
MTH 401: Fields and Galois Theory
Semester 1, 2016-2017

Dr. Prahlad Vaidyanathan



Contents

Classical Algebra 3

I. Polynomials 6
1. Ring Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Fundamental Theorem of Algebra . . . . . . . . . . . . . . . . . . . . . . 11
4. Irreducibility over a field . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5. Irreducibility over Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II. Field Extensions 24
1. Simple Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Degree of an Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3. Algebraic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4. Primitive Element Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.Galois Theory 42
1. The Galois Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2. Splitting Fields and Normal Extensions . . . . . . . . . . . . . . . . . . . 49
3. Permutation of Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4. The Galois Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 57
5. Normal Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

IV.Solvability by Radicals 70
1. Radical Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2. Solvable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3. An Insolvable Quintic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4. Galois’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

V. Galois Groups of Polynomials 93
1. Cyclotomic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Cubic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3. Quartic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

VI.Instructor Notes 114

2



Classical Algebra

(a) Solving Linear Equations:

(i) x+ 3 = 4 has solution x = 1, in N
(ii) x+ 4 = 3 has solution x = −1, in Z

(iii) 3x = 2 has solution x = 2/3, in Q
For a general linear equation ax+ b = 0, the solution x = −b/a lies in Q

(b) Solving Quadratic Equations:

(i) x2 = 2 has solutions x = ±
√

2, in R \Q
(ii) x2 + 1 = 0 has solutions x = ±i, in C \ R

For a general quadratic equation

ax2 + bx+ c = 0

• Divide by a to get

x2 +
b

a
x+

c

a
= 0

• Complete the squares to get(
x+

b

2a

)2

+
c

a
− b2

4a2
= 0

So we get

x =
−b±

√
b2 − 4ac

2a

which lies in C
Questions: Given a polynomial equation

a0 + a1x+ a2x
2 + . . .+ anx

n = 0

(i) Do solutions exist?

(ii) If so, where do they exist?

(iii) How do we find them?

Answer:
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To the first two questions, the answer is the Fundamental Theorem of Algebra:
If ai ∈ Q for all i, then all solutions exist, and they lie in C.

For the last question, let’s examine the case of the cubic.

(c) Solving Cubic Equations:

ax3 + bx2 + cx+ d = 0

• Divide by a to get
x3 + ax2 + bx+ c = 0

• Complete the cube with y = x− a/3 to get

y3 + py + q = 0

where p = f(a, b, c) and q = g(a, b, c)

• One can then make a substitution y = s + t (See [Stewart, Section 1.4],
[Gowers]) to get two quadratic equations

s6 + u1s
3 + u2 = 0⇒ s3 = quadratic formula

t6 + v1t
3 + v2 = 0⇒ t3 = quadratic formula

and so

x =
−a
3

+
3
√
s3 +

3
√
t3

This is called Cardano’s Formula. It is a formula that involves

(i) The coefficients of the polynomial

(ii) +,−, ·, /
(iii)

√
, 3
√
, 4
√
, etc. (Radicals)

(iv) Nothing else

Can such a formula exist for a general polynomial?

(d) Solving Quartic Equation:

• First two steps are the same to get

y4 + py2 + qy + r = 0

• One can again make a substitution to reduce it to a cubic

α1u
3 + α2u

2 + α3u+ α4 = 0

which can be solved using Cardano’s formula.

(e) Solving Quintic Equation:
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• First two steps are the same to get

y5 + py3 + qy2 + ry + s = 0

• Now nothing else works.

(f) Many attempts were made until

(i) Lagrange (1770-71): All the above methods are particular cases of a single
method. This method does not work for the quintic.

(ii) Abel (1825): No method works for the quintic. ie. There is a quintic polyno-
mial that is not solvable by radicals.

(iii) Galois (1830): Explained why this method works for all polynomials of degree
≤ 4, why it does not work for degree 5, and what does one need for any method
to work for any polynomial of any degree!
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I. Polynomials

1. Ring Theory

1.1. Definition:

(i) A ring R is a set with two binary operations + and × satisfying:

(a) (R,+) is an abelian group with identity denoted by 0

(b) × is associative: a× (b× c) = (a× b)× c for all a, b, c ∈ R
(c) The distributive laws hold: For all a, b, c ∈ R

A. (a+ b)× c = (a× c) + (b× c)
B. a× (b+ c) = (a× b) + (a× c)

(ii) If R is a ring, an element e ∈ R is called the identity of R if a× e = e×a = a
for all a ∈ R.

(iii) A ring R is said to be commutative if a× b = b× a for all a, b ∈ R.

(iv) A commutative ring R is said to be an integral domain if ab = 0 implies either
a = 0 or b = 0.

(v) A commutative ring is said to be a field if 1 6= 0 and for ever 0 6= a ∈ R, ∃b ∈ R
such that ab = ba = 1.

Note: The element b ∈ R is unique (Check!) and is denoted by a−1.

1.2. Examples:

(i) N is not a ring, Z is a ring but not a field, and Q,R,C are fields.

(ii) For n > 1, Zn := Z/nZ is a ring, and is a field iff n is prime (without proof)

(iii) Define
F := {a+ b

√
2 : a, b ∈ Q} ⊂ C

with usual addition and multiplication. Then F is a field.

Proof. Clearly, F is an abelian group and is closed under multiplication. To
see that inverses exists, choose a, b ∈ Q at least one of which is non-zero, and
consider

y =
1

a+ b
√

2
=
a− b

√
2

a2 − 2b2

since
√

2 /∈ Q, the denominator is non-zero, and a rational number. Hence,
y ∈ F and is clearly the inverse of a+ b

√
2 in F .
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(iv) Define
K := {a+ bπ : a, b ∈ Q} ⊂ C

then K is not a ring.

Proof. If it were a ring, then π2 ∈ K, which means that π satisfies a quadratic
equation over Q. However, π does not satisfy any polynomial over Q.

(End of Day 1)

1.3. Definition:

(i) A subring S of a ring R is a subset such that

(a) (S,+) is a subgroup of (R,+)

(b) S is closed under multiplication.

(ii) An ideal I of a ring R is a subring of R such that if a ∈ I, b ∈ R then ab ∈ I.
Note: If I is an ideal in R, we write I C R.

(iii) LetR and S be two rings. A function ϕ : R→ S is called a ring homomomorphism
if

(a) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R
(b) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.

(iv) A bijective ring homomorphism is called a ring isomorphism.

Note:

(a) If ϕ : R→ S is a ring isomorphism, then so is ϕ−1 : S → R (HW)

(b) Henceforth, we will assume that all rings are commutative with 1 6= 0,
and that if ϕ : R→ S is a ring homomorphism, then ϕ(1R) = 1S

1.4. Examples:

(i) {0} C R,R C R for any ring R

(ii) For n ∈ N, nZ C Z and these are the only ideals in Z (without proof)

(iii) The inclusion map ι : Q→ C is a ring homomorphism, and it is the only ring
homomorphism from Q to C

Proof. If ϕ : Q→ C is a ring homomorphism, then ϕ(1) = 1, so ϕ(n) = n for
all n ∈ N, and hence for all n ∈ Z. Now for x = p/q ∈ Q, note that

qϕ(x) = ϕ(qx) = ϕ(p) = p

and so ϕ(x) = x for all x ∈ Q.

(iv) Let F = {a+ b
√

2 : a, b ∈ Q} as in Example 1.2(iii), then define

j : F → C by a+ b
√

2 7→ a− b
√

2

(v) z 7→ z is a ring homomorphism from C to C
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1.5. Lemma: If ϕ : R→ S is a ring homomorphism, then ker(ϕ) C R

1.6. Theorem: If k is a field, then {0} and k are the only ideals in k

1.7. Corollary: If ϕ : k → K is a homomorphism of fields, then ϕ is injective.

1.8. Theorem: Let R be a ring and I C R, then consider the quotient group (R/I,+).
We define a multiplication on R/I by

(a+ I)(b+ I) := ab+ I

Then this is well-defined, and R/I forms a ring with respect to these operations
called the quotient ring. Furthermore, the map π : R → R/I given by a 7→ a + I
is a ring homomorphism, and is called the quotient map.

2. Polynomial Rings

2.1. Definition: Let R be a ring and x an indeterminate.

(i) A polynomial over R is a formal expression

f(x) = a0 + a1x+ . . .+ anx
n

where ai ∈ R for all 0 ≤ i ≤ n

Note: If g(x) = b0 + b1x + . . . + bmx
m, then f(x) = g(x) iff n = m and ai = bi for

all i. For instance, x 6= x2 in Z2[x]

(ii) We may add and multiply polynomials in the usual way (by collecting like
terms), and this makes the set R[x] of all such polynomials a ring. This is
called the polynomial ring over R in one variable.

Note that R[x] is a commutative ring with 1R[x] = 1R 6= 0 (Check!)

(iii) If f(x) = a0 + ax + . . .+ anx
n ∈ R[x] then

deg(f) := max{j : aj 6= 0}

is called the degree of f

2.2. Lemma: Let f, g ∈ R[x]

(i) deg(f + g) ≤ max{deg(f), deg(g)}
(ii) If R is an integral domain and f, g 6= 0, then deg(fg) = deg(f) + deg(g). In

particular, R[x] is an integral domain.

Proof. The first part follows trivially from the definition of addition. For part (ii),
write

f(x) = a0 + a1x+ . . .+ anx
n and g(x) = b0 + b1x+ . . .+ bmx

m

with an, bm 6= 0. Then

fg(x) = a0b0 + (a1b0 + b1a0)x+ . . .+ anbmx
n+m

and anbm 6= 0 (since R is an integral domain). Hence, deg(fg) = n+m

8



2.3. Theorem (Euclidean Division): Let k be a field, and let f, g ∈ k[x] with g 6= 0,
then ∃ unique t, r ∈ k[x] such that

f = tg + r

and either r = 0 or deg(r) < deg(g)

Proof. (a) Existence: Write f(x) = a0 + a1x+ . . .+ anx
n and g(x) = b0 + b1x+

. . .+ bmx
m with bm 6= 0.

(i) If f = 0, then take t = r = 0, so we assume an 6= 0

(ii) If n < m, then t = 0, r = f works.

(iii) If n = m: Take t = anb
−1
n (possible since k is a field), so that

(f − tg)(x) =
n−1∑
i=0

cix
i where ci = ai − anb−1

n bi

In particular, deg(f − tg) ≤ n− 1 < deg(g) as required.

(iv) If n > m, we assume by induction that the theorem is true for any
polynomial h ∈ k[x] with deg(h) < n. Now take

h(x) = f(x)− anb−1
m xn−mg(x)

Then, as above deg(h) < n, so by induction hypothesis, ∃t1, r1 ∈ k[x]
such that

h = t1g + r1 and deg(r1) < deg(g)

⇒ f = (anb
−1
m xn−m + t1)g + r1 and deg(r1) < deg(g)

as required.

(b) Uniqueness: Suppose

f = t1g + r1 and f = t2g + r2

with ri as in the statement. Then

(t1 − t2)g = r2 − r1 (∗)

So if t1 6= t2, then by Lemma 2.2(ii),

deg(g) ≤ deg(t1 − t2) + deg(g)

= deg((t1 − t2)g)

= deg(r2 − r1)

≤ max{deg(r2), deg(r1)}
< deg(g)

which is clearly a contradiction. Hence, t1 = t2 and so r2 = r1 by (∗)
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2.4. Definition:

(i) For a, b ∈ R, we say that b divides a if ∃c ∈ R such that bc = a. If this
happens, we write b | a.

(ii) For a ∈ R, the principal ideal generated by a is the set

(a) := {ax : x ∈ R} = {b ∈ R : a | b}

An ideal I is principal if ∃a ∈ R such that I = (a). Then, such an element
a ∈ R is called a generator of I. (Note: A generator of a principal ideal is
not, in general, unique.)

(iii) A principal ideal domain (PID) is an integral domain each of whose ideals is
principal.

(End of Day 2)

2.5. Corollary: k[x] is a PID.

Proof. k[x] is an integral domain by Lemma 2.2, so it suffices to show that every
ideal in k[x] is principal. If I C k[x], then the set S := {deg(f) : f ∈ I} ⊂ N has
an minimal element. So ∃f0 ∈ I such that

deg(f0) ≤ deg(f) ∀f ∈ I

We claim that I = (f0). Since f0 ∈ I, we have (f0) ⊂ I. Conversely, suppose
f ∈ I, then by Euclidean division, ∃t, r ∈ k[x] such that

f = tf0 + r

where r = 0 or deg(r) < deg(f0). Since r = f − tf0 ∈ I, it follows that r = 0 and
so f ∈ (f0). This is true for any f ∈ I, so I = (f0)

2.6. Definition: Let α ∈ R
(i) Define ϕα : R[x]→ R by

a0 + a1x+ . . .+ anx
n 7→ a0 + a1α + . . .+ anα

n

Note that ϕα is a ring homomorphism, and is called the evaluation map at
α. We write f(α) := ϕα(f) for any f ∈ R[x]

(ii) α is said to be a root of f ∈ R[x] if f(α) = 0.

2.7. (Remainder Theorem): Let k be a field. If 0 6= f ∈ k[x] and α ∈ k
(i) ∃t ∈ k[x] such that f(x) = (x− α)t(x) + f(α)

(ii) α is a root of f iff (x− α) | f(x) in k[x]
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Proof. We prove only (i) since (ii) follows trivially. By Euclidean division, ∃t, r ∈
R[x] such that

f(x) = (x− α)t(x) + r(x)

with either r = 0 or deg(r) < deg(x− α) = 1. Hence, r(x) ∈ R is a constant, say
c. Applying the evaluation homomorphism, since ϕα(x− α) = 0, we have

f(α) = 0 + r(α) = c

completing the proof.

2.8. Definition: Let R be a ring, f ∈ R[x] and α ∈ R be a root of f .

(i) We say that α is a root of multiplicity m ∈ N if

(x− α)m | f and (x− α)m+1 - f

(ii) A root with multiplicity 1 is said to be a simple root of f

2.9. Corollary: Let k be a field, and 0 6= f ∈ k[x]. Then the number of roots of f in k,
counted with multiplicity, is ≤ deg(f).

Proof. If f has n roots α1, α2, . . . , αn with multiplicity m1,m2, . . . ,mn respectively,
then by induction on the Remainder theorem, ∃g ∈ R[x] such that

f(x) = (x− α1)m1(x− α2)m2 . . . (x− αn)mng(x)

Since f 6= 0, by Lemma 2.2,

deg(f) = m1 +m2 + . . .+mn + deg(g) ≥
n∑
i=1

mi

as required.

3. Fundamental Theorem of Algebra

3.1. Definition: Consider the set R2 with the operations

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1)

These operations make R2 a field, which is called the field of complex numbers,
denoted by C.

(i) Identify R with the subset {(x, 0) : x ∈ R} ⊂ C
(ii) Let i := (0, 1), then i2 = −1

(iii) Every z ∈ C can be express uniquely in the form z = x+ iy for x, y ∈ R
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(iv) For θ ∈ R, write eiθ := cos(θ) + i sin(θ) ∈ C. Then, for any z = x + iy ∈ C,
set

(a) r = |z| :=
√
x2 + y2

(b) θ = Arg(z) := tan−1(y/x)

Then z = reiθ is called the polar form of z. Furthermore, if z1 = r1e
iθ1 and

z2 = r2e
iθ2 , then z1z2 = r1r2e

i(θ1+θ2)

3.2. (De Moivre’s Theorem): Let 0 6= z = reiθ ∈ C and n ∈ N
(i) zn = rneinθ. In particular

(a) |zn| = |z|n

(b) Arg(zn) = nArg(z)

(ii) The numbers

wk := r1/nei
θ+2k
n , k ∈ {0, 1, . . . , n− 1}

are all the distinct roots of the polynomial xn − z ∈ C[x].

3.3. Example: There are exactly n distinct roots of unity, given by

wk := e2πik/n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
They form a cyclic group of order n. The generators of this group are call
primitive nth roots of unity.

3.4. Lemma: If D ⊂ C is a closed and bounded set, and f ∈ C[x], then ∃α ∈ D such
that |f(α)| ≤ |f(z)| for all z ∈ D

Proof. For any z1, z2 ∈ C, we have ||z1| − |z2|| ≤ |z1 − z2| [Check!]. Hence, the
function

F : D → R given by z 7→ |f(z)|

is continuous. Now use the fact that D is compact by the Heine-Borel theorem.

3.5. Lemma: Let f ∈ C[x] \ C and r > 0, then ∃M > 0 such that if |z| > M , then
|f(z)| > r.

[Equivalently, lim|z|→∞ |f(z)| = +∞]

Proof. Write f(z) = anzn + an−1z
n−1 + . . .+ a0, then

|f(z)| = |z|n
∣∣∣an +

an−1

z
+ . . .+

a0

zn

∣∣∣
Since |z1 + z2| ≥ ||z1| − |z2|| for any two z1, z2 ∈ C (Why?), we have

|f(z)| ≥ |z|n
[
|an| −

n−1∑
k=1

|an−k|
|z|k

]
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Now for each 1 ≤ k ≤ n− 1,∃Mk > 0 such that

|an−k|
Mk

k

<
|an|

2(n− 1)

and ∃M0 > 0 such that

Mn
0

|an|
2

> r

Then if M = max{M0,M1, . . . ,Mn}, then if |z| > M , we have

|f(z)| ≥Mn

[
|an| −

n−1∑
k=1

|an−k|
Mk

]

≥Mn

[
|an| −

n−1∑
k=1

|an|
2(n− 1)

]

≥Mn

[
|an| −

|an|
2

]
≥Mn |an|

2
≥ r

(End of Day 3)

3.6. Lemma: Let f ∈ C[x], then ∃α ∈ C such that |f(α)| ≤ |f(z)| for all z ∈ C

Proof. Write f(z) = anz
n + an−1z

n−1 + . . . + a0, then by the previous lemma,
∃M > 0 such that if |z| > M , then |f(z)| ≥ |a0|. Furthermore, on the disc
D = {z ∈ C : |z| ≤M}, f attains a minimum at a point α ∈ D so that

|f(α)| ≤ |f(z)| ∀z ∈ D

However, 0 ∈ D so |f(α)| ≤ |a0| ≤ |f(z)| for all z ∈ C \ D, and so α is a global
minimum.

3.7. (Fundamental Theorem of Algebra): Suppose f ∈ C[x] \ C,∃α ∈ C such that
f(α) = 0. (See [Fefferman])

Proof. (i) Choose α ∈ C by the previous lemma so that |f(α)| ≤ |f(z)| ∀z ∈ C.
Writing

f(z) = f((z − α) + α)

and expanding, we may write f(z) = g(z − α) for some polynomial g ∈ C[x].
Furthermore, f(α) = g(0), so

|g(0)| ≤ |g(z)| ∀z ∈ C

Thus, it suffices to show that g(0) = 0.

13



(ii) Write g(z) = c0 + c1z + . . .+ cnz
n and let 1 ≤ j ≤ n be the smallest number

such that cj 6= 0. Hence, we may write

g(z) = c0 + cjz
j + zj+1R(z)

for some polynomial R ∈ C[x]. Since cj 6= 0,∃β ∈ C such that βj = −c0/cj
(by De Moivre’s theorem). Hence,

cjβ
j = −c0

(iii) Let D = {z ∈ C : |z| ≤ |β|}, then D is compact, so ∃M > 0 such that

|R(z)| ≤M ∀z ∈ D

(iv) Now let 0 < ε < 1 be arbitrary to be chosen later, then

|g(εβ)| = |c0 + εjcjβ
j + εj+1βj+1R(εβ)|

≤ |c0 + εjcjβ
j|+ εj+1|β|j+1|R(εβ)|

≤ |c0 − εjc0|+ εj+1|β|j+1M

= (1− εj)|c0|+ εj+1|β|j+1M

= |c0| − εj
[
|c0| − ε|β|j+1M

]
Hence if c0 6= 0, then we may choose 0 < ε < 1 such that

ε <
|c0|

|β|j+1M

so that
|g(εβ)| < |c0| = |g(0)|

This contradicts step (i), and so c0 = 0 must hold as required.

3.8. Corollary: If f ∈ C[x] is of degree n, then ∃β ∈ C and α1, α2, . . . , αn ∈ C such
that

f(x) = β(x− α1)(x− α2) . . . (x− αn) in C[x]

Proof. HW.

3.9. Corollary: A real polynomial factorizes into linear and quadratic factors in R[x]

Proof. Let f ∈ R[x], we induct on deg(f): If deg(f) ≤ 2 then there is nothing to
prove. If deg(f) > 2, assume that the theorem is true for any polynomial g ∈ R[x]
with deg(g) < deg(f). By FTA, choose a root α ∈ C.

(i) If α ∈ R, then (x− α) | f(x) in R[x], so ∃g ∈ R[x] such that

f(x) = (x− α)g(x)

Now apply the induction hypothesis to g
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(ii) If α ∈ C \ R, then, since f ∈ R[x], we have

f(α) = f(α) = 0

and so α is also a root of f in C. Hence, h(x) := (x−α)(x−α) ∈ R[x] divides
f in C[x], so ∃g ∈ C[x] such that

f(x) = h(x)g(x)

By induction hypothesis, it suffices to prove that g ∈ R[x]. Write h(x) =
x2 + ax+ b and g(x) = b0 + b1x+ . . .+ bmx

m, then

f(x) = a0 + a1x+ . . .+ am+2x
m+2

(a) bm = am+2 ∈ R
(b) By (reverse) induction, assume that bj ∈ R for all m ≥ j > k, and we

show that bk ∈ R: To see this, note that

bk + abk+1 + bbk+2 = ak+2

and so bk ∈ R since R is a subfield of C.

Hence, g ∈ R[x] as claimed and we are done by induction.

4. Irreducibility over a field

Let k be a field

4.1. (Existence of GCD): Let f, g ∈ k[x], then ∃ unique d ∈ k[x] such that

(i) d is monic

(ii) d | f and d | g
(iii) If h | f and h | g, then h | d

Furthermore, we have

(iv) (Bezout’s Identity) ∃s, t ∈ k[x] such that d = sf + gt

Proof. (a) Existence: Set

I := {sf + tg : s, t ∈ k[x]}

then check that I is an ideal of k[x]. Since k[x] is a PID, ∃d ∈ k[x] such that
I = (d).

(i) Multiplying d by a constant, we may assume that d is monic. Since d ∈ I,
∃s, t ∈ k[x] such that

d = sf + tg (∗)
We claim that this element d satisfies (ii) and (iii).
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(ii) Since f = 1 · f + 0 · g ∈ I, and I = (d) it follows that d | f . Similarly,
d | g

(iii) If h | f and h | g, then h | (sf + tg) = d.

(b) Uniqueness: Suppose d1, d2 ∈ k[x] both satisfy properties (i), (ii), and (iii).
Then by (ii) we have d1 | d2 and d2 | d1, so ∃r1, r2 such that

r1d1 = d2 and r2d2 = d1

So r2r1d1 = d1 and so comparing degrees (by Lemma 2.2), we see that r1, r2 ∈
k are constants. Since d1 and d2 are monic, it follows that r1 = r2 = 1

(End of Day 4)

4.2. Definition:

(i) For f, g ∈ k[x], the polynomial d ∈ k[x] obtained in Theorem 4.1 is called the
greatest common divisor (GCD) of f and g and is denoted by

d = (f, g)

(ii) Two polynomials f, g ∈ k[x] are said to be relatively prime if (f, g) = 1.

(iii) A polynomial f ∈ k[x] is said to be irreducible if

(a) f /∈ k and,

(b) whenever h, g ∈ k[x] such that f(x) = h(x)g(x), then either h ∈ k or
g ∈ k.

(iv) Let R be a ring. An ideal I C R is said to be a maximal ideal if

(a) I 6= R and,

(b) for any other ideal J C R such that I ⊂ J we have either I = J or J = R.

4.3. Theorem: For f ∈ k[x], TFAE :

(i) f is irreducible

(ii) (f) is a maximal ideal in k[x]

(iii) k[x]/(f) is a field

Proof.

(i)⇒ (ii): If f is irreducible, let I = (f) and suppose J C k[x] is an ideal such that
I ⊂ J . We WTS: J = I or J = k[x].

Since k[x] is a PID, ∃g ∈ J such that J = (g). Since I ⊂ J,∃s ∈ k[x] such that
f = sg. Since f is irreducible, it follows that either s ∈ k or g ∈ k. If s ∈ k, then
I = J and if g ∈ k then J = k[x] since g is a unit.
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(ii)⇒ (iii): Suppose I = (f) is a maximal ideal, then I 6= k[x], so 1 /∈ I. Hence if
R := k[x]/(f), then R is a commutative ring with

1R = 1 + I 6= I = 0R

Thus, we WTS: if g + I 6= I, then ∃h ∈ k[x] such that gh+ I = 1 + I.

To do this, consider d = (g, f), then by 4.1, d | f , so f ∈ J := (d), and so I ⊂ J .
By maximality, it follows that either J = I or J = k[x].

(i) If J = I, then f | d. But d | g, so f | g and so g ∈ I, which contradicts the
fact that g + I 6= I

(ii) If J = k[x], then (d) = (1) and so ∃h, t ∈ k[x] such that hg+tf = 1. Applying
the quotient map π : k[x]→ R, we see that

(h+ I)(g + I) = 1 + I in R

as required.

(iii)⇒ (i): HW

4.4. Examples:

(i) Polynomials of degree 1, but not 0 (since the latter are units)

(ii) If f is irreducible in k[x], then f does not have any roots in k (by the
Remainder theorem). However, the converse is not true. For instance,
f(x) = (x2 + 1)(x2 + 2) ∈ R[x] has no roots in R, but is reducible.

(iii) x2 − 2 is irreducible in Q[x], but not R[x].

(iv) x2 + 1 is irreducible in R[x] and R[x]/(x2 + 1) ∼= C (without proof)

(v) By FTA, f ∈ C[x] is irreducible iff deg(f) = 1

(vi) By Corollary 3.9, f ∈ R[x] is irreducible iff either deg(f) = 1 or f(x) =
β(x− z)(x− z) for some z ∈ C \ R and β ∈ R

4.5. (Unique Factorization - I): If 0 6= f ∈ k[x], then f can be express as a product of
irreducibles.

Proof. We induct on deg(f). If deg(f) ≤ 1, then there is nothing to prove. So
assume that deg(f) > 1 and that the theorem is true for any polynomial g ∈ k[x]
with deg(g) < deg(f). If f itself is irreducible, then there is nothing to prove, so
suppose f is reducible, then ∃g, h ∈ k[x] \ k such that

f(x) = g(x)h(x)

Now deg(g), deg(h) < deg(f), so, by the induction hypothesis, both g and h can
be expressed as a product of irreducibles. This proves the same for f .

4.6. (Euclid’s Lemma): Let f, g, h ∈ k[x] such that f | gh
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(i) If (f, g) = 1, then f | h
(ii) In particular, if f ∈ k[x] is irreducible, then either f | g or f | h

Proof. (i) If (f, g) = 1, then ∃s, t ∈ k[x] such that sf + tg = 1. If f | gh, then
∃r ∈ k[x] such that rf = gh. Hence,

rsf + rtg = r = sgh+ rtg = (sh+ rt)g

Thus, we get
gh = rf = (sh+ rt)gf

Since k[x] is an integral domain, it follows that h = (sh+ rt)f and so f | h
(ii) If f is irreducible, then (f, g) | f implies that (f, g) = 1 or (f, g) = cf for

some c ∈ k. In the former case, f | h by part (i), and in the latter case,
f = c−1(f, g) | g

(End of Day 5)

4.7. (Unique Factorization - II): If 0 6= f ∈ k[x], then the factorization of into irre-
ducibles (as in 4.5) is unique upto constant factors and the order in which the
factors are written.

Proof. Suppose
f = cg1g2 . . . gn = dh1h2 . . . hm (∗)

where gi, hj ∈ k[x] are all monic and irreducible, and c, d ∈ k. Then

(i) Comparing coefficients of the leading term of f , we see that c = d.

(ii) Now we assume that c = d = 1 and we induct on n. If n = 1, then

g1 | h1h2 . . . hm

So by (induction on) Euclid’s lemma, ∃1 ≤ j ≤ m such that g1 | hj. Assume
WLOG that j = 1, then ∃r1 ∈ k[x] such that

r1g1 = h1

Since g1 is irreducible, g1 /∈ k, so since h1 is irreducible, r1 ∈ k. Since g1 and
h1 are both monic, it follows that r1 = 1. Hence, (∗) becomes

g1 = g1h2h3 . . . hm

If m > 1, then comparing degrees, we see that hi ∈ k for all 2 ≤ i ≤ m. Since
each hi is irreducible, this cannot happen. Hence, m = 1 and we are done.
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(iii) Now if n > 1, assume that the theorem is true for any polynomial g that
can be expressed as a product of (n − 1) irreducibles. Then, by the same
argument as part (ii), we see that g1 = h1, so (∗) becomes

g1g2 . . . gn = g1h2 . . . hm

Since k[x] is an integral domain, this implies that

g := g2g3 . . . gn = h2h3 . . . hm

By induction, n − 1 = m − 1 and gi = hi (upto a change in order). This
completes the proof.

5. Irreducibility over Q
5.1. Remark:

(i) A polynomial f ∈ Z[x] is said to be irreducible over Z if f 6= ±1 and if
f(x) = g(x)h(x) for some g, h ∈ Z[x], then either g = ±1 or h = ±1.

(ii) We say that f ∈ Z[x] can be properly factored in Z[x] if ∃g, h ∈ Z[x] \Z such
that f(x) = g(x)h(x).

(iii) Note that

(a) Note that Theorem 4.3 no longer holds over Z. For instance f(x) = x is
irreducible over Z, but

Z[x]/(x) ∼= Z

which is not a field.

(b) f(x) = 2x is reducible in Z[x], but cannot be properly factored in Z[x].

(c) In [Stewart, Definition 3.10], he defines a polynomial in Z[x] to be irre-
ducible iff it cannot be properly factored. This is incorrect.

(d) If f ∈ Z[x] is monic, then it is irreducible in Z[x] iff it cannot be properly
factored.

(iv) If p ∈ Z is prime, then the quotient map π : Z → Zp induces a surjective
homomorphism π : Z[x]→ Zp[x] whose kernel is

pZ[x] = {pf : f ∈ Z[x]}

We write a := π(a) for all a ∈ Z and f := π(f) for all f ∈ Z[x]

5.2. Lemma: Let p ∈ Z be a prime number and g, h ∈ Z[x] be such that p | gh in Z[x]
(ie. ∃f ∈ Z[x] such that pf = gh), then either p | g or p | h in Z[x]
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Proof. Consider the map π : Z[x]→ Zp[x] as above, then by hypothesis

gh = 0

Since Zp is a field, Zp[x] is an integral domain (by Lemma 2.2), and so either g = 0
or h = 0. This is the same as saying that either p | g or p | h in Z[x].

5.3. (Gauss’ Lemma): Let f ∈ Z[x], then f is irreducible in Q[x] iff it cannot be
properly factored in Z[x]

Note: Gauss’ Lemma is specific to the pair (Z,Q). Compare it with the fact that
(x2 − 2) is irreducible in Q[x], but not in R[x].

Proof. Note that if f is irreducible in Q[x], it clearly cannot be properly factored
in Z[x]. We now prove the converse: Suppose f cannot be factored in Z[x], but
∃g, h ∈ Q[x] \Q such that

f(x) = g(x)h(x)

Multiplying throughout by the common denominator, we may express this equation
as

n1f = g1h1 (∗)

for some n1 ∈ Z, and g1, h1 ∈ Z[x] \ Z. We claim that ∃g′, h′ ∈ Z[x] \ Z such that
deg(g′) = deg(g), deg(h′) = deg(h) and

f = g′h′ (∗∗)

This would contradict the assumption on f . To do this, we induct on |n1|.
(i) If n1 = ±1, then the claim clearly holds.

(ii) If |n1| > 1, let p ∈ Z be any prime number dividing n1, p | g1h1. By Lemma
5.2, either p | g1 or p | h1. Assume WLOG that p | g1, then ∃g2 ∈ Z[x] such
that

nf = pg2h1

Since Z[x] is an integral domain, we may cancel p on both sides to obtain an
equation of the form

n2f = g2h2

Note that g2, h2 ∈ Z[x] \ Z. Furthermore, |n2| < |n1|. Hence, by induction
hypothesis, the claim holds and we are done.

(End of Day 6)

5.4. (Eisenstein’s criterion): Let f(x) = a0 +a1x+ . . .+anx
n ∈ Z[x], and suppose there

is a prime p ∈ Z such that

(i) p | ai for all i ∈ {0, 1, . . . , n− 1}
(ii) p - an
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(iii) p2 - a0

Then f is irreducible in Q[x]

Proof. By Gauss’ lemma, it suffices to show that f cannot be properly factored in
Z[x]. Suppose that ∃g, h ∈ Z[x] \ Z such that

f(x) = g(x)h(x)

Then write g(x) = b0 + b1x + . . . + bmx
m and h(x) = c0 + c1x + . . . + ckx

k where
m, k > 0 and m + k = n. Then applying the quotient map π : Z[x] → Zp[x], we
see that

f(x) = anx
n = gh

Note that Zp is a field and x is irreducible in Zp[x]. Hence, by Unique Factoriza-
tion (Theorem 4.7) in Zp[x], it follows that g and h must themselves be constant
multiples of some power of x. Since p - an = bmck, it follows that p - bm and p - ck.
Hence,

g(x) = bmx
m and h(x) = ckx

k

In particular, since m, k > 0,

p | b0 and p | c0

Hence, p2 | a0, contradicting (iii).

5.5. Examples:

(i) x5 + 10x+ 5 is irreducible over Q
(ii) x4

9
+ 4x

3
+ 1

3
∈ Q[x] is irreducible

(iii) If p ∈ Z is prime, then xn− p ∈ Q[x] is irreducible. Hence, n
√
p /∈ Q for n ≥ 2

(iv) If p ∈ Z is prime,

Φp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + . . .+ x+ 1

is irreducible in Q[x] (HW)

5.6. (Reduction mod p) Let f(x) = a0 + a1x + . . . + anx
n ∈ Z[x] and p a prime such

that

(i) p - an
(ii) f is irreducible in Zp[x] for some prime p ∈ Z

Then f is irreducible in Q[x].

Proof. By Gauss Lemma, it suffices to show that f cannot be properly factored in
Z[x]. So write f(x) = a0 +a1x+ . . .+anx

n and suppose ∃g, h ∈ Z[x]\ Z such that

f(x) = g(x)h(x)
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Write g(x) = b0 + b1x+ . . .+ bmx
m and h(x) = c0 + c1x+ . . .+ ckx

k. Applying the
quotient map π : Z[x]→ Zp[x], we get

f = gh in Zp[x]

Since p - an, f 6= 0. Since p - an,

p - bm and p - ck
Hence, deg(g) = m, deg(h) = k. However, f is irreducible in Zp[x] and so either
g ∈ Zp or h ∈ Zp. Assume WLOG that g ∈ Zp, then m = 0 and hence g ∈ Z.

5.7. Example:

(i) Let f(x) = 8x3 − 6x− 1, then we have to choose p ∈ Z carefully (p = 2 does
not work). For p = 5,

f(x) = 3x3 − x− 1

Since deg(f) ≤ 3, to show that f is irreducible in Z5[x], it suffices to show
that it does not have a root in Z5. This is easy to check since there are only
finitely many elements in Z5

(ii) x4+1 is irreducible in Z[x], but its image is reducible in Z2[x]. So the converse
of 5.7 is not true (HW).

5.8. (Rational Root Theorem): Let f(x) = a0 + a1x + . . . + anx
n ∈ Z[x] have a root

p/q ∈ Q where (p, q) = 1. Then

(i) p | a0 and q | an
(ii) In particular, if f is monic, then every rational root of f must be an integer.

Proof. Part (ii) follows from part (i), so we only prove (i). If p/q is a root, then
x− p/q divides f in Q[x], so

g(x) = qx− p
divides f in Q[x]. So, ∃h ∈ Q[x] such that gh = f . Multiplying by the common
denominator, we obtain an equation of the form

gh1 = n1f

If r | n1 is any prime, then r | gh1, and so by Lemma 5.2, r | g or r | h1. Since
(p, q) = 1, it follows that r - g and so r | h1. Hence, ∃h2 ∈ Z[x] such that

rgh2 = r
(n1

r

)
f

Since Z[x] is an integral domain, we may cancel r to obtain

gh2 = n2f

for some n2 ∈ Z with |n2| < |n1|. By induction on the number of primes dividing
n1, we finally obtain an equation of the form

ghk = f

for some hk ∈ Z[x]. From this it follows that q | an and p | a0.
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5.9. Remark:

(i) The same proof as above can be used to prove the following: Let g, f ∈ Z[x]
be two polynomials such that g | f in Q[x] and the GCD of the coefficients
of g is 1. Then g | f in Z[x]

(ii) Gauss’ Lemma is used to prove that every element f ∈ Z[x] can be expressed
uniquely as a product of irreducibles.

(End of Day 7)
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II. Field Extensions

1. Simple Extensions

Motivation: Let f ∈ Q[x] and α ∈ C be a root of f . We want to know whether α
can be obtain from the coefficients of f by algebraic operations, and radicals. To
do this, we look at the field

Q(α) = the smallest field containing Q and α

and understand the relationship between Q and Q(α)

Note: All fields in this section will be subfields of C
1.1. Definition:

(i) A field extension is a pair of fields (k, L) such that there is a field homomor-
phism ι : k → L. We simply write k ⊂ L to denote such a field extension.

Note: If F is a non-empty family of fields, then so is⋂
L∈F

L

(ii) Let k be a field and X ⊂ C. Let F denote the collection of all fields containing
k ∪X. Note that F 6= ∅ since C ∈ F . We write

k(X) =
⋂
L∈F

L

Note that k(X) is the smallest field containing k and X.

(iii) If X = {α} above, then we write k(α) := k({α}). The field extension k ⊂
k(α) is called a simple extension. The element α is called a generator of the
simple extension.

1.2. Examples:

(i) Q ⊂ R,Q ⊂ C are field extensions, but neither are simple (proof later)

(ii) R ⊂ C is a simple extension. C = R(i) (See I.3.1). Note that C = R(i + 1)
as well, so the generator may not be unique.

(iii) By HW 1.4, every subfield k ⊂ C contains Q. So Q ⊂ k is a field extension.

(iv) Let F = {a + b
√

2 : a, b ∈ Q}, then by Example 1.2(iii), F is a field. Hence,
Q ⊂ F is a field extension. Note that F = Q(

√
2)
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(v) Let K = Q(
√

2,
√

3), then K = Q(
√

2 +
√

3) and is hence a simple extension

Proof. Let F = Q(
√

2 +
√

3), then

(a)
√

2 +
√

3 ∈ K and K is a field, so F ⊂ K by definition.

(b) Furthermore, y :=
√

2 +
√

3 6= 0, so

y−1 =
1√

2 +
√

3
=

√
2−
√

3

2− 3
=
√

3−
√

2 ∈ F

Hence,
y + y−1

2
=
√

3 ∈ F and
√

2 ∈ F

Hence, K ⊂ F by definition.

1.3. Definition: Let k ⊂ C be a field and α ∈ C
(i) We say that α is algebraic over k if ∃f ∈ k[x] such that f(α) = 0

(ii) We say that α is transcendental over k if α is not algebraic over k

1.4. Examples:

(i) If α ∈ k, then α is algebraic over k

(ii)
√

2 is algebraic over Q
(iii) π is transcendental over Q (without proof)

(iv) π is algebraic over R
(v) Every complex number is algebraic over R.

1.5. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Then ∃ unique
polynomial f ∈ k[x] such that

(i) f is monic

(ii) f is irreducible

(iii) f(α) = 0

Furthermore, if g ∈ k[x] is any polynomial, then g(α) = 0 iff f | g in k[x]. This is
call the minimal polynomial of α over k and is denot by mα := mα,k.

Proof. (i) Existence:Let
I := {g ∈ k[x] : g(α) = 0}

Then I is an ideal (Check!). Hence, ∃f ∈ k[x] such that I = (f). By
multiplying by a constant, we may assume that f is monic. Clearly, f(α) = 0
and g(α) = 0 iff f | g. It suffices to show that f is irreducible. So suppose
f = gh in k[x], then

g(α)h(α) = 0 in C⇒ g(α) = 0 or h(α) = 0

Assume WLOG that g(α) = 0, then g ∈ I, so f | g. Hence, (why?) h ∈ k
and we are done.
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(ii) Uniqueness: Suppose f1, f2 ∈ k[x] satisfying (i)− (iii), then f1, f2 ∈ I where
I as above. Hence, following the argument above, f1 | f2 and f2 | f1. Hence,
∃c ∈ k such that

f2 = cf1

Since both are monic, c = 1.

1.6. Examples:

(i) If α ∈ k, then mα(x) = x− α
(ii) If k = Q, α =

√
2, then mα(x) = x2 − 2 (because x2 − 2 is irreducible by

Eisenstein’s criterion)

(iii) If k = R, α =
√

2, then mα(x) = x−
√

2

(iv) If k = Q, ω = e2πi/3, then mω(x) = Φ2(x) = x2 +x+1 (Since Φ2 is irreducible,
monic and Φ2(ω) = 0)

(End of Day 8)

1.7. Definition: Let k ⊂ L1 and k ⊂ L2 be field extensions.

(i) A homomorphism of field extensions (or a k-homomorphism) is a field homo-
morphism ϕ : L1 → L2 such that ϕ|k= idk

(ii) An isomorphism of field extensions is a bijective homomorphism. If such an
isomorphism exists, we write

L1
∼=k L2

1.8. Examples:

(i) Consider R ⊂ C, then the map z 7→ z is a R-homomorphism from C to C
(ii) The map ϕ : Q(

√
2)→ C given by (a+b

√
2) 7→ (a−b

√
2) is a Q-homomorphism.

In fact, it induces a Q-isomorphism of Q(
√

2) to itself.

(iii) If L1, L2 ⊂ C any two fields, then any field homomorphism ϕ : L1 → L2 is a
Q-homomorphism (by Example I.1.4(iii))

1.9. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Then

(i) k ⊂ k[x]/(mα) is a field extension

(ii) k[x]/(mα) ∼=k k(α)

Proof. (i) Let L = k[x]/(mα), then L is a field by I.4.3 and II.1.5. There is a
field homomorphism

ι : k → L given by k ↪→ k[x]
π−→ k[x]/(mα)
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(ii) Since k(α) is a field, and k ⊂ k(α), we may define a homomorphism (by HW
1.5)

ψ : k[x]→ k(α) such that ψ|k= idk and ψ(x) = α

Let I = ker(ψ), then by definition

I = {g ∈ k[x] : g(α) = 0}

By the proof of Theorem 1.5, I = (mα), so we have an isomorphism of fields

ψ : L→ Im(ψ)

Since L is a field, so is Im(ψ). Since Im(ψ) contains k and α, Im(ψ) = k(α),
and so

L ∼= k(α)

Now observe that the isomorphism fixes k (since ψ fixes k)

1.10. Corollary:

(i) Let k ⊂ C and α, β ∈ C be algebraic over k with the same minimal polyno-
mial. Then there is an isomorphism of field extensions k(α) ∼=k k(β) which
sends α 7→ β.

(ii) If p ∈ k[x] is a monic irreducible polynomial, and α, β ∈ C are two roots of
p, then there exists a homomorphism of field extensions ϕ : k(α) → C such
that ϕ |k= idk and ϕ(α) = β

Proof. We only prove (i): Consider the isomorphisms

ϕ : k[x]/(mα)→ k(α) and ψ : k[x]/(mβ)→ k(β)

Note that ϕ(x) = α and ψ(x) = β. Since mα = mβ, we obtain an isomorphism
η := ψ ◦ ϕ−1 : k(α)→ k(β), and note that η|k= idk and η(α) = β

1.11. Definition: Let k be a field. The field of rational functions k(x) over k is defined
as the set of formal rational functions over k

k(x) =

{
f(x)

g(x)
: f, g ∈ k[x], g 6= 0

}
1.12. Remark:

(i) k[x] 6= k(x) for any field k because x is not invertible in k[x] (Why?)

(ii) The notation k(x) is used because it is the smallest field containing k and x

(iii) k(x) is the field of quotients of the integral domain k[x].

1.13. Theorem: Let k be a field and α ∈ C be transcendental over k. Then

k(α) ∼=k k(x)
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Proof. Define ψ : k(x)→ k(α) by

ψ

(
f(x)

g(x)

)
=
f(α)

g(α)

Since α is transcendental, g(α) 6= 0 for any g 6= 0, and so this map is well-defined.
It is easy to see that it is a field homomorphism (Check!). Since Im(ψ) contains
k and α, ψ is surjective. Since k(x) is a field, ψ is injective (Corollary 1.7), and
hence an isomorphism.

2. Degree of an Extension

2.1. Remark:

(i) Let k ⊂ L be a field extension, then L is a k−vector space.

(ii) If k ⊂ L1 and k ⊂ L2 are two extensions, then a homomorphism ϕ : L1 → L2

of k−extensions is a k-linear map of vector spaces.

2.2. Definition: Let k ⊂ L be a field extension

(i) The dimension of L as a k−vector space is called the degree of the extension
and is denoted by [L : k]

(ii) If [L : k] <∞, then k ⊂ L is called a finite extension

2.3. Example:

(i) [C : R] = 2 (by I.3.1)

(ii) Similarly, [Q(
√

2) : Q] = 2

(iii) If Q ⊂ L is a finite extension, then ∃n ∈ N such that L ∼= Qn (as vector
spaces). In particular, L must be countable. Hence, Q ⊂ R is not a finite
extension.

(iv) If k ⊂ C and α ∈ C is transcendental over k, then k ⊂ k(α) is an infinite
extension. (Since the set {1, α, α2, α3, . . .} is linearly independent over k)

(End of Day 9)

2.4. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Let mα ∈ k[x] be
the minimal polynomial of α over k, and let n = deg(mα). Then

(i) {1, α, α2, . . . , αn−1} is a basis for k(α) over k

(ii) In particular, [k(α) : k] = deg(mα) <∞

Proof. Clearly (i) implies (ii), so we only prove (i): Consider S := {1, α, α2, . . . αn−1},
then we WTS: S is a basis for k(α) over k

28



(i) S is linearly independent: If ∃a0, a1, . . . , an−1 ∈ k such that

n−1∑
i=0

aiα
i = 0

Then for f(x) =
∑n−1

i=0 aix
i, we have f ∈ k[x] and f(α) = 0. Since deg(f) < n,

this contradicts the minimality of n = deg(mα)

(ii) S is a generating set: If u ∈ k(α), then consider the isomorphism

ψ : k[x]/(mα)→ k(α)

Since ψ is surjective, and π : k[x]→ k[x]/(mα),∃g ∈ k[x] such that

g(α) = ψ(π(g)) = u

Write g(x) = b0 + b1x + . . . + bmx
m, then by Euclidean division, ∃t, r ∈ k[x]

such that
g = tmα + r and deg(r) < deg(mα) or r = 0

Now note that π(g) = π(r), and so

g(α) = r(α)

Replacing g by r, we may assume WLOG that either g = 0 or deg(g) < n. If
g = 0, then u = 0 and there is nothing to show. If deg(g) < n, then

u = g(α) =
m∑
i=0

biα
i ∈ Span(S)

2.5. Examples:

(i) Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}, which explains Example I.1.2

(ii) Q( 3
√

2) = {a+ b21/3 + c22/3 : a, b, c ∈ Q}. In particular

22/3 /∈ {a+ b21/3 : a, b ∈ Q} =: F

so F is not a ring.

(iii) C = {a+ ib : a, b ∈ R} (See I.3.1)

(iv) Let p ∈ Z be a prime number and ζp := e2πi/p ∈ C, then Φp is the minimal
polynomial of ζp (See HW 3.1), so

[Q(ζp) : Q] = p− 1

2.6. Corollary: Let k ⊂ K be a field extension and α ∈ C be algebraic over k. Then
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(i) α is algebraic over K

(ii) [K(α) : K] ≤ [k(α) : k]

Proof. (i) If α is a root of a non-zero f ∈ k[x], then f ∈ K[x] as well.

(ii) Let f, g denote the minimal polynomials of α over k and K respectively. Then

(a) g is irreducible in K[x]

(b) f ∈ K[x] and f(α) = 0

Hence, by Theorem II.1.5, g | f in K[x]. In particular, by II.2.5,

[K(α) : K] = deg(g) ≤ deg(f) = [k(α) : k]

2.7. (Tower Law) If k ⊂ F and F ⊂ L are two field extensions, then

[L : k] = [L : F ][F : k]

Proof. Let S and T be bases for k ⊂ F and F ⊂ L respectively. Define

B = {xy : x ∈ S, y ∈ T}

(i) B is a generating set for k ⊂ L: If α ∈ L,∃a1, . . . , an ∈ F and y1, y2, . . . , yn ∈
T such that

α =
n∑
i=1

aiyi

For each ai ∈ F, ∃b1, b2, . . . , bi,si and x1, x2, . . . , xsi ∈ S such that

ai =

si∑
j=1

bjxj

Hence,

α =
n∑
i=1

si∑
j=1

bj(xjyi) ∈ Spank(B)

(ii) B is k-linearly independent: If ∃a1, a2, . . . , an ∈ k and z1, z2, . . . , zn ∈ B such
that

n∑
i=1

aizi = 0

Then write zi = xiyi for some xi ∈ S, yi ∈ T , then bi = aixi ∈ F and
{y1, y2, . . . yn} is F -linearly independent. Hence bi = 0 for all i. But each
xi 6= 0 (since S is k-linearly independent) and so ai = 0 for all i
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(iii) |B| = |S||T |: It suffices to show that the map

S × T → B given by (x, y) 7→ xy

is bijective. By definition, it is surjective, so suppose x1y1 = x2y2 for some
xi ∈ S, yi ∈ T . Then

x1y1 − x2y2 = 0 (∗)

and xi ∈ S ⊂ F . If y1 6= y2, then {y1, y2} is F -linearly independent, and so
x1 = x2 = 0. This is impossible since S is k-linearly independent (and so
0 /∈ S). Hence,y1 = y2 must hold. But then (∗) implies that

(x1 − x2)y1 = 0

Once again, y1 6= 0 since 0 /∈ T , and so x1 = x2 must hold.

2.8. Examples:

(i) [Q(
√

2,
√

3) : Q] = 4

Proof. Let K = Q(
√

2), L = Q(
√

2,
√

3), then we have a tower Q ⊂ K ⊂ L,
and [K : Q] = 2 by Example II.2.3. Hence by the tower law, it suffices to
show that

[L : K] = 2

Since L = K(
√

3), by Corollary II.2.6,

[L : K] ≤ 2 and [L : K] = 1 iff
√

3 ∈ K

Suppose
√

3 ∈ K, then ∃a, b ∈ Q such that

√
3 = a+ b

√
2

⇒ 3 = a2 + 2b2 + 2
√

2ab

We now have three cases:

(a) If ab 6= 0, then
√

2 ∈ Q, which is impossible. Hence a = 0 or b = 0.

(b) If b = 0, then
√

3 = a ∈ Q which is not true.

(c) If a = 0, then √
3 = b

√
2⇒

√
6 = 2b ∈ Q

But x2 − 6 ∈ Q[x] is irreducible by Eisenstein’s criterion with p = 2.

Hence,
√

3 /∈ K and so [L : K] = 2.

(End of Day 10)

(ii) If [L : k] is prime, then

(a) There are no non-trivial intermiate fields k ⊂ F ⊂ L
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(b) k ⊂ L is a simple extension

Proof. (a) If k ⊂ F ⊂ L, then [L : F ] | [L : k].

(b) Since [L : k] is prime, k 6= L, so fix α ∈ L\k, then k(α) ⊂ L by definition,
and k 6= k(α). So by part (a), k(α) = L.

(iii) Let f(x) = x3 + 6x+ 2 ∈ Q[x]. Then f is irreducible over Q( 4
√

2) (HW 4)

2.9. Corollary: Let k ⊂ F1 and k ⊂ F2 be two finite field extensions (all contained in
C). Let L denote the smallest field containing both F1 and F2. Then

(i) [L : F2] ≤ [F1 : k]

(ii) [L : k] ≤ [F1 : k][F2 : k]

(iii) If [F1 : k] and [F2 : k] are relatively prime, then equality holds in part (ii).

L is called the compositum of F1 and F2 and is denoted by F1F2

Proof. (i) Let S = {x1, x2, . . . , xn} be a k-basis for F1. Let

F = SpanF2
(S)

• We claim that F is a field:

(a) If u =
∑n

i=1 aixi, v =
∑n

i=1 bixi ∈ F with ai, bj ∈ F2, then

uv =
∑
i,j

aibjxixj

But xixj ∈ F1 = Spank(S), and hence uv ∈ SpanF2
(S), and so F is a

ring.

(b) If 0 6= u ∈ F , we WTS: u−1 ∈ F . To see this, consider the map

T : F → F given by y 7→ yu

This map is F2-linear. Also, T is injective, because if y1u = y2u, then
y1 = y2 since u 6= 0. Since F is a finite dimensional F2-vector space,
T is also surjective. In particular, ∃v ∈ F such that

vu = T (v) = 1

Similarly, ∃w ∈ F such that uw = 1. Thus, u is invertible in F

• Now we claim that L = F

(a) Since F is a field, and k, S ⊂ F , we have F1 ⊂ F . Since F2 ⊂ F , we
have

L ⊂ F

by definition.
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(b) However, since F1 ⊂ L, we have S ⊂ L. Since F2 ⊂ L, it follows that
SpanF2

(S) ⊂ L

From this claim, it follows that

[L : F2] ≤ |S| = [F1 : k]

(ii) By the tower law and part (i)

[L : k] = [L : F2][F2 : k] ≤ [F1 : k][F2 : k]

(iii) If m := [F1 : k] and n := [F2 : k], then by part (ii)

[L : k] ≤ mn

However, [L : k] = [L : F2][F2 : k] and so m | [L : k]. Similarly, n | [L : k].
Since (m,n) = 1, it follows that

mn | [L : k]

and hence [L : k] = mn.

2.10. Example: Let F1 = Q( 3
√

2), F2 = Q(ω 3
√

2) where ω = e2πi/3, then

(i) F1F2 = Q( 3
√

2, ω)

(ii) [Q( 3
√

2, ω) : Q] = 6 < 9 = [F1 : Q][F2 : Q]

So strict inequality may hold in part (ii) (HW 4)

3. Algebraic Extensions

3.1. Definition: A field extension k ⊂ L is said to be algebraic if every element of L is
algebraic over k

3.2. Theorem:

(i) If k ⊂ L is finite extension, then it is algebraic.

(ii) If α ∈ C is algebraic over k, then k ⊂ k(α) is algebraic.

Proof. (ii) follows from (i) by Theorem II.2.4, so we only prove (i): Suppose k ⊂ L
is finite, and α ∈ L, then if n := [L : k], we must have that the set

{1, α, α2, . . . , αn}

is k-linearly dependent. Hence, ∃ai ∈ k not all zero such that

n∑
i=0

aiα
i = 0

Now f(x) =
∑n

i=0 aix
i ∈ k[x] is non-zero and f(α) = 0
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Example: If ζ5 := e2πi/5 ∈ C, then Q ⊂ Q(ζ5) is algebraic. In particular, cos(2π/5)
is algebraic over Q. Moreover, by the proof of the theorem, it is clear that cos(2π/5)
satisfies a non-zero polynomial of degree ≤ 4 over Q.

(End of Day 11)

3.3. Definition: A field extension k ⊂ L is said to be finitely generated if ∃α1, α2, . . . , αn ∈
L such that L = k(α1, α2, . . . , αn)

3.4. Theorem: k ⊂ L is a finite extension iff it is algebraic and finitely generated.

Proof. (i) If k ⊂ L is finite, then

(a) k ⊂ L is algebraic by Theorem 3.2

(b) Let S = {α1, α2, . . . , αn} be a k-basis for L, then (Check!)

L = k(α1, α2, . . . , αn)

Hence k ⊂ L is finitely generated.

(ii) Conversely, suppose k ⊂ L is algebraic and finitely generated, write

L = k(α1, α2, . . . , αn)

To show: [L : k] <∞, we induct on n.

(a) If n = 1, then L = k(α1) and α1 is algebraic over k. So [L : k] < ∞ by
Theorem II.2.4

(b) If n > 1, assume the theorem is true for any field extension k ⊂ K with
a generating set S such that |S| < n. Now take

K = k(α1, α2, . . . , αn−1)

By induction hypothesis, k ⊂ K is finite. Furthermore, αn is algebraic
over k, so αn is algebraic over K by II.2.6, so

K ⊂ K(αn) = L

is finite. So by Tower law, k ⊂ L is finite.

3.5. Remark: If L = k(α1, α2, . . . , αn) where each αi is algebraic over k, then by the
proof of the previous theorem,

[L : k] ≤
n∏
i=1

[k(αi) : k] =
n∏
i=1

deg(mαi)

3.6. Theorem: Suppose k ⊂ F and F ⊂ L are algebraic extensions, then k ⊂ L is
algebraic.
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Proof. Suppose α ∈ L, then WTS: α is algebraic over k. We know that α is
algebraic over F , so ∃f ∈ F [x] non-zero such that

f(α) = 0

Write f(x) = a0 + a1x + . . . + anx
n, then each ai ∈ F . In particular, each ai is

algebraic over k. Write
K = k(a0, a1, . . . , an)

Then k ⊂ K is algebraic and finitely generated. By Theorem 3.5,

k ⊂ K

is finite. Now α is algebraic over K since f ∈ K[x]. Hence,

K ⊂ K(α)

is finite by Theorem II.2.4. By the tower law,

[K(α) : k] <∞

In particular, by Theorem 3.2, α is algebraic over k.

3.7. Lemma: Let F ⊂ C be a field, then TFAE:

(i) If f ∈ F [x] \ F is any polynomial, then f has a root in F

(ii) If f ∈ F [x] \ F , then every complex root of f is in F

(iii) If F ⊂ L is an algebraic extension, then F = L

If these conditions holds, we say that L is algebraically closed.

Proof. We prove (i)⇒ (ii)⇒ (iii)⇒ (i).

(i) ⇒ (ii): If f ∈∈ F [x], we WTS: every root of f is in F . To do this, we induct on
n := deg(f).

(a) If n ≤ 1, there is nothing to prove.

(b) If n > 1, then assume the statement is true for any polynomial g ∈ F [x]
with deg(g) < n. Now let α ∈ C be a root of f . By assumption, f has
a root β ∈ F . If α = β, there is nothing to prove, so assume α 6= β. If
not, then by the remainder theorem, ∃g ∈ F [x] such that

f(x) = (x− α)g(x)

Hence, g(β) = 0 and deg(g) < n. So by induction hypothesis, β ∈ F .

(ii) ⇒ (iii): If F ⊂ L is algebraic extension and α ∈ L, then α is algberaic over F , so
∃f ∈ F [x] such that f(α) = 0. By hypothesis, α ∈ F . This is true for any
α ∈ L, so L = F .
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(iii) ⇒ (i): If f ∈ F [x] \ F , then by FTA, f has a root α ∈ C. Thus, if L = F (α),
then F ⊂ L is an algebraic extension (by Theorem 3.2). By hypothesis, this
implies L = F , and so α ∈ F .

3.8. Theorem: Let k ⊂ C be a field and

F := {α ∈ C : α is algebraic over k}

Then

(i) F is a field

(ii) F is algebraically closed.

(iii) If L is any other algebraically closed field such that k ⊂ L, then F ⊂ L.

F is called the algebraic closure of k and is denoted by k

Proof. (i) Suppose α, β ∈ F , then

[k(α) : k] <∞ and [k(β) : k] <∞

Hence, by Corollary II.2.9,

[k(α, β) : k] <∞

By Theorem 3.2, every γ ∈ k(α, β) is algebraic over k. In particular, α+β, αβ,
and, if 0 6= α, then α−1 are all in F

(ii) If F ⊂ L is an algebraic extension, then we WTS: L = F . But note that
k ⊂ F is algebraic by definition. Hence by Theorem 3.6, k ⊂ L is algebraic.
Hence, every α ∈ L is algebraic over k. By definition, this implies α ∈ F ,
and so F = L.

(iii) Suppose L is algebraically closed and k ⊂ L, then, for any α ∈ F, α is
algebraic over k. Hence, α is algebraic over L, so

L ⊂ L(α)

is an algebraic extension. By 3.7(iii), L = L(α). In particular, α ∈ L. This
is true for any α ∈ F , so F ⊂ L.

(End of Day 12)

3.9. Remark/Examples:

(i) C is algebraically closed by FTA.

(ii) R = C

(iii) k = k

36



(iv) Q is the smallest subfield of C that is algebraically closed (by HW 1.3 and
Theorem 3.8(iii))

(v) Q ⊂ Q is an infinite algebraic extension. (In particular, the converse of
Theorem 3.2(i) is false)

Proof. For each n ∈ N, [Q( n
√

2) : Q] ≥ n and Q( n
√

2) ⊂ Q.

(vi) Q is countable, so there exist transcendental real numbers.

(vii) If p ∈ Z is a prime, then k = Zp =: Fp is a field (not contained in C). However,
one can use Zorn’s lemma to construct another field L with the properties of
Theorem 3.7. This field is unique, and is also called the algebraic closure of
Zp and is denoted by Fp (See [Garling, Chapter 8])

3.10. Theorem: Let k ⊂ F1 and k ⊂ F2 be algebraic extensions, then k ⊂ F1F2 is
algebraic.

Proof. By definition, F1 ⊂ k and F2 ⊂ k. Since k is a field, F1F2 ⊂ k

4. Primitive Element Theorem

(Taken from [Greenberg]) Throughout this section, let k be a field with k ⊂ C.

4.1. Definition: A polynomial f ∈ k[x] is said to be separable if all its roots in C are
distinct. ie. every complex root of f has multiplicity 1 (See Definition I.2.8)

4.2. Remark: Let f(x) = a0 + a1x+ . . .+ anx
n ∈ k[x], then

D(f) := a1 + 2a2x+ 3a3x
2 + . . .+ nanx

n−1

is called the formal derivative of f . Note that

(i) D(f) ∈ k[x]

(ii) D(f + g) = D(f) +D(g)

(iii) If λ ∈ k, then D(λf) = λD(f)

(iv) D(fg) = fD(g) + gD(f) [Leibnitz’ rule]

(v) deg(D(f)) < deg(f)

4.3. Theorem: Let k ⊂ C and f ∈ k[x]. Then f is separable iff (f,D(f)) = 1 in k[x]

Proof. Assume f ∈ k[x] \ k and let α ∈ C be a root of f . Then ∃m ∈ N and
g ∈ C[x] such that

f(x) = (x− α)mg(x) and g(α) 6= 0

Then by the Leibnitz rule

D(f)(x) = m(x− α)m−1g(x) + (x− α)mD(g)(x)

Hence,

D(f)(α) = 0⇔ m ≥ 1

⇔ α is a multiple root of f (∗)
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(i) Suppose d = (f,D(f)) 6= 1, then d ∈ k[x] \ k, so d has a root α ∈ C. Then

f(α) = 0 and D(f)(α) = 0

So by (∗), α is a multiple root of f .

(ii) Conversely, if f is not separable, then f has a multiple root α ∈ C. Then by
(∗),

D(f)(α) = 0

So if mα ∈ k[x] denote the minimal polynomial for α over k, then it must
happen that

mα | f and mα | D(f) in k[x]

Hence, mα | (f,D(f)) 6= 1 (since mα is irreducible and hence not in k)

4.4. Corollary: Let k ⊂ C be a field and f ∈ k[x] be irreducible, then f is separable.

Proof. If f is irreducible, and d = (f,D(f)), then d | f so d = 1 or d = cf for
some c ∈ k. However,

d | D(f)⇒ deg(d) ≤ deg(D(f)) < deg(f)

Hence, d = 1 and Theorem II.4.3 applies.

4.5. Lemma: Let k ⊂ C be a field and f, g ∈ k[x] be irreducible polynomials. Let
{α1, α2, . . . , αn} and {β1, β2, . . . , βm} be the set of roots of f and g in C respectively.
Then ∃λ ∈ k \ {0} such that

α1 + λβ1 6= αi + λβj ∀1 ≤ i ≤ n, 2 ≤ j ≤ m

Proof. In C[x], write (by I.3.8),

f(x) = c

n∏
i=1

(x− αi) and g(x) = d

m∏
j=1

(x− βj)

Now consider the set

S =

{
αi − α1

β1 − βj
: 1 ≤ i ≤ n, 2 ≤ j ≤ m

}
Note that every ratio in S is well-defined since {βj} are all distinct by Corollary
4.4.

Since k ⊂ C, Q ⊂ k by HW 1.3, so k is infinite. Since S is a finite set, ∃λ ∈ k \ S,
which works. Note that λ 6= 0 since 0 ∈ S.

(End of Day 13)
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4.6. (Primitive Element Theorem): Let k ⊂ L be a finite extension of subfields of C,
then it is a simple extension. ie. ∃θ ∈ L such that L = k(θ)

This element θ is called a primitive element of the field extension k ⊂ L

Proof. Since k ⊂ L is finite, then by Theorem II.3.4, ∃α1, α2, . . . , αn ∈ L such that

• Each αi is algebraic over k

• L = k(α1, α2, . . . , αn)

We induct on n.

(i) If n = 1, there is nothing to show.

(ii) If n > 2, then note that

L = F (αn) where F = k(α1, α2, . . . , αn−1)

If we show that k ⊂ F is simple, then ∃θ1 ∈ F such that F = k(θ1). Then

L = k(θ1, αn)

Hence, it suffices, by induction to prove the case n = 2.

(iii) If n = 2, write L = k(α, β).

(a) Let f, g ∈ k[x] denote the minimal polynomials of α, β respectively. Let
{α1, α2, . . . , αn} and {β1, β2, . . . , βm} denote the sets of roots of f and g
in C respectively. Then, with α = α1, β = β1, choose λ ∈ k as in Lemma
4.5, and set

θ := α + λβ

We claim that L = k(θ). First note that θ ∈ L, so k(θ) ⊂ L.

(b) For the converse, write F = k(θ), and note that

L = F (β) = k(θ, β)

since α = θ−λβ and λ ∈ k. Hence, it suffices to show that β ∈ F . So let
p ∈ F [x] denote the minimal polynomial for β over F . Then, we WTS:
deg(p) = 1.

(c) Since g ∈ F [x] is a polynomial with β as a root, it follows that

p | g in F [x]

Also, if
h(x) = f(θ − λx) ∈ F [x]

Then
h(β) = f(θ − λβ) = f(α) = 0

Hence, p | h. In particular,

T := { roots of p in C} ⊂ { roots of h in C} ∩ {βj : 1 ≤ j ≤ m} (∗)
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(d) However, for each 1 ≤ i ≤ n, 2 ≤ j ≤ m,

θ = α + λβ 6= αi + λβj

⇒ θ − λβj 6= αi

⇒ h(βj) = f(θ − λβj) 6= 0

So it follows that T = {β} and since p is separable (by II.4.4), it follows
that deg(p) = 1. Hence,

[L : F ] = [F (β) : F ] = 1⇒ β ∈ F

Hence, L = F = k(θ) as required.

4.7. Example:

(i) If L = Q(ω, 3
√

2), then Lemma 4.5 provides a recipe to find the primitive
element: Let

f(x) = x2 + x+ 1 and g(x) = x3 − 2

Then the roots of f and g are

{ω, ω2} and { 3
√

2, ω
3
√

2, ω2 3
√

2}

respectively. Consider

S =

{
0,

ω2 − ω
3
√

2− ω 3
√

2
,

ω2 − ω
3
√

2− ω2 3
√

2

}
In particular, λ = 1 /∈ S, so θ = ω + 3

√
2 is a primitive element.

(ii) If L = Q(
√

2,
√

3), then θ =
√

2 +
√

3 works (See Example II.1.2(v))

(iii) Q ⊂ Q is not a simple extension. Hence the primitive element theorem does
not hold for infinite algebraic extensions.

4.8. Corollary: Let k ⊂ L be a finite extension of subfields of C. Then there are only
finitely many intermediate fields k ⊂ F ⊂ L

Proof. Write L = k(α) by the primitive element theorem, and let f = mα,k. If
k ⊂ F ⊂ L is any intermediate field, then L = F (α), so if gF = mα,F , then

gF | f in F [x]⇒ gF | f ∈ L[x]

Now let

F := { intermediate fields k ⊂ F ⊂ L}
D := { monic divisors of f in L[x]}

µ : F → D given by F 7→ gF
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By the above argument, µ is well-defined, and D is clearly a finite set. Hence, it
suffices to show that µ is injective. So suppose F1, F2 ∈ F such that

gF1 = gF2 = g

then let g(x) = b0 + b1x+ . . .+ bmx
m ∈ L[x] and set

F0 = k(b0, b1, . . . , bm) ⊂ F1 ∩ F2

By definition, gF0 | g in F0[x] ⊂ L[x], so

deg(gF0) ≤ deg(g)

= [L : F1]

≤ [L : F0] (since F0 ⊂ F1)

= deg(gF0)

Hence, it follows that [L : F1] = [L : F0] and so F1 = F0. Similarly, F2 = F0, so
F1 = F2

4.9. Remark: Note that, in the above proof,

F1 = F0 = k(a0, a1, . . . , an)

where the ai are the coefficients of gF1 . This gives a constructive way of determining
all intermediate fields of a simple extension. We illustrate this with an example:
Take

k = Q, L = Q(
4
√

2)⇒ f(x) = x4 − 2

so the possible monic divisors of f (with 4
√

2 as a root) in L[x] are multiples of the
4 linear terms

(x− 4
√

2), (x− i 4
√

2), (x+ i
4
√

2), (x+
4
√

2)

Note that there are 23 = 8 such possibilities in C[x]. However, we must disal-
low some of them because i /∈ L (and hence any polynomial with a coefficient
involving i must be disallowed). We list down the remaining polynomials, and
the corresponding intermediate field (obtained by adjoining the coefficients of the
polynomial to Q) below.

g0(x) = (x− 4
√

2) L

g3(x) = (x− 4
√

2)(x+
4
√

2) Q(
√

2)

g4(x) = (x− 4
√

2)(x− i 4
√

2)(x+ i
4
√

2) Q(
4
√

2 +
√

2,
4
√

8) = L

g7(x) = x4 − 2 Q

Hence, the only possible intermediate fields are

{Q,Q(
√

2), L}

(End of Day 14)
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III. Galois Theory

1. The Galois Group

1.1. Examples: List all homomorphisms from k → C:

(i) k = Q: There is only one map, the inclusion (Example I.1.4)

(ii) k = Q(
√

2): There are two maps, {i, j} where j(a + b
√

2) = a − b
√

2 (HW
1.4)

(iii) k = Q(ω): We have the inclusion map

ι : k → C

Suppose ϕ : k → C is another homomorphism, then ϕ is Q-linear (See Ex-
ample 1.8). A Q-basis for k is {1, ω}. Hence, ϕ is completely determined
by

α := ϕ(ω)

Now ω3 = 1, so α3 = 1, so
α ∈ {1, ω, ω2}

However, if α = 1, then ϕ(1) = ϕ(ω), which contradicts the fact that ϕ is
injective. Hence,

α ∈ {ω, ω2}

If α = ω, then ϕ = ι. If α = ω2, then we get the map

j : k → C given by a+ bω 7→ a+ bω2

Hence, there are atmost two homomomorphisms from k → C.

(iv) k = Q( 3
√

2): We have the inclusion map. Suppose ϕ : k → C is any homo-
morphism, then, as above, ϕ is determined by its values on the set

{1, 3
√

2,
3
√

4}

Since ϕ(1) = 1 and ϕ( 3
√

4) = ϕ( 3
√

2)2, it follows that ϕ is completely deter-
mined by

α := ϕ(
3
√

2)

As above, α3 = 2, so α ∈ { 3
√

2, ω 3
√

2, ω2 3
√

2}. Each choice gives a map, so we
have atmost 3 maps from k → C.
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(v) k = Q(
√

2,
√

3): If ϕ : k → C is a homomorphism, then ϕ is determined by
its values on the set

{1,
√

2,
√

3,
√

6}
Since ϕ(1) = 1 and ϕ(

√
6) = ϕ(

√
2)ϕ(
√

3), we only need to determine

α := ϕ(
√

2) and β := ϕ(
√

3)

As in HW 1.4,
α = ±

√
2 and β = ±

√
3

so we obtain atmost 4 maps from k → C
(vi) k = Q( 3

√
2, ω): Recall that [k : Q] = 6 (HW 4.4), and, in fact,

k = F1F2 where F1 = Q(
3
√

2) and F2 = Q(ω)

Hence, by the proof of II.2.9, a Q-basis for k is given by

{1, ω, 3
√

2,
3
√

4, ω
3
√

2, ω
3
√

4}

As before, if ϕ : k → C is a homomorphism, then ϕ is determined by two
values

α := ϕ(ω) and β := ϕ(
3
√

2)

Once again, α ∈ {ω, ω2} and β ∈ { 3
√

2, ω 3
√

2, ω2 3
√

2}. Hence, we have atmost
6 maps from k → C. We will now show that there are exactly 6.

1.2. Lemma: Let k ⊂ C be a field and α ∈ C be algebraic over k. Let ϕ : k(α)→ C a
homomorphism over k and let β := ϕ(α)

(i) For any f ∈ k[x],
ϕ(f(α)) = f(β)

(ii) β is algebraic over k

(iii) The minimal polynomials of α and β over k are the same.

Proof. (i) Write f(x) = a0 + a1x+ . . .+ anx
n, then

ϕ(f(α)) = ϕ(a0 + a1α + . . .+ anα
n) = a0 + a1β + . . .+ anβ

n

since ϕ fixes all the ai’s.

(ii) Since α is algebraic over k, ∃0 6= f ∈ k[x] such that f(α) = 0. By part (i), it
follows that f(β) = 0

(iii) Let f = mα,k, then by part (i),

f(β) = 0

But since f is irreducible and monic, it follows by uniqueness (See II.1.5) that
f = mβ,k as well.
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1.3. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k with minimal
polynomial mα ∈ k[x]. Then there is a one-to-one correspondence

{k-homomorphisms from k(α)→ C} ↔ {roots of mα in C}

Proof. Let F and G denote the LHS and RHS above. Then by the previous Lemma,
we have a map

µ : F → G given by ϕ 7→ ϕ(α)

We claim that µ is bijective:

(i) Injectivity: Let n = [k(α) : k]. If ϕ(α) = ψ(α), then

ϕ(αj) = ψ(αj) ∀1 ≤ j ≤ n− 1

Since ϕ(1) = ψ(1), this means that ϕ and ψ agree on the set

{1, α, α2, . . . , αn−1}

But this set forms a k-basis of k(α), and ϕ and ψ are two k-linear maps.
Hence, ϕ = ψ.

(ii) Surjectivity: If β ∈ C is a root of mα, then by Corollary II.1.10, ∃ϕ : k(α)→
C such that ϕ|k= idk and ϕ(α) = β. Hence, µ(ϕ) = β.

1.4. Corollary: Let k ⊂ L be a finite extension, then

the number of k-homomorphisms ϕ : L→ C = [L : k]

Proof. By the primitive element theorem, ∃α ∈ L such that L = k(α). Then by
Theorem 1.3,

the number of k-homomorphisms ϕ : L→ C = the number of roots of mα in C

Since mα is irreducible in k[x], it is separable by II.4.4, so

the number of k-homomorphisms ϕ : L→ C = deg(mα) = [L : k]

by II.2.4.

(End of Day 15)

1.5. Definition: Let k ⊂ L be a field extension.

(i) A k-homomorphism ϕ : L→ C is said to be a k-automorphism if

ϕ(L) = L

Note that
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(a) ϕ is already injective, so this means that ϕ : L→ L is bijective.

(b) Hence, we may compose any two k-automorphisms to obtain a third k-
automorphism.

(c) The inclusion map ι : L→ C is a k-automorphism, and has the property
that

ι ◦ ϕ = ϕ = ϕ ◦ ι
for any k-automorphism ϕ.

(ii) The Galois group of L over k is set of all k-automorphisms of L. Note that
this is a group under composition, and it is denoted by

Galk(L)

1.6. Lemma: Let k ⊂ L be an algebraic field extension, and ϕ : L → C a k-
homomorphism.

(i) If ϕ(L) ⊂ L, then ϕ : L→ L is bijective.

(ii) If L = k(α1, α2, . . . , αn) and ϕ(αi) ∈ L for all 1 ≤ i ≤ n, then ϕ : L → L is
bijective.

Proof. (i) Suppose ϕ(L) ⊂ L, then we WTS: ϕ(L) = L. So choose α ∈ L, then
α is algebraic over k, so consider f = mα. By Lemma 1.2, ϕ(α) is also a root
of f and ϕ(α) ∈ L. Hence if

R = { roots of f in L}

Then ϕ maps R to R. Since ϕ is injective, it must map R onto R. In
particular, ∃β ∈ R ⊂ L such that ϕ(β) = α. Hence ϕ(L) = L.

(ii) If L = k(α1, α2, . . . , αn) is an algebraic extension, and ϕ(αi) ∈ L for all
1 ≤ i ≤ n, then we WTS: ϕ(L) ⊂ L. For each 1 ≤ i ≤ n, let

Ki = k(α1, α2, . . . , αi)

Then consider the tower

k = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn = L

Write
Si = {1, αi, α2

i , . . . , α
ni−1
i }

where ni = [Ki : Ki−1], then Si is a basis for Ki over Ki−1. Hence, by the
Tower Law, the set

T = {x1x2 . . . xn : xi ∈ Si, 1 ≤ i ≤ n}

is a basis for L over k. Now if ϕ(αi) ∈ L for all 1 ≤ i ≤ n, then

ϕ(Si) ⊂ L ∀1 ≤ i ≤ n
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and hence ϕ(T ) ⊂ L. Since ϕ is k-linear, it follows that

ϕ(L) ⊂ L

Now part (i) applies.

1.7. Remark :

(i) Galk(L) is a group. One also writes Autk(L) = Galk(L)

(ii) By Lemma 1.4, if k ⊂ L is finite ⇒ |Galk(L)| ≤ [L : k]

(iii) By Lemma 1.6, if k ⊂ L = k(θ) is finite ⇒ Galk(L)↔ {roots of mθ in L}
(iv) Hence, if k ⊂ L = k(θ) is a finite, then |Galk(L)| = [L : k] iff every complex

root of mθ is already in L.

1.8. Examples:

(i) Galk(k) = {idk}
(ii) GalQ(Q(

√
2)) ∼= Z2

Proof. Note that GalQ(Q(
√

2)) contains two maps, the inclusion and j :
Q(
√

2)→ C given by
j(a+ b

√
2) = a− b

√
2

Hence, |GalQ(Q(
√

2))| = 2 so GalQ(Q(
√

2)) ∼= Z2

(iii) GalQ(Q(ω)) ∼= Z2

Proof. Same proof as part (ii) with j(a+ bω) = a+ bω2

(iv) GalQ(Q( 3
√

2)) = {id}

Proof. Note that there are 3 homomorphisms from L := Q( 3
√

2) → C, given
by

ι(
3
√

2) =
3
√

2

ϕ1(
3
√

2) = ω
3
√

2

ϕ2(
3
√

2) = ω2 3
√

2

But note that ω /∈ L (since L ⊂ R), and so ω 3
√

2 /∈ L. Similarly, ω2 3
√

2 /∈ L,
and so ϕ1, ϕ2 /∈ GalQ(L). Hence,

GalQ(L) = {idL}

(v) GalQ(Q(
√

2,
√

3)) ∼= Z2 × Z2.
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Proof. Here, we have 4 possible maps from L := Q(
√

2,
√

3)→ C given by

ϕ0(
√

2) =
√

2 and ϕ0(
√

3) =
√

3

ϕ1(
√

2) =
√

2 and ϕ1(
√

3) = −
√

3

ϕ2(
√

2) = −
√

2 and ϕ2(
√

3) =
√

3

ϕ3(
√

2) = −
√

2 and ϕ3(
√

3) = −
√

3

Now for each of these maps {ϕi(
√

2), ϕi(
√

3)} ⊂ L. Hence, by Lemma 1.6,
ϕi ∈ GalQ(L) for all 0 ≤ i ≤ 3. Hence,

|GalQ(L)| = 4⇒ GalQ(L) ∼= Z2 × Z2 or Z4

Now note that for each 1 ≤ i ≤ 3,

ϕ2
i (
√

2) = ϕi(±
√

2) =
√

2 and similarly ϕ2
i (
√

3) =
√

3

Hence, ϕ2
i = idL for all 1 ≤ i ≤ 3. In particular, GalQ(L) does not have an

element of order 4. Hence,

GalQ(L) ∼= Z2 × Z2

(vi) GalQ(Q( 3
√

2, ω)) ∼= S3

Proof. As before, we let L = Q( 3
√

2, ω), and enumerate the elements of G =
GalQ(Q( 3

√
2, ω)).

ϕ0(
3
√

2) =
3
√

2 and ϕ0(ω) = ω

ϕ1(
3
√

2) =
3
√

2 and ϕ1(ω) = ω2

ϕ2(
3
√

2) = ω
3
√

2 and ϕ2(ω) = ω

ϕ3(
3
√

2) = ω
3
√

2 and ϕ3(ω) = ω2

ϕ4(
3
√

2) = ω2 3
√

2 and ϕ4(ω) = ω

ϕ5(
3
√

2) = ω2 3
√

2 and ϕ5(ω) = ω

In each of these cases, by Lemma 1.6, ϕi ∈ G. Hence,

|G| = 6⇒ G ∼= Z6 or S3

Hence, it suffices to show that G is non-abelian. Now note that

ϕ1ϕ3(
3
√

2) = ϕ1(ω
3
√

2) = ϕ1(ω)ϕ1(
3
√

2) = ω2 3
√

2

However
ϕ3ϕ1(

3
√

2) = ϕ3(
3
√

2) = ω
3
√

2

Hence, ϕ1ϕ3 6= ϕ3ϕ1, and so G is non-abelian.
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(End of Day 16)

(vii) If p ∈ Z prime, ζ = e2πi/p and L = Q(ζ), then G := GalQ(L) ∼= Z∗p
Proof. (a) Note that Φp is the minimal polynomial for ζ, so [L : k] = p− 1.

Furthermore, a Q-basis for L is

{1, ζ, ζ2, . . . , ζp−2}

Hence, if ϕ : L→ C is a homomorphism, ϕ is completely determined by
α := ϕ(ζ). By Theorem 1.3, we have α ∈ {ζj : 1 ≤ j ≤ p− 1}, and hence
we have exactly p− 1 maps

ϕj : L→ C such that ϕj(ζ) = ζj, 1 ≤ j ≤ p− 1

Note that for each 1 ≤ j ≤ p− 1, ϕj(ζ) ⊂ L, so ϕj ∈ G by Lemma 1.6.

(b) Now note that

ϕi ◦ ϕj(ζ) = ϕi(ζ
j) = ϕi(ζ)j = ζ ij = ϕij(ζ)

Hence, we define a map

µ : Z∗p → G given by [i] 7→ ϕi

We claim that µ is an isomorphism

(c) µ is well-defined: If [i] = [j] in Z∗p, then p | i − j, so ∃m ∈ Z such that
i = j +mp. Hence,

ϕi(ζ) = ζ i = ζj(ζp)m = ζj = ϕj(ζ)

Since any homomorphism is determined by its value on ζ, it follows that
µ is well-defined

(d) µ is a homomorphism by step (b), and µ is surjective by step (a). Since

|G| = p− 1 = |Z∗p|

µ must also be injective, and hence an isomorphism.

1.9. Theorem: If p ∈ Z is prime, then Z∗p is cyclic.

Proof. Note that Z∗p is a finite abelian group. Hence, by the fundamental theorem
of finite abelain groups, ∃n1, n2, . . . , nk ∈ N such that

n1 | n2 | . . . | nk

and
Z∗p ∼= Zn1 × Zn2 × . . .× Znk
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Note that since |Z∗p| = p−1, nk | p−1. We claim that nk = p−1, and hence k = 1.

To see this, note that for any a ∈ Z∗p,

a 7→ (a1, a2, . . . , ak)

under the above isomorphism. Hence,

ank 7→ (nka1, nka2, . . . , nkak) = (0, 0, 0, . . . , 0)

Hence, ank = 1 in Z∗p. Now consider the polynomial

f(x) = xnk − 1 ∈ Zp[x]

By Corollary I.2.9, the number of roots in Zp is ≤ nk. However, every element of
Z∗p is a root of f . Hence,

p− 1 ≤ nk

But nk | p− 1, so nk = p− 1 and we are done.

Review of Chapters I, II and § III.1 for the Mid-Semester Exam.

(End of Day 17)

2. Splitting Fields and Normal Extensions

2.1. Definition: Let k ⊂ L be a field extension, and f ∈ k[x]

(i) We say that f splits in L if every complex root of f is in L

(ii) If {α1, α2, . . . , αn} is the set of all complex roots of f , then

L := k(α1, α2, . . . , αn)

is called the splitting field of f . Equivalently, it is the smallest field containing
k in which f splits.

(iii) A field extension k ⊂ L is said to be normal if, for every k-homomorphism
ϕ : L→ C, we have ϕ(L) = L.

2.2. Remark:

(i) If f ∈ k[x], then f splits in C (in fact, in k), but these are not the splitting
fields of f .

(ii) If L is the splitting field of f over k, then L is a finitely generated algebraic
extension of k. Hence, [L : k] <∞ by II.3.4.

2.3. Theorem: Let k ⊂ L be a finite extension, then TFAE:

(i) k ⊂ L is a normal extension

49



(ii) ∃f ∈ k[x] such that L is the splitting field of f over k

(iii) |Galk(L)| = [L : k]

Proof. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii): Suppose k ⊂ L is a finite normal extension, then by the primitive element
theorem, ∃α ∈ L such that L = k(α). Let f denote the minimal polynomial
for α over k, then we claim that L is the splitting field of f over k.

(a) If F denotes the splitting field of f over k, then clearly L ⊂ F

(b) Conversely, if β is a root of f in C, then, by II.1.10, ∃ a k-homomorphism

ϕ : k(α)→ C such that ϕ(α) = β

Since k ⊂ L is normal, it follows that β ∈ L. This is true for any root β
of f , and so f splits in L. By definition, F ⊂ L

(ii) ⇒ (iii): By Remark 1.7(ii),
|Galk(L)| ≤ [L : k]

Now suppose L is the splitting field of f over k, then consider any k-homomorphism
ϕ : L→ C, then we WTS: ϕ(L) = L. Since

L = k(α1, α2, . . . , αn)

where X = {a1, α2, . . . , an} is the set of complex roots of f , it suffices (by
Lemma 1.6) to show that

ϕ(αi) ∈ L ∀1 ≤ i ≤ n

Now fix 1 ≤ i ≤ n, and let p denote the minimal polynomial of αi over k.
Then, by Theorem 1.3, ϕ(αi) is another root of p. However, since αi is a root
of f , we must have that p | f in k[x]. Hence, ϕ(αi) is another root of f , and
so ϕ(αi) ∈ X ⊂ L. This is true for each 1 ≤ i ≤ n, so ϕ(L) = L by Lemma
1.6

(iii) ⇒ (i): Trivial.

2.4. Definition: Let k ⊂ C be a field and f ∈ k[x]. If L is the splitting field of f over
k, then Galk(L) is called the Galois group of f , denoted by Galk(f)

2.5. Examples:

(i) If f ∈ k[x] is linear, then L = k is the splitting field of f over k. Hence
Galk(f) = {idk}

(ii) If f(x) = ax2+bx+c ∈ k[x] is an irreducible quadratic, then L = k(
√
b2 − 4ac)

is the splitting field of f over k. Hence Galk(f) ∼= Z2

(iii) If k = Q, f(x) = x3 − 2, then L = Q( 3
√

2, ω). Hence Galk(f) ∼= S3
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(iv) If f(x) = (x2−2)(x2−3) ∈ Q[x], then L = Q(
√

2,
√

3) and GalQ(f) ∼= Z2×Z2

(v) If k = Q, f(x) = xp− 1, with p ∈ Z prime, then L = Q(ζp). Hence Galk(f) ∼=
Z∗p ∼= Zp−1

2.6. Corollary: Any extension of degree 2 is a normal extension.

Proof. If k ⊂ L has degree 2, then by primitive element theorem, write L = k(θ)
for some θ ∈ L. If mθ denotes the minimal polynomial of θ over k, then

deg(mθ) = 2

and so we write mθ(x) = x2 + bx+ c for some b, c ∈ k. Hence, the roots of mθ are

θ =
−b+

√
b2 − 4c

2
and θ′ =

−b−
√
b2 − 4c

2

Now since θ ∈ L, it follows that

√
b2 − 4c ∈ L

and hence θ′ ∈ L. Thus, L is the splitting field of mθ, and so k ⊂ L is a normal
extension by Theorem 2.3.

(End of Day 18)

2.7. (Extension Lemma): Let F ⊂ L be finite field extensions. If ϕ : F → C be a field
homomorphism, then ∃ψ : L→ C such that ψ|F= ϕ.

Proof. By the primitive element theorem, ∃α ∈ L such that L = F (α). If ψ : L→
C is a map as above, then ψ is completely determined by

β := ψ(α)

So we wish to choose β appropriately.

(i) Let F ′ = ϕ(F ) ⊂ C, then F ′ ∼= F . Hence, we obtain an isomorphism

ϕ : F [x]→ F ′[x] given by
n∑
i=0

aix
i 7→

n∑
i=0

ϕ(ai)x
i

(ii) Since F ⊂ L is finite, α is algebraic over F . Set f = mα,F ∈ F [x], and let
g = ϕ(f). Then there is an isomorphism (Check!)

ϕ̂ : F [x]/(f)→ F ′[x]/(g) such that h+ (f) 7→ ϕ(h) + (g)

In particular, g is irreducible in F ′[x] (by I.4.3)
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(iii) Let β ∈ C be a root of g, then by II.1.9, ∃ an isomorphism

µ : F ′[x]/(g)→ F ′(β) such that µ|F ′= idF ′ and x 7→ β

Also, there is an isomorphism

η : F [x]/(f)→ F (α) = L such that η|F= idF and x 7→ α

Hence, the map
ψ := µ ◦ ϕ̂ ◦ η−1 : L→ F ′(β) ⊂ C

is an isomorphism such that ψ(α) = β. Note that if z ∈ F , then

ψ(z) = µ ◦ ϕ̂(z) = µ(ϕ(z)) = ϕ(z)

2.8. Theorem: Let k ⊂ L be a finite and normal extension, and f ∈ k[x] be irreducible.
Suppose ∃α ∈ L such that f(α) = 0, then f splits in L.

Proof. Suppose f(α) = 0, let β be any root of f in C. WTS: β ∈ L. By Corollary
II.1.10, there is a k-isomorphism

ϕ : k(α)→ k(β) such that ϕ(α) = β

Since α ∈ L, F := k(α) ⊂ L. Hence, by the extension lemma, ∃ψ : L → C such
that

ψ|F= ϕ and, in particular ψ(α) = β

Since k ⊂ L is a normal extension, ψ(L) = L. In particular, β ∈ L. This is true
for any root β of f in C, and so f splits in L.

2.9. Remark/Examples:

(i) The above theorem is clearly not true if k ⊂ L is not normal (for instance,
take k = Q and L = Q( 3

√
2) and f(x) = x3 − 2).

(ii) The theorem is also false if f is not irreducible. For instance, if k = Q, L =
Q(
√

2) and f(x) = (x2 − 2)(x2 + 1), then f has a root in L, k ⊂ L is a finite
normal extension, but f does not split in L.

2.10. Theorem: Let k ⊂ F be a finite field extension, then ∃ a field M such that

(i) F ⊂M

(ii) k ⊂M is finite and normal

(iii) If L is any other field satisfying (i) and (ii), then M ⊂ L.

In other words, M is the smallest normal extension of k that contains F . This
field M is called the normal closure of F over k
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Proof. (i) By the primitive element theorem, write F = k(α). Let M denote the
splitting field of mα over k, then M satisfies (i) and (ii) by Theorem 2.3 and
Remark 2.2(ii).

(ii) Now suppose k ⊂ L is a finite normal extension satisfying (i) and (ii), then
α ∈ L since M ⊂ L. Hence by the previous theorem, mα splits in L. Thus,
M ⊂ L.

2.11. Examples:

(i) If k ⊂ F is a normal extension, then M = F is the normal closure of F .

(ii) If k = Q, F = Q( 3
√

2), then M = Q(ω, 3
√

2) is the normal closure of F .

3. Permutation of Roots

3.1. Definition: Let X be any set.

(i) A permutation of X is a bijective map σ : X → X.

(ii) The set of all such permutations forms a group under composition, called the
symmetric group on X, denoted by SX .

(iii) We write Sn := SX where X = {1, 2, . . . , n}
3.2. Theorem: If |X| = n, then SX ∼= Sn

Proof. Let Y = {1, 2, . . . , n}, and let µ : X → Y be a bijection. Then define

ϕ : Sn → SX given by σ 7→ µ−1 ◦ σ ◦ µ

Then ϕ is a well-defined function since µ is bijective. Furthermore,

ϕ(στ) = ϕ(σ)ϕ(τ)

so ϕ is a homomorphism. Now clearly, ψ : SX → Sn defined by

τ 7→ µ ◦ τ ◦ µ−1

is a homomorphism such that ϕ ◦ψ = idSX and ψ ◦ϕ = idSn , and so ϕ is bijective
as well.

3.3. Definition: Let G be a group and X be any set.

(i) A group action of G on X is a function

α : G×X → X

such that, for all g1, g2 ∈ G, x ∈ X
(a) α(e, x) = x, where e denotes the identity element of G
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(b) α(g1g2, x) = α(g1, α(g2, x))

If G acts on X, we write g · x := α(g, x)

(ii) A group action α of G on X is said to be faithful if, for any g, h ∈ G

α(g, x) = α(h, x) ∀x ∈ X ⇒ g = h

(End of Day 19)

3.4. (Permutation Representation) Let G be a group, X any set, and α : G×X → X
a group action. For g ∈ G, define

σg : X → X by σg(x) := α(g, x)

(i) Then σg ∈ SX
Define ϕ : G→ SX by

g 7→ σg

(ii) Then ϕ is a group homomorphism.

(iii) ϕ is injective iff α is a faithful action.

3.5. Theorem: Let k ⊂ C be a field and let f ∈ k[x] be of degree n. Let G = Galk(f)
and let X be the set of roots of f in C. Then

(i) G acts on X faithfully.

(ii) In particular, G ∼= to a subgroup of Sn

Proof. (i) Note that if ϕ ∈ Galk(f) and θ ∈ X, then, by III.1.2

f(ϕ(θ)) = 0

and so ϕ(θ) ∈ X. This gives the map

α : G×X → X given by α(ϕ, θ) := ϕ(θ)

and it is easy to see that this defines an action of G on X. To see that this
action is faithful, note that if ϕ, ψ ∈ G such that

ϕ(θ) = ψ(θ) ∀θ ∈ X

then, since the splitting field of f is L = k(X) and ϕ|k= idk = ψ|k, it follows
that

ϕ = ψ on L⇒ ϕ = ψ in G

(ii) Now note that the permutation representation gives an injective homomor-
phism

G ↪→ SX ∼= Sk

where k = |X|. However, k ≤ n, so Sk is isomorphic to a subgroup of Sn.
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3.6. Example:

(i) Let f(x) = x3 − 2, then |GalQ(f)| = [Q( 3
√

2, ω) : Q] = 6 and GalQ(f) < S3

(by Theorem 3.5). Hence GalQ(f) ∼= S3

(ii) Let k = Q(ω) and f(x) = x3 − 2 ∈ k[x]. Then L = Q( 3
√

2, ω) is the split-
ting field of f over k. Hence, if G = Galk(f), then the action of G on
{ 3
√

2, ω 3
√

2, ω2 3
√

2} gives an injective homomorphism

G ↪→ S3

However, |G| = [L : k] = 3, so G ∼= A3
∼= Z3

(iii) Let f(x) = x4 − 2, then

(a) |GalQ(f)| = 8

(b) Thus GalQ(f) ∼= D4

Proof. (a) Let L = Q( 4
√

2, i), then GalQ(f) = GalQ(L) and

|GalQ(L)| = [L : k] = 8

since F = Q( 4
√

2) ⊂ L and i /∈ F .

(b) By Theorem 3.5, there is an injective homomorphism

µ : G→ S4

given by the action of G on

X := { 4
√

2, i
4
√

2,− 4
√

2,−i 4
√

2} ↔ {1, 2, 3, 4}

Let ϕ, ψ ∈ G be given by

ϕ(
4
√

2) =
4
√

2 and ϕ(i) = −i
ψ(

4
√

2) = i
4
√

2 and ψ(i) = i

Then under the map µ, we get

µ(ϕ) = (24) and µ(ψ) = (1234)

Hence, o(ϕ) = 2, o(ψ) = 4 and (Check!)

ϕψϕ−1 = ψ−1

So D4
∼= 〈ϕ, ψ〉 < G but since |G| = 8, it must happen that G ∼= D4.

3.7. Definition: A group G on a set X is said to be transitive if, for any x, y ∈ X, ∃g ∈ G
such that g · x = y.
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3.8. Examples:

(i) Sn acts transitively on {1, 2, . . . , n}.
(ii) An acts transitively on {1, 2, . . . , n}.

Proof. If n = 3, then A3 = {e, (123), (132)} which clearly acts transitively on
{1, 2, 3}. If n ≥ 3, then for any 1 ≤ i, j ≤ n, we WTS: ∃σ ∈ An such that
σ(i) = j. Then choose 1 ≤ k, l ≤ n such that {k, l} ∩ {i, j} = ∅, then

σ = (ij)(kl) ∈ A4

works.

(iii) If G = GalQ(x3− 2), then G acts transitively on X = { 3
√

2, ω 3
√

2, ω2 3
√

2} (See
Example 1.8(vi))

(iv) If G = GalQ((x2 − 2)(x2 − 3)), then G does not act transitively on X =
{±
√

2,±
√

3}.
3.9. Theorem: Let f ∈ k[x] be separable, let G = Galk(f) and let X be the set of roots

of f in C. Then G acts transitively on X iff f is irreducible in k[x].

Proof. (i) Suppose G acts transitively on X. WTS: f is irreducible. By I.4.7,
we may choose a monic irreducible polynomial p ∈ k[x] such that p | f . Let
α be a root of p, and β be any other root of f . Then by transitivity, ∃ϕ ∈ G
such that

ϕ(α) = β

By III.1.2, this implies that α and β have the same minimal polynomial in
k[x], namely p. Hence, every root of f is a root of p. It follows that

f(x) = p(x)n

for some n ∈ N, c ∈ k. Since f is separable, n = 1 must hold and so f is
irreducible.

(ii) Conversely, suppose f is irreducible in k[x], and α, β ∈ X. WTS: ∃ψ ∈ G
such that ϕ(α) = β. Let F := k(α), then by III.1.3, ∃ a k-homomorphism
ϕ : F → C such that

ϕ(α) = β

If L denotes the splitting field of f over k, then by the extension lemma,
∃ψ : L → C such that ψ|F= ϕ. Since k ⊂ L is normal by III.2.3, it follows
that ψ ∈ G. Finally,

ψ(α) = ϕ(α) = β

as required.

(End of Day 20)
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4. The Galois Correspondence

4.1. Definition/Remark: Let k ⊂ L be a field extension with Galois group G

(i) If F is an intermediate field, then

GF = GalF (L) < G

(ii) Let

F := {intermediate fields k ⊂ F ⊂ L}
G := {subgroups H < G}

Then we have a map

Φ : F → G given by F 7→ GalF (L)

Question: Is Φ injective/surjective?

4.2. Remark:

(i) If F = L, then GalF (L) = {e}
If F = k, then Galk(L) = G. We visualize this with a tower diagram

L {e}

k G

(ii) If F1 ⊂ F2 are two intermediate fields, then GalF2(L) < GalF1(L). We visu-
alize this by the tower diagram

L {e}

F2

∪

Φ // GalF2(L)

∩

F1 Φ // GalF1(L)

k Galk(L)

We say that the map Φ : F → G is inclusion reversing.

4.3. Examples:

(i) If k = Q, L = Q(
√

2), then Galk(L) ∼= Z2. So
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(a) F = {Q,Q(
√

2)} (Example II.2.7)

(b) G = {{0},Z2}
So we have the diagram

Q(
√

2) {0}

Q Z2

and Φ is bijective.

(ii) More generally, if k ⊂ L is a normal extension with [L : k] prime, then we
have

(a) F = {k, L} (by II.2.8)

(b) |G| = [L : k], so G ∼= Zp. Hence, G = {{0},Zp}
and Φ is bijective in this case.

(iii) This is not true if k ⊂ L is not normal. Beacause, if k = Q, L = Q( 3
√

2), then
G = {idL}, so

Φ(k) = Φ(L) = G

and so Φ is not injective in general.

(iv) If k = Q, L = Q(
√

2,
√

3), then G = {idL, ϕ1, ϕ2, ϕ3}, where

ϕ1(
√

2) =
√

2 and ϕ1(
√

3) = −
√

3

ϕ2(
√

2) = −
√

2 and ϕ2(
√

3) =
√

3

ϕ3(
√

2) = −
√

2 and ϕ3(
√

3) = −
√

3

Hence, G has 5 subgroups

G = {{idL}, 〈ϕ1〉, 〈ϕ2〉, 〈ϕ3〉, G}

And, we have

F Φ(F )
Q G

Q(
√

2) 〈ϕ1〉
Q(
√

3) 〈ϕ2〉
Q(
√

6) 〈ϕ3〉
Q(
√

2,
√

3) {idL}
Hence, Φ is surjective.

Question: What is F in this case? Is Φ bijective?
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(v) If k = Q, L = Q( 3
√

2, ω), then G = {idL, ϕ1, . . . , ϕ5}, where

ϕ1(
3
√

2) =
3
√

2 and ϕ1(ω) = ω2

ϕ2(
3
√

2) = ω
3
√

2 and ϕ2(ω) = ω

ϕ3(
3
√

2) = ω
3
√

2 and ϕ3(ω) = ω2

ϕ4(
3
√

2) = ω2 3
√

2 and ϕ4(ω) = ω

ϕ5(
3
√

2) = ω2 3
√

2 and ϕ5(ω) = ω2

Hence, we have a table

F Φ(F )
Q G ∼= S3

Q( 3
√

2) 〈ϕ1〉 ∼= 〈(23)〉
Q(ω) 〈ϕ2〉 ∼= 〈(123)〉

Q(ω 3
√

2) 〈ϕ5〉 ∼= 〈((13)〉
Q(ω2 3

√
2) 〈ϕ2〉 ∼= 〈((12)〉

L {idL}
Once again, Φ is surjective, but what is F and is Φ injective?

4.4. Definition: For H < G, define the fixed field of H to be

LH := {α ∈: ϕ(α) = α ∀ϕ ∈ H}

Note that LH ∈ F . Hence, we get a map

Ψ : G → F given by H 7→ LH

4.5. Remark: Let k ⊂ L be any field extension, and G = Galk(L)

(i) If H = {e} < G, then LH = L

However, LG may not be equal to k. If k = Q, L = Q( 3
√

2), then G = {idL},
so

LG = L 6= k

(End of Day 21)

(ii) If H1 ⊂ H2 are two subgroups of G, then LH2 ⊂ LH1 . We visualize this by

G LG ⊃ k

H2

∪

Ψ // LH2

∩

H1 Ψ // LH1

{e} L{e} = L

ie. Ψ is also inclusion reversing.
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4.6. Examples:

(i) If k = Q, L = Q(
√

2), then

(a) F = {Q,Q(
√

2)} (Example II.2.7)

(b) G = {{0},Z2}
So we have the diagram

Q(
√

2) {0}

Q Z2

and Ψ is bijective (In fact, Ψ = Φ−1) because

LG = {α ∈ L : ϕ(α) = α ∀ϕ ∈ G}
= {a+ b

√
2 : a+ b

√
2 = a− b

√
2}

= {a+ b
√

2 : b = 0}
= Q

(ii) Ψ is not injective in general, by Remark 4.5(i).

(iii) If k = Q, L = Q(
√

2,
√

3), then G = {idL, ϕ1, ϕ2, ϕ3}, where

ϕ1(
√

2) =
√

2 and ϕ1(
√

3) = −
√

3

ϕ2(
√

2) = −
√

2 and ϕ2(
√

3) =
√

3

ϕ3(
√

2) = −
√

2 and ϕ3(
√

3) = −
√

3

Now suppose H = 〈ϕ1〉, then
√

2 ∈ LH ⇒ Q(
√

2) ⊂ LH

Furthermore, if

α := a+ b
√

2 + c
√

3 + d
√

6 ∈ LH , then

ϕ1(α) = α

⇒ a+ b
√

2− c
√

3− d
√

6 = a+ b
√

2 + c
√

3 + d
√

6

⇒ c
√

3 + d
√

6 = 0

⇒ c = d = 0

⇒ α ∈ Q(
√

2)

Since the set {
√

3,
√

6} is Q-linearly independent. Hence,

L〈ϕ1〉 = Q(
√

2)

Similarly, we can compute LH for the other subgroups in G to obtain the
table
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H LH

G k

〈ϕ1〉 Q(
√

2)

〈ϕ2〉 Q(
√

3)

〈ϕ3〉 Q(
√

6)
{idL} L

Hence, Ψ is injective, and Φ ◦ Ψ(H) = H for all H ∈ G by Example 4.3(iv).
Also, for all the fields listed above,

Ψ ◦ Φ(F ) = F

However, we still do not know F , so we cannot say if Ψ is surjective or not.

(iv) The same is true if k = Q, and L = Q( 3
√

2, ω) (See HW 7)

4.7. Remark: Let k ⊂ L be a field extension with Galois group G. Set

F := {intermediate fields k ⊂ F ⊂ L}
G := { subgroups H < G}

Φ : F → G, given by Φ(F ) := GalF (L)

Ψ : G → F , given by Ψ(H) := LH

Then

(i) Φ(k) = G and Φ(L) = {idL}.
Ψ({e}) = L, but Ψ(G) 6= k in general.

(ii) Φ and Ψ are both inclusion reversing functions.

(iii) If k = Q, L = Q(
√

2), then Φ are Ψ are both bijective.

(iv) If k ⊂ L is a finite normal extension with [L : k] prime, then Φ is bijective,
but we do not know if LG = k. Hence, we cannot say if Ψ is bijective or not.

(v) If k = Q, L = Q(
√

2,
√

3), then

Φ ◦Ψ(H) = H ∀H ∈ G

However, we don’t know about Ψ ◦ Φ as yet.

4.8. Lemma: Let k ⊂ L be a field extension. Suppose ∃n ∈ N such that [k(α) : k] ≤ n
for all α ∈ L. Then

(i) ∃θ ∈ L such that L = k(θ)

(ii) In particular, [L : k] ≤ n

Note that we do not know, a priori, whether k ⊂ L is a finite extension, so we
cannot directly apply the primitive element theorem.
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Proof. Let m := sup{[k(α) : k] : α ∈ L}, then m ≤ n < ∞, so ∃β ∈ L such that
m = [k(β) : k]. We claim that L = k(β): If not, then ∃γ ∈ L \ k(β), then set
F = k(β, γ). Then F ⊂ L and

[F : k] > [k(β) : k] = m

However, [k(γ) : k] ≤ n, so by the tower law, [F : k] ≤ mn so k ⊂ F is a finite
extension. By the primitive element theorem, ∃δ ∈ F such that F = k(δ). But
then

[k(δ) : k] > m

which contradicts the definition of m. Hence, L = k(β) as required.

(End of Day 22)

4.9. Lemma: Let L ⊂ C be a field and G be a finite subgroup of GalQ(L). Let F = LG

be the fixed field of G. If α ∈ L, define

fα(x) =
∏
ϕ∈G

(x− ϕ(α))

Then fα ∈ F [x]

Proof. Let σ ∈ G and write fα(x) = a0 + a1x+ . . .+ anx
n, then note that

(σ∗fα)(x) := σ(a0) + σ(a1)x+ . . .+ σ(an)xn

=
∏
ϕ∈G

(x− σ(ϕ(α))

But the map ϕ 7→ σϕ is a bijection on G, so

(σ∗fα)(x) =
∏
ψ∈G

(x− ψ(α)) = fα(x)

Hence, if 0 ≤ i ≤ n, ai = σ(ai) for all σ ∈ G, so ai ∈ LG = F . Thus, fα ∈ F [x].

4.10. (Artin’s Lemma): Let L ⊂ C be a field and G be a finite subgroup of GalQ(L).
Let F = LG be the fixed field of G. Then

(i) F ⊂ L is finite

(ii) F ⊂ L is normal

(iii) GalF (L) = G

Proof. (i) For any α ∈ L, consider fα as defined in the previous lemma. Then,
fα ∈ F [x]. Since deg(fα) ≤ |G|,

[F (α) : F ] ≤ |G| ∀α ∈ L

So by Lemma 5.3, F ⊂ L is finite.
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(ii) Since every ϕ ∈ G fixes F by definition, we have G ⊂ GalF (L). But by
Lemma 5.3, ∃β ∈ L such that L = F (β), so

|GalF (L)| ≤ [L : F ] = [F (β) : F ] ≤ |G|

by part (i). Hence, G = GalF (L)

|G| = |GalF (L)| = [L : F ]

so by Theorem 2.3, F ⊂ L is normal and (iii) holds.

4.11. Lemma: Let k ⊂ L be a field extension with Galois group G. Let F ,G,Φ, and Ψ
be as above.

(i) For any F ∈ F , we have

F ⊂ LGalF (L) = Ψ ◦ Φ(F )

(ii) For any H ∈ G, we have

H ⊂ GalLH (L) = Φ ◦Ψ(H)

Proof. HW.

4.12. (Fundamental Theorem of Galois Theory - I): Let k ⊂ L be a finite normal exten-
sion of subfields of C with Galois group G. Then

(i) For all F ∈ F ,
F = Ψ ◦ Φ(F )

(ii) For all H ∈ G,
H = Φ ◦Ψ(H)

In particular, there is a one-to-one correspondence

F ↔ G

(iii) If F ∈ F is an intermediate field, then

[F : k] = [Galk(L) : GalF (L)]

We visualize this by a tower diagram

L {e}

F

=

GalF (L)

=

k Galk(L)
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Proof. (i) Let F ∈ F and H = Φ(F ) = GalF (L). Then H < G < GalQ(L) is a

finite group, so let F̃ = LH = Ψ(H). By Lemma 4.11,

F ⊂ F̃

But by Artin’s Lemma, F̃ ⊂ L is a finite normal extension with

GalF̃ (L) = H

Since both extensions F ⊂ L and F̃ ⊂ L are normal, by Theorem 2.3,

[F : L] = |GalF (L)| = |H| = |GalF̃ (L)| = [L : F̃ ]

So by the tower law applies to F ⊂ F̃ ⊂ L, we see that F = F̃ as required.

(ii) Let H ∈ G, and F = Ψ(H) = LH . Then by Artin’s Lemma, F ⊂ L is a finite
normal extension with

GalF (L) = H

(iii) If F ∈ F , then by Tower Law and Theorem 2.3

[F : k] =
[L : k]

[L : F ]
=
|Galk(L)|
|GalF (L)|

= [Galk(L) : GalF (L)]

4.13. Corollary: Let k ⊂ L be a finite normal extension with Galois group G. If α ∈ L
is such that

ϕ(α) = α ∀ϕ ∈ G
then α ∈ k.

4.14. Examples:

(i) Let L = Q(
√

2,
√

3), then the subfields of L are precisely

F = {Q, L,Q(
√

2),Q(
√

3),Q(
√

6)}

(ii) Similarly, if L = Q( 3
√

2, ω), then the subfields of L are precisely

F = {Q, L,Q(
3
√

2),Q(ω
3
√

2),Q(ω2 3
√

2),Q(ω)}

The lattice of subfields is

L

Q( 3
√

2)

3

Q(ω 3
√

2)

3

Q(ω2 3
√

2)

3
Q(ω)

2

Q
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and the lattice of subgroups is

{id}

〈(23)〉

3

〈(13)〉

3

〈(12)〉

3
〈(123)〉

2

S3

(End of Day 23)

5. Normal Extensions

Throughout this section, let k ⊂ L be a finite normal extension with Galois group
G.

F := {intermediate fields k ⊂ F ⊂ L}
G := { subgroups H < G}

Φ : F → G, given by Φ(F ) := GalF (L)

Ψ : G → F , given by Ψ(H) := LH

5.1. Theorem: Let F ∈ F such that k ⊂ F is normal.

(i) The restriction map
π : Galk(L)→ Galk(F )

is a well-defined, surjective, group homomorphism.

(ii) ker(π) = GalF (L)

(iii) Hence,
GalF (L) C Galk(L)

(iv) And, furthermore,
Galk(L)/GalF (L) ∼= Galk(F )

Proof. (i) Let ϕ ∈ Galk(L), and consider

ψ := ϕ|F : F → C

Then ψ is a k-homomorphism. Since k ⊂ F is normal, ψ(F ) = F , so ψ ∈
GalF (L). Hence the function

π : Galk(L)→ Galk(F ) given by ϕ 7→ ϕ|F
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is well-defined. Furthermore, since both group operations are composition, it
is clearly a group homomorphism.

Now suppose ψ ∈ Galk(F ), then consider ψ : F → C. Since F ⊂ L is finite
(since k ⊂ L is finite), by the Extension lemma, ∃ϕ : L→ C such that

ϕ|F= ψ

In particular, ψ is a k-homomorphism. Since k ⊂ L is normal, ϕ ∈ Galk(L),
and clearly, π(ϕ) = ψ. Hence, π is a surjective group homomorphism.

(ii) Now note that, for ϕ ∈ Galk(L)

ϕ ∈ ker(π)⇔ ϕ|F= idF

⇔ ϕ ∈ GalF (L)

Hence,
ker(π) = GalF (L)

(iii) Since GalF (L) is the kernel of a group homomorphism,

GalF (L) C Galk(L)

(iv) Furthermore, by the first isomorphism theorem,

Galk(L)/GalF (L) ∼= Galk(F )

5.2. Lemma: Let k ⊂ L be a finite extension, F ∈ F be an intermediate field, and
ψ ∈ Galk(L), then

(i) ψ(F ) ∈ F
(ii)

Galψ(F )(L) = ψGalF (L)ψ−1

Proof. (i) It is clear that ψ(F ) is a field [Check!], and since ψ|k= idk and ψ(L) ⊂
L, it follows that k ⊂ ψ(F ) ⊂ L⇒ ψ(F ) ∈ F .

(ii) We prove “⊃”: Let ϕ ∈ GalF (L), and β ∈ ψ(F ), then ∃α ∈ F such that
β = ψ(α), so

ψϕψ−1(β) = ψ(ϕ(α)) = ψ(α) = β

and so ψϕψ−1 ∈ Galψ(F )(L), which proves “⊃”.

For the inclusion “⊂”: Let K = ψ(F ) ∈ F , then by the first inclusion with
ψ−1 playing the role of ψ, we have

ψ−1 GalK(L)ψ ⊂ Galψ−1(K)(L)
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Since ψ−1(K) = F , we have

⇒ Galψ(F )(L) = GalK(L) ⊂ ψGalψ−1(K)(L)ψ−1 = ψGalF (L)ψ−1

as required.

5.3. (Fundamental Theorem of Galois Theory - II): Let k ⊂ L be a finite normal
extension of subfields of C with Galois group G. Then, for any F ∈ F

k ⊂ F is normal iff GalF (L) C Galk(L)

Furthermore, in that case, the conclusions of Theorem 5.1 hold.

Proof. If k ⊂ F is normal, then it follows from Theorem 5.1.

Conversely, if H := GalF (L) C Galk(L) =: G, then choose a homomorphism
ϕ : F → C. Since k ⊂ F ⊂ L are finite extensions, by the extension lemma,
∃ψ : L → C extending ψ. Since k ⊂ L is normal, ψ ∈ Galk(L). Since H C G, by
Lemma 5.3,

ψHψ−1 = H ⇒ Galψ(F )(L) = GalF (L)

So by FTOG-I, ψ(F ) = F . But ψ|F= ϕ, so

ϕ(F ) = F

This is true for any homomorphism ϕ : F → C, so k ⊂ F is normal.

5.4. Example: Let k = Q, L = Q( 3
√

2, ω)

(i) If F = Q( 3
√

2), then k ⊂ F is not normal, and so

GalF (L) ∼= 〈(23)〉

is not normal in Galk(L) ∼= S3

(ii) If F = Q(ω), then k ⊂ F is normal, so

GalF (L) ∼= 〈(123)〉

is normal in S3

5.5. Definition: A field extension k ⊂ L is called

(i) abelian if it is finite, normal, and Galk(L) is an abelian group.

(ii) cyclic if it is finite, normal, and Galk(L) is an cyclic group.

5.6. Corollary: Let k ⊂ L be a field extension

(i) If k ⊂ L is an abelian extension, then, for any intermediate field F , both
k ⊂ F and F ⊂ L are abelian.
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(ii) If k ⊂ L is a cyclic extension, then, for any intermediate field F , both k ⊂ F
and F ⊂ L are cyclic.

(End of Day 24)

5.7. Theorem: Let n ∈ N, ζ := e2πi/n, then

Q ⊂ Q(ζ)

is an abelian extension. Furthermore, it is cyclic if n is prime. These extensions
are called cyclotomic extensions

Proof. (i) Note that L is the splitting field of the polynomial xn − 1 ∈ Q[x], so
k ⊂ L is finite and normal. (III.2.3)

(ii) Now suppose ϕ ∈ G := Galk(L), then ϕ is completely determined by

ϕ(ζ)

As in Example III.1.8, ∃1 ≤ j ≤ n− 1 such that

ϕ(ζ) = ζj

(iii) Now suppose ϕ, ψ ∈ G, then ∃1 ≤ i, j ≤ n− 1 such that

ϕ(ζ) = ζ i and ψ(ζ) = ζj

Hence,
ϕ(ψ(ζ)) = ζ ij = ψ(ϕ(ζ))

Hence, ϕ ◦ ψ = ψ ◦ ϕ, so G is abelian.

(iv) If n ∈ N is prime, then this follows from III.1.9

5.8. Theorem: Let k ⊂ L be finite extensions and β ∈ C be algebraic over k. If
k ⊂ k(β) is normal, then

(i) L ⊂ L(β) is finite and normal

(ii) The map
ϕ 7→ ϕ |k(β) from GalL(L(β))→ Galk(k(β))

is injective.

Proof. (i) Let ϕ : L(β) → C be a L-homomorphism. Since k ⊂ L, we may
restrict this map to get

ϕ|k(β): k(β)→ C
and this is a k-homomorphism. Since k ⊂ k(β) is normal, ϕ(k(β)) = k(β).
In particular,

ϕ(β) ∈ k(β) ⊂ L(β)

Since β is algebraic over k, it is algebraic over L, and so L ⊂ L(β) is a finite
extension. Hence by Lemma III.1.6,

ϕ(L(β)) = L(β)
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(ii) Consider the map

µ : GalL(L(β))→ Galk(k(β)) given by ϕ 7→ ϕ|k(β)

Then this map is well-defined since k ⊂ k(β) is normal. WTS: µ is injective.
So suppose ϕ ∈ GalL(L(β)) such that µ(ϕ) = idk(β), then in particular,

ϕ(β) = β

But since L ⊂ L(β) is finite and ϕ|L= idL, it follows (as in III.1.3) that

ϕ = idL(β)

5.9. Corollary: Let k ⊂ C be any field, n ∈ N and ζ := e2πi/n. Then

(i) k ⊂ k(ζ) is an abelian extension.

(ii) If n is prime, then k ⊂ k(ζ) is a cyclic extension.

Proof. By Theorem 5.8, with k = Q, L = k, β = ζ, we have that k ⊂ k(ζ) is a
finite, normal and there is an injective map

Galk(k(ζ))→ GalQ(Q(ζ))

The result now follows from Theorem 5.7.
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IV. Solvability by Radicals

1. Radical Extensions

1.1. Example:

(i) Quadratic f(x) = ax2 + bx+ c ∈ k[x], then

(a) Roots of f are given by the quadratic formula

(b) f splits in the field k(
√
r) where r = b2 − 4ac ∈ k

(ii) Cubic f(x) = x3 − a, then

(a) Roots of f are given by 3
√
a, ω 3
√
a, ω2 3

√
a

(b) f splits in the field L = k( 3
√
a, ω)

(iii) Cubic f(x) = x3 + px+ q, then

(a) Roots of f are given by Cardano’s formula. If

A =
3

√
−q
2

+

√
q2

4
+
p3

27

B =
3

√
−q
2
−
√
q2

4
+
p3

27

Then the roots of f are

{A+B,ωA+ ω2B,ω2A+ ωB}

(See [Stewart, §1.4.3])

(b) f splits in the field L = Q(ω,A,B)

1.2. Definition:

(i) A field extension k ⊂ L, is called a simple radical extension if ∃α ∈ L, n ∈ N
such that

(a) L = k(α)

(b) αn ∈ k
Equivalently, if ∃a ∈ k such that L = k(α) where α is a root of xn − a ∈ k[x]
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(ii) A field extension k ⊂ L is called a radical extension if ∃ a tower of interme-
diate fields

k = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = L

such that Fi ⊂ Fi+1 is a simple radical extension for each 0 ≤ i ≤ n− 1.

(iii) We say f ∈ k[x] is solvable by radicals if the splitting field F of f over k is
contained in a radical extension of k

Note: k ⊂ F itself need not be a radical extension.

1.3. Example:

(i) k ⊂ k is simple radical.

(ii) Q ⊂ Q(
√

2) is simple radical.

(iii) If k ⊂ L is an extension of degree 2, then

(a) L = k(
√
r) for some r ∈ k (See Corollary III.2.6)

(b) Hence, k ⊂ F is a simple radical extension

(c) So any quadratic polynomial f ∈ k[x] is solvable by radicals.

(iv) Q ⊂ Q( 3
√

2) is a simple radical extension.

(v) If n ∈ N, Q ⊂ Q(e2πi/n) is a simple radical extension. Hence, xn−1 is solvable
by radicals.

(vi) Q ⊂ Q( 3
√

2, ω) is a radical extension, because if F = Q(ω), then

Q ⊂ F ⊂ L

is a chain of simple radical extensions. Hence,

f(x) = x3 − 2

is solvable by radicals over Q.

(vii) Q ⊂ Q(
√

2,
√

3) is a radical extension, but is not a simple radical extension.

Proof. Suppose ∃α ∈ L := Q(
√

2,
√

3) and n ∈ N such that a := αn ∈ Q and
L = Q(α). Let p(x) ∈ Q[x] be the minimal polynomial of α over Q. Then
p(x) has a root in L, and Q ⊂ L is normal. Hence, by III.2.8, p(x) must split
in L. Furthermore, p(x) | xn − a ∈ Q[x]. Hence, if β ∈ L is any root of p(x),
then z := β/α satisfies

zn = 1

But since z ∈ L ⊂ R, it follows that z = ±1. Hence the only possible roots
of p(x) are {±α}. However, deg(p) = [L : Q] = 4, and p is separable by
Corollary II.4.4. This is a contradiction.

(End of Day 25)
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1.4. Theorem: If k ⊂ L is a finite, radical extension, then there is an extension k ⊂
L ⊂M such that k ⊂M is finite, normal and radical.

Proof. Write
k = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln = L

where Li+1 = Li(αi) and ai := αmii ∈ Li. Hence,

L = k(α1, α2, . . . , αn)

Let fi denote the minimal polynomial of αi over k, and let

f(x) :=
n∏
i=1

fi(x) ∈ k[x]

and let M denote the splitting field of f over k. Then by Theorem III.2.3, k ⊂M
is a finite, normal extension. We claim that k ⊂ M is radical. For this, let
{βi,j : 1 ≤ i ≤ ki} be the set of complex roots of fi in C, then

M = k({βi,j})

and consider the subfields

F0 = k

F1 = k(β1,1, β1,2, . . . , β1,k1)

F2 = F1(β2,1, β2,2, . . . , β2,k2)

. . .

Fn = Fn−1(βn,1, βn,2, . . . , βn,kn) = M

It now suffices to show that Fi−1 ⊂ Fi is a radical extension for each 1 ≤ i ≤ n.
To see this, it suffices to show that

βmii,j ∈ Fi−1 ∀1 ≤ j ≤ ki (∗)

Now for 1 ≤ j ≤ ki, then there is a k-isomorphism

k(αi)→ k(βi,j)

by Corollary II.1.10. By the Extension lemma, this extends a homomorphism

ϕ : Fi → C such that ϕ|k= idk and ϕ(αi) = βi,j

Hence,
βmii,j = ϕ(αmii ) = ϕ(ai) ∈ ϕ(Li)

But Li = Li−1(αi−1) ⊂ Fi−1 (by induction on i). Hence,

βmii,j ∈ ϕ(Fi−1)
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Finally, note that k ⊂ Fi−1 is a normal extension since Fi−1 is splitting field of the
polynomial

∏
j<i fj ∈ k[x]. Since ϕ is a k-homomorphism,

βmii,j ∈ Fi−1

This proves (∗) and hence Fi−1 ⊂ Fi is radical for each i, and so k ⊂ M is also
radical.

1.5. Corollary: Let k ⊂ C be a field and f ∈ k[x] with splitting field L. Then f is
solvable by radicals iff ∃ a field extension k ⊂ L ⊂ M such that k ⊂ M is finite
normal and radical.

1.6. Theorem: Let k ⊂ C be a field, and let n ∈ N. Let M be the splitting field of
f(x) = xn − a ∈ k[x], and set F = k(ζ) ⊂M where ζ = e2πi/n, then

(i) k ⊂ F ⊂M is a tower of simple radical extensions.

(ii) GalF (M) C Galk(M)

(iii) GalF (M) is abelian

(iv) Galk(M)/GalF (M) is abelian

Proof. Let α ∈ C be any root of f(x), then

M = k(α, ζ) = F (α)

(i) WTS: GalF (M) C Galk(M). By FTOG-II, this is equivalent to showing that

k ⊂ k(ζ)

is normal. This follows from Corollary III.5.9.

(ii) Note that M = F (α). If ϕ : M → C is an F -homomorphism, then ϕ is
completely determined by

β := ϕ(α)

Since β is another root of f(x) in C, it follows that ∃0 ≤ i ≤ p− 1 such that

β = ζ iα

Now if ϕ, ψ ∈ GalF (M), then ∃0 ≤ i, j ≤ p− 1 such that

ϕ(α) = ζ iα and ψ(α) = ζjα

Since ζ ∈ F, ϕ(ζ) = ψ(ζ) = ζ, and so

ϕ ◦ ψ(α) = ζjϕ(α) = ζ i+jα = ψ ◦ ϕ(α)

This implies that ϕ ◦ ψ = ψ ◦ ϕ in GalF (M), and so GalF (M) is abelian.
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(iii) By FTOG-II,
Galk(M)/GalF (M) ∼= Galk(F )

and F = k(ζ). Now, k ⊂ F is abelian by Corollary III.5.9.

1.7. Examples:

(i) If f(x) = x2 − 2, then F = k = Q,M = Q(
√

2), so Galk(M) is itself abelian.

(ii) If f(x) = x3− 2, then k = Q, F = Q(ω),M = Q( 3
√

2, ω), so (Example III.1.8)

GalF (M) ∼= 〈(123)〉 C S3

Also, A3 and S3/A3
∼= Z2 are both abelian.

(iii) If f(x) = x4 − 2, then k = Q, F = Q(i),M = Q( 4
√

2, i), so (Example III.3.6),

GalF (M) ∼= 〈(1234)〉 C D4
∼= Galk(M)

Hence, GalF (M) is abelian, and so is D4/〈(1234)〉 ∼= Z2

2. Solvable Groups

2.1. Definition: Let G be a finite group.

(i) A normal series for G is a tower of subgroups

G = G0 > G1 > G2 > . . . > Gn−1 > Gn = {e}

such that Gi C Gi−1 for all 1 ≤ i ≤ n.

(ii) Given a normal series as above, the quotient groups Gi−1/Gi are called the
factor groups of the series.

(iii) G is said to be solvable if it has a normal series whose factor groups are all
abelian.

2.2. Examples:

(i) Every finite abelian group is solvable.

(ii) S3 is solvable

(iii) If |G| = 8, then G is solvable. (In particular, D4 is solvable)

Proof. If |G| = 8, then by the Sylow theorems, G has a subgroup H of order
4. Since

[G : H] = 2

H C G. Furthermore, H is abelian, and G/H ∼= Z2 is also abelian.

(iv) S4 is solvable.
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Proof. Let G1 = A4 C S4 and let

G2 = V4 := {e, (12)(34), (13)(24), (14)(32)}

Then G2 C A4 since G2 C S4 [Check!], and so

S4 > A4 > V4 > {e}

is the required normal series.

(v) Let k ⊂ C, n ∈ N, and let M be the splitting field of xn − a ∈ k[x]. Then
Galk(M) is solvable (by 1.6)

(End of Day 26)

2.3. Theorem: Let G be a solvable group and H < G, then H is solvable.

Proof. Let
G > G1 > G2 > . . . > Gn = {e}

be a normal series with abelian factors, then if Hi := H ∩Gi, then

(i) Hi C Hi−1 [Check!]

(ii) Consider
µ : Hi−1/Hi → Gi−1/Gi given by xHi 7→ xGi

Then µ is well-defined because if xHi = yHi for some x, y ∈ Hi−1, then
x, y ∈ Gi−1 and

y−1x ∈ Hi ⇒ y−1x ∈ Gi ⇒ xGi = yGi

(iii) Furthermore, µ is injective, because if x, y ∈ Hi−1 such that xGi = yGi, then

y−1x ∈ Gi and y−1x ∈ H ⇒ y−1x ∈ Hi ⇒ xHi = yHi

Hence, the factor groups of the normal series

H > H1 > H2 > . . . > Hn = {e}

are all abelian.

2.4. Lemma: If H C G and K < G, then

(i) HK = KH

(ii) HK < G

Proof. (i) If h ∈ H, k ∈ K, we WTS: hk ∈ KH. Since, H C G, so k−1hk ∈ H,
hence ∃h1 ∈ H such that

k−1hk = h1 ⇒ hk = kh1 ∈ KH

Hence, HK ⊂ KH. By a similar argument, we see that KH ⊂ HK as well.
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(ii) If x, y ∈ HK, we WTS: xy−1 ∈ HK, so write

x = h1k1, y = h2k2 for h1, h2 ∈ H, and k1, k2 ∈ K

Then
xy−1 = h1k1k

−1
2 h−1

2

Since HK = KH,∃k ∈ K,h ∈ H such that

h1k1k
−1
2 = kh

and so
xy−1 = khh−1

2 ∈ KH = HK

Hence, HK C G

2.5. (Second Isomorphism Theorem): Let G be a group, H C G and K < G, then

(i) H ∩K C K

(ii)
K

H ∩K
∼=
HK

H

Proof. (i) This is trivial since H C G

(ii) Since K ⊂ HK, we may define a map

π : K → HK/H by the composition K ↪→ HK
π−→ HK/H

Now note that

x ∈ ker(π)⇔ x ∈ K and xH = H

⇔ x ∈ K and x ∈ H
⇔ x ∈ H ∩K

Hence by the first isomorphism theorem, we get (ii)

2.6. (Third Isomorphism Theorem): Let G be a group, H,K C G such that H ⊂ K,
then

(i) K/H C G/H

(ii)
G/H

K/H
∼=
G

K

Proof. (i) If xH ∈ K/H and yH ∈ G/H, then note that

x ∈ K, y ∈ G⇒ yxy−1 ∈ K

and so (yH)(xH)(yH)−1 ∈ K/H since the map x 7→ xH is a group homo-
morphism.
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(ii) Define µ : G/H → G/K given by

xH 7→ xK

Note that this map is well-defined because H ⊂ K. Furthermore, it is a
surjective group homomorphism, and

xH ∈ ker(µ)⇔ xK = K ⇔ x ∈ K ⇐ xH ∈ K/H

Hence, ker(µ) = K/H and we are done by the first isomorphism theorem.

2.7. Theorem: Let G be a solvable group, H C G, then G/H is solvable.

Proof. If G is solvable and H C G, then consider a normal series

G = G0 > G1 > G2 > . . . > Gn = {e}

with abelian factors. Since H C G, by Lemma 2.5,

GiH < G

and H C GiH since H C G. Now consider the groups

Gi := GiH/H

Then note that GiH < Gi−1H. Also, since H C G, and Gi C Gi−1, we have

GiH C Gi−1H

Hence, by the Third isomorphism theorem

Gi C Gi−1

Now we claim that Gi−1/Gi is abelian. To prove this, we show that there is a
surjective homomorphism

Gi−1/Gi → Gi−1/Gi

Define π : Gi−1 → Gi−1 by

Gi−1 ↪→ Gi−1H
π−→ Gi−1H/H

Then π is surjective [Check!]. Let µ : Gi−1 → Gi−1/Gi be the natural quotient map,
then µ is also surjective. Hence the composition defines a surjective homomorphism

η := µ ◦ π : Gi−1 → Gi−1/Gi

Furthermore, if x ∈ Gi, then µ ◦ π(x) = µ(xH) = e, and hence

Gi ⊂ ker(η)
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Hence, we get an induced map

η : Gi−1/Gi → Gi−1/Gi

which is also surjective. In particular, Gi−1/Gi is abelian, and so

G/H > G1 > G2 > . . . > Gn = {e}

is a normal series for G/H with abelian factors.

2.8. Theorem: Let G be a group and H C G. Then, G is solvable iff H and G/H are
both solvable.

Proof. (i) If G is solvable and H C G, then H and G/H are solvable by 2.3 and
2.9.

(ii) Conversely, assume that H and G/H are solvable. WTS: G is solvable. By
hypothesis, there exist two normal series

H = H0 > H1 > H2 > . . . > Hn = {e} and

G/H = T0 > T1 > T2 > . . . > Tm = {e}
Let π : G→ G/H is the natural quotient map, then consider

Gi := π−1(Ti) = {x ∈ G : π(x) ∈ Ti}

Then
G = G0 > G1 > G2 > . . . > Gm = H

is a normal series and

Gi−1/Gi
∼= Ti−1/Ti is an abelian group

by the Third isomorphism theorem. Hence, we obtain a normal series

G = G0 > G1 > G2 > . . . > Gm = H = H0 > H1 > H2 > . . . > Hn = {e}

each of whose factors is an abelian group.

(End of Day 27)

2.9. Definition: Let k ⊂ L be a simple radical extension. We say that k ⊂ L is of
prime type if ∃α ∈ L and p ∈ N prime such that

L = k(α) and αp ∈ k

2.10. Lemma: Let k ⊂ L be a radical extension, then ∃ a tower of intermediate fields

k = F0 ⊂ F1 ⊂ . . . ⊂ Fn = L

such that each Fi ⊂ Fi+1 is a simple radical extension of prime type.
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Proof. We may assume WLOG that k ⊂ L is a simple radical extension, and write
L = k(α) such that

a := αn ∈ k for some n ∈ N
We induct on n.

(i) If n is prime, we are done.

(ii) If n is not prime, then choose p ∈ N prime such that p | N, then consider

β := αn/p

and F = k(β). Then k ⊂ F is a simple radical extension of prime type, and

F ⊂ L = F (α)

is a simple radical extension such that αn/p ∈ F . Since |n/p| < n, we may
apply the induction hypothesis, and complete the proof.

2.11. Theorem: Let k ⊂M be a finite normal and radical field extension, then Galk(M)
is solvable.

Proof. Suppose k ⊂M is a finite normal and radical extension, let G := Galk(M).
Write a series of intermediate fields

k = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = M

such that each intermediate extension Fi ⊂ Fi+1 is a simple radical extension of
prime type. We proceed by induction on n.

(i) If n = 1, then
M = k(α) where a := αp ∈ k

Consider f(x) := xp−a ∈ k[x], and let g(x) ∈ k[x] be the minimal polynomial
of α over k.

(a) Assuming WLOG that α /∈ k, deg(g) > 1, and g has a root α in M .
Since k ⊂M is normal, g splits in M (III.2.8)

(b) Let β ∈ M be any other root of g in M , then f(β) = 0 since g | f in
k[x]. Hence,

ζ :=
β

α
∈M and ζp = 1 and ζ 6= 1

(c) Now consider

Γ := {θ ∈M : θp = 1}
Cp = {ζ ∈ C : ζp = 1}

Then, Cp is a cyclic group of order p, and Γ < Cp. By part (b), Γ 6= {1},
and so

Γ = Cp
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(d) Hence, f splits in M . Since M = k(α), M is the splitting field of f over
k. Thus, Galk(M) is a solvable group by Theorem 1.6

(ii) If n > 1, then

(a) Consider
F1 = k(α1) with a := αp ∈ k

As in part (i), ζ = e2πi/p ∈M , and so

L := F1(ζ) ⊂M

is a finite, radical extension of M which is also normal (since L is the
splitting field of xp − a ∈ k[x]).

(b) Furthermore, Galk(L) is solvable by Theorem 1.6.

(c) Now consider

L ⊂ LF2 ⊂ LF3 ⊂ . . . LFn = M (∗)

Then each intermediate step is a simple radical extension of prime type,
and L ⊂M is normal. Furthermore, there are n− 1 terms in this series.
Hence, by induction hypothesis,

GalL(M) is solvable

(d) However, k ⊂ L is a normal extension, so by FTOG-II,

GalL(M) C Galk(M) and Galk(M)/GalL(M) ∼= Galk(L)

Hence, by Theorem 2.8, Galk(M) is solvable.

2.12. Corollary: Let k ⊂ C be a field and f ∈ k[x]. If f is solvable by radicals, then
Galk(f) is a solvable group.

Proof. If f is solvable by radicals, then let L denote the splitting field of f(x), and
let M be a field such that

k ⊂ L ⊂M

and k ⊂ M is a radical extension (by Corollary 1.5). By Theorem 2.10, Galk(M)
is a solvable group. Furthermore, k ⊂ L is a normal extension (III.2.3), and so
GalL(M) C Galk(M) and

Galk(M)/GalL(M) ∼= Galk(L) = Galk(f)

In particular, Galk(f) is a quotient of Galk(M), and so it is solvable by 2.7.

(End of Day 28)
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3. An Insolvable Quintic

3.1. Definition: A group G is said to be simple if it has no normal subgroups other
than {e} and G.

3.2. Examples:

(i) Zp is simple

(ii) If G is an finite, abelian simple group, then G ∼= Zp for some prime p ∈ Z

Proof. If G is finite abelian, and p | |G|, then by Cauchy’s theorem, ∃H < G
such that |H| = p. Since G is abelian, H C G. Since G is simple, H = G and
we are done.

(iii) If G is a solvable simple group, then ∃p ∈ Z prime such that G ∼= Zp (HW)

3.3. Remark:

(i) If τ ∈ Sn, then τ can be express as a product of disjoint cycles. If τ =
σ1σ2 . . . σk is the cycle-decomposition of τ , then

o(τ) = lcm(o(σ1), o(σ2), . . . , o(σk))

(ii) In particular, if p := o(τ) is a prime number, then τ is a product of disjoint
p-cycles. Furthermore, if τ ∈ Sp has order p, then τ is a p-cycle.

(iii) If τ ∈ Sn, then τ can be express as a product of (possibly not disjoint)
transpositions.

An is the collection of those τ ∈ Sn that can be express as a product of an
even number of transpositions.

(iv) Note that |A5| = 5!/2 = 60 = 5× 3× 22. For p ∈ {2, 3, 5}, define

Cp = {τ ∈ A5 : o(τ) = p}

Then Cp 6= ∅ by Cauchy’s theorem. And, by part (ii),

C2 = {(ab)(cd) : {a, b, c, d} are distinct}
C3 = {3-cycles in S5}
C5 = {5-cycles in S5}

(v) Let τ ∈ A5, then τ can be expressed as a product of disjoint cycles, whose
lengths add up to 5 (including cycles of length 1, ie. fixed points). The only
possibilities are:

(a) A 5-cycle

(b) A 3-cycle

(c) A product of 2 disjoint 2-cycles
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(d) A 4-cycle

(e) A 2-cycle

Of these, the first 3 are in A5, while the next two are not. Hence,

A5 = {e} ∪ C2 ∪ C3 ∪ C5

3.4. Lemma: Let {a1, a2, . . . , a5} ⊂ {1, 2, . . . , 5}, then

(a1, a2, a3, a4, a5) = (a1, a5)(a1, a4)(a1, a3)(a1, a2)

(a1, a2, a3) = (a1, a3)(a1, a2)

(a1, a4)(a2, a5) = (a1, a2, a3, a4, a5)(a1, a3, a2, a4, a5)

(a1, a3)(a2, a4) = (a1, a2, a3)(a1, a2, a4)

Proof. [Check!]

3.5. Lemma [See [Online Notes]]: If p ∈ {2, 3, 5}, then A5 is generated by Cp.

Proof. (i) If p = 2: Let H := 〈C2〉. Then by Remark 3.3(v), it suffices to show
that

C5 ∪ C3 ⊂ H

(a) If τ ∈ C5, then write

τ = (a1, a2, a3, a4, a5)

= (a1, a5)(a1, a4)(a1, a3)(a1, a2)

(Lemma 3.4) = ((a1, a5)(a2, a3))((a2, a3)(a1, a4))((a1, a3)(a4, a5))((a4, a5)(a1, a2))

∈ H

(b) If τ ∈ C3, then write

τ = (a1, a2, a3)

= (a1, a2)(a1, a3)

(Lemma 3.4) = ((a1, a2)(a4, a5))((a4, a5)(a1, a3))

∈ H

(ii) If p = 3: Write K = 〈C3〉, then by part (i), it suffices to show that

C2 ⊂ K

But this follows from the fourth formula of Lemma 3.4.

(iii) If p = 5, we use the same argument with the third formula in Lemma 3.4.
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3.6. Lemma: Fix p ∈ {2, 3, 5}. For any τ, σ ∈ Cp,∃δ ∈ A5 such that

τ = δσδ−1

Proof. (i) If p = 2, we assume WLOG that τ = (12)(34). Write

σ = (a1, a2)(a3, a4)

Then consider a5 ∈ {1, 2, 3, 4, 5} \ {a1, a2, a3, a4}, and write

θ :=

(
1 2 3 4 5
a1 a2 a3 a4 a5

)
(∗)

Then [Check!] θ−1σθ = τ . Now define

δ :=

{
θ : θ ∈ A5

θ ◦ (12) : θ /∈ A5

Then δ ∈ A5, and
δσδ−1 = (12)τ(12) = τ

(ii) If p = 3, we assume WLOG that τ = (123). Write

σ = (a1, a2, a3)

As in part (i), ∃θ ∈ S5 such that

θσθ−1 = τ

Now take

δ :=

{
θ : θ ∈ A5

θ ◦ (45) : θ /∈ A5

and this δ works.

(iii) If p = 5, we assume WLOG that τ = (12345), and write

σ = (a1, a2, a3, a4, a5)

Then θ (as in (∗) above) satisfies

θσθ−1 = τ

However, [Check!] θ ∈ A5 and hence δ = θ works.

3.7. Theorem: A5 is a simple group. In particular, A5 is not solvable.
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Proof. If H C A5, and H 6= {e}, then |H| | |A5| = 60 implies that for some
p ∈ {2, 3, 5},

p | A5

By Cauchy’s theorem, ∃τ ∈ H∩Cp. However, any two elements of Cp are conjugate
in A5 by Lemma 3.6. Since H C A5

Cp ⊂ H

and so A5 = H by Lemma 3.5.

(End of Day 29)

3.8. Corollary: Sn is not solvable for n ≥ 5

Proof. If n ≥ 5, then A5 < S5 < Sn, so this follows from Theorems 3.7 and 2.3.

3.9. Lemma: Let p ∈ N be prime and suppose G < Sp is a subgroup that contains a
p-cycle and a transposition, then G = Sp

Proof. If p = 2, then S2
∼= Z2 and there is nothing to prove. So assume p is an

odd prime.

Let τ = (a, b), σ = (a1, a2, . . . , ap) ∈ G.

(i) By relabelling, we may assume that τ = (1, 2). Since σ(a1) = a2, σ
2(a1) = a3

and so on, it follows that, ∃1 ≤ i ≤ p such that σi(1) = 2. Since σi ∈ G, we
may assume that σ = (1, 2, a3, a4, . . . , ap). Again, relabelling, we may assume
that

τ = (12) and σ = (1, 2, . . . , p)

(ii) Note that,

στσ−1 = (2, 3)

σ2τσ−2 = (3, 4)

and so on. Hence,

{(1, 2), (2, 3), (3, 4), . . . , (p− 1, p), (p, 1)} ⊂ G

(iii) Note that,

(2, 3)(1, 2)(2, 3) = (1, 3)

(3, 4)(1, 3)(3, 4) = (1, 4)

and so on. Hence,

{(1, 2), (1, 3), (1, 4), . . . , (1, p)} ⊂ G
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(iv) Note that, if 1 ≤ i, j ≤ p with i 6= j, then

(i, j) = (1, i)(1, j) ∈ G

and so G contains all transpositions. By Remark 3.3(iii), G = Sp

3.10. Theorem: Let p be a prime and f an irreducible polynomial of degree p over Q.
Suppose f has precisely two non-real roots, then GalQ(f) ∼= Sp

Proof. Let L denote the splitting field of f , and G := Galk(f)

(i) Since f is irreducible, f has exactly p roots, by II.4.4, {α1, α2, . . . , αp} in C,
and hence in L. Consider the action of G on the p-roots {α1, α2, . . . , αp} of
f given by Theorem III.3.5. This gives an injective homomorphism

G ↪→ Sp

so we assume G < Sp.

(ii) Since f is irreducible, p | |G| by HW 6.5. By Cauchy’s theorem, G has an
element τ of order p. By Remark 3.3(ii), τ is a p-cycle.

(iii) Since f has two non-real roots, consider the map

j : C→ C given by z 7→ z

and restrict it to L. Since Q ⊂ L is a normal extension, j(L) = L, so
j ∈ Galk(f). Note that

j2 = idL and j 6= idL

since f has non-real roots. Since f has exactly two non-real roots

j ∈ Sp

is a transposition.

(iv) Thus, G contains a transposition and a p-cycle. By Lemma 3.9, G = Sp.

3.11. Example: Let f(x) = 2x5 − 5x4 + 5 ∈ Q[x], then f is not solvable by radicals.

Proof. We claim that G := GalQ(f) = S5.

(i) f is irreducible in Q[x] by Eisenstein’s criterion with p = 5

(ii) f ′(x) = 10x4 − 20x3 = 10x3(x− 2). So f ′(x) = 0 iff x = 0 or x = 2.

(iii) f ′′(x) = 40x3 − 60x2 = 20x2(2x− 3). Hence,

f ′′(0) = 0 and f ′′(2) < 0

So x = 2 gives a local minimum of f , and f(2) = −11
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(iv) At x = −δ, f ′(x) > 0 and at x = +δ, f ′(x) < 0 (for δ > 0 small). Hence
x = 0 is a local maximum of f , and f(0) = 5 > 0.

(v) Since f is an odd degree polynomial, limx→±∞ f(x) = ±∞. So,

(a) f increases from −∞ to 0, cutting the X-axis once along the way.

(b) f decreases from 0 to 2, cutting the X-axis once along the way.

(c) f increases from 2 to +∞, cutting the X-axis once along the way.

Thus, f has 3 real (and hence 2 non-real roots).

Thus, GalQ(f) = S5 by Theorem 3.10.

3.12. Remark:

(i) Example 3.11 indicates that the polynomial cannot be solved by radicals.
However, the roots can be found by other methods.

(ii) Abel-Ruffini proved the existence of an insolvable quintic. Example 3.11 is a
constructive proof of this theorem.

(iii) There may be other quintics which can be solved by radicals. (For instance,
x5 − 2 ∈ Q[x])

(End of Day 30)

4. Galois’ Theorem

(Taken from [Rotman] and [Yoshida])

Note: Throughout this section, for each p ∈ N prime, write ζp := e2πi/p ∈ C.

4.1. Lemma: Let G be a finite solvable group, then there is a normal series

G = G0 > G1 > G2 > . . . > Gn = {e}

such that, for each 0 ≤ i ≤ n− 1

(i) Gi+1 C Gi

(ii) Gi/Gi+1 is a cyclic group of prime order

Note: Compare this to Lemma 2.10

Proof. Write
G = G0 > G1 > G2 > . . . > Gn = {e}

where each Gi+1 C Gi and Gi/Gi+1 is abelian. Fix 1 ≤ i ≤ n, and we induct on

m := |Gi/Gi+1|
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If m is prime, there is nothing to show. If m is not prime, then choose a prime
p | m, then by Cauchy’s theorem, ∃H < Gi/Gi+1 such that |H| = p. Since Gi/Gi+1

is abelian, H C Gi/Gi+1. Let

π : Gi → Gi/Gi+1

by the quotient map. Then Ĥ := π−1(H) < Gi and, in fact, Ĥ C Gi [Check!].
Now consider the normal series

Gi > Ĥ > Gi+1

By the Third isomorphism theorem,

[Gi : Ĥ] =
|Gi/Gi+1|
|Ĥ/Gi+1|

=
m

p

and hence [Ĥ : Gi+1] = p. Since

m/p < m

we may use the induction hypothesis, to obtain a series

Gi/Ĥ = K0 > K1 > K2 > . . . > K` = {e}

such that each Kj+1 C Kj and [Kj : Kj+1] is prime for each 1 ≤ j ≤ ` − 1. Now
consider

K̂j := π−1(Kj) where π : Gi → Gi/H is the quotient map

Then it follows that K̂j+1 C K̂j and by the Third isomorphism theorem,

[K̂j : K̂j+1] is prime

Finally, note that K̂0 = Gi and K̂` = Ĥ. Hence we get a normal series

Gi = K̂0 > K̂1 > . . . > K̂` = Ĥ > Gi+1

with each factor being of prime order. Repeating this process for each 1 ≤ i ≤
(n− 1) gives us the required result.

4.2. Lemma: Let F ⊂ L be a finite normal field extension and p ∈ N prime. Suppose
that

(i) ζp ∈ F
(ii) σ ∈ GalF (L) has order p

Then ∃α ∈ L× such that σ(α) = ζpα.
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Proof. (i) Consider σ : L → L as an F -linear transformation. Then, we wish
to show that ζp is an eigen-value of σ. To this end, let q ∈ F [x] denote the
minimal polynomial of σ. Since

σp = idL

it follows that
q(x) | (xp − 1) in F [x]

Let Λ denote the set of roots of q in F , then

Λ ⊂ {1, ζp, ζ2
p , . . . , ζ

p−1
p } =: µp

We now wish to show that ζp ∈ Λ.

(ii) We claim that Λ is a subgroup of µp: To see this, fix λ, µ ∈ Λ, then ∃0 6=
α, β ∈ L such that

σ(α) = λα and σ(β) = µβ

Since σ is a field homomorphism,

σ(αβ) = λµαβ and σ(α−1) = σ(α)−1 = λ−1α−1

and so λµ, λ−1 ∈ Λ, making Λ a multiplicative subgroup of µp.

(iii) But |µp| = p, so
Λ = {1} or Λ = µp

However, if Λ = {1}, then q(x) = x − 1 and so σ = idL contradicting the
assumption that σ has order p in GalF (L). Thus,

Λ = µp

and, in particular, ζp ∈ Λ as required.

4.3. (Kummer’s Theorem): Let F ⊂ L be a finite normal extension and p ∈ N prime.
Suppose that

(i) ζp ∈ F
(ii) GalF (L) ∼= Zp

Then ∃α ∈ L such that L = F (α) and αp ∈ F .

ie. F ⊂ L is a simple radical extension of prime type.

Proof. Let σ denote a generator of GalF (L), then by the previous Lemma, ∃α ∈ L×
such that σ(α) = ζpα.
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(i) We claim that L = F (α): To see this, let

H := GalF (α)(L) < GalF (L)

and note that
σi(α) = ζ ipα 6= α ∀1 ≤ i ≤ p− 1

Hence,
σi /∈ H ∀1 ≤ i ≤ p− 1

Since GalF (L) = {σi : 0 ≤ i ≤ p− 1}, it follows that

H = {idL}

Since F (α) ⊂ L and F ⊂ L is normal, it follows from FTOG-I that

F (α) = LH = L{idL} = L

(ii) We claim that: a := αp ∈ F . Note that

σ(a) = σ(αp) = [σ(α)]p = ζpαp = αp = a

Since GalF (L) = 〈σ〉,
ϕ(a) = a ∀ϕ ∈ GalF (L)

By Corollary 4.13, a ∈ F .

(End of Day 31)

4.4. (Galois’ Theorem - Special Case): Let k ⊂ L be a finite normal extension such
that Galk(L) is solvable. Assume that, for every prime p ∈ N,

p | |Galk(L)| ⇒ ζp ∈ k

Then k ⊂ L is a radical extension.

Proof. Let G := Galk(L), then we induct on n := |G|.
(i) If n is prime, then this is Kummer’s theorem.

(ii) If n is not prime, then by Lemma 4.1, there is a normal series

G = G0 > G1 > G2 > . . . > Gn = {e}

such that Gi+1 C Gi and Gi/Gi+1 is of prime order. In particular, if H := G1,
then

p := [G : H]

is prime.
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(iii) Let F := LH , then we have a tower of extensions

k ⊂ F ⊂ L

Furthermore, since H C G, k ⊂ F is a normal extension by FTOG-II.

(iv) Since p | |G|, ζp ∈ k ⊂ F by hypothesis. Furthermore, since

G/H ∼= Galk(F )⇒ |Galk(F )| = p

Hence by Kummer’s theorem, k ⊂ F is a simple radical extension of prime
type.

(v) Now note that
F ⊂ L

is a normal extension by HW 6.3. Furthermore,

GalF (L) < Galk(L)

and so GalF (L) is solvable by Theorem 2.3. Also,

|GalF (L)| = |H| = |G|
[G : H]

=
n

p

Finally, for every prime q | |GalF (L)|,

q | |Galk(L)|

and so ζq ∈ k ⊂ F . Hence, the extension F ⊂ L satisfies the hypothesis of
the theorem, so by induction, F ⊂ L is a radical extension.

(vi) By (iii) and (iv), k ⊂ L is a radical extension.

4.5. (Accessory Irrationalities): Let k ⊂ L be a finite normal field extension and β ∈ C
is algebraic over k. Then

(i) k(β) ⊂ L(β) is a finite normal extension

(ii) The map
Galk(β)(L(β))→ Galk(L) given by ϕ 7→ ϕ|L

is a well-defined injective homomorphism.

Proof. (i) If ϕ : L(β)→ C is a k(β)-homomorphism, then restriction gives

ϕ|L: L→ C

is a k-homomorphism. Since k ⊂ L is normal,

ϕ(L) = L

Since β ∈ k(β), ϕ(β) = β ∈ L(β). Since

L(β) = spanL(1, β, . . . , βn−1) (∗)

we have that ϕ(L(β)) = L(β) as required.
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(ii) Let µ be the map defined in (ii). Then, µ is well-defined since k ⊂ L is
normal (as in part (i)), and is clearly a group homomorphism. Now suppose
ϕ ∈ Galk(β) L(β) is such that

µ(ϕ) = idL

Then, note that ϕ(β) = β since ϕ|k(β)= idk(β), and so by the description of
L(β) in (∗), we have that

ϕ = idL(β)

and hence µ is injective.

4.6. (Galois’ Theorem - General Case): Let k ⊂ L be a finite normal extension such
that Galk(L) is solvable, then ∃ a field M such that k ⊂ L ⊂ M and k ⊂ M is
radical.

Proof. Let G := Galk(L), n := |G|, then consider β := e2πi/n, then β is algebraic
over k since Q ⊂ k. Consider the field extension

k(β) ⊂ L(β)

and let Ĝ := Galk(β) L(β), then by Theorem 4.5, k(β) ⊂ L(β) is a finite normal
extension, and there is an injective homomorphism

Ĝ ↪→ G

Hence, by Theorem 2.3, Ĝ is solvable. Furthermore, if p ∈ N is prime, then

p | |Ĝ| ⇒ p | |G| ⇒ ζp = βn/p ∈ k(β)

Hence, by Theorem 4.4,
k(β) ⊂ L(β)

is a radical extension. However,

k ⊂ k(β)

is clearly a simple radical extension. Hence,

k ⊂ L(β) =: M

is a radical extension

4.7. Corollary: Let k ⊂ C and f ∈ k[x]. Then f is solvable by radicals iff Galk(f) is a
solvable group.

Proof. Corollary 2.12, and Theorem 4.6 (with L being the splitting field of f)

4.8. Corollary: Let k ⊂ C and f ∈ k[x] have degree ≤ 4, then f is solvable by radicals.
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Proof. By Theorem III.3.5, Galk(f) is isomorphic to a subgroup of S4. S4 is
solvable by Example 2.2(iv), and so Galk(f) is solvable by Theorem 2.3. Hence, f
is solvable by radicals by Theorem 4.6.

4.9. Corollary (Abel): If f ∈ Q[x] has an abelian Galois group, then f is solvable by
radicals.

Proof. Theorem 4.6 + Example 2.2(i).
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V. Galois Groups of Polynomials

1. Cyclotomic Polynomials

1.1. Definition: Fix n ∈ N
(i) ζn := e2πi/n

(ii) µn = {e2πik/n : 0 ≤ k ≤ n− 1} = 〈ζn〉
Note: µn is a cyclic group of order n.

(iii) Elements of µn are called roots of unity.

(iv) Generators of µn are called primitive root of unity. The set of primitive nth

roots of unity is denoted by Λn. Hence,

Λn = {ζ ∈ µn : o(ζ) = n}

(v) Q(µn) is the splitting field of xn − 1, and is call the nth cyclotomic field.

(vi) If G is a group, then Aut(G) = {ϕ : G→ G : ϕ is an isomorphism}.
1.2. Theorem: Let k ⊂ C be any field, then

(i) k ⊂ k(µn) is a finite normal extension.

(ii) The map
Γ : Galk(k(µn))→ Aut(µn)

given by
ϕ 7→ ϕ|µn

is a well-defined injective homomorphism.

Proof. (i) Since k(µn) = k(ζn), this follows from Corollary III.5.9.

(ii) If ϕ ∈ G := Galk(µn), then for any α ∈ µn,

ϕ(α) ∈ µn

by Lemma II.1.2. Hence, we obtain a map

ϕ̂ := ϕ|µn : µn → µn

Since ϕ is injective, so ϕ̂, and hence, ϕ̂ is also surjective. It is clearly a
group homomorphism since ϕ is a ring homomorphism. Hence, the map Γ is
well-defined.
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(iii) Furthermore, Γ is injective, because if ϕ ∈ G, then ϕ is completely determined
by ϕ(ζn) = ϕ̂(ζn). Hence, if ϕ, ψ ∈ G such that

ϕ̂ = ψ̂

Then ϕ(ζn) = ψ(ζn) and so ϕ = ψ (as in Example III.1.8(vii))

(End of Day 32)

1.3. Recall:

(i) If R is a ring, R∗ = {u ∈ R : ∃v ∈ R such that uv = 1}.
(ii) R∗ is a group under multiplication, call the group of units of R.

(iii) If R = Zn, then
R∗ = {a ∈ Zn : (a, n) = 1}

1.4. Theorem: Aut(µn) ∼= Z∗n
Proof. If a ∈ Z such that (a, n) = 1, define

ψa : µn → µn given by ζ 7→ ζa

(i) Then, ψa is a well-defined homomorphism.

(ii) ψa is injective, because ∃k, ` ∈ Z such that

ka+ `n = 1

And so if λ, ζ ∈ µn such that
ζa = λa

Then (since ζn = λn = 1), it follows that

ζ = λ

(iii) Since ψa is injective and µn is finite, it is also surjective, and hence is an
isomorphism.

(iv) Now note that if a = b in Z∗n, then ∃k ∈ Z such that

a = b+ kn

and so
ζa = ζb ∀ζ ∈ µn ⇒ ψa = ψb

Hence the map
∆ : a→ ψa from Z∗n → Aut(µn)

is well-defined.
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(v) ∆ is injective: If a, b ∈ Z∗n such that ψa = ψb, then

e2πia/n = e2πib/n

and so ∃k ∈ N such that

a− b
n

= k ⇒ a = b

and hence ∆ is injective.

(vi) ∆ is surjective: If f ∈ Aut(µn), then ∃a ∈ Z such that

f(ζn) = ζan

Similarly, if g = f−1, then ∃b ∈ Z such that

g(ζn) = ζbn

Composing, we see that

ζabn = ζn ⇒ ∃k ∈ Z such that
ab− 1

n
= k

Hence, (a, n) = 1 and so a ∈ Z∗n and f = ψa as required.

1.5. Corollary: Let n ∈ N
(i) If (a, n) = 1, and ζ ∈ Λn, then ζa ∈ Λn.

(ii)
Λn = {e2πia/n : a ∈ Z such that (a, n) = 1}

Proof. HW

1.6. Definition: The nth Cyclotomic polynomial is defined as

Φn(x) =
∏
ζ∈Λn

(x− ζ) =
∏

0≤a≤n,(a,n)=1

(x− e2πia/n)

Note that
deg(Φn) = |Z∗n| = ϕ(n)

where ϕ denotes the Euler-Phi function.

1.7. Lemma: For any n ∈ N, xn − 1 =
∏

d|n Φd(x)

Proof. If d | n and ζ ∈ C is a primitive dth root of unity, then

ζd = 1⇒ ζn = 1

Hence,
∪d|nΛd ⊂ µn (∗)

Conversely, if ζ ∈ µn, then let d := o(ζ) as an element of µn. Then

d | |µn| = n

and clearly, ζ ∈ Λd. Hence, equality holds in (∗), and the theorem follows.
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1.8. Examples:

(i) Φ1(x) = x− 1

(ii) If p ∈ N prime, then Φp(x) = xp−1 + xp−2 + . . .+ x+ 1

(iii) Φ4(x) = x4−1
(x−1)(x+1)

= x2 + 1

(iv) Φ6(x) = x6−1
(x−1)(x+1)(x2+x+1)

= x2 − x+ 1

(v) Φ8(x) = x8−1
(x−1)(x+1)(x2+1)

= x4 + 1 (See Quiz 2, Question 2)

1.9. Theorem: Φn is monic and in Z[x]

Proof. We induct on n

(i) If n = 1, then it is clearly true.

(ii) If n > 1, then assume the result is true for m < n. Then consider

f(x) :=
∏

d|n,d<n

Φd(x)

Then f ∈ Z[x], and is monic by induction, and by Lemma 1.8,

xn − 1 = f(x)Φn(x) in C[x] (∗)

This implies that Φn is monic, so write

Φn(x) = a0+a1x+. . .+am−1x
m−1+xm and f(x) = b0+b1x+. . .+bk−1x

k−1+xk

where m+ k = n. Note that, by induction, we may assume that b0 = ±1.

(iii) Note that
a0b0 = −1 and b0 = ±1⇒ a0 ∈ Z

(iv) So to prove aj ∈ Z, we assume by induction that ai ∈ Z for all 0 ≤ i < j.
Since j ≤ k − 1, the coefficient of xj+k is given by

a0bj+k + a1bj+k−1 + . . .+ aj−1bk+1 + aj = 0

By hypothesis, every other term in the sum is in Z, and so aj ∈ Z as well,
since Z is a ring.

(End of Day 33)

1.10. Recall: Let k be any field, f ∈ k[x], then

(i) Write
f(x) = a0 + a1x+ . . .+ anx

n

We may define D(f) as before as

D(f)(x) = a1 + 2a2x+ . . .+ nanx
n−1

Then note that D(f) ∈ k[x] as well.
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(ii) Leibnitz’ rule holds here as well: If f(x) = g(x)h(x), then

D(f)(x) = D(g)(x)h(x) + g(x)D(h)(x)

1.11. Lemma: Let p ∈ N prime and n ∈ N such that p - n.

(i) If f(x) = xn − 1, then
(f,D(f)) = 1 in Zp[x]

(ii) If g(x) ∈ Zp[x] such that

g2(x) | f(x) in Zp[x]

then g(x) ∈ Zp is a scalar.

Proof. (i) Note that
D(f)(x) = nxn−1 6= 0 since p - n

and x ∈ Zp[x] is irreducible because

Zp[x]/(x) ∼= Zp is a field

Hence, if h = (f,D(f)), then ∃k ∈ N such that

h(x) = xk

Since h | f , k ≤ n, and so

h | (xn, xn − 1)⇒ h | −1⇒ deg(h) = 0

and hence h = 1

(ii) If g ∈ Zp[x] such that g2 | f , then by Leibnitz’ rule [Check!],

g | D(f)

and so by part (i), g ∈ Zp is scalar.

1.12. Lemma: If p ∈ N is prime, then for any g ∈ Zp[x], g(x)p = g(xp)

Proof. (i) If a, b ∈ Zp, we have

(a+ b)p = ap + bp +

p−1∑
k=1

(
p

k

)
akbp−k

= ap + bp

by HW 3.1(b).
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(ii) Furthermore, by Fermat’s theorem, for all a ∈ Zp, we have

ap = a (mod p)

(iii) Now write

g(x) = a0 + a1x+ . . .+ anx
n

⇒ g(x)p = (a0 + a1x+ . . .+ anx
n)p

= ap0 + ap1x
p + . . .+ apnx

np

= a0 + a1x
p + . . .+ anx

np

= g(xp)

1.13. Theorem: Let n ∈ N and ζ ∈ µn be any primitive nth root of unity. If (a, n) = 1,
then ζ and ζa have the same minimal polynomial over Q

Proof. (i) Assume first that p = a is prime, so that p - n.

(a) Let f(x) ∈ Q[x] be the minimal polynomial of ζ, then

f(x) | (xn − 1) in Q[x]

By Gauss’ lemma, it follows [Check!] that f(x) ∈ Z[x]. Similarly, if
g(x) ∈ Q[x] is the minimal polynomial of ζp, then g(x) ∈ Z[x]. We now
assume that

f(x) 6= g(x)

(b) Then
g(ζp) = 0

and so f(x) | g(xp) in Q[x] and hence f(x) | g(xp) in Z[x] by HW 3.4. So
let h(x) ∈ Z[x] such that

g(xp) = f(x)h(x)

(c) Let f(x) ∈ Zp[x] denote the image of f under the quotient map

π : Z[x]→ Zp[x]

Then applying π to the above equation, we obtain, by Lemma 1.12, that

gp = fh (∗)
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(d) Now note that f(x) | (xn − 1) in Q[x], and also g(x) | (xn − 1) in Q[x].
Since f and g are irreducible, and f 6= g, it follows that

f(x)g(x) | (xn − 1) in Q[x]

Once again, by Gauss’ lemma, f(x)g(x) | (xn−1) in Z[x], so ∃t(x) ∈ Z[x]
such that

f(x)g(x)t(x) = (xn − 1)

Applying π to this equation, we get

fgt = xn − 1 (∗∗)

(e) From (∗∗), we see that
f
p
gpt

p
= xn − 1

p

By Lemma 1.12 and (∗), this implies

f
p+1

ht
p

= xnp − 1

In particular,

f
2 | xnp − 1

By Lemma 1.11, deg(f) = 0. But since f is monic, this implies that

deg(f) = 0

which contradicts the assumption that f is irreducible in Q[x].

(ii) Now suppose a ∈ Z is any number such that (a, n) = 1, then write

a = p1p2 . . . pk

with pi ∈ N prime. Now fix ζ ∈ Λn, then by part (i),

ζp1 ∈ Λn

Replacing ζ by ζp1 in part (i), we see that

ζp1p2 ∈ Λn

Hence, by induction on k, we finally obtain ζa ∈ Λn as well.

1.14. Corollary: Φn is the minimal polynomial of ζ = e2πi/n over Q.

Proof. Let f ∈ Q[x] denote the minimal polynomial of ζ, then since Φn(ζ) = 0, it
follows that

f(x) | Φn(x) in Q[x]

By Lemma 1.13 and Corollary 1.5, f is the minimal polynomial for all elements of
Λn. Hence,

deg(f) ≥ |Λn| = ϕ(n) = deg(Φn)

Hence, deg(f) = deg(Φn), and since both are monic, it follows that f = Φn.
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1.15. Corollary: GalQ(Q(µn)) ∼= Z∗n
Proof. By Theorem 1.2, the map

Γ : GalQ(Q(µn))→ Aut(µn) ∼= Z∗n

is injective. However, by Corollary 1.14,

|GalQ(Q(µn))| = [Q(µn) : Q] = [Q(ζn) : Q] = deg(Φn) = ϕ(n) = |Z∗n|

and so Γ is surjective as well.

(End of Day 34)

1.16. Examples:

(i) If n is prime, this is simply Example III.1.8(vii).

(ii) Z∗6 = {1, 5}, so
GalQ(Q(ζ6)) ∼= Z2

and ζ6 = eπi/3

(iii) Z∗8 = {1, 3, 5, 7}. However,

3
2

= 9 = 1

and similarly, every element of Z∗8 has order 2. Hence,

Z∗8 ∼= Z2 × Z2

Also, by Example 1.8,
Φ8(x) = x4 + 1

and ζ8 = eπi/4. Hence,

GalQ(Q(ζ8)) ∼= Z2 × Z2

Compare this with Question 2 on Quiz 2.

1.17. Remark:

(i) If Q ⊂ k ⊂ Q(µn) is any intermediate normal extension, then Q ⊂ k is an
abelian extension (since Z∗n is abelian).

(ii) The converse is called the Kronecker-Weber Theorem: If Q ⊂ k is any finite
normal extension such that GalQ(k) is abelian, then ∃n ∈ N such that k ⊂
Q(µn).
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2. Cubic Polynomials

2.1. Remark: Let k ⊂ C be a field, f ∈ k[x] be irreducible of degree n with splitting
field L and Galois group G. Then

(i) G < Sn (III.3.5)

(ii) G is a transitive subgroup of Sn (III.4.2)

(iii) n | |G| (HW 6.5)

(iv) If deg(f) = 2, then G ∼= Z2

(v) If deg(f) = 3, then G ∼= A3
∼= Z3 or S3

(vi) If deg(f) = 3 and f has one complex root, then G ∼= S3 by Theorem IV.3.8.

But what if f has all real roots? Can we conclude that G ∼= Z3?

2.2. Definition: Let f ∈ k[x] be of degree n with roots {α1, α2, . . . , αn}.
(i) ∆ :=

∏
i<j(αi − αj)

(ii) Df := ∆2 is call the discriminant of f

Note: Since f is irreducible, it is separable (II.4.4), and hence Df 6= 0

2.3. Example:

(i) f(x) = ax2 + bx+ c, then Df = (b2 − 4ac)/2a

(ii) f(x) = x3 + ax+ b, then Df = −4a3 − 27b2

Proof. Note that

x3 + ax+ b = (x− α1)(x− α2)(x− α3)

and hence

α1 + α2 + α3 = 0

α1α2 + α1α3 + α2α3 = a

α1α2α3 = −b

Now compute both

−4a3 − 27b2 and [(α1 − α2)(α1 − α3)(α2 − α3)]2

and check that they are equal.

(iii) f(x) = x3 + ax2 + bx+ c, then set h(x) = f(x− a/3) = x3 + px+ q, then

Dh = Df = −4p3 − 27q2

2.4. Definition: If f(x) = a0 + a1x+ . . .+ an−1x
n−1 + anx

n ∈ k[x], then
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(i) f is called reduced if an−1 = 0

(ii) The associated reduced polynomial of f is f̃(x) = f(x− an−1/n)

Note: Df̃ = Df and Galk(f) = Galk(f̃)

2.5. Theorem: Let f ∈ k[x] as in Definition 2.2. Then

(i) For any ϕ ∈ G ⊂ Sn,
ϕ(∆) = sgn(ϕ)∆

(ii) Df ∈ k

Proof. (i) Consider G = Galk(f) < Sn as in Theorem III.3.5. Then for any
ϕ ∈ G, we may write ϕ as a product of transpositions. Hence, it suffices to
show the theorem if ϕ ∈ Sn is a transposition. In this case, it is clear that

ϕ(∆) = −∆

(ii) Now that, by part (i),
ϕ(Df ) = Df ∀ϕ ∈ G

Now apply Corollary III.4.13

2.6. Corollary: If f ∈ k[x] be separable with Galois group G < Sn, then

(i) Galk(∆)(L) = G ∩ An
(ii) k(∆) = LG∩An

Proof. Note that (ii) follows from (i) by the Galois correspondence. So let

F = k(∆)

Then, for all ϕ ∈ G,

ϕ ∈ G ∩ An ⇔ ϕ ∈ G and sgn(ϕ) = 1

⇔ ϕ ∈ G and ϕ(∆) = ∆

⇔ ϕ ∈ G and ϕ|F= idF

⇔ ϕ ∈ GalF (L)

2.7. Theorem: Let f ∈ k[x] be an irreducible cubic with Galois group G and discrimi-
nant Df

G ∼=

{
Z3 :

√
Df ∈ k

S3 :
√
Df /∈ k
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Proof. By Remark 2.1, G ∼= A3 or S3. Note that

G ∼= A3 ⇔ G ⊂ A3

⇔ G ∩ A3 = G

⇔ k(∆) = LG

⇔ k(∆) = k

⇔ ∆ ∈ k
⇔
√
Df ∈ k

(End of Day 35)

2.8. Examples:

(i) f(x) = x3 − 2, then Df = −108, so GalQ(f) ∼= S3, as we know.

(ii) f(x) = x3 − 3x+ 1, then Df = 81, so GalQ(f) ∼= Z3.

(iii) f(x) = x3 − 4x+ 2, then Df = 202, so GalQ(f) ∼= S3. However, all the roots
of f are real (compare with Theorem IV.3.10)

2.9. Corollary: Let f ∈ k[x] be a separable cubic with discriminant Df and roots
{u, v, w}. Then k(u,

√
Df ) is the splitting field of f

Proof. Let F := k(u,
√
Df ), and L denote the splitting field of f over k. Then

(i) u ∈ L, and
∆ =

√
Df = (u− v)(u− w)(v − w) ∈ L

and hence, F ⊂ L

(ii) Conversely, since u ∈ F , we write

f(x) = (x− u)g(x)

for some g ∈ F [x]. Note that {v, w} are the roots of g, so

g(x) = (x− v)(x− w) in C[x]

In particular, since u ∈ F ,

g(u) = (u− v)(u− w) ∈ F

Since f is separable, g(u) 6= 0, so

(v − w) =

√
Df

g(u)
∈ F

On the other hand, v + w is a coefficient of g, and so

v + w ∈ F

Hence v, w ∈ F and so f splits in F . Hence, L ⊂ F as well.

103



2.10. Lemma: Let k ⊂ C be a field, a ∈ k and p ∈ N prime. Set

f(x) = xp − a

Then f is irreducible in k[x] iff f does not have a root in k.

Proof. ⇒: If f is irreducible in k[x], it cannot have a root in k (by the remainder
theorem).

⇐: Conversely, suppose f is reducible in k, WTS: f has a root in k. So write

f(x) = g(x)h(x)

for some polynomials g, h ∈ k[x] with deg(g), deg(h) < p. Let L denote the
splitting field of f over k, then g and h split in L. So write

g(x) = (x− λ1)(x− λ2) . . . (x− λk) in L[x]

Hence,

α :=
k∏
i=1

λi ∈ k (∗)

where k = deg(p). Now,

αp =
k∏
i=1

(λi)
p =

k∏
i=1

a = ak

Note that k = deg(g) < p and p is prime, so ∃s, t ∈ Z such that

sk + tp = 1

Hence,
a = ask+tp = (ak)s(at)p = (αp)s(at)p = (αsat)p

Hence, if β := αsat, we have β ∈ k by (∗) and

βp = a

and hence f has a root in k.

2.11. (Casus Irreducibilis): Let f ∈ Q[x] be an irreducible cubic with 3 real roots. If
Q ⊂M is any radical extension such that f splits in M , then M * R. In particular,
if L is the splitting field of f over Q, then Q ⊂ L is not a radical extension.

Note: This means that any formula for expressing the roots in terms of the coeffi-
cients and their radicals must necessarily involve non-real numbers.
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Proof. Let {u, v, w} denote the roots of f and Df denote its discriminant. Since
{u, v, w} ⊂ R, we have ∆ ∈ R, so

Df = ∆2 > 0

Suppose Q ⊂M is a radical extension in which f splits, then by Corollary 2.8,

L = Q(u,
√
Df ) ⊂M

Now suppose M ⊂ R, we will obtain a contradiction.

(i) If F = Q(
√
Df ), then

Q ⊂ F ⊂M

Since Q ⊂M is radical, we have a tower of extensions

Q ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn = M

such that Ki ⊂ Ki+1 is simple radical. Hence, the tower

F ⊂ FK1 ⊂ FK2 ⊂ . . . ⊂ FKn = M

is a tower where FKi ⊂ FKi+1 is a simple radical extension. Hence,

F ⊂M

is a radical extension.

(ii) By Lemma IV.2.10, there is a tower of extensions

F = F0 ⊂ F1 ⊂ F2 ⊂ . . . Fn = M

such that Fi ⊂ Fi+1 is of prime type.

(iii) Now, note that [F : Q] ∈ {1, 2} (since Df ∈ Q, by Theorem 2.5) and f is a
cubic, so f is irreducible in F [x] [Why?]. Furthermore, f splits in M . Hence,
∃1 ≤ j ≤ n such that

• f is irreducible in Fj[x]

• f is not irreducible in Fj+1[x]

(iv) Now consider Fj ⊂ Fj+1. By hypothesis, ∃p ∈ N prime and a ∈ Fj such that

Fj+1 = Fj(α) such that αp = a

Let g(x) := xp− a ∈ Fj[x]. By part (iii), Fj+1 6= Fj, and so α /∈ Fj. However,
since g has only one real root, it follows that g does not have a root in Fj.
Hence, by Lemma 2.10, g is irreducible in Fj[x].
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(v) Now note that f is not irreducible in Fj+1[x]. Since deg(f) = 3, f has a root,
say, u ∈ Fj+1. Since

√
Df ∈ F0 ⊂ Fj+1, it follows by Corollary 2.8, that f

splits in Fj+1. Let L denote the splitting field of f over Fj, then L = Fj(u),
and by part (iii),

Fj ⊂ L ⊂ Fj+1

However, since g ∈ Fj[x] is irreducible, monic, and g(α) = 0, it follows that

[Fj+1 : Fj] = [Fj(α) : Fj] = deg(mα,Fj) = deg(g) = p

Hence, Fj ⊂ Fj+1 has no non-trivial intermediate extensions. Since Fj 6= L,
it follows that

L = Fj+1

In particular, Fj+1 is the splitting field of f over Fj. Hence, Fj ⊂ Fj+1 is a
normal extension.

(vi) However, g ∈ Fj[x] is irreducible and has a root in Fj+1. By Theorem III.2.8,
g splits in Fj+1. In particular,

α, e2πi/pα ∈ Fj+1

and hence e2πi/p ∈ Fj+1 ⊂M . Hence, M * R.

2.12. Examples: If f(x) = x3 − 3x+ 1, then all the roots of f are real (draw the graph
using Calculus), so by Casus Irreducibilis, any radical extension in which f splits
must necessarily contain non-real complex numbers.

(End of Day 36)

3. Quartic Polynomials

(See [Conrad])

Throughout this section, let k ⊂ C be a field, f ∈ k[x] be an irreducible quartic
polynomial with splitting field L and Galois group G

3.1. Remark:

(i) By HW 6.5, 4 | |G| and G is one of the following

(a) Z4
∼= 〈(1234)〉

(b) V4 := {e, (12)(34), (13)(24), (14)(23)} ∼= Z2 × Z2

(c) D4
∼= 〈(1234), (13)〉

(d) A4

(e) S4
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(ii) By Corollary 2.6, G ⊂ A4 iff
√
Df ∈ k. Hence, we have

G ∼=

{
V4 or A4 :

√
Df ∈ k

Z4, D4, or S4 :
√
Df /∈ k

As we did with A4, we want to identify the fixed field of G ∩ V4

3.2. Lemma: Let f ∈ k[x] be an irreducible quartic with roots {α1, α2, α3, α4}, splitting
field L and Galois group G < S4. Then set

u = α1α2 + α3α4

v = α1α3 + α2α4

w = α1α4 + α2α3

and set F = k(u, v, w) ⊂ L. Then

(i) GalF (L) = G ∩ V4

(ii) LG∩V4 = F

(iii) G = V4 ⇔ F = k

Proof. (i) Once again, for any ϕ ∈ G, note that

ϕ ∈ G ∩ V4 ⇒ ϕ(u) = u, ϕ(v) = v, ϕ(w) = w

⇒ ϕ|F= idF

⇒ ϕ ∈ GalF (L)

⇒ G ∩ V4 ⊂ GalF (L)

Conversely, if ϕ ∈ GalF (L), then consider the possible options for ϕ ∈ S4

(a) ϕ is a transposition: Assume WLOF that ϕ = (12) since the other cases
are similar. Then ϕ(v) 6= v because

α1α3 + α2α4 = α2α3 + α1α4

⇔ (α1 − α2)α3 = (α1 − α2)α4

⇔ α3 = α4

which is impossible since f is separable.

(b) ϕ is a 3-cycle: Assume WLOG that ϕ = (123), then once again it follows
that ϕ(v) 6= v

(c) ϕ is a product of disjoint 2 cycles: Here ϕ ∈ V4, so there is nothing to
check.

(d) ϕ is a 4-cycle: Assume WLOG that ϕ = (1234), then once again it is
clear that ϕ(w) 6= w.
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Hence, it follows that if ϕ ∈ GalF (L), then ϕ ∈ V4, and this completes the
proof.

(ii) Follows from (i) by FTOG-I.

(iii) Note that, by Remark 3.1,

G = V4 ⇔ G ⊂ V4

⇔ G ∩ V4 = G

⇔ LG∩V4 = LG

⇔ F = k

3.3. Theorem: Let f ∈ k[x] as before and u, v, w as in Lemma 3.2, then

g(x) = (x− u)(x− v)(x− w) ∈ k[x]

This polynomial is call the resolvent cubic of f .

Proof. Let g as above. If ϕ ∈ G, then consider the induced map

ϕ∗ : L[x]→ C[x] given by
n∑
i=0

aix
i 7→

n∑
i=0

ϕ(ai)x
i

Then
ϕ∗(g)(x) = (x− ϕ(u))(x− ϕ(v))(x− ϕ(w))

But note that ϕ|{u,v,w}: {u, v, w} → {u, v, w} is a permutation. Hence,

ϕ∗(g)(x) = g(x)

and so every coefficients of g satisfies Corollary III.4.13, and is therefore in k.
Hence, g ∈ k[x].

3.4. Lemma: The resolvent cubic of f(x) = x4 + ax3 + bx2 + cx+ d ∈ k[x] is

g(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd) (∗)

Proof. Write

x4 + ax3 + bx2 + cx+ d = (x− α1)(x− α2)(x− α3)(x− α4) (∗∗)

and expand it out to obtain equations relating αj’s and the coefficients of x. Now
compute each coefficients on the RHS of (∗). For instance, by (∗∗)

b = coeff of x2

= (α1α2 + α3α4) + (α1 + α2)(α3 + α4)

= α1α2 + α3α4 + α1α3 + α2α4 + α1α4 + α2α3

= u+ v + w

and hence the coefficient of x2 in g(x) must be −b. (See [Conrad] for further
details)

108



3.5. Lemma: If f ∈ k[x] is an irreducible quartic and g ∈ k[x] is the resolvent cubic of
f , then

(i) Df = Dg

(ii) k(u, v, w) = k(u,
√
Df )

Proof. (i) Check that

u− v = α1α2 + α3α4 − α1α3 − α2α4 = (α1 − α4)(α2 − α3)

and similar calculations will show that

(u− v)(v − w)(u− w) =
∏
i<j

(αi − αj)

and hence Dg = Df by squaring.

(ii) Note that g is separable by part (i), and hence Corollary V.2.8 applies.

(End of Day 37)

3.6. Theorem: Let f ∈ k[x] be an irreducible quartic as above, then the Galois group
G can be described in the following table :

Case No.
√
Df ∈ k g irreducible in k[x] G

I Y Y A4

II Y N V4

III N Y S4

IV N N D4 or Z4

Proof. We have the following cases:

(i)
√
Df ∈ k and g is irreducible over k: Then,

G ⊂ A4 ⇒ G = V4 or A4

Since g is irreducible over k,

[k(u) : k] = 3

But k(u) ⊂ L, and so 3 | [L : k] = |G|. Since 3 - |V4|, we have

G = A4

(ii)
√
Df ∈ k and g is not irreducible over k: Then,

G ⊂ A4 ⇒ G = V4 or A4

Now since g is reducible over k, and it is cubic, it has a root u ∈ k (HW 2.3).
But since

√
Df ∈ k, it follows that

k = k(u,
√
Df ) = k(u, v, w)

by Lemma 3.5. Hence, G = V4 by Lemma 3.2.
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(iii)
√
Df /∈ k and g is irreducible over k: Then

G ∼= Z4, D4 or S4

But g is irreducible, so once again (as above), 3 | |G|. Hence, G ∼= S4

(iv)
√
Df /∈ k and g is not irreducible over k: Then by Lemma 3.5,

k(u, v, w) = k(u,
√
Df ) = k(

√
Df )

Since Df ∈ k,
[k(u, v, w) : k] = 2

By Lemma 3.2 and FTOG-I, [G : G ∩ V4] = 2. But by Remark 3.1,

G ∼= Z4, D4 or S4

Since

[S4 : S4 ∩ V4] = [S4 : V4] =
24

4
= 6

it follows that G 6= S4, and hence G ∼= Z4 or D4. Note that in both these
cases

[G : G ∩ V4] = 2

3.7. Examples:

(i) f(x) = x4 − x− 1 ∈ Q[x], then

(a) f is irreducible in Q[x] since it is irreducible in Z2[x] (using I.5.6)

(b) The resolvent cubic of f is g(x) = x3 + 4x− 1 (by Lemma 3.4)

(c) g has no roots in Q (by the rational root theorem), so it is irreducible
(by HW 2.3)

(d) The discriminant of f is Df = Dg = −283 (by Example 2.3(ii)), so√
Df /∈ Q.

(e) Hence,
G ∼= S4

(ii) f(x) = x4 + 8x+ 12 ∈ Q[x], then

(a) f has no roots in Q (by the rational root theorem) and it cannot be factor
into two quadratic factors in Z[x] (Check!). So f cannot be properly
factored in Z[x], and so f is irreducible in Q[x] by Gauss Lemma.

(b) The resolvent cubic of f is g(x) = x3 − 48x− 64 (by Lemma 3.4)

(c) g is irreducible in Q[x] since it is irreducible in Z5[x] (using I.5.6)

(d) The discriminant of f is Df = Dg = 5762 ⇒
√
Df ∈ Q.
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(e) Hence,
G ∼= A4

(iii) f(x) = x4 + 1 ∈ Q[x], then

(a) f is irreducible by HW 3.2.

(b) The resolvent cubic of f is

g(x) = x3 − 4x = x(x− 2)(x+ 2)

which is reducible in Q
(c) The discriminant is Df = Dg = [(0 + 2)(0− 2)(2 + 2)]2, so

√
Df ∈ Q

(d) Hence,
G ∼= V4

[Compare this with Example 1.16(iii)]

3.8. Theorem: Let f ∈ k[x] be an irreducible quartic such that Case IV applies in The-
orem 3.6. Then G ∼= D4 iff f is irreducible over k(

√
Df ) (and G ∼= Z4 otherwise).

Proof. Since we are in Case IV, G ∼= D4 or Z4.

⇒: Assume f is irreducible over F := k(
√
Df ). Since Case IV applies,

√
Df /∈ k,

and so
[F : k] = 2

Hence, if α is any root of f , then

[F (α) : F ] = deg(f) = 4

and so by the Tower Law
[F (α) : k] = 8

Since
√
Df , α ∈ L, it follows that [L : k] ≥ 8, and so

|G| ≥ 8⇒ G ∼= D4

⇐: Assume G ∼= D4, then by Corollary 2.6,

GalF (L) = G ∩ A4

But D4 ∩ A4 = V4 (Check!), and so GalF (L) acts transitively on the set
{α1, α2, α3, α4} of roots of f . By Theorem III.3.9, it follows that f is irre-
ducible in F [x].

(End of Day 38)
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3.9. Theorem: If f ∈ Q[x] be an irreducible quartic with Galois group Z4, then Df > 0.
In particular, if Case IV applies in Theorem 3.6 and Df < 0, then G ∼= D4

Proof. Suppose G ∼= Z4, then |G| = [L : k] = 4, and so if α = α1 is any root of f ,
then

L = Q(α)

(i) Suppose f has a real root, then we may choose α ∈ R, so L ⊂ R, and so

α1, α2, α2, α3 ⊂ R⇒ ∆ ∈ R⇒ Df > 0

(ii) Now suppose f does not have a real root, then the non-real roots must occur
in conjugate pairs {z, z, w, w}, and so

∆ = (z − z)(z − w)(z − w)(z − w)(z − w)(w − w)

= (z − z)(w − w)|z − w|2|z − w|2

= (2iIm(z))(2iIm(w))|z − w|2|z − w|2 ∈ R

Hence, Df = ∆2 > 0

3.10. Examples:

(i) f(x) = x4 − 2 ∈ Q[x], then

(a) f is irreducible by Eisenstein’s criterion with p = 2

(b) The resolvent cubic of f is g(x) = x3 + 8x = x(x− 2
√

2i)(x+ 2
√

2i)

(c) So Df = Dg = [(2
√

2i)(−2
√

2i)(2
√

2i + 2
√

2i)]2 < 0 ⇒
√
Df /∈ Q, so

Case IV applies.

(d) But Df < 0, so by 3.9,
G ∼= D4

(ii) f(x) = x4 + 5x+ 5, then

(a) f is irreducible by Eisenstein’s criterion with p = 5

(b) The resolvent cubic of f is g(x) = (x− 5)(x2 + 5x+ 5) whose roots are

{5, −5 +
√

5

2
,
−5−

√
5

2
}

(c) Hence, Df = Dg = 5× 552, so
√
Df /∈ Q. Hence, Case IV applies.

(d) f factors over Q(
√
Df ) = Q(

√
5) as

f(x) =

(
x2 +

√
5x+

5−
√

5

2

)(
x2 −

√
5x+

5 +
√

5

2

)
Hence

G ∼= Z4
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(End of Day 39)

Review of all the chapters

(End of Day 40)

Discussion of HW and Quiz/Mid-Sem problems

(End of Day 41)
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VI. Instructor Notes

0.1. The goals of the course were exactly as it was two years ago, and the execution
was very similar. All in all, the plan is solid, although I would like to make two
changes the next time aroung.

0.2. I feel that Chapter V could be moved up before Chapter IV, thereby giving an
immediate application of the Fundamental theorems of Galois theory, while also
setting up the discussion of solvable groups by talking about cyclotomic extensions
in some detail (instead of the adhoc discussion in Section III.5)

0.3. Also, I would like to discuss finite fields and their Galois groups, at least perfunc-
torily. At the moment, not discussing finite fields is the major drawback of this
structure.
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