ for all step functions ψ , then $g \in L^q[0,1]$ and $T = T_g$ on $L^p[0,1]$
- 2.4. [HLR, Theorem 6.13]

(End of Day 30)

2.5. Remark :

- (i) Theorem 2.3 works for any σ -finite measure space. We need the Radon-Nikodym theorem for this. In particular, $(\ell^p)^* \cong \ell^q$ (HW 11)
- (ii) $(L^{\infty})^* \neq L^1$ because L^1 is separable and L^{∞} is not. Another proof is in HW 11.
- (iii) However, Theorem 2.1 holds even for $p = \infty$. ie. There is an injection $L^1[0,1] \hookrightarrow (L^{\infty}[0,1])^*$
- (iv) $(L^2)^* \cong L^2$. This fact is true for any complete inner product space.

3. Positive linear functionals on C(X)

- 3.1. Definition: Let X be a compact Hausdorff space.
 - (i) Recall definition of regular Borel measure
 - (ii) A positive linear functional $T: C(X) \to \mathbb{C}$. Note: Every regular Borel measure μ on X defines a positive linear function on C(X) by $T(f) = \int_X f d\mu$.
- 3.2. (Riesz Representation Theorem) If T is a positive linear functional on C(X), then there exists a unique Borel measure μ on X such that $T(f) = \int_{X} f d\mu$
- 3.3. Motivation: Suppose μ is a regular Borel on a compact *metric* space X, then μ is uniquely determined by its values on open sets. So, consider an open set $O \subset X$ and define

$$f_n(x) = \begin{cases} 0 & : x \in X \setminus O \\ nd(x, X \setminus O) & : x \in O, \text{ and } d(x, X \setminus O) \le 1/n \\ 1 & : x \in O, \text{ and } d(x, X \setminus O) > 1/n \end{cases}$$

Then, $0 \leq f_n \leq 1$, $\operatorname{supp}(f) \subset O$ and $f_n \in C(X)$ and $f_n \to \chi_O$ pointwise. Hence, by the dominated convergence theorem,

$$\mu(O) = \lim_{n \to \infty} T(f_n)$$

Hence, we make the following definition :

- 3.4. Definition : $\mu^* : \mathcal{P}(X) \to [0, \infty]$ is defined by
 - (i) If *O* open, $\mu^*(O) = \sup\{T(f) : f \in C(X), 0 \le f \le 1, \sup(f) \subset O\}$
 - (ii) For any $A \subset X$, $\mu^*(A) = \inf\{\mu^*(O) : O \text{ open s.t. } A \subset O\}$

(End of Day 31)

- 3.5. Theorem (Partitions of Unity): If $\{O_i\}_{i=1}^n$ open and K compact such that $K \subset O_1 \cup O_2 \cup \ldots \cup O_n$, then there exist $g_i \in C(X)$ such that $0 \leq g_i \leq 1$, $\sum g_i = 1$ on K and $\operatorname{supp}(g_i) \subset O_i$ (Proof omitted)
- 3.6. Lemma: μ^* is a well-defined outer measure on X
- 3.7. Lemma: Every open set is μ^* -measurable. Hence, μ^* restricts to a measure on \mathcal{B}_X
- 3.8. Lemma: For any compact $K \subset X$, $\mu(K) = \inf\{T(f) : f \in C(X), f \ge \chi_K\}$

(End of Day 32)

3.9. Lemma: μ is a regular Borel measure. Proof of Theorem 3.2 3.10. Corollary: Let $T : C[0,1] \to \mathbb{C}$ be a positive linear functional, then there exists an increasing, right-continuous function F such that

$$T(f) = \int_0^1 f dF$$

This function F is unique up to additive constant.

3.11. Corollary: If $T: C(X) \to \mathbb{C}$ is a positive linear functional, then ||T|| = T(1)

(End of Day 33)

4. Dual of C(X)

- 4.1. Remark: Every bounded linear functional $T \in (C(X))^*$ is determined by its values on real-valued $f \in C(X)$.
- 4.2. Theorem : Let $T \in C(X, \mathbb{R})^*$, then there exist unique positive linear functionals T_+ and T_- such that $T = T_+ T_-$, and $||T|| = T_+(1) + T_-(1)$.
- 4.3. Definition: Let M(X) denote the \mathbb{C} -span of all regular Borel measures on X.
- 4.4. Corollary: Let X be a compact Hausdorff space, then $C(X)^* \leftrightarrow M(X)$
- 4.5. Corollary: Define

$$NBV[0,1] = \{F \in BV[0,1] : F(0) = 0\}$$

Then, $C[0,1]^* \cong NBV[0,1]$

4.6. Remark: One can put a norm on M(X) such that the linear bijection in Theorem 4.4 is an isomorphism of normed linear spaces. In Corollary 4.5, this norm is given by $||F|| = T_0^1(F)$ =the total variation of F on [0, 1] (See HW 10).

(End of Day 34)

Review for Final Exam

(End of Day 35)

IX. Instructor Notes

- 0.1. Chapters I-IV, and VII were taken mostly from Royden. Chapters V, VI and VII were from other places, but mostly Folland. I believe Folland should be added to the list of suggested textbooks.
- 0.2. The Caratheodory definition of measurability was tough to grasp. Perhaps it should have been motivated with the case of subsets of [0, 1].
- 0.3. I did not touch upon Hausdorff measures, as it did not seem necessary.
- 0.4. I did not do Jensen's inequality. Although it is important, we only need it for Minkowski's inequality here, and that can be done using a simpler lemma [Folland, Lemma 6.1]
- 0.5. I did do Product measures and Fubini's theorem. This seems essential, and should be added to the syllabus.
- 0.6. I did not do the Riesz-Representation Theorem for L^p spaces in full generality (I did it only for [0, 1] and for the ℓ^p spaces), because I did not have time to do Radon-Nikodym.

Bibliography

[HLR] H.L. Royden, Real Analysis 3 ed.

[Rudin] W. Rudin, Real and Complex Analysis 3 ed.

[Wheeden/Zygmund] R.L. Wheeden, A. Zygmund, Measure and Integral: An introduction to Real Analysis

[Folland] G.B. Folland, Real Analysis: Modern Techniques and their Applications 2 ed.

[Bartle] R. Bartle, Introduction to Measure Theory