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Classical Algebra

(a) Solving Linear Equations:

(i) x+ 3 = 4 has solution x = 1, in N
(ii) x+ 4 = 3 has solution x = −1, in Z

(iii) 3x = 2 has solution x = 2/3, in Q
For a general linear equation ax+ b = 0, the solution x = −b/a lies in Q

(b) Solving Quadratic Equations:

(i) x2 = 2 has solutions x = ±
√

2, in R \Q
(ii) x2 + 1 = 0 has solutions x = ±i, in C \ R

For a general quadratic equation

ax2 + bx+ c = 0

• Divide by a to get

x2 +
b

a
x+

c

a
= 0

• Complete the squares to get(
x+

b

2a

)2

+
c

a
− b2

4a2
= 0

So we get

x =
−b±

√
b2 − 4ac

2a

which lies in C
Questions: Given a polynomial equation

a0 + a1x+ a2x
2 + . . .+ anx

n = 0

(i) Do solutions exist?

(ii) If so, where do they exist?

(iii) How do we find them?

Answer:
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To the first two questions, the answer is the Fundamental Theorem of Algebra:
If ai ∈ Q for all i, then all solutions exist, and they lie in C.

For the last question, let’s examine the case of the cubic.

(c) Solving Cubic Equations:

ax3 + bx2 + cx+ d = 0

• Divide by a to get
x3 + ax2 + bx+ c = 0

• Complete the cube to get
y3 + py + q = 0

where p = f(a, b, c) and q = g(a, b, c)

• One can then make a substitution y = s + t (See [Stewart, Section 1.4],
[Gowers]) to get two quadratic equations

s6 + u1s
3 + u2 = 0⇒ s3 = quadratic formula

t6 + v1t
3 + v2 = 0⇒ t3 = quadratic formula

and so

x =
−a
3

+
3
√
s3 +

3
√
t3

This is called Cardano’s Formula. It is a formula that involves

(i) The coefficients of the polynomial

(ii) +,−, ·, /
(iii)

√
, 3
√
, 4
√
, and 5

√
(Radicals)

(iv) Nothing else

Can such a formula exist for a general polynomial?

(d) Solving Quartic Equation:

• First two steps are the same to get

y4 + py2 + qy + r = 0

• One can again make a substitution to reduce it to a cubic

α1u
3 + α2u

2 + α3u+ α4 = 0

which can be solved using Cardano’s formula.

(e) Solving Quintic Equation:
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• First two steps are the same to get

y5 + py3 + qy2 + ry + s = 0

• Now nothing else works.

(f) Many attempts were made until

(i) Lagrange (1770-71): All the above methods are particular cases of a single
method. This method does not work for the quintic.

(ii) Abel (1825): No method works for the quintic. ie. There is a quintic polyno-
mial that is not solvable by radicals.

(iii) Galois (1830): Explained why this method works for all polynomials of degree
≤ 4, why it does not work for degree 5, and what does one need for any method
to work for any polynomial of any degree!

(End of Day 1)
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I. Polynomials

1. Ring Theory

1.1. Definition:

(i) Ring

(ii) Ring with 1 6= 0

(iii) Commutative ring

(iv) Integral domain

(v) Field

Note: All rings in this course will be commutative with 1 6= 0.

1.2. Examples:

(i) N is not a ring, Z is a ring but not a field, and Q,RC are fields.

(ii) For n > 1, Zn := Z/nZ is a ring, and is a field iff n is prime (without proof)

(iii) Define
F := {a+ b

√
2 : a, b ∈ Q} ⊂ C

with usual addition and multiplication. Then F is a field (with proof)

(iv) Define
K := {a+ bπ : a, b ∈ Q} ⊂ C

then K is not a ring, using the fact that π is transcendental.

1.3. Definition:

(i) Ideal

(ii) Ring homomorphism

(iii) Ring isomorphism

Note: If ϕ : R→ S is a ring isomorphism, then so is ϕ−1 : S → R (HW)

1.4. Examples:

(i) {0} C R,R C R for any ring R

(ii) For n ∈ N, nZ C Z and these are the only ideals in Z (without proof)

(iii) The inclusion map ι : Q→ C is a ring homomorphism, and it is the only ring
homomorphism from Q to C (with proof)
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(iv) Let F = {a+ b
√

2 : a, b ∈ Q} as in Example 1.2(iii), then define

j : F → C by a+ b
√

2 7→ a− b
√

2

(v) z 7→ z is a ring homomorphism from C to C
1.5. Lemma: If ϕ : R→ S is a ring homomorphism, then ker(ϕ) C R

1.6. Theorem: If k is a field, then {0} and k are the only ideals in k

1.7. Corollary: If ϕ : k → K is a homomorphism of fields, then ϕ is injective.

(End of Day 2)

1.8. Theorem: Let R be a ring and I C R, then R/I is a ring.

1.9. Theorem: Let R be a ring, and I C R, then the homomorphism π : R → R/I
given by a 7→ a+ I is a ring homomorphism. This is called the quotient map.

2. Polynomial Rings

Throughout this section, let k be a field.

2.1. Definition:

(i) Polynomial f(x) over k

Note: f(x) = g(x) iff n = m and ai = bi for all i.

For instance, x 6= x2 in Z2[x]

(ii) The polynomial ring k[x] (Check that it is a commutative ring with 1 6= 0)

(iii) Degree of a polynomial deg(f)

2.2. Lemma: Let k be a field and f, g ∈ k[x]

(i) deg(f + g) ≤ max{deg(f), deg(g)}
(ii) deg(fg) = deg(f) + deg(g)

2.3. Theorem (Euclidean Division): Let k be a field and f, g ∈ k[x] with g 6= 0, then
∃t, r ∈ k[x] such that

f = tg + r

and either r = 0 or deg(r) < deg(g)

2.4. Definition:

(i) Principal ideal

(ii) PID

2.5. Corollary: k[x] is a PID.

(End of Day 3)

2.6. Definition: Let α ∈ k
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(i) Evaluation homomorphism ϕα : k[x]→ k. We write f(α) := ϕα(f)

(ii) Root of a polynomial

2.7. (Remainder Theorem): If 0 6= f ∈ k[x] and α ∈ k
(i) ∃t ∈ k[x] such that f(x) = (x− α)t(x) + f(α)

(ii) α is a root of f iff ∃t ∈ k[x] such that f(x) = (x− α)t(x)

2.8. Corollary: If 0 6= f ∈ k[x], the number of roots of f in k is ≤ deg(f)

Note: The inequality might be strict: x2 + 1 ∈ R[x] has no roots in R

3. Fundamental Theorem of Algebra

3.1. Definition: The field C of complex numbers as R2 with the operations

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

(x1, y1) · (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1)

(i) Identify R with the subset {(x, 0) : x ∈ R} ⊂ C
(ii) Let i := (0, 1), then i2 = −1

(iii) Every z ∈ C can be expressed uniquely in the form z = x+ iy for x, y ∈ R
(iv) Polar form z = reiθ of a complex number. Write

(a) r = |z| =
√
x2 + y2

(b) Arg(z) = tan−1(y/x)

Note: If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2)

3.2. (De Moivre’s Theorem): Let 0 6= z = reiθ ∈ C and n ∈ N
(i) zn = rneinθ. In particular

(a) |zn| = |z|n

(b) Arg(zn) = nArg(z)

(ii) The numbers

wk := r1/nei
θ+2k
n , k ∈ {0, 1, . . . , n− 1}

are all the distinct roots of the polynomial

xn − z ∈ C[x]

3.3. Example: There are exactly n distinct roots of unity, given by

wk := e2πik/n = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
They form a cyclic group of order n. The generators of this group are called
primitive nth roots of unity.
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(End of Day 4)

3.4. Lemma: If D ⊂ C is a closed and bounded (compact) set, and f : D → R is
continuous, then ∃α ∈ D such that f(α) ≤ f(z) for all z ∈ D

3.5. Lemma: Let f ∈ C[x], then ∃α ∈ C such that |f(α)| ≤ |f(z)| for all z ∈ C
3.6. (Fundamental Theorem of Algebra): Suppose f ∈ C[x] is a non-constant polyno-

mial, then ∃α ∈ C such that f(α) = 0. (See [Fefferman])

3.7. Corollary: If f ∈ C[x] is of degree n, then ∃β ∈ C and α1, α2, . . . , αn ∈ C such
that

f(x) = β(x− α1)(x− α2) . . . (x− αn) in C[x]

3.8. Corollary: A real polynomial factorizes into linear and quadratic factors in R[x]

(End of Day 5)

4. Factorization of Polynomials

Let k be a field

4.1. Definition : For f, g ∈ k[x], f | g iff ∃h ∈ k[x] such that g = fh

4.2. (Existence of GCD): Let f, g ∈ k[x], then ∃d ∈ k[x] such that

(i) d | f and d | g
(ii) If h | f and h | g, then h | d

(iii) (Bezout’s Identity) ∃s, t ∈ k[x] such that d = sf + gt

4.3. Remark/Definition:

(i) The d above is unique upto multiplication by a constant. The unique monic
polynomial satisfying these properties is called the GCD of f and g

(ii) Relatively prime.

(iii) Irreducible polynomial

(iv) Maximal ideal

4.4. Theorem: For f ∈ k[x], TFAE :

(i) f is irreducible

(ii) (f) is a maximal ideal

(iii) k[x]/(f) is a field

4.5. Examples:

(i) Polynomials of degree 1, but not 0 (since the latter are units)

(ii) x2 − 2 is irreducible in Q[x], but not R[x].

(iii) x2 + 1 is irreducible in R[x] and R[x]/(x2 + 1) ∼= C (without proof)
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(iv) By FTA, f ∈ C[x] is irreducible iff deg(f) = 1

(v) By FTA, f ∈ R[x] is irreducible iff either deg(f) = 1 or f(x) = β(x−z)(x−z)
for some z ∈ C \ R and β ∈ R

(End of Day 6)

4.6. (Unique Factorization - I): If 0 6= f ∈ k[x], then f can be expressed as a product
of irreducibles.

4.7. (Euclid’s Lemma): Let f, g, h ∈ k[x] such that f | gh
(i) If (f, g) = 1, then f | h

(ii) In particular, if f ∈ k[x] is irreducible, then either f | g or f | h
4.8. (Unique Factorization - II): If 0 6= f ∈ k[x], then the factorization of into irre-

ducibles (as in 4.6) is unique upto constant factors and the order in which the
factors are written.

4.9. Definition: Let f ∈ k[x] and α ∈ k be a root of f

(i) Multiplicity of the root α

(ii) Simple root

4.10. Corollary: Let f ∈ k[x] and α1, α2, . . . , αs ∈ k be the roots of f in k of multiplicity
m1,m2, . . . ,ms respectively. Then ∃g ∈ k[x] which has no roots in k such that

f(x) = (x− α1)m1(x− α2)m2 . . . (x− αs)msg(x)

5. Irreducibility of Polynomials

5.1. Remark: If R is an integral domain with 1R 6= 0, then

(i) (a) We may define a polynomial f over R as in Definition 2.1.

(b) Also, R[x] is a ring with 1 = 1R 6= 0

(c) We may also define the degree of a polynomial.

(d) Since R is an integral domain, deg(fg) = deg(f) + deg(g) and so R[x] is
an integral domain as well.

(ii) However, if R is not a field, then

(a) Euclidean division (Theorem 2.3) does not hold.

(b) Furthermore, R[x] is not a PID (See HW 3)

(End of Day 7)

5.2. Remark: If p ∈ Z is prime, then the quotient map π : Z→ Zp induces a surjective
homomorphism π : Z[x]→ Zp[x] whose kernel is

pZ[x] = {pf : f ∈ Z[x]}

We write a := π(a) for all a ∈ Z and f := π(f) for all f ∈ Z[x]
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5.3. Lemma: Let p ∈ Z be a prime number and g, h ∈ Z[x] be such that p | gh in Z[x]
(ie. ∃f ∈ Z[x] such that pf = gh), then either p | g or p | h in Z[x]

5.4. (Gauss’ Lemma): Let f ∈ Z[x], f is irreducible in Z[x] iff it is irreducible in Q[x]

Note:

(i) It is obvious that if f is irreducible in Q[x], then it is irreducible in Z[x]

(ii) Compare Gauss’ Lemma with the fact that (x2−2) is irreducible in Q[x], but
not in R[x].

5.5. (Eisenstein’s criterion): Let f(x) = a0 +a1x+ . . .+anx
n ∈ Z[x], and suppose there

is a prime p ∈ Z such that

(i) p | ai for all i ∈ {0, 1, . . . , n− 1}
(ii) p - an
(iii) p2 - a0

Then f is irreducible in Q[x]

5.6. Examples:

(i) x5 + 10x+ 5 is irreducible over Q
(ii) x4

9
+ 4x

3
+ 1

3
∈ Q[x] is irreducible

(iii) If p ∈ Z is prime, then xn− p ∈ Q[x] is irreducible. Hence, n
√
p /∈ Q for n ≥ 2

(iv) If p ∈ Z is prime,

Φp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + . . .+ x+ 1

is irreducible in Q[x] (HW)

(End of Day 8)

5.7. (Reduction mod p) Let p ∈ Z be a prime, and let f(x) = a0+a1x+. . .+anx
n ∈ Z[x]

be such that p - an. If f is irreducible in Zp[x], then f is irreducible in Z[x].

5.8. Example: x4 + 1 is irreducible in Z[x], but its image is reducible in Z2[x]. So the
converse of 5.7 is not true (HW).

5.9. Definition: Primitive polynomial f ∈ Z[x]

Note:

(i) Irreducible polynonomial is primitive.

(ii) Primitive polynomial may not be irreducible. Example: x2 + 2x+ 1

5.10. Lemma: Let f, g ∈ Z[x] such that f is primitive, and f | g in Q[x], then f | g in
Z[x] (Proof HW)

5.11. (Rational Root Theorem): Let f(x) = a0 + a1x + . . . + anx
n ∈ Z[x] have a root

p/q ∈ Q where (p, q) = 1. Then
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(i) p | a0 and q | an
(ii) In particular, if f is monic, then every rational root of f must be an integer.

5.12. (Euclid’s Lemma) Let f, g, h ∈ Z[x] such that f is irreducible and f | gh. Then
either f | g or f | h

5.13. (Unique Factorization): If 0 6= f ∈ Z[x], then f can be expressed as a product of
irreducible polynomials. Furthermore, this product is unique upto multiplication
by ±1 and the order in which the factors are written.

(End of Day 9)
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II. Field Extensions

1. Simple Extensions

Motivation: Let f ∈ Q[x] and α ∈ C be a root of f . We want to know whether
α can be obtained from the coefficients of f by algebraic operations, and radicals.
To do this, we look at the field

Q(α) = the smallest field containing Q and α

and understand the relationship between Q and Q(α)

Note: All fields in this section will be subfields of C
1.1. Definition:

(i) Field extension k ⊂ L

(ii) Smallest field k(X) generated by a field k ⊂ C and a set X ⊂ C.

(iii) Simple extension k(α)

1.2. Examples:

(i) Q ⊂ R,Q ⊂ C are field extensions, but neither are simple (proof later)

(ii) R ⊂ C is a simple extension. C = R(i) (See I.3.1). Note that C = R(i + 1)
as well, so the generator may not be unique.

(iii) By HW 1.4, every subfield k ⊂ C contains Q. So Q ⊂ k is a field extension.

(iv) Let F = {a + b
√

2 : a, b ∈ Q}, then by Example 1.2(iii), F is a field. Hence,
Q ⊂ F is a field extension. Note that F = Q(

√
2)

(v) Let K = Q(
√

2,
√

3), then K = Q(
√

2 +
√

3) and is hence a simple extension
(with proof)

1.3. Definition/Remark: Let k ⊂ C be a field and α ∈ C
(i) α is algebraic over k.

(ii) α is transcendental over k.

1.4. Examples:

(i) If α ∈ k, then α is algebraic over k

(ii)
√

2 is algebraic over Q
(iii) π is transcendental over Q (without proof)
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(iv) π is algebraic over R
1.5. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Then ∃ unique

polynomial f ∈ k[x] such that

(i) f is monic and irreducible

(ii) f(α) = 0

Furthermore, if g ∈ k[x] is any polynomial, then g(α) = 0 iff f | g in k[x]. This is
called the minimal polynomial of α over k and is denoted by mα := mα,k.

1.6. Examples:

(i) If α ∈ k, then mα(x) = x− α
(ii) If k = Q, α =

√
2, then mα(x) = x2 − 2

(iii) If k = R, α =
√

2, then mα(x) = x−
√

2

(iv) If k = Q, ω = e2πi/3, then mω(x) = Φ2(x) = x2 + x+ 1 (See HW 3.2)

(End of Day 10)

1.7. Definition: Let k ⊂ L1 and k ⊂ L2 be field extensions

(i) Homomorphism of field extensions

(ii) Isomorphism of field extensions

1.8. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Then

(i) k ⊂ k[x]/(mα) is a field extension

(ii) k[x]/(mα) ∼=k k(α)

1.9. Corollary: Let k ⊂ C and α, β ∈ C be algebraic over k with the same minimal
polynomial. Then there is an isomorphism of field extensions k(α) ∼=k k(β) which
sends α 7→ β.

1.10. Remark: Let k ⊂ C be a field.

(i) If p ∈ k[x] is a monic irreducible polynomial, and α, β ∈ C are two roots of
p, then there exists a homomorphism of field extensions ϕ : k(α) → C such
that ϕ |k= idk and ϕ(α) = β

(ii) Conversely, if ϕ : k(α) → C is a homomorphism of field extensions over k,
then β := ϕ(α) is algebraic over k, and mβ = mα (HW)

1.11. Definition: The field of rational functions k(x) over k.

(End of Day 11)

1.12. Remark:

(i) k[x] 6= k(x) for any field k because x is not invertible in k[x]

(ii) The notation k(x) is used because it is the smallest field containing k and x

(iii) k(x) is the field of quotients of the integral domain k[x].
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1.13. Theorem: Let k be a field and α ∈ C be transcendental over k. Then

k(α) ∼=k k(x)

2. Degree of an Extension

2.1. Remark:

(i) Let k ⊂ L be a field extension, then L is a k−vector space.

(ii) If k ⊂ L1 and k ⊂ L2 are two extensions, then a homomorphism ϕ : L1 → L2

of k−extensions is a k-linear map of vector spaces.

2.2. Definition: Let k ⊂ L be a field extension

(i) Degree [L : k] of the extension

(ii) Finite extension

2.3. Example:

(i) R ⊂ C is a finite extension with [C : R] = 2

(ii) Q ⊂ R is not a finite extension since Q is countable and R is not.

(iii) Q ⊂ Q(
√

2) is a finite extension of degree 2.

(iv) If k ⊂ C and α ∈ C is transcendental over k, then k ⊂ k(α) is an infinite
extension.

2.4. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k. Let mα ∈ k[x] be
the minimal polynomial of α over k, and let n = deg(mα). Then

(i) {1, α, α2, . . . , αn−1} is a basis for k(α) over k

(ii) In particular, [k(α) : k] = deg(mα) <∞
2.5. Examples:

(i) Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}, which explains Example I.1.2

(ii) Q( 3
√

2) = {a+ b21/3 + c22/3 : a, b, c ∈ Q} and 22/3 /∈ {a+ b21/3 : a, b ∈ Q}
(iii) C = {a+ ib : a, b ∈ R} (See I.3.1)

(iv) Let p ∈ Z be a prime number and ζp := e2πi/p ∈ C, then Φp is the minimal
polynomial of ζp (See HW 3.2), so [Q(ζp) : Q] = p− 1

(End of Day 12)

2.6. (Tower Law) If k ⊂ F and F ⊂ L are two field extensions, then

[L : k] = [L : F ][F : k]

2.7. Examples:

(i) [Q(
√

2,
√

3) : Q] = 4 (with proof).
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(ii) If [L : k] is prime, then

(a) There are no non-trivial intermediate fields k ⊂ F ⊂ L

(b) k ⊂ L is a simple extension

(iii) Let f(x) = x3 + 6x+ 2 ∈ Q[x]. Then f is irreducible over Q( 4
√

2) (HW 4.4)

2.8. Corollary: Let k ⊂ F1 and k ⊂ F2 be field extensions (all contained in C). Let L
denote the smallest field containing both F1 and F2. Then

(i) [L : F2] ≤ [F1 : k]

(ii) [L : k] ≤ [F1 : k][F2 : k]

(iii) If [F1 : k] and [F2 : k] are relatively prime, then equality holds in part (ii).

L is called the compositum of F1 and F2 and is denoted by F1F2

(End of Day 13)

2.9. Example: Let F1 = Q( 3
√

2), F2 = Q(ω 3
√

2) where ω = e2πi/3, then

(i) F1F2 = Q( 3
√

2, ω)

(ii) [Q( 3
√

2, ω) : Q] = 6 < 9 = [F1 : Q][F2 : Q]

So strict inequality may hold in part (ii) (HW 4.5)

3. Algebraic Extensions

3.1. Definition: Algebraic Extension

3.2. Theorem:

(i) If k ⊂ L is finite extension, then it is algebraic.

(ii) If α ∈ C is algebraic over k, then k ⊂ k(α) is algebraic.

3.3. Example:

(i) Let ζ5 := e2πi/5 ∈ C, then Q ⊂ Q(ζ5) is algebraic. In particular, cos(2π/5) is
algebraic over Q

(ii) Let F be the set of algebraic numbers, then

(a) F is a field

(b) Q ⊂ F is an infinite extension that is algebraic.

3.4. Definition: Finitely generated extension

3.5. Theorem: k ⊂ L is a finite extension iff it is algebraic and finitely generated.

(End of Day 14)

3.6. Theorem: Suppose k ⊂ F and F ⊂ L are algebraic extensions, then k ⊂ L is
algebraic.

Note: If the extensions were finite, then it would follow from the Tower Law.
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3.7. Lemma (HW 5.4): Let F ⊂ C be a field, then TFAE:

(i) If 0 6= f ∈ F [x] is any polynomial, then f has a root in F

(ii) If f ∈ F [x], then every root of f is in F

(iii) If F ⊂ L is an algebraic extension, then F = L

If these conditions holds, we say that L is algebraically closed.

3.8. Theorem: The field of algebraic numbers (See Example 3.3(ii)) is algebraically
closed.

3.9. Remark:

(i) F is called the algebraic closure of Q, and is denoted by Q
(ii) F is the smallest subfield of C that is algebraically closed.

(iii) Q is countable (HW 5.5), so there exist transcendental real numbers.

4. Primitive Element Theorem

(Taken from [Greenberg])

4.1. Definition: Separable polynomial

4.2. Remark: Let f ∈ k[x], then D(f) denotes the derivative of f

(i) D(f + g) = Df +Dg

(ii) D(fg) = fD(g) + gD(f)

(iii) If λ ∈ k, then D(λf) = λD(f)

4.3. Theorem: Let k ⊂ C and f ∈ k[x]. Then f is separable iff (f,D(f)) = 1 in k[x]

(End of Day 15)

4.4. Corollary: Let k ⊂ C be a field and f ∈ k[x] be irreducible, then f is separable.

4.5. (Primitive Element Theorem): Let k ⊂ L be a finite extension of subfields of C,
then it is a simple extension. ie. ∃θ ∈ L such that L = k(θ)

This element θ is called a primitive element of the field extension k ⊂ L

4.6. Example:

(i) If L = Q(
√

2,
√

3), then θ =
√

2 +
√

3 works (See Example II.1.2(v))

(ii) Q ⊂ Q is not a simple extension. Hence the primitive element theorem does
not hold for infinite algebraic extensions.

4.7. Corollary: Let k ⊂ L be a finite extension of subfields of C, then there are only
finitely many intermediate fields k ⊂ F ⊂ L

(End of Day 16)
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III. Galois Theory

1. The Galois Group

1.1. Examples: List all homomorphisms from k → C:

(i) k = Q: There is only one map, the inclusion.

(ii) k = Q(
√

2): There are two maps, {i, j} where j(a+ b
√

2) = a− b
√

2)

(iii) k = Q(ω): There are two maps given by the 2 roots of x2 + x+ 1

(iv) k = Q( 3
√

2): There are three maps given by the 3 roots of x3 − 2

(v) k = Q(
√

2,
√

3): There are 4 maps given by
√

2 7→ ±
√

2 and
√

3 7→ ±
√

3

(vi) k = Q( 3
√

2, ω): There are 6 maps determined by the images of ω and 3
√

2 from
parts (iii) and (iv) respectively.

1.2. Lemma: Let k ⊂ C be a field and α ∈ C be algebraic over k. Let ϕ : k(α)→ C a
homomorphism over k and let β := ϕ(α)

(i) For any f ∈ k[x],
ϕ(f(α)) = f(β)

(ii) β is algebraic over k

(iii) The minimal polynomials of α and β over k are the same.

1.3. Theorem: Let k ⊂ C be a field and α ∈ C be algebraic over k with minimal
polynomial mα ∈ k[x]. Then there is a one-to-one correspondence

{k-homomorphisms from k(α)→ C} ↔ {roots of mα in C}

1.4. Corollary: Let k ⊂ L be a finite extension, then

the number of k-homomorphisms ϕ : L→ C = [L : k]

1.5. Definition: Galk(L)

(End of Day 17)

1.6. Lemma:

(i) If k ⊂ L is an algebraic extension, and ϕ : L→ C is a k-homomorphism such
that ϕ(L) ⊂ L, then ϕ : L→ L is bijective.
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(ii) In particular, if L = k(α1, α2, . . . , αn), then ϕ is bijective iff ϕ(αi) ∈ L for all
1 ≤ i ≤ n.

1.7. Remark :

(i) Galk(L) is a group. One also writes Autk(L) = Galk(L)

(ii) By Lemma 1.4, if k ⊂ L is finite ⇒ |Galk(L)| ≤ [L : k]

(iii) By Lemma 1.6, if k ⊂ L = k(θ) is finite ⇒ Galk(L)↔ {roots of mθ in L}
1.8. Examples:

(i) Galk(k) = {idk}
(ii) GalQ(Q(

√
2)) ∼= Z2

(iii) GalQ(Q(ω)) ∼= Z2

(iv) GalQ(Q( 3
√

2)) = {id}
(v) GalQ(Q(

√
2,
√

3)) ∼= Z2 × Z2 (with proof)

(vi) GalQ(Q( 3
√

2, ω)) ∼= S3 (with proof)

2. Splitting Fields

2.1. Definition: Let k ⊂ L be a field extension, and f ∈ k[x]

(i) f splits in L

(ii) L is the splitting field of f .

(End of Day 18)

(iii) Normal extension

2.2. Remark:

(i) If f ∈ Q[x], then f splits in C (in fact, in Q), but these are not the splitting
fields of f . In fact, the splitting field of f must be a finite extension of Q.

(ii) If L is the splitting field of f over k, then [L : k] <∞
2.3. Theorem: Let k ⊂ L be a finite extension, then TFAE:

(i) k ⊂ L is a normal extension

(ii) ∃f ∈ k[x] such that L is the splitting field of f over k

(iii) |Galk(L)| = [L : k]

2.4. Definition: Galk(L) is called the Galois group of f , denoted by Galk(f)

2.5. Examples:

(i) If f ∈ k[x] is linear, then L = k is the splitting field of f over k. Hence
Galk(f) = {idk}

(ii) If f(x) = ax2+bx+c ∈ k[x] is an irreducible quadratic, then L = k(
√
b2 − 4ac)

is the splitting field of f over k. Hence Galk(f) ∼= Z2
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(iii) If k = Q, f(x) = x3 − 2, then L = Q( 3
√

2, ω). Hence Galk(f) ∼= S3

(iv) If f(x) = (x2−2)(x2−3) ∈ Q[x], then L = Q(
√

2,
√

3) and GalQ(f) ∼= Z2×Z2

(v) If k = Q, f(x) = xp− 1, with p ∈ Z prime, then L = Q(ζp). Hence Galk(f) ∼=
Z∗p ∼= Zp−1 (HW)

(vi) If k = Q, f(x) = x4 − 2, then L = Q( 4
√

2, i) and GalQ(f) ∼= D4 (proof later)

3. Permutation of Roots

3.1. Definition:

(i) Symmetric group on a set X

(ii) The symmetric group Sn

3.2. Theorem: If |X| = n, then SX ∼= Sn

3.3. Definition:

(i) Group Action

(ii) Faithful action

(End of Day 19)

3.4. (Permutation Representation) If G acts on a set X, then

(i) There is an induced homomorphism ϕ : G→ SX

(ii) This homomorphism ϕ is injective iff the action is faithful.

3.5. Theorem: Let k ⊂ C be a field and let f ∈ k[x] be of degree n. Let G = Gal(f)
and let X be the set of roots of f in C. Then

(i) G acts on X faithfully.

(ii) In particular, G ∼= to a subgroup of Sn

3.6. Example:

(i) Let f(x) = x3 − 2, then |GalQ(f)| = [Q( 3
√

2, ω) : Q] = 6 and GalQ(f) < S3

(by Theorem 3.5). Hence GalQ(f) ∼= S3

(ii) Let f(x) = x4 − 2, then

(a) |Gal(f)| = 8 (by Example 2.5(vi))

(b) Thus Gal(f) ∼= D4

3.7. Definition: Transitive action

3.8. Examples:

(i) If G = GalQ(x3− 2), then G acts transitively on X = { 3
√

2, ω 3
√

2, ω2 3
√

2} (See
Example 1.8(vi))
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(ii) If G = GalQ((x2 − 2)(x2 − 3)), then G does not act transitively on X =
{±
√

2,±
√

3}. However, G will act transitively on the set of roots of the
minimal polynomial of

√
2 +
√

3.

3.9. Theorem: Let k ⊂ C be a field and let f ∈ k[x]. Let G = Gal(f) and let X be the
set of roots of f in C. If G acts on X transitively, then f is irreducible.

Note: The converse is also true. We will prove it later.

(End of Day 20)

4. Normal Extensions

4.1. (Extension Lemma): Let k ⊂ F ⊂ L be finite field extensions. If ϕ : F → C is a
k-homomorphism, then ∃ψ : L→ C such that ψ |F= ϕ.

4.2. Theorem: Let f ∈ k[x], let G be the Galois group of f and let X be the set of
roots of f in C. Then G acts transitively on X iff f is irreducible in k[x].

4.3. Remark:

(i) Let k ⊂ F ⊂ L be finite extensions such that k ⊂ L is normal. If ϕ : F → C,
then ∃ψ ∈ Galk(L) such that ψ |F= ϕ.

(ii) In particular, if k ⊂ F is also normal, then every ϕ ∈ Galk(F ) extends to a
ψ ∈ Galk(L).

4.4. Theorem: Let k ⊂ F ⊂ L be finite extensions such that k ⊂ F and k ⊂ L are
both normal. Then

(i) The restriction map
π : Galk(L)→ Galk(F )

is a well-defined, surjective, group homomorphism.

(ii) ker(π) = GalF (L)

(iii) Hence,
Galk(L)/GalF (L) ∼= Galk(F )

(iv) In particular,
[F : k] = [Galk(L) : GalF (L)]

We visualize this by tower diagrams

L Galk(L)

=

F

=

GalF (L)

k {e}
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4.5. Corollary: If k ⊂ F ⊂ L be finite extensions such that k ⊂ F and k ⊂ L are
normal, then

GalF (L) C Galk(L)

4.6. Remark: Let k ⊂ F ⊂ L be a tower of field extensions,

(i) If k ⊂ F is not normal, then π (defined in Theorem 4.4) may not be well-
defined.

(ii) However, GalF (L) < Galk(L) holds, even if it is not normal.

4.7. Example:

(i) If k ⊂ F ⊂ L is finite normal such that [F : k] = 2, then GalF (L) C Galk(L).
We have towers

L Galk(L)

2

F

2

GalF (L)

k {e}

(ii) Let k = Q, L = Q( 4
√

2, i), then k ⊂ L is normal and Galk(L) ∼= D4 (Example
III.3.6) generated by

σ :
4
√

2→ i
4
√

2 and i 7→ i

τ :
4
√

2→ 4
√

2 and i 7→ −i

Let F = Q(
√

2, i) ⊂ L, then

(a) Q ⊂ F is normal. Hence GalF (L) C D4

(b) |GalF (L)| = 2 and GalF (L) ∼= 〈σ2〉
(c) We have the towers

L

2

D4

4

F

4

〈σ2〉

2

Q {0}

(End of Day 21)

(iii) k = Q, L = Q( 3
√

2, ω) then G = Galk(L) ∼= S3 via the action of G on the set

{ 3
√

2, ω
3
√

2, ω2 3
√

2} ↔ {1, 2, 3}
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Let F = Q( 3
√

2), then

GalF (L) ∼= {σ ∈ S3 : σ(1) = 1} = 〈(23)〉

Hence, GalF (L) is not normal in Galk(L), and so k ⊂ F is not a normal
extension.

5. The Galois Correspondence

5.1. Definition: Let k ⊂ L be a field extension and G := Galk(L)

(i) If k ⊂ F ⊂ L is an intermediate field, then

GalF (L) < Galk(L)

(ii) If H < G, then

LH := {x ∈ L : ϕ(x) = x ∀ϕ ∈ H} ⊂ L

is called the fixed field of H

Note: LH is a subfield of L containing k.

(iii) We set

F := {intermediate fields k ⊂ F ⊂ L}
G := { subgroups H < G}

Φ : F → G, given by Φ(F ) := GalF (L)

Ψ : G → F , given by Ψ(H) := LH

Note: This may not be a one-to-one correspondence in general.

5.2. Examples:

(i) If k ⊂ L is any field extension, and G = Galk(L)

(a) If H = {e} < G, then LH = L

However, LG may not be equal to k (See below)

(b) If H1 ⊂ H2 are two subgroups of G, then LH2 ⊂ LH1 . We visualize this
by

G LG ⊃ k

H2

∪

Ψ // LH2

∩

H1 Ψ // LH1

{e} L{e} = L
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(c) If F = L, then GalF (L) = {e}
If F = k, then Galk(L) = G

(d) If F1 ⊂ F2 are two intermediate fields, then GalF2(L) < GalF1(L). We
visualize this by the tower diagram

L {e}

F2

∪

Φ // GalF2(L)

∩

F1 Φ // GalF1(L)

k Galk(L)

(ii) If k = Q, L = Q(
√

2), then Galk(L) ∼= Z2. So

(a) F = {Q,Q(
√

2)} (Example II.2.7)

(b) G = {{0},Z2}
So we have the diagram

Q(
√

2) {0}

Q Z2

(iii) If k = Q, L = Q( 3
√

2), then Galk(L) = {idL}, and again we have the diagram

Q( 3
√

2) {id}

Q {id}

Note that LG = L 6= k

(iv) If k = Q, L = Q(
√

2,
√

3), then G ∼= Z2 × Z2, then the lattice is

L 〈(0, 0)〉

Q(
√

3) Q(
√

2) Q(
√

6) 〈(0, 1)〉 〈(1, 0)〉 〈(1, 1)〉

Q G
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(v) If k = Q, L = Q( 3
√

2, ω), then G ∼= S3 and the lattice of subfields is

L

Q( 3
√

2)

3

Q(ω 3
√

2)

3

Q(ω2 3
√

2)

3
Q(ω)

2

Q

and the lattice of subgroups is

{id}

〈(23)〉

3

〈(13)〉

3

〈(12)〉

3
〈(123)〉

2

S3

(End of Day 22)

5.3. Lemma: Let k ⊂ L be a field extension. Suppose ∃n ∈ N such that [k(α) : k] ≤ n
for all α ∈ L. Then

(i) ∃θ ∈ L such that L = k(θ)

(ii) In particular, [L : k] ≤ n

5.4. Lemma: Let L ⊂ C be a field and G be a finite subgroup of GalQ(L). Let F = LG

be the fixed field of G. If α ∈ L, define

fα(x) =
∏
ϕ∈G

(x− ϕ(α))

Then fα ∈ F [x]

5.5. (Artin’s Lemma): Let L ⊂ C be a field and G be a finite subgroup of GalQ(L).
Let F = LG be the fixed field of G. Then

(i) F ⊂ L is finite

(ii) F ⊂ L is normal

(iii) GalF (L) = G
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5.6. Remark:

(i) For any intermediate field k ⊂ F ⊂ L, we have

F ⊂ LGalF (L) = Ψ ◦ Φ(F )

(ii) For any subgroup H < G, we have

H ⊂ GalLH (L) = Φ ◦Ψ(H)

(End of Day 23)

5.7. (Fundamental Theorem of Galois Theory - I): Let k ⊂ L be a finite normal exten-
sion of subfields of C with Galois group G. Then

(i) For all F ∈ F and H ∈ G,

F = Ψ ◦ Φ(F ) and H = Φ ◦Ψ(H)

In particular, there is a one-to-one correspondence

F ↔ G

(ii) If F ∈ F is an intermediate field, then

[F : k] = [Galk(L) : GalF (L)]

5.8. Lemma: let k ⊂ L be a finite extension, F ∈ F be an intermediate field, and
ψ ∈ Galk(L), then

(i) ψ(F ) ∈ F
(ii)

Galψ(F )(L) = ψGalF (L)ψ−1

5.9. (Fundamental Theorem of Galois Theory - II): Let k ⊂ L be a finite normal
extension of subfields of C with Galois group G. Then

(i) If F ∈ F , k ⊂ F is normal iff GalF (L) C Galk(L).

(ii) In that case, the conclusions of Theorem 4.4 hold.

5.10. Example: Consider k = Q, L = Q( 3
√

2, ω). Then G = Galk(L) ∼= S3 via the
identification { 3

√
2, ω 3
√

2, ω2 3
√

2} ↔ {1, 2, 3}. So if H = 〈(23)〉 < G, then

(i) LH = Q( 3
√

2)

(ii) Hence, H is not normal in G.

The other examples in 5.2 can be justified similarly.

5.11. Theorem: Let k ⊂ F be a finite field extension, then ∃ a field M such that
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(i) F ⊂M

(ii) k ⊂M is finite and normal

(iii) If L is any other field satisfying (i) and (ii), then M ⊂ L.

In other words, M is the smallest normal extension of k that contains F . This
field M is called the normal closure of F over k

(End of Day 24)

5.12. Corollary: Any extension of degree 2 is a normal extension. (See HW 7)
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IV. Solvability by Radicals

1. Radical Extensions

1.1. Example:

(i) Quadratic f(x) = ax2 + bx+ c ∈ k[x], then

(a) Roots of f are given by the quadratic formula

(b) f splits in the field k(
√
r) where r = b2 − 4ac ∈ k

(ii) Cubic f(x) = x3 − a, then

(a) Roots of f are given by 3
√
a, ω 3
√
a, ω2 3

√
a

(b) f splits in the field L = k( 3
√
a, ω)

(iii) Cubic f(x) = x3 + px+ q, then

(a) Roots of f are given by Cardano’s formula. If

A =
3

√
−q
2

+

√
q2

4
+
p3

27

B =
3

√
−q
2
−
√
q2

4
+
p3

27

Then the roots of f are

{A+B,ωA+ ω2B,ω2A+ ωB}

(b) f splits in the field L = Q(ω,A,B)

1.2. Definition:

(i) A field extension k ⊂ L, is called a simple radical extension of type n ∈ N if
∃α ∈ L such that

(a) L = k(α)

(b) αn ∈ k
Equivalently, if ∃a ∈ k such that L = k(α) where α is a root of xn − a ∈ k[x]

(ii) Radical Extension k ⊂ L

(iii) We say f ∈ k[x] is solvable by radicals if the splitting field F of f over k is
contained in a radical extension of k
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Note: k ⊂ F itself need not be a radical extension.

1.3. Example:

(i) k ⊂ k is simple radical.

(ii) Q ⊂ Q(
√

2) is simple radical.

(iii) If k ⊂ L is an extension of degree 2, then

(a) L = k(
√
r) for some r ∈ k (See HW 4.2)

(b) Hence, k ⊂ F is a simple radical extension

(c) So any quadratic polynomial f ∈ k[x] is solvable by radicals.

(iv) Q ⊂ Q( 3
√

2) is a simple radical extension.

(v) If n ∈ N, Q ⊂ Q(e2πi/n) is a simple radical extension. Hence, xn−1 is solvable
by radicals.

(vi) Q ⊂ Q( 3
√

2, ω) is a radical extension, because if F = Q( 3
√

2), then

Q ⊂ F ⊂ L

is a chain of simple radical extensions. Hence, f(x) = x3 − 2 is solvable by
radicals over Q.

(vii) f(x) = x3 − 3x+ 1, then

(a) f is solvable by radicals by Cardano’s formula

(b) f has all real roots

(c) However, Cardano’s formula involves
√
−3/4. So, one needs complex

numbers to express these roots as radicals. This phenomenon is called
‘Casus Irreducibilis’

(viii) Q ⊂ Q(
√

2,
√

3) is a radical extension, but is not a simple radical extension.
(with proof)

(End of Day 25)

1.4. Lemma: If k ⊂ L is a radical extension, then there is a chain of subfields

k = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kn = L

such that Kj ⊂ Kj+1 is a simple radical extension of prime type for all 0 ≤ j ≤ n.

1.5. Lemma: Let k ⊂ L be a simple radical extension of prime type, then there exists
an extension k ⊂ L ⊂M such that k ⊂M is finite, normal and radical.

1.6. Theorem: If k ⊂ L is a radical extension, then there is an extension k ⊂ L ⊂ M
such that k ⊂M is finite, normal and radical.

1.7. Corollary: Let k ⊂ C be a field and f ∈ k[x] with splitting field L. Then f is
solvable by radicals iff ∃ a field extension k ⊂ L ⊂ M such that k ⊂ M is finite
normal and radical.
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1.8. Remark: Suppose k ⊂ L is a simple radical extension of prime degree p ∈ N. Write

L = k(α), where a := αp ∈ k

Let f(x) = xp − a, and let

M = k( p
√
a, ζ) where ζ = e2πi/p

be the splitting field of f over k. Write F = k(ζ), then

(i) k ⊂ F is normal. So GalF (M) C Galk(M)

(ii) G/H ∼= Galk(F ) = Galk(k(ζ))

1.9. Theorem: Let k ⊂ L ⊂ E be finite extensions and β ∈ E. If k ⊂ k(β) is normal,
then

(i) L ⊂ L(β) is finite and normal

(ii) The map
ϕ 7→ ϕ |k(β) from GalL(L(β))→ Galk(k(β))

is injective.

(End of Day 26)

1.10. Lemma: Let p ∈ N be prime, and let F ⊂ C be a field containing ζ = e2πi/p. Let
a ∈ F , and let M be the splitting field field of xp − a ∈ F [x]. Then

GalF (M) ∼=

{
{e} : F = M

Zp : F (M

1.11. Theorem: Let k ⊂ C be a field, and let p ∈ N be a prime. Let M be the splitting
field of f(x) = xp − a ∈ k[x], and set F = k(ζ) ⊂M where ζ = e2πi/p, then

(i) GalF (M) C Galk(M)

(ii) GalF (M) is cyclic

(iii) Galk(M)/GalF (M) is cyclic

2. Solvable Groups

2.1. Definition: A finite group G is said to be solvable if there is a decreasing sequence
(Gi) of subgroups of G

G = G0 > G1 > G2 > . . . > Gn−1 > Gn = {e}

such that

(i) Gi C Gi−1 for all 1 ≤ i ≤ n
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(ii) Gi−1/Gi is cyclic for all 1 ≤ i ≤ n.

2.2. Examples:

(i) Every cyclic group is solvable.

(ii) Zn × Zm is solvable

(iii) S3 is solvable

(iv) If |G| = 8, then G is solvable. (In particular, D4 is solvable)

(v) S4 is solvable.

(vi) Let k ⊂ C, p ∈ N prime, and let M be the splitting field of xp − a ∈ k[x].
Then Galk(M) is solvable (by 1.11)

(End of Day 27)

2.3. Theorem: Let G be a solvable group and H < G, then H is solvable.

2.4. Definition: If A,B ⊂ G, AB = {ab : a ∈ A, b ∈ B}
2.5. Lemma: If H C G and K < G, then

(i) HK = KH

(ii) HK < G

2.6. Theorem: Let G be a group, H C G and K < G, then

(i) H ∩K C K

(ii)
K

H ∩K
∼=
HK

H

2.7. Theorem: Let G be a group, H,K C G such that H ⊂ K, then

(i) H C K

(ii) K/H C G/H

(iii)
G/H

K/H
∼=
G

K

2.8. Theorem: Let G be a solvable group, H C G, then G/H is solvable.

2.9. Theorem: Let G be a group and H C G. Then, G is solvable iff H and G/H are
both solvable.

2.10. Theorem: Let k ⊂M be a finite normal and radical field extension, then Galk(M)
is solvable.

(End of Day 28)

2.11. Corollary: Let k ⊂ C be a field and f ∈ k[x]. If f is solvable by radicals, then
Galk(f) is a solvable group.
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3. An Insolvable Quintic

3.1. Definition: Simple group

3.2. Examples:

(i) Zp is simple

(ii) If G is an abelian simple group, then G is finite and G ∼= Zp for some prime
p ∈ Z

(iii) If G is a solvable simple group, then ∃p ∈ Z prime such that G ∼= Zp (HW)

3.3. Remark:

(i) If τ ∈ Sn, then τ can be expressed as a product of disjoint cycles. If τ =
σ1σ2 . . . σk is the cycle-decomposition of τ , then

o(τ) = lcm(o(σ1), o(σ2), . . . , o(σk))

(ii) In particular, if p := o(τ) is a prime number, then τ is a product of disjoint
p-cycles.

(iii) If τ ∈ Sn, then τ can be expressed as a product of (possibly not disjoint)
transpositions.

An is the collection of those τ ∈ Sn that can be expressed as a product of an
even number of transpositions.

(iv) In A5, define

C2 := {τ ∈ A5 : o(τ) = 2} = {(ab)(cd) : {a, b, c, d} are distinct}
C3 := {τ ∈ A5 : o(τ) = 3} = {3− cycles in S5}
C5 := {τ ∈ A5 : o(τ) = 5} = {5− cycles in S5}

3.4. Lemma: If p ∈ {2, 3, 5}, then A5 is generated by Cp.

3.5. Theorem: A5 is a simple group.

(End of Day 29)

3.6. Corollary: Sn is not solvable for n ≥ 5

3.7. Lemma: Let p ∈ N be prime and suppose G < Sp is a subgroup that contains a
p-cycle and a transposition, then G = Sp

3.8. Theorem: Let p be a prime and f an irreducible polynomial of degree p over Q.
Suppose f has precisely two non-real roots, then GalQ(f) ∼= Sp

3.9. Example: Let f(x) = x5 − 4x+ 2 ∈ Q[x], then f is not solvable by radicals.

3.10. Remark:

(i) Example 3.9 indicates that the polynomial cannot be solved by radicals. How-
ever, the roots can be found by other methods.
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(ii) Abel-Ruffini proved the existence of an insolvable quintic. Example 3.9 is a
constructive proof of this theorem.

(iii) There may be other quintics which can be solved by radicals.

(End of Day 30)

4. Galois’ Theorem

(Taken from [Rotman] and [Yoshida])

Note: Throughout this section, for each p ∈ N prime, write ζp := e2πi/p ∈ C.

4.1. Lemma: Let G be a finite solvable group, then there is a normal series

G = G0 > G1 > G2 > . . . > Gn = {e}

such that, for each 0 ≤ i ≤ n− 1

(i) Gi+1 C Gi

(ii) Gi/Gi+1 is a cyclic group of prime order

Note: Compare this to Lemma 1.4

4.2. Lemma: Let F ⊂ L be a finite normal field extension and p ∈ N prime. Suppose
that

(i) ζp ∈ F
(ii) σ ∈ GalF (L) has order p

Considering σ : L→ L as an F -linear transformation, ζp is an eigen-value of σ.

4.3. (Kummer’s Theorem): Let F ⊂ L be a finite normal extension and p ∈ N prime.
Suppose that

(i) ζp ∈ F
(ii) GalF (L) ∼= Zp

Then ∃a ∈ F such that L = F ( p
√
a)

4.4. (Galois’ Theorem - Special Case): Let k ⊂ L be a finite normal extension such
that Galk(L) is solvable. Assume that

∀ primes p | |Galk(L)|, ζp ∈ k

Then k ⊂ L is a radical extension.

(End of Day 31)

4.5. (Accessory Irrationalities): Let k ⊂ L be a finite normal field extension and β ∈ C.
Then

(i) k(β) ⊂ L(β) is a finite normal extension
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(ii) The map
Galk(β)(L(β))→ Galk(L) given by ϕ 7→ ϕ|L

is a well-defined injective homomorphism.

4.6. (Galois’ Theorem - General Case): Let k ⊂ L be a finite normal extension such
that Galk(L) is solvable, then ∃ a field M such that k ⊂ L ⊂ M and k ⊂ M is
radical.

4.7. Corollary: Let k ⊂ C and f ∈ k[x]. Then f is solvable by radicals iff Galk(f) is a
solvable group.

4.8. Corollary: Let k ⊂ C and f ∈ k[x] have degree ≤ 4, then f is solvable by radicals.

4.9. Corollary (Abel): If f ∈ Q[x] has an abelian Galois group, then f is solvable by
radicals.

34



V. Galois Groups of Polynomials

1. Cyclotomic Polynomials

1.1. Definition: Fix n ∈ N
(i) µn = {e2πik/n : 0 ≤ k ≤ n− 1}.

Note: µn is a cyclic group of order n.

(ii) Elements of µn are called roots of unity. Generators of µn are called primitive
root of unity.

(iii) Q(µn) is the splitting field of xn − 1, and is called the nth cyclotomic field.

(iv) If G is a group, then Aut(G) = {ϕ : G→ G : ϕ is an isomorphism}.
1.2. Theorem: Let k ⊂ C be any field, then

(i) k ⊂ k(µn) is a finite normal extension.

(ii) The map
Γ : Galk(k(µn))→ Aut(µn)

given by
ϕ 7→ ϕ|µn

is a well-defined injective homomorphism.

1.3. Recall:

(i) If R is a ring, R∗ = {u ∈ R : ∃v ∈ R such that uv = 1}.
(ii) R∗ is a group under multiplication, called the group of units of R.

(iii) If R = Zn, then
R∗ = {a ∈ Zn : (a, n) = 1}

1.4. Theorem: Aut(µn) ∼= Z∗n
(End of Day 32)

1.5. Lemma: Let n ∈ N and ζ ∈ µn be a primitive nth root of unity. If (a, n) = 1, then
ζa is a primitive nth root of unity. (HW)

1.6. Definition: nth Cyclotomic polynomial

1.7. Lemma: For any n ∈ N, xn − 1 =
∏

d|n Φd(x)

1.8. Examples:

(i) Φ1(x) = x− 1
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(ii) If p ∈ N prime, then Φp(x) = xp−1 + xp−2 + . . .+ x+ 1

(iii) Φ6(x) = x6−1
(x−1)(x+1)(x2+x+1)

= x2 − x+ 1

1.9. Theorem: Φn is monic and in Z[x]

1.10. Remark: Let k = Zp and f ∈ k[x], then

(i) f is said to be inseparable if ∃ a field extension k ⊂ L such that f has multiple
roots in L.

Note: These roots will not be in C, but in some larger field.

(ii) f is said to be separable if it is not inseparable.

(iii) We may define D(f) as before.

(iv) Theorem II.4.3 holds verbatim: If f ∈ k[x], then f is separable iff (f,D(f)) =
1 in k[x]

1.11. Lemma: If p ∈ N prime and n ∈ N such that p - n, then xn−1 ∈ Zp[x] is separable.

1.12. Lemma: If p ∈ N is prime, then for any g ∈ Zp[x], g(x)p = g(xp)

1.13. Theorem: Let n ∈ N and ζ ∈ µn be any primitive nth root of unity. If (a, n) = 1,
then ζ and ζa have the same minimal polynomial over Q

(End of Day 33)

1.14. Corollary: Φn is the minimal polynomial of ζ = e2πi/n over Q.

1.15. Corollary: GalQ(Q(µn)) ∼= Z∗n
1.16. Remark:

(i) If Q ⊂ k ⊂ Q(µn) is any intermediate normal extension, then Q ⊂ k is an
abelian extension (since Z∗n is abelian).

(ii) The converse is called the Kronecker-Weber Theorem: If Q ⊂ k is any finite
normal extension such that GalQ(k) is abelian, then ∃n ∈ N such that k ⊂
Q(µn).

2. Cubic Polynomials

2.1. Remark: Let f ∈ k[x] be irreducible of degree n with splitting field L and Galois
group G. Then

(i) G < Sn (III.3.5)

(ii) G is a transitive subgroup of Sn (III.4.2)

(iii) n | |G| (HW)

(iv) If deg(f) = 2, then G ∼= Z2

(v) If deg(f) = 3, then G ∼= A3
∼= Z3 or S3

(vi) If deg(f) = 3 and f has one complex root, then G ∼= S3 by Theorem IV.3.8.
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But what if f has all real roots? Can we conclude that G ∼= Z3?

2.2. Definition: Let f ∈ k[x] be of degree n with roots {α1, α2, . . . , αn}.
(i) ∆ :=

∏
i<j(αi − αj)

(ii) Df := ∆2 is called the discriminant of f

Note: Since f is irreducible, it is separable (II.4.4), and hence Df 6= 0

2.3. Example:

(i) f(x) = ax2 + bx+ c, then Df = (b2 − 4ac)/2a

(ii) f(x) = x3 + ax+ b, then Df = −4a3 − 27b2

(iii) f(x) = x3 + ax2 + bx+ c, then set h(x) = f(x− a/3) = x3 + px+ q, then

Dh = Df = −4p3 − 27q2

2.4. Definition: If f(x) = a0 + a1x+ . . .+ an−1x
n−1 + anx

n ∈ k[x], then

(i) f is called reduced if an−1 = 0

(ii) The associated reduced polynomial of f is f̃(x) = f(x− an−1/n)

Note: Df̃ = Df and Galk(f) = Galk(f̃)

2.5. Theorem: Let f ∈ k[x] as in Definition 2.2. Then

(i) For any ϕ ∈ G ⊂ Sn,
ϕ(∆) = sgn(ϕ)∆

(ii) Df ∈ k
2.6. Corollary: If f ∈ k[x] be separable with Galois group G < Sn, then

(i) Galk(∆)(L) = G ∩ An
(ii) k(∆) = LG∩An

2.7. Theorem: Let f ∈ k[x] be an irreducible cubic with Galois group G and discrimi-
nant Df

G ∼=

{
Z3 :

√
Df ∈ k

S3 :
√
Df /∈ k

(End of Day 34)

2.8. Corollary: Let f ∈ k[x] be an irreducible cubic with discriminant Df and roots
{u, v, w}. Then F = k(u,

√
Df ) is the splitting field of f

2.9. Lemma: Let F ⊂ R be a field and p ∈ N prime, a ∈ F . Then, [F ( p
√
a) : F ] is

either 1 or p

2.10. (Casus Irreducibilis): Let f ∈ Q[x] be an irreducible cubic with 3 real roots. If
Q ⊂M is any radical extension such that f splits in M , then M * R. In particular,
if L is the splitting field of f over Q, then Q ⊂ L is not a radical extension.
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Note: This means that any formula for expressing the roots in terms of the coeffi-
cients and their radicals must necessarily involve non-real numbers.

2.11. Examples:

(i) f(x) = x3 − 2, then Df = −108, so GalQ(f) ∼= S3. Also, f has exactly 2
complex roots, so we may apply Theorem IV.3.8.

(ii) f(x) = x3 − 4x+ 2, then Df = 202, so GalQ(f) ∼= S3. However, all the roots
of f are real (compare with Theorem IV.3.8)

(iii) f(x) = x3−3x+1, then Df = 81, so GalQ(f) ∼= Z3. However, all the roots are
real, so by Casus Irreducibilis, any radical extension in which f splits must
necessarily contain non-real complex numbers. (See Example IV.1.3(vii))

3. Quartic Polynomials

3.1. Remark: Let f ∈ k[x] be an irreducible quartic polynomial with Galois group G

(i) Let f̃ be the associated reduced polynomial, then G = Galk(f̃), so we assume
WLOG that

f(x) = x4 + qx2 + rx+ s

(ii) By HW 10, 4 | |G| and G is one of the following

(a) Z4
∼= 〈(1234)〉

(b) V4 := {e, (12)(34), (13)(24), (14)(23)} ∼= Z2 × Z2

(c) D4
∼= 〈(1234), (13)〉

(d) A4

(e) S4

(iii) By 2.6, G ⊂ A4 iff
√
Df ∈ k. Hence, we have

G ∼=

{
V4 or A4 :

√
Df ∈ k

Z4, D4, or S4 :
√
Df /∈ k

(iv) As we did with A4, we want to identify the fixed field of G ∩ V4

(End of Day 35)

3.2. Lemma: Let f ∈ k[x] be an irreducible quartic with roots {α1, α2, α3, α4}, splitting
field L and Galois group G < S4. Then set

u = α1α2 + α3α4

v = α1α3 + α2α4

w = α1α4 + α2α3

and set F = k(u, v, w) ⊂ L. Then
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(i) GalF (L) = G ∩ V4

(ii) LG∩V4 = F

(iii) G = V4 ⇔ F = k

3.3. Theorem: Let f ∈ k[x] as before and u, v, w as in Lemma 3.2, then

g(x) = (x− u)(x− v)(x− w) ∈ k[x]

This polynomial is called the resolvent cubic of f .

3.4. Lemma: The resolvent cubic of f(x) = x4 + ax3 + bx2 + cx+ d ∈ k[x] is

g(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd)

3.5. Lemma: If f ∈ k[x] is an irreducible cubic and g ∈ k[x] is the resolvent cubic of
f , then

(i) Df = Dg

(ii) k(u, v, w) = k(u,
√
Df )

3.6. Theorem: Let f ∈ k[x] be an irreducible quartic as above, then the Galois group
G can be described in the following table :

Case No.
√
Df ∈ k g irreducible in k[x] G

I Y Y A4

II Y N V4

III N Y S4

IV N N D4 or Z4

(End of Day 36)

3.7. Examples:

(i) f(x) = x4 − x− 1 ∈ Q[x], then

(a) f is irreducible in Q[x] since it is irreducible in Z2[x] (using I.5.7)

(b) The resolvent cubic of f is g(x) = x3 + 4x− 1.

(c) g has no roots in Q (by the rational root theorem), so it is irreducible.

(d) The discriminant of f is Df = Dg = −283, so
√
Df /∈ Q.

(e) Hence,
G ∼= S4

(ii) f(x) = x4 + 8x+ 12 ∈ Q[x], then

(a) f is irreducible in Q[x] since it has no roots in Q (by the rational root
theorem) and it cannot be factored into two quadratic factors in Z[x]. So
f is irreducible in Z[x], and so in Q[x] by Gauss’ Lemma.
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(b) The resolvent cubic of f is g(x) = x3 − 48x− 64

(c) g is irreducible in Q[x] since it is irreducible in Z5[x] (using I.5.7)

(d) The discriminant of f is Df = Dg = 5762 ⇒
√
Df ∈ Q.

(e) Hence,
G ∼= A4

(iii) f(x) = x4 + 1 ∈ Q[x], then

(a) f is irreducible (HW 3.3)

(b) The resolvent cubic of f is

g(x) = x3 − 4x = x(x− 2)(x+ 2)

which is reducible in Q
(c) The discriminant is Df = Dg = [(0 + 2)(0− 2)(2 + 2)]2, so

√
Df ∈ Q

(d) Hence,
G ∼= V4

[Compare this with Quiz 2. Also, f = Φ8, so GalQ(f) ∼= Z∗8 ∼= Z2 × Z2]

3.8. Theorem: Let f ∈ k[x] be an irreducible quartic such that Case IV applies. Then
G ∼= Df iff f is irreducible over k(

√
Df ) (and G ∼= Z4 otherwise).

3.9. Theorem: If f ∈ Q[x] be an irreducible quartic with Galois group Z4, then Df > 0.

3.10. Examples:

(i) f(x) = x4 − 2 ∈ Q[x], then

(a) f is irreducible by Eisenstein’s criterion with p = 2

(b) The resolvent cubic of f is g(x) = x3 + 8x = x(x− 2
√

2i)(x+ 2
√

2i)

(c) So Df = Dg = [(2
√

2i)(−2
√

2i)(2
√

2i + 2
√

2i)]2 < 0 ⇒
√
Df /∈ Q, so

Case IV applies.

(d) But Df < 0, so by 3.10,
G ∼= D4

(ii) f(x) = x4 + 5x+ 5, then

(a) f is irreducible by Eisenstein’s criterion with p = 5

(b) The resolvent cubic of f is g(x) = (x− 5)(x2 + 5x+ 5) whose roots are

{5, −5 +
√

5

2
,
−5−

√
5

2
}

(c) Hence, Df = Dg = 5× 552, so
√
Df /∈ Q. Hence, Case IV applies.
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(d) f factors over Q(
√
Df ) = Q(

√
5) as

f(x) =

(
x2 +

√
5x+

5−
√

5

2

)(
x2 −

√
5x+

5 +
√

5

2

)

Hence
G ∼= Z4

(End of Day 37)
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VI. Instructor Notes

0.1. The main goal was to prove Theorem IV.4.7 and Example IV.3.9. All choices
I made were designed towards that. Furthermore, many choices were dictated
by the fact that the incoming Integrated PhD students had a somewhat weaker
background than the existing IISER students.

0.2. I started the course following [Stewart], while Chapter IV and V were mostly from
[Rotman]. The Primitive element theorem was moved up front - this turned out to
be an extremely good decision as it greatly simplified many subsequent theorems.

0.3. Throughout the course,we only discussed subfields of C to simplify the exposition.
Therefore, I did not discuss finite fields (except briefly in §V.1) and separability
also got short shrift. I had hoped to discuss finite fields at the end of the course,
but ran out of time.

0.4. I did not discuss ruler and compass constructions. Nor did I prove that π and e
were transcendental. I do not consider this a major loss.
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