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Classical Algebra

(a) Solving Linear Equations:
(i) x +3 =4 has solution z = 1, in N
(ii) « +4 = 3 has solution x = —1, in Z
(iii) 3z = 2 has solution z = 2/3, in Q
For a general linear equation ax + b = 0, the solution z = —b/a lies in Q
(b) Solving Quadratic Equations:
(i) 2? = 2 has solutions z = +/2, in R\ Q
(ii) 22 4+ 1 = 0 has solutions z = 44, in C\ R

For a general quadratic equation

ax’ +br+c=0

e Divide by a to get
e Complete the squares to get
A R
xr _— _— — =
2a a 4a?

. —b+V/b? — 4dac

2a

So we get

which lies in C

Questions: Given a polynomial equation
ap +ar1r+ayxr? + ...+ ax" =0
(i) Do solutions exist?
(ii) If so, where do they exist?

(iii) How do we find them?

Answer:



To the first two questions, the answer is the Fundamental Theorem of Algebra:
If a; € Q for all 7, then all solutions exist, and they lie in C.

For the last question, let’s examine the case of the cubic.

(¢) Solving Cubic Equations:
ar® + b’ +cr+d=0

e Divide by a to get
2} +ar® +br+c=0

e Complete the cube with y =z — a/3 to get
v +py+q=0

where p = f(a,b,c) and ¢ = g(a, b, ¢)
e One can then make a substitution y = s + t (See [Stewart, Section 1.4],
[Gowers]) to get two quadratic equations

5+ u1s® + uy = 0 = s° = quadratic formula

t + v1t® + vy = 0 = t3 = quadratic formula
and so
T = —?a + Vs + V13
This is called Cardano’s Formula. It is a formula that involves
(i) The coefficients of the polynomial
(i) +,—,-,/
(ili) \/, ¢/, /> ete. (Radicals)
(iv) Nothing else
Can such a formula exist for a general polynomial?
(d) Solving Quartic Equation:

e First two steps are the same to get

v +py +qyt+r=0

e One can again make a substitution to reduce it to a cubic
a1u® + asu? + asu+ oy =0

which can be solved using Cardano’s formula.

(e) Solving Quintic Equation:



e First two steps are the same to get
v +pt ity +s=0

e Now nothing else works.

(f) Many attempts were made until

(i) Lagrange (1770-71): All the above methods are particular cases of a single
method. This method does not work for the quintic.

(ii) Abel (1825): No method works for the quintic. ie. There is a quintic polyno-
mial that is not solvable by radicals.

(iii) Galois (1830): Explained why this method works for all polynomials of degree
< 4, why it does not work for degree 5, and what does one need for any method
to work for any polynomial of any degree!



|l. Polynomials

1. Ring Theory

1.1. Definition:
(i) A ring R is a set with two binary operations + and x satisfying:
(a) (R,+) is an abelian group with identity denoted by 0
(b) X is associative: a X (b x ¢) = (a x b) x ¢ for all a,b,c € R
(¢) The distributive laws hold: For all a,b,c € R
A (a+b)xc=(axc)+ (bxc)
B.ax (b+c)=(axb)+ (axc)

(ii) If R is aring, an element e € R is called the identity of Rifaxe=exa=a
for all a € R.

(iii) A ring R is said to be commutative if a x b =b x a for all a,b € R.

(iv) A commutative ring R is said to be an integral domain if ab = 0 implies either
a=0orb=0.

(v) A commutative ring is said to be a field if 1 # 0 and forever 0 # a € R,3b € R
such that ab = ba = 1.

Note: The element b € R is unique (Check!) and is denoted by a™!.

1.2. Examples:
(i) N is not a ring, Z is a ring but not a field, and Q, R, C are fields.
(ii) For n > 1, Z,, := Z/nZ is a ring, and is a field iff n is prime (without proof)
(iii) Define
F:={a+0/2:a,beQ} cC

with usual addition and multiplication. Then F' is a field.

Proof. Clearly, F' is an abelian group and is closed under multiplication. To
see that inverses exists, choose a,b € QQ at least one of which is non-zero, and

consider
B 1 _a— /2
y= a+b\/§_ a? — 2b?

since v/2 ¢ Q, the denominator is non-zero, and a rational number. Hence,
y € I and is clearly the inverse of a + bv/2 in F. O




(iv) Define
K:={a+br:a,beQ} CC

then K is not a ring.

Proof. If it were a ring, then 72 € K, which means that 7 satisfies a quadratic
equation over Q. However, m does not satisfy any polynomial over Q. ]

(End of Day 1)
1.3. Definition:
(i) A subring S of a ring R is a subset such that
(a) (S,+) is a subgroup of (R, +)
(b) S is closed under multiplication.

(ii) An ideal I of a ring R is a subring of R such that if a € I,b € R then ab € I.
Note: If I is an ideal in R, we write I < R.

(iii) Let R and S be two rings. A function ¢ : R — S is called a ring homomomorphism
if

(a) p(a+0b) = p(a)+ p(b) for all a,b € R
(b) @(ab) = p(a)p(b) for all a,b € R.

(iv) A bijective ring homomorphism is called a ring isomorphism.
Note:

(a) If ¢ : R — S is a ring isomorphism, then so is ¢! : S — R (HW)

(b) Henceforth, we will assume that all rings are commutative with 1 # 0,
and that if ¢ : R — S is a ring homomorphism, then ¢(1g) = 1g

1.4. Examples:
(i) {0} < R, R < R for any ring R
(ii) For n € N,nZ <1 Z and these are the only ideals in Z (without proof)

(iii) The inclusion map ¢ : Q — C is a ring homomorphism, and it is the only ring
homomorphism from Q to C

Proof. 1If ¢ : Q — C is a ring homomorphism, then ¢(1) = 1, so ¢(n) = n for
all n € N, and hence for all n € Z. Now for z = p/q € Q, note that

qp(r) = plgz) = ¢(p) = p
and so p(z) =z for all x € Q. O
(iv) Let F = {a+bv2:a,b € Q} as in Example 1.2(iii), then define
j:F—=Chbya+bV/2—a—bV/2

(v) 2z~ Z is a ring homomorphism from C to C



1.5.
1.6.
1.7.
1.8.

Lemma: If ¢ : R — S is a ring homomorphism, then ker(¢) < R
Theorem: If k is a field, then {0} and k are the only ideals in k&
Corollary: If ¢ : k — K is a homomorphism of fields, then ¢ is injective.
Theorem: Let R be a ring and I <1 R, then consider the quotient group (R/I,+).
We define a multiplication on R/I by

(a+1)b+1):=ab+ 1

Then this is well-defined, and R/I forms a ring with respect to these operations
called the quotient ring. Furthermore, the map 7 : R — R/I given by a — a + [
is a ring homomorphism, and is called the quotient map.

2. Polynomial Rings

2.1.

2.2.

Definition: Let R be a ring and x an indeterminate.

i) A polynomial over R is a formal expression
(i) A poly p
f(x) =ap+ a1z + ...+ aa"

where q; e Rforall0 <i<n

Note: If g(x) = by + byz + ... + bpa™, then f(z) = g(x) iff n = m and a; = b; for

all i. For instance, x # z* in Zy[z]

(ii)) We may add and multiply polynomials in the usual way (by collecting like
terms), and this makes the set R[z] of all such polynomials a ring. This is
called the polynomial ring over R in one variable.

Note that R[] is a commutative ring with 1z = 1z # 0 (Check!)
(iii) If f(z) = ap+ az + ... + a,2™ € Rlz] then

deg(f) := max{j : a; # 0}

is called the degree of f
Lemma: Let f,g € R[z]

(i) deg(f+ g) < max{deg(f),deg(g)}

(ii) If R is an integral domain and f, g # 0, then deg(fg) = deg(f) + deg(g). In
particular, R[z] is an integral domain.

Proof. The first part follows trivially from the definition of addition. For part (ii),
write

fx)=ay+a1x+ ...+ a,z" and g(x) = by + b1z + ... + bya™
with a,, b,, # 0. Then
fg(x) = agby + (arby + brag)x + ... + apby, ™™™
and a,b,, # 0 (since R is an integral domain). Hence, deg(fg) =n+m O



2.3. Theorem (Euclidean Division): Let k be a field, and let f,g € k[x] with g # 0,
then 3 unique ¢, 7 € k[x] such that
f=tg+r
and either r = 0 or deg(r) < deg(g)

Proof. (a) Existence: Write f(z) = ap + a1z + ... + a,2™ and g(z) = by + bz +
.+ bpx™ with b, # 0.

(i) If f =0, then take t = r = 0, so we assume a,, # 0
(ii) If n < m, then t = 0,r = f works.
(iii) If n = m: Take t = a,b, ! (possible since k is a field), so that

n—1

(f —tg)(z) = ch-:vi where ¢; = a; — a,b,'b;

i=0
In particular, deg(f —tg) < n —1 < deg(g) as required.

(iv) If n > m, we assume by induction that the theorem is true for any
polynomial h € k[z] with deg(h) < n. Now take

h(z) = f(2) = anby'a" " g(2)

Then, as above deg(h) < n, so by induction hypothesis, Jt;,r; € k[z]
such that
h =t1g+r; and deg(ry) < deg(g)

= f = (a,b,'2" ™ +t1)g + 1 and deg(r;) < deg(g)
as required.
(b) Uniqueness: Suppose
J=tig+riand f=tg+r;
with r; as in the statement. Then
(tl — t2>g =T9— T (*)
So if t; # t9, then by Lemma 2.2(ii),

deg(g) < deg(t1 — ta2) + deg(g)
= deg((t1 — t2)9)

= deg(ry — 1)
< max{deg(rs), deg(r1)}
< deg(g)

which is clearly a contradiction. Hence, t; =t and so ry = r1 by ()



2.4. Definition:

(i) For a,b € R, we say that b divides a if 3¢ € R such that bc = a. If this
happens, we write b | a.

(ii) For a € R, the principal ideal generated by a is the set

(a):={ar:z € R} ={beR:a|b}

An ideal [ is principal if Ja € R such that I = (a). Then, such an element
a € R is called a generator of I. (Note: A generator of a principal ideal is
not, in general, unique.)

(iii) A principal ideal domain (PID) is an integral domain each of whose ideals is
principal.

(End of Day 2)
2.5. Corollary: k[z] is a PID.

Proof. k[z] is an integral domain by Lemma 2.2, so it suffices to show that every
ideal in k[z] is principal. If I < k[z], then the set S := {deg(f): f € I} C N has
an minimal element. So dfy € I such that

deg(fo) < deg(f) VYfel

We claim that I = (fy). Since fy € I, we have (fy) C I. Conversely, suppose
f € I, then by Euclidean division, 3¢, r € k[z| such that

f = tfo +7r
where r = 0 or deg(r) < deg(fy). Since r = f —tfy € I, it follows that r = 0 and
so f € (fo). This is true for any f € I, so I = (fp) O

2.6. Definition: Let « € R
(i) Define ¢, : R[x] — R by
ap+ax+ ... +a, 2" — ag+ e+ ...+ aa”
Note that ¢, is a ring homomorphism, and is called the evaluation map at
a. We write f(a) := @, (f) for any f € R|x]
(i) « is said to be a root of f € R[z] if f(a) = 0.
2.7. (Remainder Theorem): Let k be a field. If 0 # f € k[z] and o € k
(i) 3t € k[z] such that f(x) = (z — @)t(z) + f(a)
(ii) aisaroot of fiff (z —a) | f(x) in k[x]

10



Proof. We prove only (i) since (i7) follows trivially. By Euclidean division, 3¢, €
R]z] such that

f(x) = (x = a)t(z) + r(z)

with either » = 0 or deg(r) < deg(x — ) = 1. Hence, r(z) € R is a constant, say
c. Applying the evaluation homomorphism, since ¢,(r — «) = 0, we have

fla)=0+71(a) =c

completing the proof. n

2.8. Definition: Let R be a ring, f € R[z| and o € R be a root of f.
(i) We say that a is a root of multiplicity m € N if

(x—a)™ | fand (x—a)"" 1 f

(ii) A root with multiplicity 1 is said to be a simple root of f

2.9. Corollary: Let k be a field, and 0 # f € k[z]. Then the number of roots of f in k,
counted with multiplicity, is < deg(f).

Proof. If f has n roots aq, as, . .., o, with multiplicity mq, mo, ..., m, respectively,
then by induction on the Remainder theorem, 3g € R[z| such that

f(@) = (& —a)™ (2 — )™ ... (2 — an)™g(x)

Since f # 0, by Lemma 2.2,
deg(f) =mi +mo + ... +m, +deg(g) > ZmZ
i=1

as required. O

3. Fundamental Theorem of Algebra

3.1. Definition: Consider the set R? with the operations
(21,91) + (¥2,92) = (21 + T2, Y1 + Y2)

(x1,11) - (T2, y2) == (T122 — Y1Y2, T1Y2 + T2y1)

These operations make R? a field, which is called the field of complex numbers,

denoted by C.
(i) Identify R with the subset {(z,0): 2z € R} ¢ C
(ii) Let ¢ := (0,1), then i* = —1

(iii) Every z € C can be express uniquely in the form z = x + iy for z,y € R

11



3.2.

3.3.

3.4.

3.5.

(iv) For 6 € R, write ¥ := cos(#) + isin(d) € C. Then, for any 2z = x + iy € C,
set

(a) r=[z] == a2 +y?
(b) 0 = Arg(z) := tan"!(y/x)

0

Then z = re® is called the polar form of z. Furthermore, if z; = r1e* and

Zy = 19€%2 then 2y 29 = 1ree’?1102)
(De Moivre’s Theorem): Let 0 # 2z = re? € C and n € N
(i) 2" =r"e™. In particular
(a) [2"] = |=["

(b) Arg(z") = n Arg(z)

(ii) The numbers
042k

wy = ke {0,1,...,n—1}

are all the distinct roots of the polynomial 2" — z € Clz].

Example: There are exactly n distinct roots of unity, given by

, 2k 2k
wy, = 2™k = cos <L) + isin (L)
n n

They form a cyclic group of order n. The generators of this group are call
primitive n'* roots of unity.

Lemma: If D C C is a closed and bounded set, and f € C[z], then Ja € D such
that | f(a)| < |f(2)| for all z € D

Proof. For any 21,2, € C, we have ||z1] — |22|| < |21 — 22| [Check!]. Hence, the
function
F: D — R given by z — |f(2)|

is continuous. Now use the fact that D is compact by the Heine-Borel theorem. [J

Lemma: Let f € Clz] \ C and r > 0, then IM > 0 such that if |z| > M, then
[F(2)] >

[Equivalently, lim,|_,o | f(2)] = +00]
Proof. Write f(z) = a"2" + a,_12""' + ... + ag, then

Qp—1

[F(2)] = [2"

Qo
a, + +...+
z

Since |z1 + 22| > ||z1| — |22|| for any two 21, 2z, € C (Why?), we have

n—1

vz e |

k=1

12



Now for each 1 < k <n — 1,dM; > 0 such that

|an—k| |an|
M} 2(n—1)

and dMy > 0 such that

Then if M = max{M,, M, ..., M,}, then if |z| > M, we have

B n—1
n |an*k|
F) =M™ | =Y s
L k=1
B n—1 |CL ’
> M" ||a,| — .
= M fa] ; 2(n — 1)]
| 2
> M"M >r
> 5 =

[
(End of Day 3)
3.6. Lemma: Let f € C[z], then Ja € C such that |f(a)| < [f(z)] for all z € C

Proof. Write f(2) = an2" + a,_12""' + ... + ag, then by the previous lemma,
dM > 0 such that if |z| > M, then |f(2)| > |ag|- Furthermore, on the disc
D ={z€C:|z| <M}, f attains a minimum at a point o € D so that

1f()| <|f(z)] VzeD

However, 0 € D so |f(a)| < |ag| < [f(2)] for all z € C\ D, and so « is a global
minimum. [l

3.7. (Fundamental Theorem of Algebra): Suppose f € C[z] \ C,Ja € C such that
f(a) = 0. (See [Fefferman])

Proof. (i) Choose a € C by the previous lemma so that | f(«)| < |f(z)] Vz e C.
Writing
f(z) = f((z —a) +a)

and expanding, we may write f(z) = g(z — a) for some polynomial g € C|x].
Furthermore, f(a) = ¢(0), so

19(0)] < lg(2)] VzeC

Thus, it suffices to show that g(0) = 0.

13



(i) Write g(2) =co+c12+ ...+ ¢,2" and let 1 < j < n be the smallest number
such that ¢; # 0. Hence, we may write

g(2) = co + ;27 + ZTIR(2)

for some polynomial R € Clz]. Since ¢; # 0,38 € C such that 3/ = —cq/¢;
(by De Moivre’s theorem). Hence,

Cjﬁj = —C
(iii) Let D = {z € C: |z| < |B]|}, then D is compact, so IM > 0 such that
|R(z)| <M VzeD

(iv) Now let 0 < € < 1 be arbitrary to be chosen later, then

9(eB)| = lco + €'e;87 + T BT R(eB))|
< leo +€c;|+ BT R(eB)]
< leg — ol + € BPTIM
= (1= ¢)leo] + B M
= |co| — € [leo| — €| BT M]
Hence if ¢y # 0, then we may choose 0 < € < 1 such that

€< —|CO,
B+ M

so that
l9(eB)] < |col = 19(0)]

This contradicts step (i), and so ¢y = 0 must hold as required.

UJ
3.8. Corollary: If f € Clz] is of degree n, then 38 € C and ay,ay,...,qa, € C such
that
flz)=0(r—a)(r—ag)...(z — a,) in C[z]
Proof. HW. 0

3.9. Corollary: A real polynomial factorizes into linear and quadratic factors in Rz]

Proof. Let f € R[z], we induct on deg(f): If deg(f) < 2 then there is nothing to
prove. If deg(f) > 2, assume that the theorem is true for any polynomial g € R|x]
with deg(g) < deg(f). By FTA, choose a root o € C.

(i) If &« € R, then (z — a) | f(x) in R[z], so 3¢ € R[z] such that

fz) = (z — a)g(x)
Now apply the induction hypothesis to g

14



(ii) If @ € C\ R, then, since f € R[z], we have
f@ = fla)=0

and so @ is also a root of f in C. Hence, h(z) := (x —a)(z—a) € Rz] divides

f in Cl[z], so 3¢ € Clz] such that

f(x) = h(z)g()

By induction hypothesis, it suffices to prove that g € R[x]. Write h(z) =
2+ ax + b and g(x) = by + by + ... + b,z™, then

f(x) =ao+a1m+ ...+ apyor™"?

(a) bm = Am+2 eR

(b) By (reverse) induction, assume that b; € R for all m > j > k, and we
show that b, € R: To see this, note that

by, + abpi1 + bbyto = g0

and so b, € R since R is a subfield of C.

Hence, g € R[z] as claimed and we are done by induction.

4. Irreducibility over a field

Let k be a field
4.1. (Existence of GCD): Let f, g € k[z], then 3 unique d € k[z] such that

(i) d is monic
(ii) d| fand d | g
(iii) If h | f and h | g, then h | d
Furthermore, we have
(iv) (Bezout’s Identity) 3s,t € k[z] such that d = sf + gt
Proof. (a) Existence: Set

I:={sf+tg:s,teklx]}

then check that I is an ideal of k[z]. Since k[z] is a PID, 3d € k[z] such that
I =(d).

(i) Multiplying d by a constant, we may assume that d is monic. Since d € I,
ds,t € k[z] such that

d=sf+tg (%)
We claim that this element d satisfies (i) and (i47).

15



(ii) Since f =1-f+0-g € I, and I = (d) it follows that d | f. Similarly,
d|g

(iii) If h | f and h | g, then h | (sf +tg) = d.
(b) Uniqueness: Suppose dy,dy € k[z] both satisfy properties (i), (ii), and ().
Then by (i7) we have d; | dy and ds | dy, so 3rq,re such that
Tldl = d2 and T‘gdg = d1
So rorydy = dy and so comparing degrees (by Lemma 2.2), we see that 11,75 €
k are constants. Since d; and dy are monic, it follows that 1 =7y =1

]

(End of Day 4)
4.2. Definition:

(i) For f,g € k[x], the polynomial d € k[z| obtained in Theorem 4.1 is called the
greatest common divisor (GCD) of f and ¢ and is denoted by

d=(f,9)

(ii) Two polynomials f,g € k[z] are said to be relatively prime if (f,g) = 1.
(iii) A polynomial f € k[z] is said to be irreducible if
(a) f ¢k and,

(b) whenever h,g € k[z] such that f(x) = h(z)g(x), then either h € k or
g€ k.

(iv) Let R be a ring. An ideal I < R is said to be a maximal ideal if
(a) I # R and,
(b) for any other ideal J < R such that I C J we have either I = J or J = R.
4.3. Theorem: For f € k[z]|, TFAE :
(i) f is irreducible
(ii) (f) is a maximal ideal in k[z]
(iil) k[x]/(f) is a field
Proof.

(1) = (di): If f is irreducible, let I = (f) and suppose J < k[z] is an ideal such that
I'cJ. WeWTS: J=1or J=k[z]

Since k[x] is a PID, 3¢g € J such that J = (g). Since I C J,3s € k[z] such that
f = sg. Since f is irreducible, it follows that either s € k or g € k. If s € k, then
I =J and if g € k then J = k[z] since ¢ is a unit.

16



(73) = (i4i): Suppose I = (f) is a maximal ideal, then I # k[z], so 1 ¢ I. Hence if
= k[z]/(f), then R is a commutative ring with

lp=1+1+#1=0g

Thus, we WTS: if g 4+ I # I, then 3h € k[x] such that gh +1 =1+ 1.

To do this, consider d = (g, f), then by 4.1, d | f,so f € J:=(d), and so I C J.
By maximality, it follows that either J = I or J = k[z].

(i) If J =1, then f|d. Butd|g,so f|gandsog e I, which contradicts the
fact that g+ 1 # 1

(i) If J = k[z], then (d) = (1) and so 3h,t € k[z] such that hg+tf = 1. Applying
the quotient map 7 : k[z] — R, we see that
(h+I)(g+1)=14+1inR

as required.
(i5d) = (i): HW O
4.4. Examples:
(i) Polynomials of degree 1, but not 0 (since the latter are units)

(ii) If f is irreducible in k[z], then f does not have any roots in k (by the
Remainder theorem). However, the converse is not true. For instance,
f(x) = (22 4+ 1)(z* + 2) € R[z] has no roots in R, but is reducible.

(iii) 2? — 2 is irreducible in Q[z], but not R[z].

(iv) z? + 1 is irreducible in R[z] and R[z]/(2? 4+ 1) = C (without proof)

(v) By FTA, f € C[z] is irreducible iff deg(f) =1
)

(vi) By Corollary 3.9, f € Rlz] is irreducible iff either deg(f) = 1 or f(z) =
f(x — z)(x —Z) for some z € C\R and g € R

4.5. (Unique Factorization - I): If 0 # f € k[z], then f can be express as a product of
irreducibles.

Proof. We induct on deg(f). If deg(f) < 1, then there is nothing to prove. So
assume that deg(f) > 1 and that the theorem is true for any polynomial g € k[z]
with deg(g) < deg(f). If f itself is irreducible, then there is nothing to prove, so
suppose f is reducible, then 3g, h € k[z] \ k such that

f(x) = g(x)h(z)

Now deg(g),deg(h) < deg(f), so, by the induction hypothesis, both g and h can
be expressed as a product of irreducibles. This proves the same for f. m

4.6. (Euclid’s Lemma): Let f, g, h € k[z] such that f | gh
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(i) If (f,g) =1, then f [ A
(ii) In particular, if f € k[z] is irreducible, then either f | g or f | h

Proof. (i) If (f,g) = 1, then 3s,t € k[z] such that sf +tg = 1. If f | gh, then
3r € k[z] such that rf = gh. Hence,
rsf +rtg=r=sgh+rtg=(sh+rt)g
Thus, we get
gh=rf=(sh+rt)gf
Since k[z] is an integral domain, it follows that h = (sh +rt)f and so f | h

(ii) If f is irreducible, then (f,g) | f implies that (f,g) = 1 or (f,g) = cf for
some ¢ € k. In the former case, f | h by part (i), and in the latter case,

f=cf9)lg
O

(End of Day 5)

4.7. (Unique Factorization - II): If 0 # f € k[z], then the factorization of into irre-
ducibles (as in 4.5) is unique upto constant factors and the order in which the
factors are written.

Proof. Suppose
f=cqngs...g, =dhihy... h,, (%)

where g;, h; € k[z] are all monic and irreducible, and ¢,d € k. Then
(i) Comparing coefficients of the leading term of f, we see that ¢ = d.

(ii) Now we assume that ¢ = d = 1 and we induct on n. If n = 1, then
g1 ’ hlhghm

So by (induction on) Euclid’s lemma, 31 < j < m such that g; | h;. Assume
WLOG that j = 1, then 3r; € k[z] such that

rigr = h

Since gy is irreducible, g1 ¢ k, so since h; is irreducible, r; € k. Since g; and
hy are both monic, it follows that r; = 1. Hence, (x) becomes

g1 = gihahs ... Iy,

If m > 1, then comparing degrees, we see that h; € k for all 2 < i < m. Since
each h; is irreducible, this cannot happen. Hence, m = 1 and we are done.
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(iii) Now if n > 1, assume that the theorem is true for any polynomial g that
can be expressed as a product of (n — 1) irreducibles. Then, by the same
argument as part (ii), we see that g; = hq, so (%) becomes

9192 - - Gn = G1ha .. Ay,

Since k[z] is an integral domain, this implies that

g:=0293...9n = hohg...h,

By induction, n — 1 = m — 1 and g; = h; (upto a change in order). This
completes the proof.

]

5. Irreducibility over Q

5.1. Remark:

(i) A polynomial f € Z[z] is said to be irreducible over Z if f # +1 and if
f(z) = g(x)h(x) for some g, h € Z[z], then either g = £1 or h = +1.

(ii) We say that f € Z[z] can be properly factored in Z[z] if 3g, h € Z[z]\ Z such
that f(z) = g(z)h(x).
(iii) Note that

(a) Note that Theorem 4.3 no longer holds over Z. For instance f(x) = x is
irreducible over Z, but

which is not a field.
(b) f(z) = 2x is reducible in Z[z], but cannot be properly factored in Z[z].

(¢) In [Stewart, Definition 3.10], he defines a polynomial in Z[z] to be irre-
ducible iff it cannot be properly factored. This is incorrect.

(d) If f € Z[z] is monic, then it is irreducible in Z[z] iff it cannot be properly
factored.

(iv) If p € Z is prime, then the quotient map 7 : Z — Z, induces a surjective
homomorphism 7 : Z[x] — Z,[x] whose kernel is

pLlx] =A{pf : [ € Zlz]}

We write @ := 7(a) for all a € Z and f := 7(f) for all f € Z[7]

5.2. Lemma: Let p € Z be a prime number and g, h € Z[z]| be such that p | gh in Z[z]
(ie. f € Z[x] such that pf = gh), then either p | g or p | h in Z[z]
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5.3.

Proof. Consider the map 7 : Z[x] — Z,[z] as above, then by hypothesis
gh =0

Since Z, is a field, Z,[z] is an integral domain (by Lemma 2.2), and so either g = 0
or h = 0. This is the same as saying that either p | g or p | h in Z|x]. O]

(Gauss’ Lemma): Let f € Z[z], then f is irreducible in Q[z] iff it cannot be
properly factored in Z[z]

Note: Gauss’ Lemma is specific to the pair (Z, Q). Compare it with the fact that
(z? — 2) is irreducible in Q[z], but not in R|x].

Proof. Note that if f is irreducible in Q|x], it clearly cannot be properly factored
in Z[z]. We now prove the converse: Suppose f cannot be factored in Z[z], but
dg, h € Q[z] \ Q such that

f(x) = g(x)h(z)
Multiplying throughout by the common denominator, we may express this equation
as

nf = gih (*)

for some ny € Z, and ¢y, hy € Z[z] \ Z. We claim that 3¢, ' € Z[z] \ Z such that
deg(g) = deg(g), deg(h') = deg(h) and

f=gn" ()
This would contradict the assumption on f. To do this, we induct on |n4|.

(i) If ny = £1, then the claim clearly holds.

(ii) If |nq| > 1, let p € Z be any prime number dividing n{, p | g1h;. By Lemma
5.2, either p | g1 or p | hy. Assume WLOG that p | g1, then Jgo € Z[z] such
that

nf =pgaha
Since Z[z] is an integral domain, we may cancel p on both sides to obtain an
equation of the form

naf = gaho

Note that go, hy € Z[x] \ Z. Furthermore, |ns| < |n;|. Hence, by induction
hypothesis, the claim holds and we are done.

[
(End of Day 6)

5.4. (Eisenstein’s criterion): Let f(z) = ag+ a1z +. .. +a,2™ € Z[x], and suppose there

is a prime p € Z such that
(i) pla;forallie {0,1,...,n—1}
(i) pfan
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5.5.

5.6.

(iii) p*t ag
Then f is irreducible in Q|x]

Proof. By Gauss’ lemma, it suffices to show that f cannot be properly factored in
Z[z]. Suppose that 3¢, h € Z[x] \ Z such that

f(x) = g(z)h(z)

Then write g(z) = by + bz + ... + bpa™ and h(z) = co + 12 + ... + cpx® where
m,k > 0 and m + k = n. Then applying the quotient map 7 : Z[z| — Z,[z], we
see that

fz) =" =gh

Note that Z, is a field and z is irreducible in Z,[z]. Hence, by Unique Factoriza-

tion (Theorem 4.7) in Z,[z], it follows that g and h must themselves be constant
multiples of some power of x. Since p t a,, = by, ¢k, it follows that p 1 b, and p 1 cx.
Hence,

G(2) = bpz™ and h(z) = cra®

In particular, since m, k > 0,
plboandp|co

Hence, p? | ag, contradicting (7). O
Examples:
(i) #° + 10z + 5 is irreducible over Q
(ii) %4 + % + £ € Q[a] is irreducible
(iii) If p € Z is prime, then 2" — p € Q[z] is irreducible. Hence, /p ¢ Q for n > 2
(iv) If p € Z is prime,
O, (z) = i =P P24+l

r—1

is irreducible in Q[z] (HW)

(Reduction mod p) Let f(x) = ag + a1z + ... + a,z"™ € Z[x] and p a prime such
that

(i) ptan

(ii) f is irreducible in Z,[z] for some prime p € Z
Then f is irreducible in Q[x].
Proof. By Gauss Lemma, it suffices to show that f cannot be properly factored in
Z|z]. So write f(x) = ap+a1x+. ..+ a,x™ and suppose 3g, h € Z[z]\ Z such that
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5.7.

5.8.

Write g(z) = by + b1z + ... +byx™ and h(z) = ¢+ 12+ ... + cxz®. Applying the
quotient map 7 : Z[x] — Zy[z], we get

f=7ghin Z,[7]
Since p { an, f # 0. Since p { ay,

ptbm and p i e

Hence, deg(g) = m,deg(h) = k. However, f is irreducible in Z,[x] and so either

g € Z, or h € Z,. Assume WLOG that g € Z,, then m = 0 and hence g € Z. [

Example:

(i) Let f(x) = 8x® — 6z — 1, then we have to choose p € Z carefully (p = 2 does
not work). For p =5, B
f(x)=32" -2 -1

Since deg(f) < 3, to show that f is irreducible in Zs[x], it suffices to show
that it does not have a root in Zs. This is easy to check since there are only
finitely many elements in Zs

(ii) @*+1 is irreducible in Z[x], but its image is reducible in Zy[z]. So the converse
of 5.7 is not true (HW).

(Rational Root Theorem): Let f(z) = ap + a1z + ... + a,2™ € Z[z] have a root
p/q € Q where (p,q) = 1. Then

(i) p|ao and ¢ | an
(ii) In particular, if f is monic, then every rational root of f must be an integer.

Proof. Part (ii) follows from part (i), so we only prove (i). If p/q is a root, then
x — p/q divides f in Q[z], so
g(x) =qr —p
divides f in Q[z]. So, 3h € Q|z] such that gh = f. Multiplying by the common
denominator, we obtain an equation of the form
ghi =mn f

If r | ny is any prime, then r | ghy, and so by Lemma 5.2, r | g or | hy. Since
(p,q) = 1, it follows that r t g and so r | hy. Hence, Jhy € Z[z]| such that

ny

rgho =1 <—> f
r
Since Z[z| is an integral domain, we may cancel r to obtain
gha = naf

for some ny € Z with |ny| < |ny|. By induction on the number of primes dividing
n1, we finally obtain an equation of the form

ghi = f
for some hy, € Z[x]. From this it follows that ¢ | a,, and p | ay. O
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5.9. Remark:

(i) The same proof as above can be used to prove the following: Let g, f € Z[z]

be two polynomials such that ¢ | f in Q[z] and the GCD of the coefficients
of gis 1. Then g | f in Z[z]

(ii) Gauss’ Lemma is used to prove that every element f € Z[z] can be expressed
uniquely as a product of irreducibles.

(End of Day 7)
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Il. Field Extensions

1. Simple Extensions

Motivation: Let f € Q[z] and a € C be a root of f. We want to know whether a
can be obtain from the coefficients of f by algebraic operations, and radicals. To
do this, we look at the field

Q(a) = the smallest field containing Q and «

and understand the relationship between Q and Q(«)
Note: All fields in this section will be subfields of C
1.1. Definition:

(i) A field extension is a pair of fields (k, L) such that there is a field homomor-
phism ¢ : k — L. We simply write £ C L to denote such a field extension.

Note: If F is a non-empty family of fields, then so is

<L

LeF

(ii) Let k be a field and X C C. Let F denote the collection of all fields containing
kU X. Note that F # () since C € F. We write

EX)= ()L

Note that k(X)) is the smallest field containing & and X.

(iii) If X = {a} above, then we write k(a) := k({a}). The field extension k C
k(«) is called a simple extension. The element « is called a generator of the
simple extension.

1.2. Examples:
(i) Q C R,Q C C are field extensions, but neither are simple (proof later)

(ii)) R C C is a simple extension. C = R(i) (See 1.3.1). Note that C = R(i + 1)
as well, so the generator may not be unique.

(iii) By HW 1.4, every subfield & C C contains Q. So Q C k is a field extension.

(iv) Let F = {a +bv2: a,b € Q}, then by Example 1.2(iii), F' is a field. Hence,
Q C F is a field extension. Note that F' = Q(v/2)
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(v) Let K = Q(v/2,/3), then K = Q(v2+ +/3) and is hence a simple extension
Proof. Let F = Q(v/2 + /3), then
(a) V243 e K and K is a field, so F C K by definition.
(b) Furthermore, y := v/2 ++/3 # 0, so

R R R
VS AT AT 2.3 =V3—-V2eF

Hence,
-1
y+2y —V3eFand V2€F
Hence, K C F' by definition.

1.3. Definition: Let k£ C C be a field and av € C
(i) We say that « is algebraic over k if 3f € k[z] such that f(a) =0

(ii) We say that « is transcendental over k if « is not algebraic over k

1.4. Examples:
(i) If a € k, then « is algebraic over k
(ii) v/2 is algebraic over Q
(iii) 7 is transcendental over Q (without proof)
(iv) m is algebraic over R
(v) Every complex number is algebraic over R.

1.5. Theorem: Let k£ C C be a field and a € C be algebraic over k. Then 3 unique
polynomial f € k[z] such that

(i) f is monic
(i) f is irreducible
(i) f(a) =0
Furthermore, if g € k[z] is any polynomial, then g(«) = 0 iff f | ¢ in k[z]. This is
call the minimal polynomial of a over k and is denot by m, := mq.

Proof. (i) Existence:Let

I:={g € kl[z] : g(a) = 0}
Then [ is an ideal (Check!). Hence, 3f € k[z] such that I = (f). By
multiplying by a constant, we may assume that f is monic. Clearly, f(a) =0
and g(a) = 0 iff f | ¢g. It suffices to show that f is irreducible. So suppose
f = gh in k[z], then
g(a)h(a) =0in C= g(a) =0or h(a) =0

Assume WLOG that g(a) = 0, then g € I, so f | g. Hence, (why?) h € k
and we are done.
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(ii) Uniqueness: Suppose fi, fo € k[z] satisfying (i) — (¢ii), then fi, fo € I where
I as above. Hence, following the argument above, fi | fo and fo | fi. Hence,
Je € k such that

Jo=cfi

Since both are monic, ¢ = 1.

1.6. Examples:
(i) If @ € k, then my(z) =2 — «

(ii) If k = Q,a = V2, then my(z) = 2> — 2 (because 2> — 2 is irreducible by
Eisenstein’s criterion)

(iii) If k = R, = v/2, then mq(7) =z — /2

(iv) If k = Q,w = e*™/3 then my,(z) = ®o(x) = 22 +x+1 (Since @, is irreducible,
monic and $y(w) = 0)

(End of Day 8)
1.7. Definition: Let & C L and k£ C L+ be field extensions.

(i) A homomorphism of field extensions (or a k-homomorphism) is a field homo-
morphism ¢ : L1 — Ly such that ¢|,= idg

(ii) An isomorphism of field extensions is a bijective homomorphism. If such an
isomorphism exists, we write

Ly =g Lo
1.8. Examples:

(i) Consider R C C, then the map z + % is a R-homomorphism from C to C

(ii) The map ¢ : Q(v/2) — C given by (a+bv/2) = (a—bv/2) is a Q-homomorphism.
In fact, it induces a Q-isomorphism of Q(\/§) to itself.

(iii) If Ly, Ly C C any two fields, then any field homomorphism ¢ : Ly — Ly is a
Q-homomorphism (by Example 1.1.4(iii))

1.9. Theorem: Let k C C be a field and a € C be algebraic over k. Then
(i) k C k[z]/(m4) is a field extension
(i) k[z]/(ma) = k(a)

Proof. (i) Let L = k[z]/(ma), then L is a field by 1.4.3 and II.1.5. There is a
field homomorphism

t:k— L given by k — k[z] = k[z]/(m4)
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1.10.

1.11.

1.12.

1.13.

(ii) Since k(«) is a field, and k C k(«), we may define a homomorphism (by HW
1.5)
¥ k[z] = k(a) such that ¢|,= id) and ¢ (z) = «

Let I = ker(¢), then by definition

I'={g € kla] : g(a) =0}

By the proof of Theorem 1.5, I = (m,), so we have an isomorphism of fields

¥ L — Im(y)
Since L is a field, so is Im(#)). Since Im(¢)) contains k£ and «, Im(¢)) = k(a),
and so
L= k(a)
Now observe that the isomorphism fixes k (since 1) fixes k)
]
Corollary:

(i) Let k € C and a, B € C be algebraic over k with the same minimal polyno-
mial. Then there is an isomorphism of field extensions k(a) = k(5) which
sends o — 5.

(ii) If p € k[z] is a monic irreducible polynomial, and «, 5 € C are two roots of
p, then there exists a homomorphism of field extensions ¢ : k(a) — C such
that ¢ |p=idy and p(a) =

Proof. We only prove (i): Consider the isomorphisms

p : kl[z]/(ma) = k(a) and ¢ : k[z]/(mg) = k(5)
Note that ¢(Z) = « and ¥(Z) = B. Since m, = mg, we obtain an isomorphism
n:=1vop :k(a) = k(B), and note that n|,= id;, and n(a) = O

Definition: Let k& be a field. The field of rational functions k(x) over k is defined
as the set of formal rational functions over k
f(x)

o) = {10 1.g € blalg 0}

Remark:

(i) k[z] # k(x) for any field k because x is not invertible in k[x] (Why?)

(ii) The notation k(x) is used because it is the smallest field containing k and z
(iii) k(x) is the field of quotients of the integral domain k[z].
Theorem: Let k be a field and o € C be transcendental over k. Then

k(o) = k()
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Proof. Define ¢ : k(z) — k(«a) by
f@)\ _ fla)
o(i) -

g(x) ) g(a)

Since « is transcendental, g(a) # 0 for any g # 0, and so this map is well-defined.
It is easy to see that it is a field homomorphism (Check!). Since Im(1)) contains
k and «, 1 is surjective. Since k(x) is a field, ¢ is injective (Corollary 1.7), and
hence an isomorphism. O

2. Degree of an Extension

2.1. Remark:
(i) Let k C L be a field extension, then L is a k—vector space.

(ii) If k € Ly and k C Ly are two extensions, then a homomorphism ¢ : L; — Ly
of k—extensions is a k-linear map of vector spaces.

2.2. Definition: Let k C L be a field extension

(i) The dimension of L as a k—vector space is called the degree of the extension

and is denoted by [L : k]
(ii) If [L : k] < oo, then k C L is called a finite extension

2.3. Example:
(i) [C:R] =2 (by 1.3.1)
(ii) Similarly, [Q(v/2) : Q] = 2
(iii) If @ C L is a finite extension, then 3n € N such that L = Q" (as vector

spaces). In particular, L must be countable. Hence, Q C R is not a finite
extension.

(iv) If £ C C and «a € C is transcendental over k, then k£ C k(«) is an infinite
extension. (Since the set {1, a,a? a3, ...} is linearly independent over k)

(End of Day 9)

2.4. Theorem: Let k C C be a field and a € C be algebraic over k. Let m, € k[z] be
the minimal polynomial of a over k, and let n = deg(m,). Then

(i) {1,a,a? ...,a" '} is a basis for k(a) over k
(ii) In particular, [k(a) : k] = deg(my) < o0

Proof. Clearly (i) implies (ii), so we only prove (i): Consider S := {1,a,a?,...a" '},
then we WTS: S is a basis for k(«) over k
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(i) S is linearly independent: If Jag, ay,...,a,—1 € k such that

Then for f(z) = 321" a2, we have f € k[z] and f(a) = 0. Since deg(f) < n,
this contradicts the minimality of n = deg(m,)

(ii) S is a generating set: If u € k(«), then consider the isomorphism
¥ klz]/(ma) — k(o)
Since 1 is surjective, and 7 : k[x] — k[x]/(m4), g € k[x] such that
g(e) = (n(g)) = u

Write g(z) = by + b1z + ... + bpx™, then by Euclidean division, 3¢,r € k[x]
such that
g =tmg + 17 and deg(r) < deg(mg) or r =0

Now note that m(g) = 7(r), and so
gla) =r(a)

Replacing g by r, we may assume WLOG that either g = 0 or deg(g) < n. If
g =0, then u = 0 and there is nothing to show. If deg(g) < n, then

u=g(a)= Z bia' € Span(S)
i=0

2.5. Examples:
(i) Q(v2) = {a+bv2:a,b € Q}, which explains Example 1.1.2
(i) Q(¥/2) = {a+ b2'/3 4+ 2%/ : a,b,c € Q}. In particular

223 ¢ {a+b2%a,beQ} = F

so F'is not a ring.
(ii) C={a+1ib:a,b e R} (See 1.3.1)

(iv) Let p € Z be a prime number and (, := €>™/? € C, then ®, is the minimal
polynomial of ¢, (See HW 3.1), so

[Q(Cp) :Ql=p-1

2.6. Corollary: Let k C K be a field extension and o € C be algebraic over k. Then
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(i) « is algebraic over K
(i) [K(e): K] < [k(a) : K]

Proof. (i) If a is a root of a non-zero f € k[z|, then f € K[z] as well.

(ii) Let f, g denote the minimal polynomials of « over k and K respectively. Then

(a) g is irreducible in K|[z]
(b) f € K[z] and f(a) =0
Hence, by Theorem I1.1.5, g | f in K[z]. In particular, by I1.2.5,

[K() : K] = deg(g) < deg(f) = [k(c) : k]

2.7. (Tower Law) If £k C F and F' C L are two field extensions, then
[L:k]=[L:F|[F k|
Proof. Let S and T be bases for £ C F and F' C L respectively. Define

B={xy:ze€SyeT}

(i) Bis a generating set for k C L: If « € L,3ay,...,a, € F and y1, s, . .

T such that .
@ = Z aiYi
i=1

For each a; € F,3by,bs,...,b; 5, and z1, 29, ..., 25 € S such that

54
a; = E bjl’j
J=1

Hence,

n S;

o= Z Z bj(z;y;) € Spany(B)

i=1 j=1

7yn€

(ii) B is k-linearly independent: If Jay,as,...,a, € k and 21, 29, ..., 2, € B such

that

n
E a;2; = 0
i=1

Then write z; = x;y; for some x; € S)y; € T, then b; = a;x; € F and
{Y1,y2, ... yn} is F-linearly independent. Hence b; = 0 for all i. But each

x; # 0 (since S is k-linearly independent) and so a; = 0 for all i
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(iii) |B| = |S||T]: It suffices to show that the map
S x T — B given by (z,y) — xy

is bijective. By definition, it is surjective, so suppose z1y; = x2ys for some
T; € S, Y; € T. Then
T1y1 — T2Y2 =0 (*)

and z; € S C F. If y; # yo, then {y;,y2} is F-linearly independent, and so
r1 = x9 = 0. This is impossible since S is k-linearly independent (and so
0 ¢ 5). Hence,y; = y» must hold. But then (%) implies that

(1 —22)y1 =0

Once again, y; # 0 since 0 ¢ T, and so x; = x5 must hold.

2.8. Examples:
(i) [Q(V2,v3): Q] =4

Proof. Let K = Q(v/2), L = Q(v/2,/3), then we have a tower Q C K C L,
and [K : Q] = 2 by Example 11.2.3. Hence by the tower law, it suffices to
show that

[L:K]=2

Since L = K (+/3), by Corollary 11.2.6,
[L:K]<2and [L:K]=1if V3e K
Suppose /3 € K, then Ja,b € Q such that

\/§:a+b\/§
= 3 =a%+20% + 2V 2ab

We now have three cases:
(a) If ab # 0, then v/2 € Q, which is impossible. Hence a = 0 or b = 0.
(b) If b= 0, then v/3 = a € Q which is not true.

(c) If a =0, then
V3=b/2=v6=20€Q

But 22 — 6 € Q|x] is irreducible by Eisenstein’s criterion with p = 2.
Hence, V3 ¢ K and so [L : K] = 2. O

(End of Day 10)
(ii) If [L : k] is prime, then

(a) There are no non-trivial intermiate fields k C F C L
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(b) k C L is a simple extension
Proof. (a) If k C FFC L, then [L: F] | [L: k].
(b) Since [L : k] is prime, k # L, so fix @ € L\ k, then k(«) C L by definition,
and k # k(a). So by part (a), k(a) = L.
[
(iii) Let f(x) = 2% 4+ 62 +2 € Q[z]. Then f is irreducible over Q(v/2) (HW 4)

2.9. Corollary: Let k C F; and k C F;, be two finite field extensions (all contained in
C). Let L denote the smallest field containing both F; and F,. Then

(i) [L: Fp) < [F: k]
(ii) [L: k] <[Fy:K|[Fy: K]
(iii) If [Fy : k] and [F; : k] are relatively prime, then equality holds in part (ii).
L is called the compositum of F; and F; and is denoted by F} Fy
Proof. (i) Let S ={xy,2a,...,2,} be a k-basis for Fj. Let

F = Spang, (S)

e We claim that F'is a field:
(a) Hu=>" az;,v=> . bz € F with a;,b; € F5, then
U = Z a;bjr;x;
i,J
But z;z; € F} = Span,(S), and hence uv € Spang, (S), and so F' is a
ring.

(b) If0#ue F,we WIS: u=! € F. To see this, consider the map
T:F — F given by y — yu

This map is Fs-linear. Also, T is injective, because if y,u = you, then
y1 = Yy since u # 0. Since F' is a finite dimensional Fy-vector space,
T is also surjective. In particular, Jv € F' such that

vu="T(v)=1

Similarly, Jw € F' such that uw = 1. Thus, wu is invertible in F
e Now we claim that L = F

(a) Since F'is a field, and k,S C F', we have F; C F. Since Fy, C F, we
have
LCF

by definition.
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(b) However, since Fy C L, we have S C L. Since F, C L, it follows that
Spanp, (S) C L

From this claim, it follows that

[L: Fy)] <|S|=[F:kK]

(ii) By the tower law and part (i)
[L:k]=[L: F)[Fy: k] <[F:k][Fy: k]

(iii) If m :=[F} : k] and n := [Fy : k], then by part (ii)
[L: k] <mn

However, [L : k| = [L : Fy][Fy : k] and so m | [L : k]. Similarly, n | [L : k].
Since (m,n) = 1, it follows that

mn | [L : k]

and hence [L : k] = mn.

2.10. Example: Let F} = Q(3/2), Fy = Q(w+/2) where w = ¢*™/3, then
(i) FiF> =Q(V2,w)
(i) [Q(V2,w): Q] =6 <9=[F :Q|[F;:Q]
So strict inequality may hold in part (ii) (HW 4)

3. Algebraic Extensions

3.1. Definition: A field extension k C L is said to be algebraic if every element of L is
algebraic over k

3.2. Theorem:
(i) If £ C L is finite extension, then it is algebraic.
(ii) If o € C is algebraic over k, then k C k(«) is algebraic.

Proof. (ii) follows from (i) by Theorem I1.2.4, so we only prove (i): Suppose k C L
is finite, and « € L, then if n := [L : k], we must have that the set

{1,a,0?,...,0"}

is k-linearly dependent. Hence, da; € k not all zero such that

n
g a;a' =0
i=0

Now f(z) =1 ,a;x" € k[z] is non-zero and f(a) =0 O
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Example: If (5 := €2™/% € C, then Q C Q((s) is algebraic. In particular, cos(2m/5)
is algebraic over Q. Moreover, by the proof of the theorem, it is clear that cos(27/5)
satisfies a non-zero polynomial of degree < 4 over QQ.

(End of Day 11)

3.3. Definition: A field extension k C L is said to be finitely generated if oy, oo, ...,y €
L such that L = k(aq, as, ..., ap)

3.4. Theorem: k C L is a finite extension iff it is algebraic and finitely generated.

Proof. (i) If k C L is finite, then
(a) k C L is algebraic by Theorem 3.2
(b) Let S = {ai,s,...,a,} be a k-basis for L, then (Check!)

L=Fk(a,ag,...,ap)

Hence k C L is finitely generated.

(ii) Conversely, suppose k C L is algebraic and finitely generated, write
L=k(a,as,...,qp)

To show: [L : k] < oo, we induct on n.

(a) If n =1, then L = k(ay) and «; is algebraic over k. So [L : k] < oo by
Theorem I11.2.4

(b) If n > 1, assume the theorem is true for any field extension k¥ C K with
a generating set S such that |S| < n. Now take

K= ]{7(0&17012, ce ,O./n_l)

By induction hypothesis, £ C K is finite. Furthermore, «, is algebraic
over k, so a, is algebraic over K by I1.2.6, so

KcCcK(a,) =L

is finite. So by Tower law, k C L is finite.
O

3.5. Remark: If L = k(ay,qq,...,q,) where each «; is algebraic over k, then by the
proof of the previous theorem,

(L 5] < T k) + k) = T desoma,)

3.6. Theorem: Suppose k C F' and F' C L are algebraic extensions, then k& C L is
algebraic.
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Proof. Suppose a € L, then WTS: « is algebraic over k. We know that « is
algebraic over F', so 3f € F[z] non-zero such that

fla)=0

Write f(z) = ag + a1z + ... + a,a™, then each a; € F. In particular, each a; is
algebraic over k. Write
K = k(ag, a1, ..., a,)

Then k C K is algebraic and finitely generated. By Theorem 3.5,
kCc K
is finite. Now « is algebraic over K since f € K|x]. Hence,
K C K(«a)
is finite by Theorem 11.2.4. By the tower law,
[K(a) : k] < o0
In particular, by Theorem 3.2, « is algebraic over k. O]
3.7. Lemma: Let F' C C be a field, then TFAE:
(i) If f € F[z]\ F is any polynomial, then f has a root in F’
(i) If f € Flx] \ F, then every complex root of f is in F'
(iii) If £ C L is an algebraic extension, then F' = L
If these conditions holds, we say that L is algebraically closed.
Proof. We prove (i) = (i) = (iit1) = (i).
(i) = (ii): If f €€ Flz], we WTS: every root of f is in F. To do this, we induct on

n = deg(f).
(a) If n <1, there is nothing to prove.

(b) If n > 1, then assume the statement is true for any polynomial g € Fx]
with deg(g) < n. Now let a € C be a root of f. By assumption, f has
aroot § € F. If a = f3, there is nothing to prove, so assume « # . If
not, then by the remainder theorem, Jg € F[x] such that

f(x) = (z — a)g(x)

Hence, g(f) = 0 and deg(g) < n. So by induction hypothesis, 8 € F.

(ii) = (iii): If F C L is algebraic extension and a € L, then « is algberaic over F, so
3f € Flz] such that f(«) = 0. By hypothesis, « € F. This is true for any
ae€ L, soL=F.
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(iii) = (i): If f € Flz] \ F, then by FTA, f has a root « € C. Thus, if L = F(«),
then F' C L is an algebraic extension (by Theorem 3.2). By hypothesis, this
implies L = F', and so a € F'.

O
3.8. Theorem: Let £ C C be a field and
F :={a € C: « is algebraic over k}
Then
(i) Fis a field
(ii) F is algebraically closed.

(iii) If L is any other algebraically closed field such that k C L, then F' C L.
F is called the algebraic closure of k and is denoted by k

Proof. (i) Suppose «, 8 € F, then
[k(a) : k] < oo and [k(B) : k] < o0
Hence, by Corollary 11.2.9,
ke, B) - k] < o0

By Theorem 3.2, every v € k(«, §) is algebraic over k. In particular, a+ 3, af3,
and, if 0 # o, then ™! are all in F

(ii) If F C L is an algebraic extension, then we WTS: L = F. But note that
k C F' is algebraic by definition. Hence by Theorem 3.6, & C L is algebraic.
Hence, every a € L is algebraic over k. By definition, this implies o € F,
and so F' = L.

(iii) Suppose L is algebraically closed and k C L, then, for any a € F « is
algebraic over k. Hence, « is algebraic over L, so

L C L(x)

is an algebraic extension. By 3.7(iii), L = L(«). In particular, € L. This
is true for any a € F', so F' C L.

[
(End of Day 12)

3.9. Remark/Examples:
(i) C is algebraically closed by FTA.
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(iv) @ is the smallest subfield of C that is algebraically closed (by HW 1.3 and
Theorem 3.8(iii))

(v) Q C Q is an infinite algebraic extension. (In particular, the converse of
Theorem 3.2(i) is false)

Proof. For each n € N, [Q(/2) : Q] > n and Q(/2) C Q. O

(vi) Q is countable, so there exist transcendental real numbers.

(vii) If p € Zis a prime, then k = Z, =: F,, is a field (not contained in C). However,
one can use Zorn’s lemma to construct another field L with the properties of
Theorem 3.7. This field is unique, and is also called the algebraic closure of
Z, and is denoted by F, (See [Garling, Chapter 8])

3.10. Theorem: Let k C F} and k C F, be algebraic extensions, then & C F|Fy is
algebraic.

Proof. By definition, F} C k and F, C k. Since k is a field, F1Fy C k O]

4. Primitive Element Theorem

(Taken from [Greenberg]) Throughout this section, let k be a field with k& C C.

4.1. Definition: A polynomial f € k[z] is said to be separable if all its roots in C are
distinct. ie. every complex root of f has multiplicity 1 (See Definition 1.2.8)

4.2. Remark: Let f(z) = ag+ a1z + ...+ a,2" € k[z], then
D(f) := ay + 2a9x + 3a3x* + ... + na,z"
is called the formal derivative of f. Note that
(i) D(f) € klz]
(ii) D(f +9) = D(f)+ D(g)
(iii) If A € k, then D(Af) = AD(f)
(iv) D(fg) = fD(g) + gD(f) [Leibnitz’ rule]
(v) deg(D(f)) < deg(f)
4.3. Theorem: Let kK C C and f € k[x]. Then f is separable iff (f, D(f)) =1 in k[z]

Proof. Assume f € klz] \ k and let & € C be a root of f. Then Im € N and
g € Cl[z] such that

f(@) = (z = a)"g(x) and g(a) # 0
Then by the Leibnitz rule
D(f)(z) = m(z — a)"g(z) + (z — @) D(g)(z)
Hence,

D(f)(a) =0 m>1
< o is a multiple root of f (%)
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4.4.

4.5.

(i) Suppose d = (f, D(f)) # 1, then d € k[z] \ k, so d has a root a € C. Then
f(@) = 0 and D(f)(a) =0

So by (*), a is a multiple root of f.
(ii) Conversely, if f is not separable, then f has a multiple root @ € C. Then by

(%),
D(f)(e) =0

So if m, € k[z] denote the minimal polynomial for v over k, then it must
happen that
me | f and mg, | D(f) in klx]

Hence, m,, | (f, D(f)) # 1 (since m,, is irreducible and hence not in k)
[l
Corollary: Let k C C be a field and f € k[z] be irreducible, then f is separable.
Proof. 1f f is irreducible, and d = (f, D(f)), then d | f so d = 1 or d = cf for

some ¢ € k. However,

d | D(f) = deg(d) < deg(D(f)) < deg(f)

Hence, d = 1 and Theorem I1.4.3 applies. O

Lemma: Let £ C C be a field and f,g € k[z] be irreducible polynomials. Let
{ag, a9, ..., a,} and {B1, Ba, . . ., Bm} be the set of roots of f and g in C respectively.
Then 3\ € k£ \ {0} such that

a1+)\61§£04i+)\ﬁj V1§Z§n72§j§m

Proof. In Clz], write (by 1.3.8),

n m

f(z) = cH(x — ;) and g(z) = dH(l‘ — B;)

i=1 j=1

Now consider the set

a; — 0 . .
S:{ :1§z§n,2§j§m}
B — B;

Note that every ratio in S is well-defined since {f;} are all distinct by Corollary
4.4.

Since k C C, Q C k by HW 1.3, so k is infinite. Since S is a finite set, I\ € k\ S,
which works. Note that A # 0 since 0 € S. O

(End of Day 13)
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4.6. (Primitive Element Theorem): Let k C L be a finite extension of subfields of C,
then it is a simple extension. ie. 30 € L such that L = k(0)

This element 6 is called a primitive element of the field extension £ C L

Proof. Since k C L is finite, then by Theorem I1.3.4, Jaq, as, . .., a,, € L such that

e Fach q; is algebraic over k

o L==F(a,ag,...,ap)

We induct on n.

(i) If n =1, there is nothing to show.
(ii) If n > 2, then note that

L = F(ay,) where F = k(ag, a9, ..., 05-1)

If we show that k C F is simple, then 30, € F' such that F' = k(6;). Then

L= k(@l, Oén)

Hence, it suffices, by induction to prove the case n = 2.
(iii) If n = 2, write L = k(o B3).

(a)

Let f,g € k[z] denote the minimal polynomials of «, 5 respectively. Let
{ag,0,...,a,} and {B1, Po, ..., Bm} denote the sets of roots of f and g
in C respectively. Then, with a = ay, § = 1, choose A\ € k as in Lemma
4.5, and set

0:=a+ N6

We claim that L = k(0). First note that 6 € L, so k(0) C L.

For the converse, write F' = k(f), and note that

L= F(B) = k0, p)

since a = 6 — A\ and A € k. Hence, it suffices to show that 5 € F. So let
p € Flz] denote the minimal polynomial for 5 over F'. Then, we WTS:

deg(p) = 1.
Since g € F[z] is a polynomial with 3 as a root, it follows that
plgin Flz]

Also, if
h(z) = f(0 — \x) € Fz]

Then
h(B) = f(0 —AB) = f(a) =0

Hence, p | h. In particular,

T :={rootsof pin C} C {rootsof hin C} N{B; : 1 < j <m} (%)
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(d) However, for each 1 <i<n,2 <j<m,

—a+ A8 £ @i+ A,
:>9—)\6]%Oél
= h(B;) = f(0 —AB;) #0

So it follows that 7' = {f} and since p is separable (by 11.4.4), it follows
that deg(p) = 1. Hence,

[L:F|=[F(B):Fl=1=BeF

Hence, L = F = k(0) as required.

4.7. Example:

(i) If L = Q(w, Vv/2), then Lemma 4.5 provides a recipe to find the primitive

element: Let
f(x)=2*+2+1and g(x) =2 -2

Then the roots of f and g are
{w,w?} and {V/2,wV/2,w?V/2}

respectively. Consider

S—{O w2 —w w2 —w }
V2 —wV2 V2 - wV2
In particular, A\ = 1 ¢ S, so # = w + V/2 is a primitive element.

(i) If L = Q(v/2,v/3), then 8 = /2 + v/3 works (See Example 11.1.2(v))

(iii) Q C Q is not a simple extension. Hence the primitive element theorem does
not hold for infinite algebraic extensions.

4.8. Corollary: Let & C L be a finite extension of subfields of C. Then there are only
finitely many intermediate fields k C ' C L

Proof. Write L = k(a) by the primitive element theorem, and let f = mgqy. If
k C F C L is any intermediate field, then L = F(«a), so if gp = mq r, then

gr | fin Flz] = gr | f € L[x]

Now let

F :={ intermediate fields k C F C L}
D := { monic divisors of f in L[z]}

w:F — D given by F +— gp
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4.9.

By the above argument, p is well-defined, and D is clearly a finite set. Hence, it
suffices to show that p is injective. So suppose Fi, Fy € F such that

gpn =9 =9
then let g(x) = by +byz + ... + b,z™ € L]z] and set
Fo = k(bo, b1, ..., by) C L O F
By definition, gr, | g in Fylz] C L[z], so

deg(gr,) < deg(yg)

= [L : Fl]

< [L: Fy) (since Fy C Fy)

= deg(gFo)
Hence, it follows that [L : Fi] = [L : Fy] and so F} = F,. Similarly, F» = Fp, so
F=F O

Remark: Note that, in the above proof,
F1 = FO = k(ao,al, C.e ,CLn>

where the a; are the coefficients of gp,. This gives a constructive way of determining
all intermediate fields of a simple extension. We illustrate this with an example:
Take

k=QL=0Q(V2) = f(z)=z'-2

so the possible monic divisors of f (with v/2 as a root) in L[z] are multiples of the

4 linear terms
(. — V2), (x —iv2), (x +iV?2), (x + V?2)

Note that there are 2° = 8 such possibilities in C[z]. However, we must disal-
low some of them because i ¢ L (and hence any polynomial with a coefficient
involving ¢ must be disallowed). We list down the remaining polynomials, and
the corresponding intermediate field (obtained by adjoining the coefficients of the
polynomial to Q) below.

go(z) = (z — \4/5) L
gs(w) = (z = V2)(z + V2) Q(V2)
ga(r) = (z — \4/5)(:v—2\/§)(:c—|—1\4/§) Q(V2+V2,V8) =
gr(z) = a* — 2

Hence, the only possible intermediate fields are

{Q Q(v2), L}

(e}

(End of Day 14)
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1. Galois Theory

1. The Galois Group

1.1. Examples: List all homomorphisms from k& — C:

(i)
(i)

(iii)

k = @Q: There is only one map, the inclusion (Example 1.1.4)

k = Q(v/2): There are two maps, {i,j} where j(a + bv/2) = a — by/2 (HW
1.4)

k = Q(w): We have the inclusion map
t:k—=C

Suppose ¢ : k — C is another homomorphism, then ¢ is Q-linear (See Ex-
ample 1.8). A Q-basis for k is {1,w}. Hence, ¢ is completely determined
by
a = p(w)
Now w? =1, 50 a® =1, so
a € {1,w,w’}

However, if & = 1, then ¢(1) = ¢(w), which contradicts the fact that ¢ is
injective. Hence,
a € {w,w?}

If & = w, then ¢ = . If & = w?, then we get the map
j:k— C given by a + bw +— a + bw?

Hence, there are atmost two homomomorphisms from £ — C.

k = Q(+/2): We have the inclusion map. Suppose ¢ : k — C is any homo-
morphism, then, as above, ¢ is determined by its values on the set

{1,v/2,V4}

Since (1) = 1 and p(v/4) = ©(v/2)?, it follows that ¢ is completely deter-
mined by

a = p(V2)

As above, a® = 2, s0 a € {¥/2,wv/2,w?V/2}. Each choice gives a map, so we
have atmost 3 maps from &k — C.
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(v) k= Q(v2,v3): If ¢ : k — C is a homomorphism, then ¢ is determined by

its values on the set
{1.v2,V3,v/6}
Since (1) = 1 and ¢(v/6) = ©(v/2)@(v/3), we only need to determine
a = p(V2) and B := ¢(V3)
As in HW 1.4,
a=+v2and 8 =+V3
so we obtain atmost 4 maps from k — C
(vi) k= Q(¥/2,w): Recall that [k : Q] = 6 (HW 4.4), and, in fact,

k = F\F, where Fi = Q(v/2) and F, = Q(w)
Hence, by the proof of 11.2.9, a Q-basis for k is given by
{1,w, V2, V4,wV/2,wV/4}

As before, if ¢ : £ — C is a homomorphism, then ¢ is determined by two
values

a = p(w) and §:= p(V2)

Once again, a € {w,w?} and B € {/2,wv/2,w?V/2}. Hence, we have atmost
6 maps from k£ — C. We will now show that there are exactly 6.

1.2. Lemma: Let £ C C be a field and a € C be algebraic over k. Let ¢ : k(a) — C a
homomorphism over k and let 5 := ¢(«a)

(i) For any f € k[z],

(ii) S is algebraic over k
(iii) The minimal polynomials of o and 5 over k are the same.

Proof. (i) Write f(z) = ao+ a1z + ... + a,2”, then
o(f(a) =plag+aa+ ... +a,0") =ag+ a1+ ...+ a,8"

since ¢ fixes all the a;’s.

(i) Since « is algebraic over k,30 # f € k[x] such that f(«a) = 0. By part (i), it
follows that f(5) =0

(iii) Let f = mq, then by part (i),
f(B)=0

But since f is irreducible and monic, it follows by uniqueness (See I1.1.5) that
[ =mgy as well.

]
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1.3.

1.4.

1.5.

Theorem: Let k& C C be a field and o € C be algebraic over k with minimal
polynomial m,, € k[z]. Then there is a one-to-one correspondence

{k-homomorphisms from k(a) — C} <+ {roots of m, in C}

Proof. Let F and G denote the LHS and RHS above. Then by the previous Lemma,
we have a map
w: F — G given by ¢ — ()

We claim that p is bijective:
(i) Injectivity: Let n = [k(«) : k]. If p(a) = ¥ («), then
plof) =9(a’) VI<j<n-1
Since (1) = (1), this means that ¢ and 1 agree on the set

{1,a,0?%,..., "'}

But this set forms a k-basis of k(«), and ¢ and v are two k-linear maps.
Hence, ¢ = 1.

(ii) Surjectivity: If g € C is a root of m,, then by Corollary I1.1.10, ¢ : k(a) —
C such that ¢|p=id; and ¢(«) = . Hence, u(p) = S.

]

Corollary: Let £ C L be a finite extension, then
the number of k-homomorphisms ¢ : L — C = [L : k]

Proof. By the primitive element theorem, Ja € L such that L = k(«). Then by
Theorem 1.3,

the number of k-homomorphisms ¢ : L — C = the number of roots of m,, in C
Since my,, is irreducible in k[z], it is separable by 11.4.4, so
the number of k-homomorphisms ¢ : L — C = deg(m,) = [L : k]

by 11.2.4. 0
(End of Day 15)

Definition: Let k C L be a field extension.
(i) A k-homomorphism ¢ : L — C is said to be a k-automorphism if

(L)=L

Note that
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(a) ¢ is already injective, so this means that ¢ : L — L is bijective.

(b) Hence, we may compose any two k-automorphisms to obtain a third k-
automorphism.

(¢) The inclusion map ¢ : L — C is a k-automorphism, and has the property
that

Lop=p=poL
for any k-automorphism ¢.

(ii) The Galois group of L over k is set of all k-automorphisms of L. Note that
this is a group under composition, and it is denoted by

Galk(L)

1.6. Lemma: Let k& C L be an algebraic field extension, and ¢ : L — C a k-
homomorphism.

(i) If (L) C L, then ¢ : L — L is bijective.
(ii) If L = k(aq,az,...,ap) and ¢(a;) € L for all 1 <i < n, then ¢ : L — L is
bijective.

Proof. (i) Suppose p(L) C L, then we WTS: ¢(L) = L. So choose a € L, then
« is algebraic over k, so consider f = m,. By Lemma 1.2, p(«) is also a root
of f and ¢(a) € L. Hence if

R = {roots of fin L}

Then ¢ maps R to R. Since ¢ is injective, it must map R onto R. In
particular, 38 € R C L such that ¢(8) = a. Hence ¢(L) = L.

(i) If L = k(a,9,...,q,) is an algebraic extension, and ¢(a;) € L for all
1 <i<mn, then we WTS: ¢(L) C L. For each 1 <i <mn, let

Ki = k‘(OKl, Qo, ... ,ai)
Then consider the tower
k:K()CKlCKQCCKn:L

Write
S;={1,a;,02,...,a" 1}

where n; = [K; : K;_1], then S; is a basis for K; over K; ;. Hence, by the
Tower Law, the set

T:{.Clﬁlxg...l'ni.’lfi GSi,l SZSTL}
is a basis for L over k. Now if ¢(«;) € L for all 1 <i <mn, then

e(S;))CL V1<i<n
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and hence ¢(T") C L. Since ¢ is k-linear, it follows that
o(L) C L

Now part (i) applies.

1.7. Remark :

(i)
(i)
(iif)

)

(iv

Galg (L) is a group. One also writes Auty(L) = Galg(L)
By Lemma 1.4, if k£ C L is finite = | Galg(L)| < [L : k]
By Lemma 1.6, if £ C L = k(0) is finite = Galg (L) <> {roots of my in L}

Hence, if K C L = k() is a finite, then | Gal,(L)| = [L : k] iff every complex
root of my is already in L.

1.8. Examples:

(i)
(i)

(v)

Galg(Q(V2)) = Z,

Proof. Note that Galg(Q(v/2)) contains two maps, the inclusion and j :
Q(v/2) — C given by
jla+bv2) =a—bv2

Hence, | Galg(Q(v/2))| = 2 so Galg(Q(v?2)) = Z, O
Galg(Q(w)) = Z,
Proof. Same proof as part (ii) with j(a + bw) = a + bw? O

Galg(Q(V2)) = {id}

Proof. Note that there are 3 homomorphisms from L := Q(+/2) — C, given
by

W(V2) = V2
801(\3/5) = W\S/§
4,02(\3/5) =w’V2

But note that w ¢ L (since L C R), and so wv/2 ¢ L. Similarly, w?v/2 ¢ L,
and so g1, p2 ¢ Galg(L). Hence,

Galg(L) = {id,}

Galg(Q(V2,V3)) = Zy x Zs.
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(vi)

Proof. Here, we have 4 possible maps from L := Q(ﬂ, V/3) = C given by

po(V2) = V2 and ¢o(V3) = V3

p1(V2) = V2 and ¢, (V3) = —V3
p2(V2) = =V2 and pa(V3) = V3
p3(V2) = —v2 and @3(V3) = —V3

Now for each of these maps {©i(v/2),¢;(v/3)} C L. Hence, by Lemma 1.6,
@; € Galg(L) for all 0 <4 < 3. Hence,

| G&l@([z” =4= G&l@(L) = 7o X Lo Or Zy
Now note that for each 1 <17 < 3,
2 (V2) = ;(£V?2) = V2 and similarly ¢?(vV3) = v/3

Hence, ¢? = idy, for all 1 <7 < 3. In particular, Galg(L) does not have an

3
element of order 4. Hence,

Gal@(L) = ZQ X ZQ

Galg(Q(V2,w)) = 8

Proof. As before, we let L = Q(+/2,w), and enumerate the elements of G =
Galo(Q(V2,w)).

po(V2) = V2 and pp(w) = w
p1(V2) = V2 and ¢ (w) = &
©02(V2) = wv2 and py(w) = w
03(V2) = wV2 and p3(w) = w?
0s(V2) = wQ\/_ 2 and py(w) = w
©s5(V2) = wV/2 and ¢s5(w) = w

In each of these cases, by Lemma 1.6, ¢; € G. Hence,
|G|:6:>G%Zﬁor53

Hence, it suffices to show that G is non-abelian. Now note that

901%03(\3/5) = SOI(W\S/§> = @1(60)901(\3/5) = w2

However
903901(\%) = 903(\3/5) = wV2
Hence, @193 # w301, and so G is non-abelian. m
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(End of Day 16)
(vii) If p € Z prime, ¢ = */? and L = Q((), then G := Galg(L) = Zy

Proof. (a) Note that @, is the minimal polynomial for ¢, so [L : k] =p — 1.
Furthermore, a Q-basis for L is

{17 C? C27 A 7Cp_2}

Hence, if ¢ : L — C is a homomorphism, ¢ is completely determined by
a = ¢(¢). By Theorem 1.3, we have a € {¢? : 1 < j < p—1}, and hence
we have exactly p — 1 maps

¢; : L — C such that ¢;(¢) = ¢, 1<j<p-1

Note that for each 1 < j <p—1,¢;(¢) C L, so ¢; € G by Lemma 1.6.
(b) Now note that

piop;(C) = %‘(Cj) = %’(C)j = Cij = ¢i5(C)
Hence, we define a map
o Zy, — G given by [i] = ¢

We claim that p is an isomorphism

(c) p is well-defined: If [i] = [j] in Zj, then p | i — j, so Im € Z such that
1 = j + mp. Hence,

pi(¢) = ¢ = ()" = = ()

Since any homomorphism is determined by its value on (, it follows that
1 is well-defined

(d) p is a homomorphism by step (b), and p is surjective by step (a). Since
Gl =p—1=1Z

4 must also be injective, and hence an isomorphism.

1.9. Theorem: If p € Z is prime, then Z; is cyclic.

Proof. Note that Z; is a finite abelian group. Hence, by the fundamental theorem
of finite abelain groups, dni, ns,...,n; € N such that

ny|ng | ... | ng

and
Ly = Lopy X Ly X ... X Ly,

p
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Note that since |Z;| = p—1, ny | p—1. We claim that ny = p—1, and hence k = 1.

To see this, note that for any a € Z,
a— (a,as,...,ax)
under the above isomorphism. Hence,
a™ — (ngay, ngas, . .., ngar) = (0,0,0,...,0)
Hence, @™ =1 in Z;. Now consider the polynomial
f(x) =a™ — 1€ Z,[x]

By Corollary 1.2.9, the number of roots in Z, is < ny. However, every element of
Zy, 1s a root of f. Hence,
p—1<mn

But ng | p— 1, so ny = p — 1 and we are done. O

Review of Chapters I, IT and § III.1 for the Mid-Semester Exam.

(End of Day 17)

2. Splitting Fields and Normal Extensions

2.1. Definition: Let & C L be a field extension, and f € kx|
(i) We say that f splits in L if every complex root of f isin L
(ii) If {ay1,a9,...,a,} is the set of all complex roots of f, then

L:=k(o,ag,... )

is called the splitting field of f. Equivalently, it is the smallest field containing
k in which f splits.

(iii) A field extension k& C L is said to be normal if, for every k-homomorphism
¢ : L — C, we have (L) = L.

2.2. Remark:

(i) If f € k[x], then f splits in C (in fact, in k), but these are not the splitting
fields of f.

(i) If L is the splitting field of f over k, then L is a finitely generated algebraic
extension of k. Hence, [L : k] < oo by 11.3.4.

2.3. Theorem: Let k C L be a finite extension, then TFAE:

(i) k& C L is a normal extension
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(ii) 3f € k[z]| such that L is the splitting field of f over k
(iii) |Galg(L)| = [L : k]
Proof. We prove (i) = (ii) = (iii) = (i).

(i) = (ii): Suppose k C L is a finite normal extension, then by the primitive element
theorem, Jao € L such that L = k(«). Let f denote the minimal polynomial
for a over k, then we claim that L is the splitting field of f over k.

(a) If F' denotes the splitting field of f over k, then clearly L C F
(b) Conversely, if § is a root of f in C, then, by I1.1.10, 3 a k~-homomorphism
¢ : k(o) = C such that p(a) = f
Since k C L is normal, it follows that g € L. This is true for any root 8
of f, and so f splits in L. By definition, F C L
(ii) = (iii): By Remark 1.7(ii),
| Gal(L)| < [L : k]

Now suppose L is the splitting field of f over k&, then consider any k-homomorphism
¢ : L — C, then we WTS: ¢(L) = L. Since

L=k(a,as,...,qp)

where X = {aj,as,...,a,} is the set of complex roots of f, it suffices (by
Lemma 1.6) to show that

elay) e L V1<i<n

Now fix 1 < i < n, and let p denote the minimal polynomial of «; over k.
Then, by Theorem 1.3, ¢(«;) is another root of p. However, since «; is a root
of f, we must have that p | f in k[z]. Hence, ¢(«;) is another root of f, and
so ¢(a;) € X C L. This is true for each 1 < i < n, so ¢(L) = L by Lemma
1.6
(ifi) = (i): Trivial.
]

2.4. Definition: Let k C C be a field and f € k[z]. If L is the splitting field of f over
k, then Galg(L) is called the Galois group of f, denoted by Galy(f)

2.5. Examples:

(i) If f € k[z] is linear, then L = k is the splitting field of f over k. Hence
Galy(f) = {idk}

(i) If f(z) = ax?+br+c € k[z] is an irreducible quadratic, then L = k(v/b? — 4ac)
is the splitting field of f over k. Hence Galy(f) = Zs

(iii) If k = Q, f(z) = 2® — 2, then L = Q(v/2,w). Hence Galy(f) = S;
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2.6.

2.7.

(iv) If f(z) = (2®—2)(22—3) € Q[z], then L = Q(v/2,v/3) and Galg(f) = Zy x Zy

(v) fk=Q, f(z) = 2 — 1, with p € Z prime, then L = Q((,). Hence Gal,(f) =
7 =7,
p p—1

Corollary: Any extension of degree 2 is a normal extension.

Proof. If k C L has degree 2, then by primitive element theorem, write L = k(0)
for some 6 € L. If my denotes the minimal polynomial of 6 over k, then

deg(myg) = 2
and so we write my(z) = 2% + bz + ¢ for some b, ¢ € k. Hence, the roots of my are

b+ Vb —4e o —b—Vb? —4c
B 2 2

0 do =

Now since 0 € L, it follows that
Vb2 —4ce L

and hence 6’ € L. Thus, L is the splitting field of my, and so k C L is a normal
extension by Theorem 2.3. [

(End of Day 18)

(Extension Lemma): Let F' C L be finite field extensions. If ¢ : F' — C be a field
homomorphism, then 3¢ : L — C such that ¢|p= ¢.

Proof. By the primitive element theorem, 3w € L such that L = F(«). If ¢ : L —
C is a map as above, then 1 is completely determined by

B =1(a)

So we wish to choose [ appropriately.

(i) Let F' = o(F) C C, then F' = F. Hence, we obtain an isomorphism
p: Flz] — F'[z] given by Z a;x’ ng(ai)xi
i=0 i=0

(ii) Since F' C L is finite, « is algebraic over F. Set f = m,r € F|z], and let
g =@(f). Then there is an isomorphism (Check!)

@ : Flz]/(f) — F'lz]/(g) such that h+ (f) — B(h) + (g9)

In particular, g is irreducible in F'[z] (by 1.4.3)
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2.8.

2.9.

2.10.

(iii) Let g € C be a root of g, then by I1.1.9, 3 an isomorphism
p: F'lz]/(g) = F'(B) such that p|p=idp and T +—
Also, there is an isomorphism
n: Flz]/(f) = F(a) = L such that n|p=idp and T — «
Hence, the map
Yi=popont:L— F(B)cC
is an isomorphism such that ¢ («) = 5. Note that if z € F, then

h(2) = pop(z) = u(w(2) = ¢(2)

]

Theorem: Let k C L be a finite and normal extension, and f € k[z] be irreducible.
Suppose Ja € L such that f(«) =0, then f splits in L.

Proof. Suppose f(a) =0, let 8 be any root of f in C. WTS: § € L. By Corollary
I1.1.10, there is a k-isomorphism

¢ : k(a) = k(B) such that (o) =

Since a € L, F := k(a) C L. Hence, by the extension lemma, 3¢ : L — C such
that

Y|p= ¢ and, in particular ¥ (o) = 8

Since k C L is a normal extension, (L) = L. In particular, 5 € L. This is true
for any root 5 of f in C, and so f splits in L. m

Remark /Examples:

(i) The above theorem is clearly not true if k& C L is not normal (for instance,
take k = Q and L = Q(v/2) and f(z) = 2° — 2).

(ii) The theorem is also false if f is not irreducible. For instance, if k = Q, L =
Q(v2) and f(z) = (> — 2)(2> 4+ 1), then f has a root in L, k C L is a finite
normal extension, but f does not split in L.

Theorem: Let k C F be a finite field extension, then 3 a field M such that
(i) FC M

(ii) & C M is finite and normal

(iii) If L is any other field satisfying (i) and (ii), then M C L.

In other words, M is the smallest normal extension of k£ that contains F'. This
field M is called the normal closure of F' over k
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Proof. (i) By the primitive element theorem, write F' = k(«). Let M denote the
splitting field of m,, over k, then M satisfies (i) and (ii) by Theorem 2.3 and
Remark 2.2(ii).

(ii) Now suppose k C L is a finite normal extension satisfying (i) and (ii), then
a € L since M C L. Hence by the previous theorem, m, splits in L. Thus,
M c L.

O
2.11. Examples:

(i) If £ C F is a normal extension, then M = F' is the normal closure of F'.
(ii) If k = Q, F = Q(v/2), then M = Q(w, v/2) is the normal closure of F.

3. Permutation of Roots

3.1. Definition: Let X be any set.
(i) A permutation of X is a bijective map o : X — X.

(ii) The set of all such permutations forms a group under composition, called the
symmetric group on X, denoted by Sx.

(iii) We write S,, := Sx where X ={1,2,...,n}
3.2. Theorem: If | X| =n, then Sx = S,
Proof. Let Y ={1,2,...,n}, and let u: X — Y be a bijection. Then define

©:S, — Sx givenby o+ pu tooopu
Then ¢ is a well-defined function since p is bijective. Furthermore,
p(oT) = @(o)p(7)
so  is a homomorphism. Now clearly, v : Sx — S,, defined by
TH UWOTO ,u_l

is a homomorphism such that p o9 =idg, and 9 o ¢ = idg,, and so ¢ is bijective
as well. O

3.3. Definition: Let G be a group and X be any set.

(i) A group action of G on X is a function
a:GxX =X

such that, for all g;,90 € G,x € X

(a) a(e,z) = x, where e denotes the identity element of G
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(b) a(g192, ) = (g1, (g, x))
If G acts on X, we write g -z := a(g, x)
(ii) A group action « of G on X is said to be faithful if, for any g,h € G
a(g,z) =alh,z) Vee X =g=h
(End of Day 19)

3.4. (Permutation Representation) Let G be a group, X any set, and a: G x X — X
a group action. For g € GG, define

og,: X = X by o4(2) == a(g, )

(i) Then o, € Sx
Define ¢ : G — Sx by
g0y
(ii) Then ¢ is a group homomorphism.
(iii) ¢ is injective iff « is a faithful action.

3.5. Theorem: Let k C C be a field and let f € k[x] be of degree n. Let G = Galg(f)
and let X be the set of roots of f in C. Then

(i) G acts on X faithfully.
(ii) In particular, G = to a subgroup of S,
Proof. (i) Note that if ¢ € Galg(f) and 0 € X, then, by II1.1.2
f(e(0)) =0
and so ¢(#) € X. This gives the map
a:Gx X — X given by oy, 0) == ¢(0)

and it is easy to see that this defines an action of G on X. To see that this
action is faithful, note that if ¢, € G such that

o(6) = (6) Ve X

then, since the splitting field of f is L = k(X)) and ¢|x= idx, = 9|, it follows
that
p=yvonL=p=¢inCG

(ii) Now note that the permutation representation gives an injective homomor-
phism
G— Sx = Sk

where k = | X|. However, k < n, so S is isomorphic to a subgroup of S,.
m
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3.6. Example:

(i) Let f(z) = 2® — 2, then |Galg(f)| = [Q(¥/2,w) : Q] = 6 and Galg(f) < Ss
(by Theorem 3.5). Hence Galg(f) = S

(ii) Let k = Q(w) and f(z) = 2® — 2 € k[z]. Then L = Q(3/2,w) is the split-
ting field of f over k. Hence, if G = Gali(f), then the action of G on
{¥/2,wV/2,w?V/2} gives an injective homomorphism

G‘%S{;

However, |G| =[L: k] =3,s0 G = A3 = 7Zj
(iii) Let f(x) = 2% — 2, then

(a) | Galg(f)| = 8

(b) Thus Galg(f) = D,

Proof. (a) Let L = Q(v/2,1), then Galg(f) = Galg(L) and
|Galg(L)| =[L: k] =38

since F =Q(v/2) C Land i ¢ F.

(b) By Theorem 3.5, there is an injective homomorphism
w:G — Sy
given by the action of GG on
X = {V2,iV2, —V2,—iv2} < {1,2,3,4}

Let ¢, € G be given by

p(V2) = V2 and (i) = —i

O(V2) = iv/2 and (i) = i
Then under the map pu, we get

1) = (24) and p(v) = (1234)
Hence, o(p) = 2,0(1)) = 4 and (Check!)
ot =y

So Dy = (p, 1) < G but since |G| = 8, it must happen that G = D,.
]

3.7. Definition: A group G on a set X is said to be transitive if, for any z,y € X,dg € G
such that g -z =y.
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3.8. Examples:

(i)
(i)

(i)
(iv)

S, acts transitively on {1,2,... n}.
A,, acts transitively on {1,2,...,n}.

Proof. If n = 3, then Az = {e, (123), (132)} which clearly acts transitively on
{1,2,3}. If n > 3, then for any 1 < i,j < n, we WTS: Jo € A,, such that
o(i) = j. Then choose 1 < k,l < n such that {k,l} N {i,j} =0, then

o = (i) (kl) € A

works. O

If G = Galg(z® — 2), then G acts transitively on X = {v/2,wv/2,w?v/2} (See
Example 1.8(vi))

If G = Galg((z? — 2)(2? — 3)), then G does not act transitively on X =

{£Vv2,+V3}.

3.9. Theorem: Let f € k[z] be separable, let G = Galy(f) and let X be the set of roots
of fin C. Then G acts transitively on X iff f is irreducible in k[z].

Proof. (i) Suppose G acts transitively on X. WTS: f is irreducible. By 1.4.7,

we may choose a monic irreducible polynomial p € k[x] such that p | f. Let
a be a root of p, and 5 be any other root of f. Then by transitivity, dp € G
such that

p(a) = p
By III.1.2, this implies that « and 8 have the same minimal polynomial in
k[x], namely p. Hence, every root of f is a root of p. It follows that

for some n € N,c € k. Since f is separable, n = 1 must hold and so f is
irreducible.

Conversely, suppose f is irreducible in k[z], and o, 5 € X. WTS: I € G
such that ¢(a) = 8. Let F' := k(«), then by II1.1.3, 3 a k-homomorphism
¢ : F— C such that

pla) =p
If L denotes the splitting field of f over k, then by the extension lemma,

i : L — C such that ¢|p= ¢. Since k C L is normal by I11.2.3, it follows
that ¢» € G. Finally,

as required.

]

(End of Day 20)
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4. The Galois Correspondence

4.1. Definition/Remark: Let k& C L be a field extension with Galois group G
(i) If F is an intermediate field, then

GF = GalF(L) <@
(ii) Let
F := {intermediate fields k C F' C L}
G := {subgroups H < G}

Then we have a map

® : F — G given by F — Galg(L)

Question: Is ® injective/surjective?
4.2. Remark:
(i) If F = L, then Galg(L) = {e}
If /' =k, then Galy(L) = G. We visualize this with a tower diagram

L {e}

k G

(i) If Fy C Fy are two intermediate fields, then Galg, (L) < Galp, (L). We visu-
alize this by the tower diagram

L {e}

F2 —o—> GalFZ(L)
@] N

F, —o—> Galp, (L)

k Galy(L)

We say that the map ¢ : F — G is inclusion reversing.

4.3. Examples:
(i) If k = Q, L = Q(+/2), then Galy(L) = Zy. So

o7



(a) F ={Q,Q(v2)} (Example 11.2.7)
(b) G ={{0},Z,}

So we have the diagram
Q(v2) {0}
Q Lo
and & is bijective.

(ii) More generally, if k& C L is a normal extension with [L : k] prime, then we
have

(a) F={k,L} (by I1.2.8)
(b) |G| =L : k], so G = Z,. Hence, G = {{0},Z,}
and & is bijective in this case.

(iii) This is not true if & C L is not normal. Beacause, if k = Q, L = Q(+/2), then
G = {id.}, so
O(k)=o(L)=G

and so ® is not injective in general.
(iv) If k= Q, L = Q(v/2,v/3), then G = {idy, 1, va, @3}, where

p1(V2) = V2 and @1 (V3) = —V3
p2(V2) = —v2 and pa(V3) = V3
©3(V2) = —v/2 and ¢35(V/3) = —V/3

Hence, G has 5 subgroups

g - {{idL}7 <(P1>7 <902>7 <903>7 G}

And, we have

'@liey
Q

253
)

Q
Q
Q

—_ =

=
3
-
(ol
h

—

Q

Hence, ® is surjective.

Question: What is F in this case? Is ® bijective?
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(v) If k = Q,L = Q(¥/2,w), then G = {idp, @1, ..., s}, where
P1(V3) = V3 and (@)

2(V3) = w2 and (e

p3(V2) = w2 and p3(w

p1(V2) = wV2 and 4 (w

@5(\3/5) = w?V/2 and 5 (w

I
€ 8 & & &

)
)
)
)

Hence, we have a table

F o(F)
Q G =53
Q) | (o) = ((23)
Qw) | {p2) =((123))
QwV/2) | (ws) =(((13))
Q(w?V2) | {p2) = (((12))
L {id.}

Once again, ® is surjective, but what is F and is ® injective?
4.4. Definition: For H < G, define the fixed field of H to be

H.=lac pla)=a VpcH}
Note that L € F. Hence, we get a map
U :G — F given by H — L¥

4.5. Remark: Let & C L be any field extension, and G = Galg(L)
(i) If H={e} <G, then LT = L
However, L% may not be equal to k. If k = Q, L = Q(+v/2), then G = {id},
SO
=L#k
(End of Day 21)
(ii) If Hy C H, are two subgroups of G, then L2 C L*1. We visualize this by

G LE Dk

Hy —uv— L2
U N

Hy —u— L

{e} L =1

ie. ¥ is also inclusion reversing.
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4.6. Examples:
(i) If k = Q, L = Q(v/2), then
(a) F ={Q,Q(v2)} (Example 11.2.7)
(b) G = {{0}, 25}

So we have the diagram

Q(v2) {0}
Q Lo
and W is bijective (In fact, ¥ = ®~1) because
L={acL:pla)=a VYypcG}
—{a+bV2:a+bV2=0a—bV2}
={a+bv/2:b=0}
=Q
(ii) W is not injective in general, by Remark 4.5(i).
(iii) If k = Q, L = Q(v/2,v/3), then G = {idy, 1, 2, v3}, where
1(V2) = V2 and ¢1(v3) = —V/3
2(V2) = V2 and p(v3) = V3
3(V2) = —V2 and 3(V3) = —V3

Now suppose H = (1), then
V2 el = Q(v2) c L
Furthermore, if

a:=a+bvV2+cV3+dV6 e L7, then

pi(a) =a
= a+bvV2—cV3—dV6=a+bvV2+cV3+dV6
= cV/3+dV6 =0
=c=d=0
= a € Q(H2)
Since the set {v/3,/6} is Q-linearly independent. Hence,
e — @(\/5)
Similarly, we can compute L for the other subgroups in G to obtain the

table
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H LH
G k
<801> Q(\/i)
(p2) @(\/g)
(p3) @(\/6)

{id.} L

Hence, V¥ is injective, and ® o W(H) = H for all H € G by Example 4.3(iv).
Also, for all the fields listed above,

Vod(F)=F

However, we still do not know JF, so we cannot say if ¥ is surjective or not.
(iv) The same is true if £k = Q, and L = Q(v/2,w) (See HW 7)
4.7. Remark: Let k£ C L be a field extension with Galois group G. Set

F := {intermediate fields k C F' C L}
G := { subgroups H < G}
® . F — G, given by ®(F) := Galg(L)
U:G— F,given by W(H) := L"

Then
(i) ®(k) =G and (L) = {id.}.
U({e}) = L, but ¥(G) # k in general.
(ii) ® and ¥ are both inclusion reversing functions.
(iii) If k = Q, L = Q(v/2), then ® are ¥ are both bijective.

(iv) If £ C L is a finite normal extension with [L : k| prime, then & is bijective,
but we do not know if LY = k. Hence, we cannot say if W is bijective or not.

(v) If k = Q,L = Q(v/2,V/3), then
PoW(H)=H VHEG

However, we don’t know about W o @ as yet.

4.8. Lemma: Let k£ C L be a field extension. Suppose In € N such that [k(«) : k] <n
for all & € L. Then

(i) 36 € L such that L = k(0)
(ii) In particular, [L: k] <n

Note that we do not know, a priori, whether £ C L is a finite extension, so we
cannot directly apply the primitive element theorem.
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4.9.

4.10.

Proof. Let m := sup{[k(«) : k] : @« € L}, then m < n < oo, so 38 € L such that
m = [k(B) : k. We claim that L = k(8): If not, then 3y € L\ k(3), then set
F =k(B,7). Then F C L and

[F K] > [k(B) : k] = m

However, [k(7) : k] < n, so by the tower law, [F : k] < mn so k C F is a finite
extension. By the primitive element theorem, 30 € F' such that F' = k(4). But
then

[k(0) : k] >m

which contradicts the definition of m. Hence, L = k() as required. n
(End of Day 22)

Lemma: Let L C C be a field and G be a finite subgroup of Galg(L). Let F = L¢
be the fixed field of G. If o € L, define

fal@) = [ (@ = ¢(a))

Then f, € F[z]

Proof. Let 0 € G and write f,(z) = ap + a1 + ... + a,2™, then note that

(0" fo)(x) :=0(ag) +o(ar)x + ...+ o(a,)z"

= [[@ - o(e(a)
peG

But the map ¢ — o is a bijection on G, so

(0" fa)(x) = [ (= = ¥(@)) = fal2)

YEG
Hence, if 0 <i < n, a; = o(a;) forallo € G,s0a; € LY = F. Thus, f, € Flz]. O

(Artin’s Lemma): Let L C C be a field and G be a finite subgroup of Galg(L).
Let F' = L% be the fixed field of G. Then

(i) F C L is finite
(ii) £ C L is normal
(ili) Galp(L) =G

Proof. (i) For any a € L, consider f, as defined in the previous lemma. Then,
fa € Flx]. Since deg(f,) < |G|,

[F(a): F] < |G| Va€lL

So by Lemma 5.3, F' C L is finite.
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(ii) Since every ¢ € G fixes F' by definition, we have G C Galp(L). But by
Lemma 5.3, 33 € L such that L = F(f3), so

|Galp(L)| < [L: F] = [F(B) : F] < |G|
by part (i). Hence, G = Galp(L)
|G| = |Galp(L)| = [L : F]

so by Theorem 2.3, F' C L is normal and (iii) holds.
[l

4.11. Lemma: Let k C L be a field extension with Galois group G. Let F,G,®, and ¥
be as above.

(i) For any F' € F, we have
F c L% — o &(F)

(ii) For any H € G, we have
H C Galpu(L)=®0V(H)
Proof. HW. O

4.12. (Fundamental Theorem of Galois Theory - I): Let k& C L be a finite normal exten-
sion of subfields of C with Galois group G. Then

(i) For all F' € F,
F=Vod(F)

(ii) For all H € G,
H=®0WV(H)

In particular, there is a one-to-one correspondence
F <0G
(iii) If F' € F is an intermediate field, then
[F: k] = [Galg(L) : Galp(L)]

We visualize this by a tower diagram

{e}

1

|

T
+

o
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Proof. (i) Let FF € F and H = ®(F) = Galp(L). Then H < G < Galg(L) is a
finite group, so let F' = L¥ = ¥(H). By Lemma 4.11,

FCF
But by Artin’s Lemma, F C L is a finite normal extension with
Galz(L)=H
Since both extensions F C L and F C L are normal, by Theorem 2.3,
[F: L) = | Galp(L)| = |H| = | Galg(L)| = [L : F]

So by the tower law applies to ' C FcC L, we see that F' = F as required.

(ii) Let H € G, and F = W(H) = L¥. Then by Artin’s Lemma, F C L is a finite
normal extension with

(iii) If F € F, then by Tower Law and Theorem 2.3

Lk _ |Caly(L)

L F] ~ |Galp(n)] ~ Gale(E): Galr(L)]

[F: k] =

]

4.13. Corollary: Let k£ C L be a finite normal extension with Galois group G. If a € L

is such that
pla)=a Yoei

then a € k.

4.14. Examples:
(i) Let L = Q(+/2,/3), then the subfields of L are precisely

F ={Q,L,Q(v2),Q(V3),Q(v6)}
(ii) Similarly, if L = Q(\?’/i, w), then the subfields of L are precisely
F ={Q, L,Q(V2), QwV2), Q(w*V2), Q(w)}

The lattice of subfields is
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and the lattice of subgroups is
{id}

o

((23)) ((13)) ((12))

(End of Day 23)

5. Normal Extensions

Throughout this section, let £ C L be a finite normal extension with Galois group

G.
F := {intermediate fields k C F C L}
G := { subgroups H < G}
¢ : F — G, given by ®(F) := Galg(L)
U :G — F,given by W(H) := L

5.1. Theorem: Let F' € F such that k£ C F' is normal.

(i) The restriction map
7 Galg(L) — Galg(F)
is a well-defined, surjective, group homomorphism.
(ii) ker(m) = Galp(L)
(iii) Hence,

GalF(L) < Galk (L)

(iv) And, furthermore,

Gal,(L)/ Galp(L) = Gal,(F)
Proof. (i) Let ¢ € Galg(L), and consider

Vvi=p|p FF—C

Then v is a k-homomorphism. Since k C F' is normal, ¥(F) = F, so ¢ €
Galp(L). Hence the function

7 Galg(L) — Galg(F) given by ¢ — ¢|p
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is well-defined. Furthermore, since both group operations are composition, it
is clearly a group homomorphism.

Now suppose ¢ € Gal,(F), then consider ¢ : F' — C. Since F' C L is finite
(since k C L is finite), by the Extension lemma, 3¢ : L — C such that

olp= 1

In particular, ¢ is a k-homomorphism. Since k C L is normal, ¢ € Galg(L),
and clearly, () = 1. Hence, 7 is a surjective group homomorphism.

(ii) Now note that, for p € Galg(L)
¢ € ker(m) & ¢|p=idp
= Qe G&lF(L>

Hence,
ker(m) = Galp(L)

(iii) Since Galp(L) is the kernel of a group homomorphism,

GalF(L) < Galk (L)

(iv) Furthermore, by the first isomorphism theorem,

Galg(L)/ Galg(L) = Galy(F)

]

5.2. Lemma: Let & C L be a finite extension, F' € F be an intermediate field, and
¥ € Galg(L), then

(i) v(F) e F
(i)
Galw(p)(L) = 1/] GalF(L)¢_1

Proof. (i) It is clear that ¢ (F) is a field [Check!], and since ¢|,= id; and ¥ (L) C
L, it follows that k C ¢(F) C L = (F) € F.

(ii) We prove “D": Let ¢ € Galg(L), and § € ¥(F), then Ja € F such that
B =1(a), so
Yy (B) = ¥(p(a)) = ¥(a) = B

and so Y~ € Galyp)(L), which proves “D”.

For the inclusion “C”: Let K = ¢(F) € F, then by the first inclusion with
1~ playing the role of v, we have

¢~ Galg (L)Y C Galy-1x) (L)
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Since ¢ ~1(K) = F, we have
= Galy(py(L) = Galg (L) C ¢ Galy-1 o) (L)~ = 1 Galp(L)ip!

as required.
m

5.3. (Fundamental Theorem of Galois Theory - II): Let & C L be a finite normal
extension of subfields of C with Galois group G. Then, for any F' € F

k C F is normal iff Galp(L) < Galg(L)

Furthermore, in that case, the conclusions of Theorem 5.1 hold.

Proof. 1f kK C F is normal, then it follows from Theorem 5.1.

Conversely, if H := Galp(L) < Galg(L) =: G, then choose a homomorphism
¢ FF— C. Since k C F C L are finite extensions, by the extension lemma,
I : L — C extending . Since k C L is normal, ¥ € Gali(L). Since H < G, by

Lemma 5.3,
YHY ' = H = Galy ) (L) = Galp(L)

So by FTOG-I, ¥/(F) = F. But ¢|p= ¢, so
p(F)=F
This is true for any homomorphism ¢ : F' — C, so k C F' is normal. O]
5.4. Example: Let k = Q, L = Q(v/2,w)
(i) If F = Q(~+/2), then k C F is not normal, and so
Galp(L) = ((23))

is not normal in Gal,(L) = S5
(i) If F = Q(w), then k& C F is normal, so

Galp(L) 2 ((123))

is normal in S5
5.5. Definition: A field extension k C L is called
(i) abelian if it is finite, normal, and Galy(L) is an abelian group.
(ii) cyclic if it is finite, normal, and Galy(L) is an cyclic group.
5.6. Corollary: Let £ C L be a field extension

(i) If £ C L is an abelian extension, then, for any intermediate field F', both
k C F and F C L are abelian.
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(ii) If k£ C L is a cyclic extension, then, for any intermediate field F', both k C F
and ' C L are cyclic.

(End of Day 24)

5.7. Theorem: Let n € N, ( := €*>™/" then

5.8.

Q C Q(¢)

is an abelian extension. Furthermore, it is cyclic if n is prime. These extensions
are called cyclotomic extensions

Proof. (i) Note that L is the splitting field of the polynomial " — 1 € Q|x], so
k C L is finite and normal. (II1.2.3)

(ii) Now suppose ¢ € G := Gal,(L), then ¢ is completely determined by

(C)
As in Example 111.1.8, 91 < j < n — 1 such that

p(Q) =¢
(iii) Now suppose ¢,1 € G, then 31 <i,j <n — 1 such that
p(¢) = ¢" and (¢) = ¢

Hence,
p(¥(Q)) = ¢ =¥ (p(¢))

Hence, p o1 =1 oy, so G is abelian.

(iv) If n € N is prime, then this follows from I11.1.9
0
Theorem: Let k& C L be finite extensions and 8 € C be algebraic over k. If
k C k(B) is normal, then
(i) L € L(B) is finite and normal
(ii) The map
@ = @ ke from Galp(L(3)) — Gali(k(3))

is injective.
Proof. (i) Let ¢ : L(B) — C be a L-homomorphism. Since k& C L, we may

restrict this map to get

lrs): k(B) = C
and this is a k-homomorphism. Since k£ C k() is normal, ¢(k(58)) = k(5).
In particular,

w(B) € k(B) C L(B)

Since 3 is algebraic over k, it is algebraic over L, and so L C L(3) is a finite
extension. Hence by Lemma III.1.6,

p(L(B)) = L(B)
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(ii) Consider the map

p: Gal(L(B)) — Galg(k(8)) given by ¢ — ¢|xs)

Then this map is well-defined since k& C k() is normal. WTS: p is injective.
So suppose ¢ € Galy(L(3)) such that ;(p) = idy(s), then in particular,

() =8

But since L C L(p) is finite and ¢|,= idy, it follows (as in II1.1.3) that

¢ =1idps)

5.9. Corollary: Let k C C be any field, n € N and ¢ := ¢*"/". Then
(i) k C k(Q) is an abelian extension.

(i) If n is prime, then k& C k(() is a cyclic extension.

Proof. By Theorem 5.8, with k = Q,L = k, 3 = (, we have that £ C k() is a

finite, normal and there is an injective map

Gali(k(€)) — Galg(Q(())

The result now follows from Theorem 5.7. O
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IV. Solvability by Radicals

1. Radical Extensions

1.1. Example:

(i) Quadratic f(x) = ax?® + bz + ¢ € k[z], then
(a) Roots of f are given by the quadratic formula
(b) f splits in the field k(y/r) where r = b? — dac € k

(ii) Cubic f(x) = 2® — a, then
(a) Roots of f are given by a,w/a,w?Va
(b) f splits in the field L = k(/a, w)

(iii) Cubic f(z) = 2® + px + ¢, then

(a) Roots of f are given by Cardano’s formula. If
_ 2 3
Ry B AR B
\/ > TVT T ar

sl—q  |¢* 1P
B = = 4=
\/2 i

Then the roots of f are

S

{A+ B,wA+w?’B,w*A+wB}

(See [Stewart, §1.4.3])
(b) f splits in the field L = Q(w, A, B)
1.2. Definition:

(i) A field extension k C L, is called a simple radical extension if 3o € L,n € N
such that

(a) L =k(a)
(b) a™ €k
Equivalently, if 3a € k such that L = k(«) where « is a root of 2™ — a € k[z]
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(i)

(iii)

A field extension k& C L is called a radical extension if 3 a tower of interme-
diate fields

k=FhcFkFcCckhc...CcF,=1L
such that F; C Fj; is a simple radical extension for each 0 <7 <n — 1.

We say f € k[x] is solvable by radicals if the splitting field F' of f over k is
contained in a radical extension of k

Note: k C F itself need not be a radical extension.

1.3. Example:

(i)
(i)
(i)

(iv)
(v)

(vi)

(vii)

k C k is simple radical.

Q C Q(+/2) is simple radical.

If £ C L is an extension of degree 2, then

(a) L = k(y/r) for some r € k (See Corollary I11.2.6)

(b) Hence, k C F' is a simple radical extension

(¢) So any quadratic polynomial f € k[x] is solvable by radicals.
Q C Q(v/2) is a simple radical extension.

Ifn € N, Q C Q(e?™/™) is a simple radical extension. Hence, 2" —1 is solvable
by radicals.

Q C Q(¥/2,w) is a radical extension, because if F = Q(w), then
QCcFclL
is a chain of simple radical extensions. Hence,
fla)=a® —2

is solvable by radicals over Q.

Qc Q(\/Z \/3) is a radical extension, but is not a simple radical extension.

Proof. Suppose Ja € L := Q(+v/2,v/3) and n € N such that a := o € Q and
L = Q(«). Let p(z) € Q[z] be the minimal polynomial of o over Q. Then
p(z) has a root in L, and Q C L is normal. Hence, by I11.2.8, p(z) must split
in L. Furthermore, p(z) | 2" — a € Q[z]. Hence, if 5 € L is any root of p(x),
then z := 3/« satisfies

2" =1

But since z € L C R, it follows that 2 = +1. Hence the only possible roots
of p(z) are {+a}. However, deg(p) = [L : Q] = 4, and p is separable by
Corollary I1.4.4. This is a contradiction. O]

(End of Day 25)
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1.4. Theorem: If k£ C L is a finite, radical extension, then there is an extension k C
L C M such that & C M is finite, normal and radical.

Proof. Write
k=LycliCl,C...CL,=1L

where L;1 = L;i(o;) and a; := " € L;. Hence,
L=k(ay,ag,...,ap)

Let f; denote the minimal polynomial of «; over k, and let
f@) =[] filx) € klz]
i=1

and let M denote the splitting field of f over k. Then by Theorem I11.2.3, k C M
is a finite, normal extension. We claim that & C M is radical. For this, let
{Bi; 1 <1 <k} be the set of complex roots of f; in C, then

M = k({Bi;})
and consider the subfields
F() - k‘

Fl = k(ﬂl,bﬁl,?a <. 7Bl,k:1)
Fy = Fi(Ba1,B22s - -+, Boks)

Fn - Fn—l(ﬁn,bﬁn,% cee aﬁn,k’n) =M

It now suffices to show that F;,_; C F} is a radical extension for each 1 < i < n.
To see this, it suffices to show that

Bl el V1<j<k (%)
Now for 1 < j < k;, then there is a k-isomorphism
ki) = k(Biy)
by Corollary I1.1.10. By the Extension lemma, this extends a homomorphism
¢+ F; — C such that ¢|,=id) and ¢(a;) = 5,

Hence,
B = (i) = pla;) € o(Ly)
But L; = L;—1 (1) C F;—1 (by induction on 7). Hence,

Bl € p(Fi1)
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1.5.

1.6.

Finally, note that £ C F;_; is a normal extension since F;_; is splitting field of the
polynomial [,_, f; € k[z]. Since ¢ is a k-homomorphism,

Bl € Fia

This proves (%) and hence F;_; C Fj is radical for each i, and so k C M is also
radical. O

Corollary: Let k& C C be a field and f € k[x| with splitting field L. Then f is
solvable by radicals iff 3 a field extension k¥ C L C M such that £k C M is finite
normal and radical.

Theorem: Let & C C be a field, and let n € N. Let M be the splitting field of
f(z) = 2™ —a € k[z], and set F = k() C M where ( = e*™/"  then

(i
(ii

(i

k C FF C M is a tower of simple radical extensions.
Galp(M) < Galg(M)

Galp(M) is abelian

Gal,(M)/ Galg(M) is abelian

~— ~— ~— —

(iv
Proof. Let a € C be any root of f(z), then
M = k(a,¢) = F(a)
(i) WTS: Galp(M) < Galg(M). By FTOG-II, this is equivalent to showing that

k Ck(C)

is normal. This follows from Corollary II1.5.9.

(ii) Note that M = F(«a). If ¢ : M — C is an F-homomorphism, then ¢ is
completely determined by

B = ¢(a)
Since f is another root of f(z) in C, it follows that 30 <1 < p — 1 such that
B="Ca

Now if p, 9 € Galgp(M), then 30 <i,7 < p — 1 such that
pla) =('a and Y(a) = (a
Since ¢ € F,p(¢) = ¢¥(¢) = ¢, and so
pot(a) =p(a) =(a=vopa)
This implies that ¢ 01 =¥ o ¢ in Galp(M), and so Galgp(M) is abelian.
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(iii) By FTOG-II,

and F' = k(¢). Now, k C F is abelian by Corollary IIL.5.9.

1.7. Examples:
(i) If f(x) =22 — 2, then F = k = Q, M = Q(+/2), so Gal,(M) is itself abelian.
(ii) If f(x) = 2® =2, then k = Q, F = Q(w), M = Q(¥/2,w), so (Example I11.1.8)

Galp(M) = ((123)) < Sy

Also, Az and S3/A3 = Zy are both abelian.
(iii) If f(z) = 2* — 2, then k = Q, F = Q(i), M = Q(v/2,1), so (Example I11.3.6),

Hence, Galp(M) is abelian, and so is Dy/((1234)) = Zs

2. Solvable Groups

2.1. Definition: Let G be a finite group.

(i) A normal series for G is a tower of subgroups
G=Gy>G >Gy>...>Gp 1 >G, ={e}

such that G; <1 G;_; for all 1 <i <n.

(ii) Given a normal series as above, the quotient groups G,_1/G; are called the
factor groups of the series.

(iii) G is said to be solvable if it has a normal series whose factor groups are all
abelian.

2.2. Examples:
(i) Every finite abelian group is solvable.
(i) S5 is solvable
(iii) If |G| = 8, then G is solvable. (In particular, Dy is solvable)

Proof. 1f |G| = 8, then by the Sylow theorems, G has a subgroup H of order
4. Since
G: H|]=2

H < G. Furthermore, H is abelian, and G/H = 7Z, is also abelian. O

(iv) Sy is solvable.
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Proof. Let G1 = Ay < 54 and let
Ga = Vi = {e, (12)(34), (13)(24), (14)(32)}
Then Gy < Ay since Gy <1 Sy [Check!], and so
Sy > Ay > Vy > {e}

is the required normal series. O]

(v) Let £ € C, n € N, and let M be the splitting field of 2™ — a € k[z]. Then
Galg (M) is solvable (by 1.6)

(End of Day 26)
2.3. Theorem: Let G be a solvable group and H < G, then H is solvable.

Proof. Let
G>G >Gy>...>G,={e}

be a normal series with abelian factors, then if H; := H NG, then

(ii) Consider
JU Hi—l/Hz' — Gi—l/Gi given by zH; — ZEGZ

Then p is well-defined because if *H; = yH; for some z,y € H; 1, then
x,y € G;_1 and

Ly € H; :>y_1{L‘ e G; = z2G; :sz

-
(iii) Furthermore, p is injective, because if x,y € H;_; such that 2G; = yG;, then
ylreGiandy v € H=y 'a € H; = xH, = yH,
Hence, the factor groups of the normal series

H>Hy>Hy>...>H,={e}

are all abelian.

2.4. Lemma: If H < G and K < G, then
(i) HK = KH
(ii) HK < G

Proof. (i) If he H,k € K, we WTS: hk € KH. Since, H < G, so k™'hk € H,
hence dhy; € H such that

k'hk = hy = hk =kh, € KH

Hence, HK C KH. By a similar argument, we see that KH C HK as well.
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(ii) fz,y € HK, we WTS: zy~' € HK, so write
x = hiky,y = hoks for hq,hy € H, and ky, ko € K
Then
vyt = hikikythy !
Since HK = KH,3k € K, h € H such that
hikiky' = kh
and so
vy ' =khhy;' € KH = HK
Hence, HK < G

2.5. (Second Isomorphism Theorem): Let G be a group, H < G and K < G, then
(i) HhK < K
(i)
K _HK
HNK H
Proof. (i) This is trivial since H < G
(ii) Since K C HK, we may define a map

7 : K — HK/H by the composition K — HK * HK/H

Now note that
r€ker(nr) & re Kand aH=H
SreKandrxe H
SreHNK
Hence by the first isomorphism theorem, we get (ii)
[l

2.6. (Third Isomorphism Theorem): Let G be a group, H, K < G such that H C K,
then

(i) K/H < G/H
(i)
G/ G
K/H K
Proof. (i) If xtH € K/H and yH € G/H, then note that
rceKyeG=yry ' €K

and so (yH)(zH)(yH)™' € K/H since the map = + xH is a group homo-
morphism.
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(ii) Define pu: G/H — G/K given by
xH — oK

Note that this map is well-defined because H C K. Furthermore, it is a
surjective group homomorphism, and

zH €ker(p) 2K =K<xe K<«<zH e K/H

Hence, ker(u) = K/H and we are done by the first isomorphism theorem.
[

2.7. Theorem: Let G be a solvable group, H < G, then G/H is solvable.
Proof. If G is solvable and H < G, then consider a normal series
G=Gy>G >Gy>...>G,={e}
with abelian factors. Since H < GG, by Lemma 2.5,
G:H<G
and H <1 G;H since H <1 G. Now consider the groups
G, =G;H/H
Then note that G;H < G;_1H. Also, since H < G, and G; < G;_1, we have
GH < GH
Hence, by the Third isomorphism theorem
G <G

Now we claim that G;_; /a is abelian. To prove this, we show that there is a
surjective homomorphism

Gio1/G; — Gz‘—1/€z‘
Define 7 : G;_1 — G;_1 by

Gi,1 — Gile 1) szlH/H

Then 7 is surjective [Check!]. Let u: G;—1 — Gi,l/@ be the natural quotient map,
then p is also surjective. Hence the composition defines a surjective homomorphism

ni=pom:Giy — Gi_1/G;
Furthermore, if x € Gy, then pon(z) = u(zH) =€, and hence

G, C ker(n)
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2.8.

2.9.

2.10.

Hence, we get an induced map

7:Gi—1/Gi — GH/Q

which is also surjective. In particular, G;_; /G; is abelian, and so
G/H>G, >Gy>...>G, ={e}
is a normal series for G/H with abelian factors. O

Theorem: Let G be a group and H < G. Then, G is solvable iff H and G/H are
both solvable.

Proof. (i) If G is solvable and H < G, then H and G/H are solvable by 2.3 and
2.9.

(ii) Conversely, assume that H and G/H are solvable. WTS: G is solvable. By
hypothesis, there exist two normal series

H=Hy>H, >Hy>...>H,={e} and
G/H=Ty>T,>T,>...>T, ={¢}
Let 7 : G — G/H is the natural quotient map, then consider
Gi=nNT) ={r€G:n(x) € Tj}

Then
G:G0>G1>G2>...>Gm:H

is a normal series and
Gi_1/G; = T;_1/T; is an abelian group
by the Third isomorphism theorem. Hence, we obtain a normal series
G=Gy>G >Gy>...>G,=H=Hy>H >Hy>...>H, ={e}

each of whose factors is an abelian group.
O

(End of Day 27)
Definition: Let £ C L be a simple radical extension. We say that & C L is of

prime type if da € L and p € N prime such that

L =Fk(a) and o € k

Lemma: Let £ C L be a radical extension, then 3 a tower of intermediate fields
k=FyCF,C...CF,=1L

such that each F; C Fj,; is a simple radical extension of prime type.
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Proof. We may assume WLOG that & C L is a simple radical extension, and write
L = k(«) such that
a:=a" € k for somen € N

We induct on n.
(i) If n is prime, we are done.
(ii) If n is not prime, then choose p € N prime such that p | N, then consider
8= am/P
and F' = k(). Then k C F is a simple radical extension of prime type, and
FCL=F(a)
is a simple radical extension such that o™? € F. Since |n/p| < n, we may
apply the induction hypothesis, and complete the proof.
]

2.11. Theorem: Let k C M be a finite normal and radical field extension, then Galy (M)
is solvable.

Proof. Suppose k C M is a finite normal and radical extension, let G := Galg(M).
Write a series of intermediate fields

k=FCFCF,C...CF,=M
such that each intermediate extension F; C Fjy; is a simple radical extension of
prime type. We proceed by induction on n.
(i) If n =1, then
M = k(a) where a :=o” € k

Consider f(x) := 2P —a € k[z], and let g(z) € k[x] be the minimal polynomial
of a over k.

(a) Assuming WLOG that o ¢ k, deg(g) > 1, and ¢ has a root « in M.
Since k C M is normal, g splits in M (I11.2.8)

(b) Let 5 € M be any other root of g in M, then f(8) = 0 since g | f in
k[x]. Hence,
s

C::EEMandezlanngél

(¢) Now consider
':={0eM: P =1}
Cp={CeC:¢?=1}

Then, C, is a cyclic group of order p, and I' < C,. By part (b), I # {1},
and so

r=C,
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(d) Hence, f splits in M. Since M = k(a), M is the splitting field of f over
k. Thus, Gal,(M) is a solvable group by Theorem 1.6

(ii) If n > 1, then

(a) Consider
Fl = k:(al) with a :=aof € k

As in part (i), ¢ = €*™/P € M, and so
L=F()cM

is a finite, radical extension of M which is also normal (since L is the
splitting field of 2P — a € k[x]).

(b) Furthermore, Galg(L) is solvable by Theorem 1.6.
(¢) Now consider

Then each intermediate step is a simple radical extension of prime type,
and L C M is normal. Furthermore, there are n — 1 terms in this series.
Hence, by induction hypothesis,

Galz (M) is solvable

(d) However, k C L is a normal extension, so by FTOG-II,
Gal, (M) < Galg(M) and Gal,(M)/ Gal, (M) = Galy(L)
Hence, by Theorem 2.8, Galy (M) is solvable.
0

2.12. Corollary: Let k C C be a field and f € k[z]. If f is solvable by radicals, then
Galg(f) is a solvable group.

Proof. If f is solvable by radicals, then let L denote the splitting field of f(x), and
let M be a field such that
kEkCcLcM

and k C M is a radical extension (by Corollary 1.5). By Theorem 2.10, Galg(M)
is a solvable group. Furthermore, & C L is a normal extension (III.2.3), and so
Gal, (M) < Galg(M) and

Galg(M)/ Galy (M) = Gali(L) = Galg(f)
In particular, Galy(f) is a quotient of Galg(M), and so it is solvable by 2.7. [

(End of Day 28)
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3. An

Insolvable Quintic

3.1. Definition: A group G is said to be simple if it has no normal subgroups other
than {e} and G.

3.2. Examples:

(i) Z, is simple

(ii) If G is an finite, abelian simple group, then G = Z, for some prime p € Z

Proof. 1f G is finite abelian, and p | |G|, then by Cauchy’s theorem, 3H < G
such that |H| = p. Since G is abelian, H < G. Since G is simple, H = G and
we are done. O

(iii) If G is a solvable simple group, then Jp € Z prime such that G = Z, (HW)
3.3. Remark:

(i) If 7 € S, then 7 can be express as a product of disjoint cycles. If 7 =

0103 ...0} is the cycle-decomposition of 7, then

o(1) = lem(o(01),0(09), . ..,0(0k))

(ii) In particular, if p := o(7) is a prime number, then 7 is a product of disjoint

(iii)

(iv)

p-cycles. Furthermore, if 7 € S, has order p, then 7 is a p-cycle.

If 7 € S,, then 7 can be express as a product of (possibly not disjoint)
transpositions.

A, is the collection of those 7 € S,, that can be express as a product of an
even number of transpositions.

Note that |A5| =5!/2 =60 =15 x 3 x 22 For p € {2,3,5}, define
C,={r€A;5:0(r) =p}
Then C, # () by Cauchy’s theorem. And, by part (ii),

Cy = {(ab)(cd) : {a,b,c,d} are distinct}
C3 = {3-cycles in Sy}
Cs = {5-cycles in Sy}

Let 7 € As, then 7 can be expressed as a product of disjoint cycles, whose
lengths add up to 5 (including cycles of length 1, ie. fixed points). The only
possibilities are:

(a) A 5-cycle
(b) A 3-cycle
(c) A product of 2 disjoint 2-cycles
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(d) A 4-cycle
(e) A 2-cycle

Of these, the first 3 are in As, while the next two are not. Hence,

A5:{6}UCQU03UC5

3.4. Lemma: Let {ai,as,...,a5} C {1,2,...,5}, then

(061, @276137@47@5) = (a17a5)(a17 a4)(a1,a3)(al,a2)

) (ahas)(ahaz)

(al,a4)(a2,a5) = (al,aQ,a3,a4,a5)(a1,a3,a2,a4, CL5)
)= (

ap, ag, a3)(a/17 a2, a4)
Proof. [Check!] O
3.5. Lemma [See [Online Notes|]: If p € {2, 3,5}, then Aj is generated by C,.

Proof. (i) If p = 2: Let H := (C3). Then by Remark 3.3(v), it suffices to show
that
CsuCsCH

(a) If 7 € C5, then write

T = (al,ag,ag,a4,a5)

= (a1,as)(ay, a4)(a1, as)(a, as)

= ((a1, as)(az, a3))((az, az) (a1, as))((a1, as)(aq, as))((as, as) (a1, az))
eH

(Lemma 3.4)

(b) If 7 € C3, then write

T = (a1, ag, as)
= (a1, az)(as, a3)
(Lemma 3.4) = ((a1, a2)(ay, as))((a, as) (a1, as))
e

(ii) If p = 3: Write K = (C}), then by part (i), it suffices to show that
Co CK

But this follows from the fourth formula of Lemma 3.4.
(iii) If p =5, we use the same argument with the third formula in Lemma 3.4.
]
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3.6. Lemma: Fix p € {2,3,5}. For any 7,0 € C,,30 € A5 such that
T =006""
Proof. (i) If p = 2, we assume WLOG that 7 = (12)(34). Write

o = (a1,az)(as, as)

Then consider a5 € {1,2,3,4,5} \ {a1,as, as,as}, and write

9::(1 2 3 4 5) ()
ay a9 as3 a4 as

Then [Check!] §~'c6 = 7. Now define
5= 0 NS A5
T 100(12) :6¢ A

So6 = (12)7(12) =7

Then § € As, and

(ii) If p = 3, we assume WLOG that 7 = (123). Write
g = ((],1, as, a3)
As in part (i), 30 € S5 such that

o' =1

5 L (9 : (9 € A5
" 100 (45) :6¢ As
and this § works.

(iii) If p =5, we assume WLOG that 7 = (12345), and write

Now take

g = (ala Ao, a3, Qy, a5)
Then 6 (as in (x) above) satisfies
0o ' =1

However, [Check!] § € A5 and hence § = 6 works.

3.7. Theorem: Aj is a simple group. In particular, As is not solvable.
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Proof. It H < As, and H # {e}, then |H| | |A5| = 60 implies that for some
p€12,3,5},
p|As

By Cauchy’s theorem, 37 € HNC,. However, any two elements of C, are conjugate
in A5 by Lemma 3.6. Since H < Aj

C,CH
and so A; = H by Lemma 3.5. O
(End of Day 29)
3.8. Corollary: S, is not solvable for n > 5

Proof. If n > 5, then A; < S5 < S, so this follows from Theorems 3.7 and 2.3. [

3.9. Lemma: Let p € N be prime and suppose G < S, is a subgroup that contains a
p-cycle and a transposition, then G' = 5,

Proof. 1f p = 2, then Sy = Z, and there is nothing to prove. So assume p is an
odd prime.

Let 7 = (a,b),0 = (a1, a9, ...,a,) € G.

(i) By relabelling, we may assume that 7 = (1,2). Since o(a1) = as,0%(a;) = as
and so on, it follows that, 31 <4 < p such that ¢%(1) = 2. Since o' € G, we
may assume that o = (1,2, a3, a4, ...,a,). Again, relabelling, we may assume
that

7=(12) and 0 = (1,2,...,p)

(ii) Note that,

and so on. Hence,
{(172)7 (273>7 (374)7 ey (p - 17p)7 <p7 1)} C G

(iii) Note that,

and so on. Hence,

{(1,2),(1,3), (1,4),...,(1p)} C G
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(iv)

Note that, if 1 <4,j < p with ¢ # j, then
(1,7) = (Li)(1,j) €G

and so G contains all transpositions. By Remark 3.3(iii), G = 5,
O

3.10. Theorem: Let p be a prime and f an irreducible polynomial of degree p over Q.
Suppose f has precisely two non-real roots, then Galg(f) = S,

Proof. Let L denote the splitting field of f, and G := Galy(f)

(i)

Since f is irreducible, f has exactly p roots, by 11.4.4, {a;, a9, ..., a,} in C,
and hence in L. Consider the action of G on the p-roots {ay, s, ..., a,} of
f given by Theorem III.3.5. This gives an injective homomorphism

G — 5,

so we assume G < S),.

Since f is irreducible, p | |G| by HW 6.5. By Cauchy’s theorem, G has an
element 7 of order p. By Remark 3.3(ii), 7 is a p-cycle.

Since f has two non-real roots, consider the map
j:C—Cgiven by 2z — 2z

and restrict it to L. Since Q C L is a normal extension, j(L) = L, so
j € Galg(f). Note that
j2 = ldL and j 7é ldL

since f has non-real roots. Since f has exactly two non-real roots
JjeSs,

is a transposition.

(iv) Thus, G contains a transposition and a p-cycle. By Lemma 3.9, G = S,,.

O

3.11. Example: Let f(x) = 22° — 52* + 5 € Q[z], then f is not solvable by radicals.
Proof. We claim that G := Galg(f) = S;.
(i) f is irreducible in Q[x] by Eisenstein’s criterion with p =5
(i) f'(x) = 102* — 202% = 1023(z — 2). So f'(z) =0iff z =0 or x = 2.
(iii) f”(z) = 4023 — 602 = 202%(2x — 3). Hence,

f"(0) =0 and f"(2) <0

So x = 2 gives a local minimum of f, and f(2) = —11
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(iv) At © = =6, f'(x) > 0 and at © = +9, f(z) < 0 (for § > 0 small). Hence
z =0 is a local maximum of f, and f(0) =5 > 0.

(v) Since f is an odd degree polynomial, lim, 1, f(x) = +o0. So,
(a) f increases from —oo to 0, cutting the X-axis once along the way.
(b) f decreases from 0 to 2, cutting the X-axis once along the way.
(c) f increases from 2 to +oo, cutting the X-axis once along the way.
Thus, f has 3 real (and hence 2 non-real roots).

Thus, Galg(f) = S5 by Theorem 3.10. O

3.12. Remark:

(i) Example 3.11 indicates that the polynomial cannot be solved by radicals.
However, the roots can be found by other methods.

(ii) Abel-Ruffini proved the existence of an insolvable quintic. Example 3.11 is a
constructive proof of this theorem.

(iii) There may be other quintics which can be solved by radicals. (For instance,
x® —2 € Q[a])

(End of Day 30)

4. Galois’ Theorem

(Taken from [Rotman] and [Yoshidal)
Note: Throughout this section, for each p € N prime, write ¢, := ¢*/? € C.

4.1. Lemma: Let G be a finite solvable group, then there is a normal series
G=Gy>G >Gy>...>G, ={e}

such that, for each 0 <i<n—1
(i) Gi1 < G,
(ii) G;/G,y1 is a cyclic group of prime order

Note: Compare this to Lemma 2.10

Proof. Write
G:G0>G1>G2>...>Gn:{€}

where each G;11 < G; and G;/G;1 is abelian. Fix 1 < i < n, and we induct on

m = |Gi/Gi+1|
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4.2.

If m is prime, there is nothing to show. If m is not prime, then choose a prime
p | m, then by Cauchy’s theorem, 3H < G;/G;41 such that |H| = p. Since G;/G;44
is abelian, H < G;/G;11. Let

T GYZ — Gi/Gi—H

by the quotient map. Then H := 7 '(H) < G; and, in fact, H < G; [Check!].
Now consider the normal series

G; > H> Gii1

By the Third isomorphism theorem,
7= GGl _m

|H/Gia] P
and hence [H : Gi41] = p. Since

m/p <m
we may use the induction hypothesis, to obtain a series
Gi/H=FKy>K, >Ky>...>K ={e}

such that each K; 11 < K and [Kj : Kj4] is prime for each 1 < j < ¢ —1. Now
consider

K; =7 (K;) where 7 : G; — G;/H is the quotient map

Then it follows that I?]Z < f(\J and by the Third isomorphism theorem,

—_

[K; : Kj41] is prime
Finally, note that I/(\O = (; and E = H. Hence we get a normal series
Gi:[/<\()>[/(>1>...>EI?I>Gi+1

with each factor being of prime order. Repeating this process for each 1 < ¢ <
(n — 1) gives us the required result. O

Lemma: Let F' C L be a finite normal field extension and p € N prime. Suppose
that

(i) ek
(ii) o € Galp(L) has order p
Then Jo € L* such that o(a) = (ya.
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4.3.

Proof. (i) Consider o : L — L as an F-linear transformation. Then, we wish

(iii)

to show that (, is an eigen-value of . To this end, let ¢ € F[z] denote the
minimal polynomial of ¢. Since

of = ldL

it follows that
q(z) | (2" —1) in Flz]

Let A denote the set of roots of ¢ in F, then

A C {1’Cpa<ﬁ7 . 'an_l} = :up

We now wish to show that ¢, € A.

We claim that A is a subgroup of p,: To see this, fix A\, x € A, then 30 #
a, 8 € L such that
o(a) = Aa and o(B) = up

Since o is a field homomorphism,
0(045) = \paf and a(ofl) — O'(a)fl I

and so A, \™' € A, making A a multiplicative subgroup of .

But || = p, s0
A={1} or A =p,

However, if A = {1}, then ¢(z) = z — 1 and so ¢ = id; contradicting the
assumption that ¢ has order p in Galp(L). Thus,

A= pp

and, in particular, (, € A as required.

O

(Kummer’s Theorem): Let F' C L be a finite normal extension and p € N prime.
Suppose that

(i) GeF
(i) Galg(L)=Z,
Then Ja € L such that L = F(«) and of € F.

ie. I' C L is a simple radical extension of prime type.

Proof. Let o denote a generator of Galg(L), then by the previous Lemma, Ja € L*
such that o(a) = (ya.
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(i) We claim that L = F(«): To see this, let
H = Galp(a) (L) < GalF(L)

and note that ' 4
o'la) =Qa#a ViI<i<p-1

Hence, '
o'¢ H Vi<i<p-1

Since Galp(L) = {¢": 0 <14 < p— 1}, it follows that
H = {id;}
Since F(«) C L and F' C L is normal, it follows from FTOG-I that

F(a) =L = i} — [,

(ii) We claim that: a := o € F. Note that
7(@) = o(a”) = (@) = o = " =
Since Galp(L) = (o),
vla) =a Yy € Galp(L)
By Corollary 4.13, a € F'.
0

(End of Day 31)

4.4. (Galois’ Theorem - Special Case): Let k C L be a finite normal extension such
that Galg(L) is solvable. Assume that, for every prime p € N,

p||Galg(L)| = (, € k

Then k£ C L is a radical extension.

Proof. Let G := Galg(L), then we induct on n := |G|.
(i) If n is prime, then this is Kummer’s theorem.

(ii) If n is not prime, then by Lemma 4.1, there is a normal series
G=Gy>G >Gy>...>G,={e}

such that G411 < G; and G;/G;4 is of prime order. In particular, if H := Gy,
then
p:=1[G: H|

is prime.
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(iii) Let F := L then we have a tower of extensions
kCcFCL

Furthermore, since H <1 G,k C F' is a normal extension by FTOG-II.
(iv) Since p | |G|, ¢, € k C F by hypothesis. Furthermore, since
G/H = Gal,(F) = |Galg(F)| =p
Hence by Kummer’s theorem, & C F' is a simple radical extension of prime

type.

(v) Now note that
FclL

is a normal extension by HW 6.3. Furthermore,
Galp(L) < Galg(L)
and so Galp(L) is solvable by Theorem 2.3. Also,
Gl n

Finally, for every prime ¢ | | Galp(L)],
q | | Gal(L)|

and so ¢, € kK C F. Hence, the extension F' C L satisfies the hypothesis of
the theorem, so by induction, F' C L is a radical extension.

(vi) By (iii) and (iv), k¥ C L is a radical extension.
0

4.5. (Accessory Irrationalities): Let k C L be a finite normal field extension and g € C
is algebraic over k. Then

(i) k(B) C L(B) is a finite normal extension
(ii) The map
Galys) (L(B)) = Galy(L) given by ¢ — ¢
is a well-defined injective homomorphism.
Proof. (i) If ¢ : L() — C is a k(/8)-homomorphism, then restriction gives
ol L —C
is a k-homomorphism. Since & C L is normal,
p(L) =L
Since 8 € k(5), p(8) = 8 € L(B). Since
L(B) = span, (1, 8,...,5"7")  (¥)
we have that ¢(L(5)) = L(B) as required.
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4.6.

4.7.

4.8.

(ii) Let p be the map defined in (ii). Then, p is well-defined since k C L is
normal (as in part (i)), and is clearly a group homomorphism. Now suppose
¢ € Galyg) L(5) is such that

plp) =idg

Then, note that p(8) = B since ¢|x)= idk@s), and so by the description of
L(5) in (), we have that

p =idre
and hence p is injective.
O

(Galois’” Theorem - General Case): Let k C L be a finite normal extension such
that Galg(L) is solvable, then 3 a field M such that k C L C M and &k C M is
radical.

Proof. Let G := Gal,(L),n := |G|, then consider 8 := €?™/" then 3 is algebraic
over k since Q C k. Consider the field extension

k(B) < L(B)
and let G := Galys) L(B), then by Theorem 4.5, k() C L(f) is a finite normal

extension, and there is an injective homomorphism
GG
Hence, by Theorem 2.3, G is solvable. Furthermore, if p € N is prime, then
pl1Gl=p| |G| = ¢ = 5" € k(B)

Hence, by Theorem 4.4,
k() € L(B)

is a radical extension. However,
k Ck(B)
is clearly a simple radical extension. Hence,
kC L(B)=M

is a radical extension O

Corollary: Let k£ C C and f € k[z]. Then f is solvable by radicals iff Galy(f) is a
solvable group.

Proof. Corollary 2.12, and Theorem 4.6 (with L being the splitting field of f) O
Corollary: Let k C C and f € k[x] have degree < 4, then f is solvable by radicals.
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4.9.

Proof. By Theorem I11.3.5, Galg(f) is isomorphic to a subgroup of S;. Sy is
solvable by Example 2.2(iv), and so Galg(f) is solvable by Theorem 2.3. Hence, f
is solvable by radicals by Theorem 4.6. [

Corollary (Abel): If f € Q[z] has an abelian Galois group, then f is solvable by
radicals.

Proof. Theorem 4.6 + Example 2.2(i). O
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V. Galois Groups of Polynomials

1. Cyclotomic Polynomials

1.1. Definition: Fix n € N
() 1= e2milm
(i) pn = {0 <k <n—1} = (G)
Note: u, is a cyclic group of order n.
(iii) Elements of p, are called roots of unity.

(iv) Generators of p, are called primitive root of unity. The set of primitive n"
roots of unity is denoted by A,,. Hence,

An ={C € pn 2 0(Q) = n}

(v) Q(puy) is the splitting field of 2 — 1, and is call the n'* cyclotomic field.
(vi) If G is a group, then Aut(G) = {¢ : G — G : ¢ is an isomorphism}.
1.2. Theorem: Let k C C be any field, then

(i) k C k(uy,) is a finite normal extension.

(ii) The map
[': Galg(k(pn)) — Aut(u,)
given by
(p = gp|l~"n

is a well-defined injective homomorphism.

Proof. (i) Since k() = k(¢,), this follows from Corollary I11.5.9.
(ii) If ¢ € G := Galy(pn), then for any a € pp,

p(@) € in
by Lemma II.1.2. Hence, we obtain a map
Q= 90|;Ln5 M =7 fn

Since ¢ is injective, so @, and hence, @ is also surjective. It is clearly a

group homomorphism since ¢ is a ring homomorphism. Hence, the map I is
well-defined.
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(iii) Furthermore, I' is injective, because if ¢ € G, then ¢ is completely determined
by ©((n) = (). Hence, if ¢, 1 € G such that

~

p=1v
Then ¢(¢,) = ¥(¢,) and so ¢ = ¢ (as in Example I11.1.8(vii))
[
(End of Day 32)

1.3. Recall:
(i) If Ris aring, R* = {u € R: 3v € R such that uv = 1}.
(ii) R* is a group under multiplication, call the group of units of R.

(ifi) If R = Z,, then

R ={acZ,:(a,n) =1}
1.4. Theorem: Aut(u,) = Z*
Proof. 1f a € Z such that (a,n) = 1, define

Vot fn = iy given by ¢+ (°

(i) Then, v, is a well-defined homomorphism.

(ii) 1, is injective, because 3k, ¢ € Z such that

ka+tn =1
And so if A\, € pu, such that
Ca — )\a
Then (since (" = A" = 1), it follows that
C=A

(iii) Since v, is injective and p, is finite, it is also surjective, and hence is an
isomorphism.

(iv) Now note that if @ = b in Z*, then 3k € Z such that
a="b+kn

and so
Cang VCEMn:>¢a:¢b

Hence the map
A:a— i, from Z; — Aut(u,)

is well-defined.
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(v) A is injective: If @, b € Z* such that v, = v, then

e?ma/n _ e2mb/n

and so 3k € N such that

—b _
70 k=a=0

n
and hence A is injective.

(vi) A is surjective: If f € Aut(u,), then Ja € Z such that

f(G) =G
Similarly, if g = f~!, then 3b € Z such that
9(G) = ¢,
Composing, we see that
® _ ¢, = 3k € Z such that 2L —j
G =G
n

Hence, (a,n) =1 and so @ € Z! and f = 1), as required.

1.5. Corollary: Let n € N
(i) If (a,n) =1, and ¢ € A, then (* € A,,.
(i)
A, = {e¥™/" . 4 € Z such that (a,n) = 1}
Proof. HW
1.6. Definition: The n'® Cyclotomic polynomial is defined as

Cu(2)= [[e-O= ] @-e&mm

CeEA, 0<a<n,(a,n)=1

Note that
deg(®,) = [Z,| = ¢(n)
where ¢ denotes the Euler-Phi function.
1.7. Lemma: For any n € N,z" — 1 =[], ®4(z)

Proof. If d | n and ¢ € C is a primitive d* root of unity, then
(P=1=("=1

Hence,
Ud|nAd - Hon, (*)
Conversely, if ¢ € p,, then let d := o(¢) as an element of p,,. Then

d | pn| =mn
and clearly, ¢ € A;. Hence, equality holds in (), and the theorem follows.
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1.8. Examples:
(i) ®1(z) =2 —1
(ii) If p € N prime, then ®,(z) = 2P '+ 2P 2+ ... + 2 +1
(i) Pa(2) = G50y = 22 + 1

z—1)(z+1)
: o 26—1 .2
(iv) @6(7) = e = ¢ ¢+ 1
(V) (I)g(ib') = m = 32'4 +1 (See QUiZ 2, Question 2)

1.9. Theorem: ®,, is monic and in Z|x]

Proof. We induct on n
(i) If n =1, then it is clearly true.

(ii) If n > 1, then assume the result is true for m < n. Then consider
f):= 1] ®al»)
djn,d<n
Then f € Z[z], and is monic by induction, and by Lemma 1.8,
2" —1= f(z)®,(x) in C[z] (%)
This implies that ®,, is monic, so write
®, (1) = agtarz+. . . Aap, 2™ ™ and f(z) = bo+bizt. . Abp 2" a2k

where m + k = n. Note that, by induction, we may assume that by = +1.

(iii) Note that
apbg = —1l and by = £1 = qp € Z

(iv) So to prove a; € Z, we assume by induction that a; € Z for all 0 < ¢ < j.
Since j < k — 1, the coefficient of 27t* is given by

agbjir + arbjip—1 + ... +aj_1by +a; =0

By hypothesis, every other term in the sum is in Z, and so a; € Z as well,
since Z is a ring.

[l
(End of Day 33)

1.10. Recall: Let k be any field, f € k[z], then
(i) Write
flz) =ao+a1x+ ...+ aya”
We may define D(f) as before as
D(f)(z) = a1 + 2asx + ...+ na,z"*

Then note that D(f) € k[x] as well.
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(ii) Leibnitz’ rule holds here as well: If f(x) = g(z)h(x), then
D(f)(x) = D(g)(x)h(z) + g(x)D(h)(x)

1.11. Lemma: Let p € N prime and n € N such that p t n.
(i) If f(z) = 2™ — 1, then
(f, D(f)) = 1 in Zy|x]

(ii) If g(x) € Z,[z] such that
g*(z) | f(z) in Zy[z]
then g(z) € Z, is a scalar.

Proof. (i) Note that
D(f)(z) = na™ ' # 0 since pfn

and z € Z,[z| is irreducible because
Zylx]/(x) =2 Z, is a field
Hence, if h = (f, D(f)), then 3k € N such that
h(z) = 2"
Since h | f, k < n, and so
h|(z" 2" —1)=h|—-1=deg(h) =0

and hence h =1
(ii) If g € Zy[z] such that ¢g* | f, then by Leibnitz’ rule [Check!],

g1 D(f)

and so by part (i), g € Z,, is scalar.

1.12. Lemma: If p € N is prime, then for any g € Z,[z], g(z)? = g(aP)
Proof. (i) If a,b € Z,, we have

p—1
(a+b)P =a’ + b + Z (i) akprk
k=1
=a’ + v

by HW 3.1(b).
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(ii) Furthermore, by Fermat’s theorem, for all a € Z,, we have

a’? =a (mod p)
(iii) Now write
g(x) =ay+amz+ ...+ ax"
= g(z)? = (ap + ez + ... + ayz™)?
=ab+ala? + ...+ ala"™

=ag+ a2’ + ...+ a,x"”
= g(2")

]
1.13. Theorem: Let n € N and ¢ € p, be any primitive n'" root of unity. If (a,n) = 1,
then ¢ and (* have the same minimal polynomial over Q
Proof. (i) Assume first that p = a is prime, so that p 1 n.

(a) Let f(z) € Q[z] be the minimal polynomial of {, then
f(@) | (2" = 1) in Q[x]

By Gauss’ lemma, it follows [Check!] that f(x) € Z[x]. Similarly, if
g(x) € Q] is the minimal polynomial of (P, then g(z) € Z[x]. We now
assume that

fx) # g(x)
(b) Then
9(¢?) =0
and so f(x) | g(2P) in Q[z] and hence f(x) | g(«?) in Z]x] by HW 3.4. So

let h(x) € )Z%x] such that
g9(a?) = f(z)h(x)
(c) Let f(z) € Z,[x] denote the image of f under the quotient map
7 Lx] = Zy[z]

Then applying 7 to the above equation, we obtain, by Lemma 1.12, that
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(d) Now note that f(z) | (z™ — 1) in Q[z], and also g(z) | (2™ — 1) in Q[z].
Since f and g are irreducible, and f # g, it follows that

f(x)g(x) [ (2" = 1) in Qlz]

Once again, by Gauss’ lemma, f(z)g(x) | (z"—1) in Z[z], so 3t(x) € Z[z]
such that
f(@)g(a)t(z) = («" — 1)

Applying 7 to this equation, we get
fat=a"—=1 (s

(e) From (*x), we see that B
gt =an— 1"

By Lemma 1.12 and (), this implies
R = —1

In particular,

7
By Lemma 1.11, deg(f) = 0. But since f is monic, this implies that
deg(f) =0

which contradicts the assumption that f is irreducible in Q[z].

(ii) Now suppose a € Z is any number such that (a,n) = 1, then write

a=pip2...-Pk
with p; € N prime. Now fix { € A, then by part (i),

Cpl c An
Replacing ¢ by ¢** in part (i), we see that
Cp1p2 c An

Hence, by induction on k, we finally obtain (* € A,, as well.

2mi/n

1.14. Corollary: ®,, is the minimal polynomial of { = e over Q.

Proof. Let f € Q[z] denote the minimal polynomial of {, then since ®,({) =0, it
follows that

f(2) | @n(x) in Qlz]
By Lemma 1.13 and Corollary 1.5, f is the minimal polynomial for all elements of
A,,. Hence,

deg(f) = [An] = p(n) = deg(®n)
Hence, deg(f) = deg(®,,), and since both are monic, it follows that f = ®,. [
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1.15. Corollary: Galg(Q(u,)) = Z;;
Proof. By Theorem 1.2, the map

I': Galg(Q(un)) = Aut(pn) = Zy,

is injective. However, by Corollary 1.14,

| Galg(Q(un))| = [Q@(pn) : Q = [Q(¢n) : Q] = deg(Pn) = ¢(n) = |Z;)]
and so [ is surjective as well. O]
(End of Day 34)

1.16. Examples:

(i) If n is prime, this is simply Example I11.1.8(vii).

(ii) Zg = {1,5}, so

Galg(Q(Cs)) = Zo
and (g = e™/3
(iii) Zg; = {1,3,5,7}. However,
3¥=0=1
and similarly, every element of Zg has order 2. Hence,
Lg = 7o X Loy

Also, by Example 1.8,
Pg(z) = 2* + 1

and (g = e™/*. Hence,

Galg(Q((s)) = Zy X Zy

Compare this with Question 2 on Quiz 2.
1.17. Remark:

(i) f Q C k C Q(uy) is any intermediate normal extension, then Q@ C k is an
abelian extension (since Z? is abelian).

(ii) The converse is called the Kronecker-Weber Theorem: If Q C k is any finite
normal extension such that Galg(k) is abelian, then 3n € N such that k£ C

Q(Nn>
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2. Cubic Polynomials
2.1. Remark: Let k C C be a field, f € k[x] be irreducible of degree n with splitting
field L and Galois group GG. Then
(i) G < S, (IIL3.5)
(ii) G is a transitive subgroup of S, (I11.4.2)
(iii) n | |G| (HW 6.5)
(iv) If deg(f) = 2, then G = Z,
(v) If deg(f) = 3, then G = A3 = Zj or Sy
(vi) If deg(f) = 3 and f has one complex root, then G = S5 by Theorem IV.3.8.
But what if f has all real roots? Can we conclude that G = Z3?
2.2. Definition: Let f € k[z]| be of degree n with roots {ay, s, ..., @}
() A=l (i — o)
(ii) Dy := A?is call the discriminant of f
Note: Since f is irreducible, it is separable (II.4.4), and hence Dy # 0
2.3. Example:
(i) f(z) = ax®+ bx + ¢, then Dy = (b* — 4ac)/2a
(ii) f(z) = 2%+ ax + b, then D; = —4a® — 271°
Proof. Note that

2? +ar+b=(r— o) (r — )z — az)
and hence

a1+ g + a3 = 0
a1 + g + Qovs = @

103 — —-b

Now compute both
—4a® — 270* and [(a; — ao) (a1 — az)(ay — a3)]?

and check that they are equal.
(iii) f(z) = 2® + ax?® + bx + ¢, then set h(z) = f(x —a/3) = 23 + px + ¢, then

Dy = Dy = —4p® — 27¢°

2.4. Definition: If f(z) = ap + a1z + ... + ap_ 12" ' + a,2™ € k[z], then
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(i) f is called reduced if a,—y =0
(ii) The associated reduced polynomial of f is f () = f(x — ap—1/n)

Note: D = Dy and Gali(f) = Gali(f)
2.5. Theorem: Let f € k[z] as in Definition 2.2. Then
(i) For any ¢ € G C S,
p(A) = sgn(p)A
(ii) Df €k

Proof. (i) Consider G = Galg(f) < S, as in Theorem II1.3.5. Then for any
v € GG, we may write ¢ as a product of transpositions. Hence, it suffices to
show the theorem if ¢ € S,, is a transposition. In this case, it is clear that

p(A)=-A

(ii) Now that, by part (i),
p(Dy) =Dy Vpe@

Now apply Corollary I11.4.13

[l
2.6. Corollary: If f € k[z] be separable with Galois group G < S,,, then
(i) Galk(A)(L) =GN An
(ii) k(A) = LE4n
Proof. Note that (ii) follows from (i) by the Galois correspondence. So let
F =k(A)
Then, for all ¢ € G,
peGNA,< peGandsgn(p) =1
S peGand p(A)=A
& p € G and p|p=idp
& ¢ € Galp(L)
[l

2.7. Theorem: Let f € k[x| be an irreducible cubic with Galois group G and discrimi-

nant Dy
- {Z3 . /Dy €k

53 \/D—fék
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Proof. By Remark 2.1, G = A3 or S3. Note that
G2 A3 G C Az
SGNA3=G
& k(A) = L°
S k(A) =k
S A€k
S Drek
[
(End of Day 35)
2.8. Examples:
(i) f(z) =a® -2, then Dy = —108, so Galg(f) = Ss, as we know.
(i) f(z) =2 =3z + 1, then Dy = 81, so Galg(f) = Zs.

(iii) f(z) = 2® — 4z + 2, then D; = 202, so Galg(f) = Ss. However, all the roots
of f are real (compare with Theorem IV.3.10)

2.9. Corollary: Let f € k[z] be a separable cubic with discriminant D, and roots
{u,v,w}. Then k(u, /Dy) is the splitting field of f

Proof. Let F':= k(u,/Dy), and L denote the splitting field of f over k. Then
(i) w € L, and
A=+/D;=u—-v)(u—w)(v—w) €L
and hence, FF C L

(ii) Conversely, since u € F, we write
f(z) = (x —u)g(z)
for some g € F[z]. Note that {v,w} are the roots of g, so
9(x) = (x —v)(x — w) in Clz]
In particular, since u € F,
glu)=(u—v)(u—w) €F
Since f is separable, g(u) # 0, so

(U—w)—\/D_fEF

On the other hand, v 4+ w is a coefficient of g, and so
v+weF

Hence v,w € F and so f splits in F'. Hence, L. C F' as well.
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2.10. Lemma: Let £ C C be a field, a € k and p € N prime. Set

f@) =" —a
Then f is irreducible in k[z] iff f does not have a root in k.

Proof. =-: If f is irreducible in k[z], it cannot have a root in k (by the remainder
theorem).

<: Conversely, suppose f is reducible in k£, WTS: f has a root in k. So write

f(x) = g(x)h(x)

for some polynomials g, h € k[z] with deg(g),deg(h) < p. Let L denote the
splitting field of f over k, then g and h split in L. So write

g(x)=(x—X)(x—Ag)...(x — A\g) in L[x]
Hence,

k
a=[[rek (»
=1

where k = deg(p). Now,

Note that k£ = deg(g) < p and p is prime, so 3s,t € Z such that
sk+tp=1

Hence,
a = ask—i—tp — (ak)s(at)p — (ap>s<at)p — (asat)p

Hence, if 8 := a’a’, we have 8 € k by (x) and
P =a

and hence f has a root in k.

]

2.11. (Casus Irreducibilis): Let f € Q[z] be an irreducible cubic with 3 real roots. If
Q C M is any radical extension such that f splits in M, then M ¢ R. In particular,
if L is the splitting field of f over Q, then Q C L is not a radical extension.

Note: This means that any formula for expressing the roots in terms of the coeffi-
cients and their radicals must necessarily involve non-real numbers.
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Proof. Let {u,v,w} denote the roots of f and Dy denote its discriminant. Since
{u,v,w} C R, we have A € R, so

DfIA2>O

Suppose Q C M is a radical extension in which f splits, then by Corollary 2.8,

L:Q<u7\/D_f)CM

Now suppose M C R, we will obtain a contradiction.

(i)

(iii)

If F = Q(/Dy), then
QcFcM

Since Q C M is radical, we have a tower of extensions
QCcKiCcKyCc...CK,=M
such that K; C K, is simple radical. Hence, the tower
FCFKiCFKy,C...CFK,=M
is a tower where F'K; C F'K;,; is a simple radical extension. Hence,
FcM

is a radical extension.

By Lemma IV.2.10, there is a tower of extensions
F=FCFHCkKcC...F,b=M

such that F; C Fjq is of prime type.

Now, note that [F': Q] € {1,2} (since Dy € Q, by Theorem 2.5) and f is a
cubic, so f is irreducible in F[z] [Why?]. Furthermore, f splits in M. Hence,
41 < 7 < n such that

e f is irreducible in F}[z]
e f is not irreducible in Fj[x]

Now consider F; C Fjy;. By hypothesis, dp € N prime and a € F} such that
F;11 = Fj(«) such that o =a
Let g(z) := 2P — a € F;[z]. By part (iii), F;;+1 # F}, and so a ¢ F;. However,

since g has only one real root, it follows that g does not have a root in Fj.
Hence, by Lemma 2.10, g is irreducible in F}[z].
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(v) Now note that f is not irreducible in F}j4[x]. Since deg(f) = 3, f has a root,
say, v € Fjy,. Since \/D_f € Fy C Fjy, it follows by Corollary 2.8, that f
splits in Fj41. Let L denote the splitting field of f over Fj, then L = Fj(u),
and by part (iii),

Fj CcLcC Fj+1

However, since g € Fj[z] is irreducible, monic, and g(a) = 0, it follows that
[Fyor s Byl = [Fi(a) : Fy] = deg(ima,z,) = deg(g) = p

Hence, F; C Fj4;1 has no non-trivial intermediate extensions. Since F; # L,
it follows that
L =Fjn
In particular, Fj; is the splitting field of f over F;. Hence, F; C Fjy, is a
normal extension.
(vi) However, g € Fj[z] is irreducible and has a root in Fj;;. By Theorem II1.2.8,
g splits in Fj ;. In particular,

o, e2mPo € Fiiq

and hence e*™/? € F;,; C M. Hence, M ¢ R.
O

2.12. Examples: If f(z) = 2® — 3x + 1, then all the roots of f are real (draw the graph
using Calculus), so by Casus Irreducibilis, any radical extension in which f splits
must necessarily contain non-real complex numbers.

(End of Day 36)

3. Quartic Polynomials

(See [Conrad])
Throughout this section, let & C C be a field, f € k[x] be an irreducible quartic
polynomial with splitting field L and Galois group G
3.1. Remark:
(i) By HW 6.5, 4 | |G| and G is one of the following
() Z == ((1234))
(b) Vi :={e, (12)(34), (13)(24), (14)(23)} = Zs X Zs
(c) Dy=((1234),(13))
(d) Ay
(e) Sy
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(ii) By Corollary 2.6, G C Ay iff \/Dy € k. Hence, we have

Gg{wor/h /Dy ek

Z4,D4, OI'S4 Z\/Df¢k'
As we did with A4, we want to identify the fixed field of G NV}

3.2. Lemma: Let f € k[z] be an irreducible quartic with roots {a, as, as, as}, splitting
field L and Galois group G < Sy. Then set

U = Qg + 30y

V= 13 + Qialy

W = 104 + QaQig

and set F' = k(u,v,w) C L. Then
(i) Galp(L) =GNV,
(i) L¢Ms = F
(i) G=V, & F=k
Proof. (i) Once again, for any ¢ € G, note that

€ GNVi= p(u) = u,p(v) = v, p(w) = w
= p|p=idp
= ¢ € Galp(L)

=GNV, C Galp(L)

Conversely, if ¢ € Galgp(L), then consider the possible options for ¢ € S,

(a) ¢ is a transposition: Assume WLOF that ¢ = (12) since the other cases
are similar. Then ¢(v) # v because

Q13 + QoQy = Qa3 + i1y
= (Oél — (12)0(3 = (Oél — 062)064

& 3 = Oy

which is impossible since f is separable.

(b) ¢ is a 3-cycle: Assume WLOG that ¢ = (123), then once again it follows
that ¢(v) # v

(c) ¢ is a product of disjoint 2 cycles: Here ¢ € Vj, so there is nothing to
check.

(d) ¢ is a 4-cycle: Assume WLOG that ¢ = (1234), then once again it is
clear that p(w) # w.
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3.3.

3.4.

Hence, it follows that if ¢ € Galg(L), then ¢ € V,, and this completes the
proof.

(ii) Follows from (i) by FTOG-I.
(iii) Note that, by Remark 3.1,
G=V, &Gy

SENVy =G
& L9 = ¢
s F =k

Theorem: Let f € k[z] as before and u, v, w as in Lemma 3.2, then
9(x) = (z —u)(z —v)(z — w) € kfz]

This polynomial is call the resolvent cubic of f.

Proof. Let g as above. If p € GG, then consider the induced map
¢« : L[z] — Clz] given by Zaixi — Z o(a;)’
i=0 i=0

Then
Pu(9)(@) = (x —p(u))(x — p(v)(z — p(w))
But note that | vwy: {u,v,w} = {u,v,w} is a permutation. Hence,
pu(9)(x) = g(x)

and so every coefficients of g satisfies Corollary 111.4.13, and is therefore in k.
Hence, g € k[z]. O

Lemma: The resolvent cubic of f(z) = z* + az® + bx® + cx + d € k[z] is
g(r) = 2* — ba® + (ac — 4d)x — (a*d + ¢* — 4bd) (%)
Proof. Write
et 4+ ax® +br* ter+d= (v — 1) (r — ap)(z — az)(z — ay) (xx)
and expand it out to obtain equations relating «;’s and the coefficients of 2. Now
compute each coefficients on the RHS of (x). For instance, by (k)
b = coeff of 22

= (o + azay) + (o + ag)(as + o)

= (g + 3y + Q13 + Qg + 110y + Qias

=u+v+w

and hence the coefficient of 2% in g(x) must be —b. (See [Conrad] for further
details) O
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3.5. Lemma: If f € k[z] is an irreducible quartic and g € k[x] is the resolvent cubic of
f, then

(i> Dy =D,
(ii) k(u,v,w) = k(u,+/Dy)
Proof. (i) Check that
U—v =010y + azay — ajag — oy = () — ay)(ay — ag)

and similar calculations will show that

(u—v)(v = w)(u—w) =@ —ay)

and hence D, = D; by squaring.
(ii) Note that g is separable by part (i), and hence Corollary V.2.8 applies.
O
(End of Day 37)

3.6. Theorem: Let f € k[z]| be an irreducible quartic as above, then the Galois group
G can be described in the following table :

Case No. | \/Dy € k | g irreducible in k[z] G
I Y Y Ay
II Y N Vi
II1 N Y Sy
1Y N N Dy or Zy

Proof. We have the following cases:
(i) /Dy € k and g is irreducible over k: Then,

GCA=G=V,or Ay

Since g is irreducible over k,

[k(u): k] =3
But k(u) C L, and so 3 | [L : k] = |G]. Since 3 1 |Vy]|, we have
G= A

(ii) /Dy € k and g is not irreducible over k: Then,
GCAy=G=Vyor Ay

Now since g is reducible over k, and it is cubic, it has a root u € k (HW 2.3).
But since /Dy € k, it follows that

k= k(u,\/Dy) = k(u,v,w)
by Lemma 3.5. Hence, G =V, by Lemma 3.2.
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(iii) \/Ds ¢ k and g is irreducible over k: Then
G = Z4, D4 or S4

But g is irreducible, so once again (as above), 3 | |G|. Hence, G = S,
(iv) /Dy ¢ k and ¢ is not irreducible over k: Then by Lemma 3.5,

k(u,v,w) = k(u, \/Dy) = k(v/Dy)

Since Dy € k,
[k(u,v,w) : k] =2

By Lemma 3.2 and FTOG-I, [G : G NV,] = 2. But by Remark 3.1,
G= Z4, D4 or S4

Since

[Su: SV = [Si: Vil = 2 =6
it follows that G # Sy, and hence G = Z, or D,. Note that in both these
cases
G:GNVy =2
[
3.7. Examples:
(i) f(z)=2"— 2 —1€ Q[z], then

(a) f isirreducible in Q] since it is irreducible in Zs[z| (using 1.5.6)

(b) The resolvent cubic of f is g(x) = ® + 4o — 1 (by Lemma 3.4)

(¢) g has no roots in Q (by the rational root theorem), so it is irreducible

(by HW 2.3)
(d) The discriminant of f is Dy = D, = —283 (by Example 2.3(ii)), so

VD; ¢ Q.

(e) Hence,

(i) f(z) = z* + 8z + 12 € Q[z], then

(a) f hasno roots in Q (by the rational root theorem) and it cannot be factor
into two quadratic factors in Z[z] (Check!). So f cannot be properly
factored in Z[z|, and so f is irreducible in Q[z] by Gauss Lemma.

(b) The resolvent cubic of f is g(x) = x® — 48z — 64 (by Lemma 3.4)
(c) g is irreducible in Q[z] since it is irreducible in Zs[x] (using 1.5.6)
(d) The discriminant of f is Dy = D, = 576 = /D; € Q.
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(e) Hence,

(iil) f(z) =2*+1 € Q[z], then
(a) f is irreducible by HW 3.2.
(b)

The resolvent cubic of f is

a
b

g(r) = 2* — 4o = 2(x — 2) (v + 2)
which is reducible in Q

(c) The discriminant is Dy = D, = [(0 +2)(0 — 2)(2 + 2)]?, so v/D; € Q

(d) Hence,
G2V,

[Compare this with Example 1.16(iii)]

3.8. Theorem: Let f € k[z] be an irreducible quartic such that Case IV applies in The-
orem 3.6. Then G = Dy iff f is irreducible over k(,/Dy) (and G = Z, otherwise).

Proof. Since we are in Case IV, G = Dy or Zj.

= Assume f is irreducible over F' := k(y/Dy). Since Case IV applies, /Dy ¢ k,
and so

[F:k]=2
Hence, if « is any root of f, then
[F(a) : F] = deg(f) = 4

and so by the Tower Law
[F(a): k] =8

Since /Dy, € L, it follows that [L : k] > 8, and so

|G| >8=G=D,

«<: Assume G = Dy, then by Corollary 2.6,
Galp(L) =GN A4

But Dy N Ay = Vy (Check!), and so Galg(L) acts transitively on the set
{a1, s, a3, a4} of roots of f. By Theorem I11.3.9, it follows that f is irre-
ducible in Fx].

[l
(End of Day 38)
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3.9. Theorem: If f € Q[z] be an irreducible quartic with Galois group Z4, then Dy > 0.
In particular, if Case IV applies in Theorem 3.6 and Dy < 0, then G = D,

Proof. Suppose G = Z,, then |G| = [L : k] = 4, and so if @ = a4 is any root of f,
then
L=Q(a)

(i) Suppose f has a real root, then we may choose o € R, so L C R, and so

1, g, Olg, O3 CRiAERin >0

(ii) Now suppose f does not have a real root, then the non-real roots must occur
in conjugate pairs {z,Z, w,w}, and so
A=z-2)(z—w)(z—W)(Z—-w)(Z—-U)(w—u)
= (2 = 2)(w —W)|z — wf’|z — W

= (20Im(2))(2ilm(w))|z — w|?|z —W|* € R

Hence, Dy = A? > 0

3.10. Examples:
(i) f(z) =2*—2 € Q[x], then
(a) f is irreducible by Eisenstein’s criterion with p = 2
(b) The resolvent cubic of f is g(z) = 2% + 82 = z(x — 2v/2i)(x + 2v/2i)
(¢) So Dy = D, = [(2v/2i)(—2v/2i)(2v/2i + 2v/20)]> < 0 = /Dy ¢ Q, so

Case IV applies.
(d) But Dy <0, so by 3.9,
G=D,

(ii) f(z) = 2" + 52 + 5, then
(a) f is irreducible by Eisenstein’s criterion with p =5
(b)

The resolvent cubic of f is g(x) = (z — 5)(2* + 5z + 5) whose roots are

. —5—5\/5’—5;\/5}

a
b

(c) Hence, Dy = D, =5 x 552, so /Dy ¢ Q. Hence, Case IV applies.
(d) f factors over Q(1/D;) = Q(+/5) as

flx) = <$2+\/55L‘+5_2\/5> <x2—\/3x—|—5+\/3>

2

Hence
G227,
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(End of Day 39)
Review of all the chapters

(End of Day 40)
Discussion of HW and Quiz/Mid-Sem problems

(End of Day 41)
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V1. Instructor Notes

0.1.

0.2.

0.3.

The goals of the course were exactly as it was two years ago, and the execution
was very similar. All in all, the plan is solid, although I would like to make two
changes the next time aroung.

I feel that Chapter V could be moved up before Chapter IV, thereby giving an
immediate application of the Fundamental theorems of Galois theory, while also
setting up the discussion of solvable groups by talking about cyclotomic extensions
in some detail (instead of the adhoc discussion in Section II1.5)

Also, I would like to discuss finite fields and their Galois groups, at least perfunc-
torily. At the moment, not discussing finite fields is the major drawback of this
structure.
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