MTH 311: Advanced Linear Algebra

Semester 1, 2020-2021

Dr. Prahlad Vaidyanathan



Contents

l. Preliminaries

1. Fields . . . . . o o
2. Matrices and Elementary Row Operations . . . . . ... ... ... ...
3. Matrix Multiplication . . . . . . . . .. ... oL
4. Invertible Matrices . . . . . . . . . ...
Il. Vector Spaces
1. Definition and Examples . . . . . . . .. ... Lo
2. Subspaces . . . ...
3. Bases and Dimension . . . . . . .. ... oo
4. Coordinates . . . . . . . . ..
5. Summary of Row Equivalence . . . . . .. ... ... ... ... ...
I1l. Linear Transformations
1. Linear Transformations . . . . . . . . . .. . ... ... .. .. ......
2. The Algebra of Linear Transformations . . . . . . . . .. ... ... ...
3. Isomorphism . . . . . .. ..
4. Representation of Transformations by Matrices. . . . . . . .. ... ...
5. Linear Functionals . . . . . . .. . ... ... .. ... ..
6. The Double Dual . . . . . ... .. ... .. ... ... .
7. The Transpose of a Linear Transformation . . . . . ... ... ... ...
IV. Polynomials
1. Algebras . . . . . . . e
2. Algebra of Polynomials . . . . . ... ... ... ... ... ... .....
3. Lagrange Interpolation . . . . . . . .. .. ... ... L.
4. Polynomial Ideals . . . . . . .. . ... . oo
5. Prime Factorization of a Polynomial . . . . . . . ... ... ... .....
V. Determinants
1. Commutative Rings . . . . . . . . . . .. ...
2. Determinant Functions . . . . . . ... ... o oo
3. Permutations and Uniqueness of Determinants . . . . . . . ... .. ...
4. Additional Properties of Determinants . . . . . . . ... ... ... ...
VI.Elementary Canonical Forms
1. Inmtroduction . . . . . . . . . ...
2. Characteristic Values . . . . . . . . . ...

TR CARE SN ~

18
18
22
27
35
40

44
44
48
57
o8
67
72
78

83
83
85
88
90
99

104
104
105
111
116



Annihilating Polynomials . . . . . . . .. ... 000
Invariant Subspaces . . . . . . . ..
Direct-Sum Decomposition . . . . . . .. ...
Invariant Direct Sums . . . . . . .. ..o oL
Simultaneous Triangulation; Simultaneous Diagonalization . . . . . . ..
The Primary Decomposition Theorem . . . . . . . . ... ... ... ...

e A

VIIThe Rational and Jordan Forms
1. Cyclic Subspaces and Annihilators . . . . . ... ... ... ... ....
2. Cyclic Decompositions and the Rational Form . . . . .. ... ... ...
3. The Jordan Form . . . . . . . . .. ...

Vilinner Product Spaces
1. Inner Products . . . . . . . . . . . . . ...

2. Imnner Product Spaces . . . . . . ...
3. Linear Functionals and Adjoints . . . . . . . . . .. .. ... ... ...
4. Unitary Operators . . . . . . . . .
5. Normal Operators . . . . . . . . . .. ...

IX. Instructor Notes



l. Preliminaries

1. Fields

Throughout this course, we will be talking about “Vector spaces”, and “Fields”. The
definition of a vector space depends on that of a field, so we begin with that.

Example 1.1. Consider F' = R, the set of all real numbers. It comes equipped with
two operations: Addition and multiplication, which have the following properties:

(i) Addition is commutative
r+y=y+vzx
for all z,y € F

(ii) Addition is associative
r+(y+z2)=(x+y) +=2

for all z,y,z € F.
(iii) There is an additive identity, 0 (zero) with the property that

r+0=0+zr=2

forallz € F

(iv) For each x € F, there is an additive inverse (—z) € F' which satisfies

(v) Multiplication is commutative
Ty = yx

forall z,y € F

(vi) Multiplication is associative
2(yz) = (zy)z

forall z,y,z € F
(vii) There is a multiplicative identity, 1 (one) with the property that

zl=1r ==z

forallz ¢ F



(viii) To each non-zero x € F, there is an multiplicative inverse x—' € F which satisfies

(ix) Finally, multiplication distributes over addition
z(y +2) = xy + x2
for all x,y,z € F.
Definition 1.2. A field is a set F' together with two operations

Addition : (z,y) — z +vy
Multiplication : (z,y) — xy

which satisfy all the conditions 1.1-1.9 above. Elements of a field will be termed scalars.

Example 1.3. (i) FF=1R is a field.
(ii) F = C is a field with the usual operations
Addition : (a + ib) + (¢ +id) := (a+¢) +i(b+ d), and
Multiplication : (a + ib)(c + id) := (ac — bd) + i(ad + bc)
(iii) F = Q, the set of all rational numbers, is also a field. In fact, Q is a subfield of R

(in the sense that it is a subset of R which also inherits the operations of addition
and multiplication from R). Also, R is a subfield of C.

(iv) F' =Z is not a field, because 2 € Z does not have a multiplicative inverse.

Standing Assumption: For the rest of this course, all fields will be denoted by F', and
will either be R or C, unless stated otherwise.

2. Matrices and Elementary Row Operations

Definition 2.1. Let F' be a field and n,m € N be fixed integers. Given m scalars
(Y1,Y2, -, Ym) € F™ and nm elements {a;; : 1 <i <n,1 < j <m}, we wish to find n
scalars (z1,x,...,x,) € F™ which satisfy all the following equations

1171+ a12T2 + ... + A1 0Tn = Y1

A21%1 + A22%2 + ... + G2 Ty = Y2

Q121 + A 2X2 +...+ AmnTn = Ym

This problem is called a system of m linear equations in n unknowns. A tuple (z1,zs,...,2,) €
F™ that satisfies the above system is called a solution of the system. If y; =y = ... =
Ym = 0, then the system is called a homogeneous.



We may express a system of linear equations more simply in the form

AX =Y
where
a1 Q12 ... QA1n T1 n
A= Bt e e P ey = |7
(177'171 a77'1,2 a'n;,,n xn Ym

The expression A above is called a matriz of coefficients of the system, or just an m x n
matrix over the field . The term a; ; is called the (i, 7)™ entry of the matrix A. In this
notation, X is an n x 1 matrix, and Y is an m x 1 matrix.

In order to solve this system, we employ the method of row reduction. You would have
seen this in earlier classes on linear algebra, but we now formalize it with definitions and
theorems.

Definition 2.2. Let A be an m x n matrix. An elementary row operation associates to
A a new m x n matrix e(A) in one of the following ways:

E1: Multiplication of one row of A by a non-zero scalar: Choose 1 < r < m and a
non-zero scalar ¢, then

e(A);; = A, ;ifi#rand e(A),; = cA,;

F5: Replacement of the r** row of A by row 7 plus ¢ times row s, where ¢ € F is any
scalar and r # s:

6(A)i,j = Ai,j lf 7 7é T and 6(14)7"73' = Ar,j + CAs,j

Ej3: Interchange of two rows of A:

e(A);; =A;;ifi ¢ {r,s} and e(A),; = A, and e(A);; = A, ;

The first step in this process is to observe that elementary row operations are reversible.

Theorem 2.3. To every elementary row operation e, there is an operation e, of the
same type such that
e(e(4)) = ex(e(4)) = A

for any m x n matrix A.

Proof. We prove this for each type of elementary row operation from Definition 2.2.

FE4: Define e; by
el(B)m- = Bi,j if 4 7£ r and 61(B>T’j = CilB

T?j



FE5: Define e; by
el(B)i,j = Bi,j le 7é T and el(B)w- = an — CBs,j
E3: Define e; by
€1 — ¢
L]

Definition 2.4. Let A and B be two m x n matrices over a field F. We say that A
is row-equivalent to B if B can be obtained from A by finitely many elementary row
operations.

By Theorem 2.3, this is an equivalence relation on the set F™*™. The reason for the
usefulness of this relation is the following result.

Theorem 2.5. If A and B are row-equivalent, then for any vector X € F™,
AX=0&BX =0

Proof. By Theorem 2.3, it suffices to show that AX = 0 = BX = 0. Furthermore, we
may assume without loss of generality that B is obtained from A by a single elementary
row operations. So fix X = (x1,29,...,x,) € F" that satisfies AX = 0. Then, for each

1 <1 < m, we have
n

(AX)Z == Z Q; ;5 = 0

j=1
We wish to show that

(BX)Z = Z bi,jxj =0
j=1

We consider the different possible operations as in Definition 2.2

E4: Here, we have

(BX); = (AX); if i #r and (BX), = ¢(AX),

FEs5: Here, we have

(BX); = (AX); if i # r and (BX), = (AX), + c(AX),

E5: Here, we have

(BX), = (AX); if i ¢ {r,s} and (BX), = (AX), and (BX); = (AX),

In all three cases, BX = 0 holds. O



Definition 2.6. (i) An m x n matrix R is said to be row-reduced if
(i) The first non-zero entry of each non-zero row of R is equal to 1.

(ii) Each column of R which contains the leading non-zero entry of some row has
all other entries zero.

(ii) Rissaid to be a row-reduced echelon matrix if R is row-reduced and further satisfies
the following conditions

(i) Every row of R which has all its entries 0 occurs below every non-zero row.

(i) If Ry, Ra, ..., R, are the non-zero rows of R, and if the leading non-zero entry
of R; occurs in column k;,1 <7 < r, then

ki <ky<...<k,

Example 2.7. (i) The identity matrix I is an n X n (square) matrix whose entries

are
1 2=y
Lij=10i;= Z ]
0 :i#y

This is clearly a row-reduced echelon matrix.

(i)

is row-reduced, but not row-reduced echelon.

(iii) The matrix

O = O
= O N
=~ o —

is not row-reduced.

We now give an example to convert a given m X n matrix to a row-reduced echelon
matrix by a sequence of elementary row operations. This will give us the idea to prove
the next theorem.

Example 2.8. Set

0o -1 3 2
0O 0 0 0
A= 1 4 0 -1
2 6 -1 5

We do this in the following steps, indicating each procedure by the notation from Defi-
nition 2.2.



Eg:

Ell

Ell

EQZ

By interchanging rows 2 and 4, we ensure that the first 3 rows are non-zero, while
the last row is zero.

0 -1 3 2
1 4 0 -1
2 6 -1 5
0O 0 0 0

By interchanging row 1 and 3, we ensure that, for each row R;, if the first non-zero
entry occurs in column k;, then ky < ky < ... < k,,. Here, we get

2 6 -1 5
1 4 0 -1
0 -1 3 2
0O 0 0 0

The first non-zero entry of Row 1 is at a;; = 2. We multiply the row by al_j to
get

1 3 2
1 4 0 -1
0 -1 3 2
0 0 0 0

: For each following non-zero row, replace row ¢ by (row ¢ + (—a;; times row 1)).

This ensures that the first column has only one non-zeroe entry, at a; ;.

—_ W

-1
0

o Mwl‘\]wlm

O OO
o oowhamu

In the previous two steps, we have ensured that the first non-zero entry of row 1
is 1, and the rest of the column has the entry 0. This process is called pivoting,
and the element a, ; is called the pivot. The column containing this pivot is called
the pivot column (in this case, that is column 1).

The first non-zero entry of Row 2 is at as» = 1. We now pivot at this entry. First,
we multiply the row by a, 5 to get

1 3 —?1 _37
0 -1 3 2
0 0 0 0

For each other row, replace row i by (row i + (—a;2 times row 2)). Notice that
this does not change the value of the leading 1 in row 1. In this process, every



other entry of column 2 other than ay s becomes zero.

1 0 -2 13
o1 L =
T
00 5 =
00 0 0
E,: The first non-zero entry of Row 3 is at as 3 = % We pivot at this entry. First, we

multiply the row by a3 3 to get

10 —2 13
01 4 5
00 1 2
00 0 0

Es: For each other row, replace row ¢ by (row i 4+ (—a; 3 times row 3)). Note that this
does not change the value of the leading 1’s in row 1 and 2. In this process, every
other entry of column 3 other than as 3 becomes zero.

[o/e]

5

1\3\1|
W

o= O O

0
1
0
0

O O O
O«llc[oxl|

There are no further non-zero rows, so the process stops. What we are left with a
row-reduced echelon matrix.

A formal version of this algorithm will result in a proof. We avoid the gory details, but
refer the interested reader to [Hoffman-Kunze, Theorem 4 and 5].

Theorem 2.9. Every m x n matriz over a field F' is row-equivalent to a row-reduced
echelon matriz.

Lemma 2.10. Let A be an m X n matrix with m < n. Then the homogeneous equation
AX =0 has a non-zero solution.

Proof. Suppose first that A is a row-reduced echelon matrix. Then A has r non-zero
rows, whose non-zero entries occur at the columns k; < ko < ... < k.. Suppose
X = (21,22,...,x,), then we relabel the (n—r) variables {z; : j # k;} as uy, ug, . . ., Up_p.

10



The equation AX = 0 now has the form
(n—r)
Ly + Z Cl,juj =0

j=1
(n—r)
Lo + Z CojU; = 0

J=1

(n—r)
Tk, + Z crju; =0
j=1

Now observe that » < m < n, so we may choose any values for uy,us,...,u,_,, and
calculate the {x;, : 1 < j <r} from the above equations.

For instance, if ¢; 1 # 0, then take
up=1lLuy=uz=...=u,_, =0

which gives a non-trivial solution to the above system of equations.

Now suppose A is not a row-reduced echelon matrix. Then by Theorem 2.9, A is row-
equivalent to a row-reduced echelon matrix B. By hypothesis, the equation BX = 0
as a non-zero solution. By Theorem 2.5, the equation AX = 0 also has a non-trivial
solution. O]

Theorem 2.11. Let A be an n X n matriz, then A is row-equivalent to the identity
matrix if and only if the system of equations AX = 0 has only the trivial solution.

Proof. Suppose A is row-equivalent to the identity matrix, then the equation I.X = 0
has only the trivial solution, so the equation AX = 0 has only the trivial solution by
Theorem 2.5.

Conversely, suppose AX = 0 has only the trivial solution, then let R denote a row-
reduced echelon matrix that is row-equivalent to A. Let r be the number of non-zero
rows in R, then by the argument in the previous lemma, r > n.

But R has n rows, so r < n, whence » = n. Hence, R must have n non-zero rows, each

of which has a leading 1. Furthermore, each column has exactly one non-zero entry, so
R must be the identity matrix. O]

3. Matrix Multiplication

Definition 3.1. Let A = (a;;) be an m x n matrix over a field F' and B = (by,) be
an n X p matrix over F. The product AB is the m x p matrix C' whose (i, j)!" entry is

11



given by

Example 3.2. (i) If

1 2 —4
A_<3 9 7),amdB—

Then C' := AB is a 2 X 2 matrix given by

(ii) The identity matriz is

1 00 ...0
10 ...0
=10 0 1 0
000 1
nxn
If A is any m x n matrix, then
Al = A

Similarly, if B is an n X p matrix, then
IB=2RB
Theorem 3.3. Matriz multiplication is associative.

Proof. Let A, B,C be m xn,n Xk, and k x £ matrices over F' respectively. Let D := BC

12



and F := AB. Then

n

[A(BC)]ij = [AD]ij = aiuds;

s=1

n k

- g Qj s § bs,tct,j
s=1 t=1
n k

= E E ai,sbs,tct,j

s=1 t=1

k n
= § § az’,sbs,t Ct 4
t=1

= s=1
k
= Z €i,tCt,j
t=1
= [EC)i; = [(AB)Cly,
This is true for all 1 <i <m,1 < j </ so (AB)C = A(BC). O
An m x n matrix over F' is called a square matrix if m = n.

Definition 3.4. An m x m matrix is said to be an elementary matrix if it is obtained
from the m x m identity matrix by means of a single elementary row operation.

Example 3.5. A 2 x 2 elementary matrix is one of the following:

() (0 7)
o 1) ()
(1 o)

Theorem 3.6. Let e be an elementary row operation and E = e(I) be the associated
m X m elementary matriz. Then

Ell

for some non-zero ¢ € F.

EQI

for some scalar ¢ € F'.
Egi

e(A)=FA
for any m x n matriz A.

Proof. We consider each elementary operation

13



E,: Here, the elementary matrix F = e(I) has entries
0 :1#7
Ei,j: 1 ZIJ,Z#T’
c i=j=r
And
e(A);; = A, ;ifi#rand e(A),; = cA,;
But an easy calculation shows that

n Ai,' ) # r
(EA); = ZEi,kAk,j =FEi;Ai; = { ’

— cAi; ti=r

Hence, FA = e(A).
E5: This is similar, and done in [Hoffman-Kunze, Theorem 9].

E5: We leave this for the reader.

The next corollary follows from the definition of row-equivalence and Theorem 3.6.

Corollary 3.7. Let A and B be two m x n matrices over a field F. Then B is row-
equivalent to A if and only if B = PA, where P is a product of m X m elementary
matrices.

4. Invertible Matrices

Definition 4.1. Let A and B be n x n square matrices over F'. We say that B is a left
wnverse of A if
BA=1

where I denotes the n x n identity matrix. Similarly, we say that B is a right inverse of
A if

AB=1
If AB = BA =1, then we say that B is the inverse of A, and that A is invertible.
Lemma 4.2. If A has a left-inverse B and a right-inverse C, then B = C.

Proof.
B=BI=B(AC)=(BA)C=1C=C

]

In particular, we have shown that if A has an inverse, then that inverse is unique. We
denote this inverse by A=,

14



Theorem 4.3. Let A and B be n X n matrices over F'.

(1) If A is invertible, then so is A~ and (A71)"1 = A

(1) If A and B are invertible, then so is AB and (AB)™' = B7'A~'. Hence, the
product of finitely many invertible matrices is invertible.

Proof. (i) If Ais invertible, then there exists B so that AB = BA=1. Now B= A1,
so since BA = AB = I, it follows that B is invertible and B~! = A.

(ii) Let C = A~ and D = B!, then
(AB)(DC) = A(BD)C = AIC =AC =1

Similarly, (DC)(AB) = I, whence AB is invertible and (AB)~! = DC as required.
[l

Theorem 4.4. An elementary matrix is invertible.

Proof. Let E be the elementary matrix corresponding to a row operation e. Then by
Theorem 2.3, there is an inverse row operation e; such that e;(e(A)) = e(e1(A)) = A.
Let B be the elementary matrix corresponding to ey, then

EBA=BEA=A
for any matrix A. In particular, EB = BE = I, so E is invertible. O]

Example 4.5. Consider the 2 x 2 elementary matrices from Example 3.5. We have
c 0\ ' _(ct o
0 1 L0 1
10\ (1 0
0 ¢ —\0 ¢!
1 e\’ (1 —c
0 1 - \0 1
10\ (1 0
c 1 S \—c 1
0 1\ /01
10 - \1 0

Theorem 4.6. For an n x n matriz A, the following are equivalent:

(i) A is invertible.
(ii) A is row-equivalent to the n x n identity matriz.

(iii) A is a product of elementary matrices.

15



Proof. We prove (i) = (ii) = (iii) = (i). To begin, we let R be a row-reduced echelon
matrix that is row-equivalent to A (by Theorem 2.9). By Theorem 3.6, there is a matrix
P that is a product of elementary matrices such that

R=PA

(i) = (4i): By Theorem 4.4 and Theorem 4.3, it follows that P is invertible. Since A is
invertible, it follows that R is invertible. Since R is a row-reduced echelon square
matrix, R is invertible if and only if R = I. Thus, (iz) holds.

(17) = (7i1): If A is row-equivalent to the identity matrix, then R = I in the above equation.
Thus, A = P~!. But the inverse of an elementary matrix is again an elementary
matrix. Thus, by Theorem 4.3, P~! is also a product of elementary matrices.

(73i) = (i): This follows from Theorem 4.4 and Theorem 4.3.

The next corollary follows from Theorem 4.6 and Corollary 3.7.

Corollary 4.7. Let A and B be m X n matrices. Then B is row-equivalent to A if and
only if B = PA for some invertible matriz P.

Theorem 4.8. For an n X n matriz A, the following are equivalent:

(i) A is invertible.

(i1) The homogeneous system AX = 0 has only the trivial solution X = 0.
(iii) For every vector Y € F", the system of equations AX =Y has a solution.

Proof. Once again, we prove (i) = (i7) = (i), and (i) = (i17) = (7).
(i) = (ii): Let B = A~' and X be a solution to the homogeneous system AX = 0, then
X = IX = (BA)X = B(AX) = B(0) = 0

Hence, X = 0 is the only solution.

(77) = (i): Suppose AX = 0 has only the trivial solution, then A is row-equivalent to the
identity matrix by Theorem 2.11. Hence, A is invertible by Theorem 4.6.

(i) = (ii1): Given a vector Y, consider X := A7'Y, then AX =Y by associativity of matrix
multiplication.

(13i) = (i): Let R be a row-reduced echelon matrix that is row-equivalent to A. By Theo-

rem 4.6, it suffices to show that R = I. Since R is a row-reduced echelon matrix,
it suffices to show that the n'” row of R is non-zero. So set

Y =(0,0,...,1)

Then the equation RX = Y has a solution, which must necessarily be non-zero
(since Y # 0). Thus, the last row of R cannot be zero. Hence, R = I, whence A
is invertible.

16



Corollary 4.9. A square matriz which is either left or right invertible is invertible.

Proof. Suppose A is left-invertible, then there exists a matrix B so that BA =1. If X
is a vector so that AX = 0, then X = B(AX) = (BA)X = 0. Hence, the equation
AX = 0 has only the trivial solution. By Theorem 4.8, A is invertible.

Now suppose A is right-invertible, then there exists a matrix B so that AB =1. If Y is
any vector, then X := B(Y’) has the property that AX =Y. Hence, by Theorem 4.8,
A is invertible. m

Corollary 4.10. Let A = A1A,... A, where the A; are n X n matrices. Then, A is
inwvertible if and only if each A; is invertible.

Proof. 1f each A; is invertible, then A is invertible by Theorem 4.3. Conversely, suppose
A is invertible and X is a vector such that A, X = 0, then

AX - (A1A2 ‘e Akfl)AkX == 0

Since A is invertible, this forces X = 0. Hence, the only solution to the equation
ArX = 0 is the trivial solution. By Theorem 4.8, it follows that Ay is invertible. Hence,

AlAy . AL = AA,;1
is invertible. Now, by induction on k, each A; is invertible for 1 <i < k—1 as well. [

(End of Week 1)

17



Il. Vector Spaces

1. Definition and Examples

Definition 1.1. A vector space V over a field F' is a set together with two operations:

(Addition) +:V xV — V given by (o, f) — a +
(Scalar Multiplication) -: F x V — V given by (¢, a) — ca

with the following properties:

(i) Addition is commutative
a+ =0+«

forall a, 8 €V
(ii) Addition is associative
at(B+y)=(a+ph)+y
for all a, 8,y € V

(iii) There is a unique zero vector 0 € V' which satisfies the equation
a+0=0+a=«

foralla eV

(iv) For each vector o € V| there is a unique vector (—a)) € V such that

a+(—a)=(—a)+a=0

(v) For each v € V,

(vi) For every ¢j,¢0 € Fand ae € V,
(crea)a = c1(cax)

(vii) For every ¢ € F and o, 5 € V,

cla+ ) =ca+cp

(viii) For every ¢j,co € Frand a € V,

(c1 + ) = cra+

18



An element of the set V' is called a vector, while an element of F' is called a scalar.

Technically, a vector space is a tuple (V| F,+, ), but usually, we simply say that V' is a
vector space over F', when the operations + and - are implicit.

Example 1.2. (i) The n-tuple space F™: Let F be any field and V' be the set of all
n-tuples a = (x1, xo, ..., x,) whose entries z; are in F. If 5 = (y1,92,...,yn) €V
and ¢ € I, we define addition by

a+ B = (r1+y1,%2 4+ Y2, Ty + Yn)
and scalar multiplication by
c-a:=(cry, 9. .., CT,)

One can then verify that V' = F™ satisfies all the conditions of Definition 1.1.

(ii) The space of m x n matrices F"™*™: Let F be a field and m,n € N be positive
integers. Let F*" be the set of all m x n matrices with entries in F'. For matrices
A, B € F'™*" we define addition by

7j

and scalar multiplication by

(CA)i,j = CAi,j
for any ¢ € F. [Observe that F1*" = F" from the previous example]

(iii) The space of functions from a set to a field: Let F be a field and S a non-empty
set. Let V' denote the set of all functions from S taking values in F'. For f,g € V,
define

(f +9)(s) == f(s) +g(s)
where the addition on the right-hand-side is the addition in F'. Similarly, scalar
multiplication is defined pointwise by

(cf)(s) = cf(s)

which the multiplication on the right-hand-side is that of F'. Once again, it is easy
to verify the axioms (note that zero vector here is zero function).

o If S =1{1,2,...,n}, then the function f : S — F may be identified with a
tuple (f(1), f(2),..., f(n)). Conversely, any n-tuple (z1,xs,...,2,) may be
thought of as a function. This identification shows that the first example is
a special case of this example.

e Similarly, if S = {(i,7) : 1 <i <m,1 < j < n}, then any function f : S —
F may be identified with a matrix A € F™*" where A;; := f(¢,j). This

identification is a bijection between the set of functions from S — F and the
space F"*™. Thus, the second example is also a special case of this one.

19



(iv) The space of polynomial functions over a field: Let F be a field, and V' be the set
of all functions f : F' — F which are of the form

fl@)=co+cz+...4+ca”

for some scalars ¢y, ¢y, ...,c, € F. Such a function is called a polynomial function.
With addition and scalar multiplication defined exactly as in the previous example,
V' forms a vector space.

(v) Let C denote the set of all complex numbers and F' = R. Then C may be thought
of as a vector space over R. In fact, C may be identified with R2.

Lemma 1.3. (i) For anyc € F,
c0=0

where 0 € V' denotes the zero vector.

(ii) If ¢ € F is a non-zero scalar and o € V' such that
ca =10

Then aa =0

(i1i) For any a € V
(—)a = —«

Proof. (i) For any c € F,
0+c0=c0=1c(0+0)=c0+c0

Hence, c0 =0
(ii) If ¢ € F is non-zero and « € V such that

ca =10

Then
¢ Hea) =

But
cHea) = (cle)a=la=a

Hence, a =0

(iii) For any a € V|
a+(—lNa=la+(-la=(1+(-1)a=0a=0

But a + (—a) = 0 and (—«) is the unique vector with this property. Hence,
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Remark 1.4. Since vector space addition is associative, for any vectors aq, as, ag, oy €
V', we have
(05} + (OéQ + (Oég -+ 044))

can be written in many different ways by moving the parentheses around. For instance,
(061 + Oég) + (Oég + Oé4)

denotes the same vector. Hence, we simply drop all parentheses, and write this vector
as
o1 + g + g + oy

The same is true for any finite number of vectors aq, as,...,a, € V, so the expression
a1 +og + ...+ Qp
denotes the common vector associated to all possible re-arrangements of parentheses.

The next definition is the most fundamental operation in a vector space, and is the
reason for defining our axioms the way we have done.

Definition 1.5. Let V be a vector space over a field F', and ay,a0,...,q,, € V. A
vector § € V is said to be a linear combination of aq, s, ..., «, if there exist scalars
C1,Ca,...,C, € F such that

b =ciaq + cog + ... + cpay,
When this happens, we write

n
p= Z G
i=1

Note that, by the distributivity properties (Properties (vii) and (viii) of Definition 1.1),
we have

n

Z c;oy + Z djo; = Z(Ck + di) o
i=1 Jj=1

k=1

Exercise: Read the end of [Hoffman-Kunze, Section 2.1] concerning the geometric in-
terpretation of vector spaces, addition, and scalar multiplication.
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2. Subspaces

Definition 2.1. Let V be a vector space over a field F'. A subspace of V' is a subset W C
V' which is itself a vector space with the addition and scalar multiplication operations
inherited from V.

Remark 2.2. What this definition means is that W C V should have the following
properties:

(i) If a, 8 € W, then (« + ) must be in W.

(ii) If « € W and ¢ € F, then ca must be in W.

We say that W is closed under the operations of addition and scalar multiplication.

Theorem 2.3. Let V' be a vector space over a field F' and W C V be a non-empty set.
Then W is a subspace of V if and only if, for any o, 3 € W and ¢ € F', the vector
(ca+ B) lies in W.

Proof. Suppose W is a subspace of V', then W is closed under the operations of scalar
multiplication and addition as mentioned above. Hence, if o, € W and ¢ € F, then
ca € W, so (ca+ ) € W as well.

Conversely, suppose W satisfies this condition, and we wish to show that W is subspace.
In other words, we wish to show that W satisfies the conditions of Definition 1.1. By
hypothesis, the addition map + maps W x W — W and the scalar multiplication map
-maps F'x W to W.

(i) Addition is commutative because it is commutative in V.

(ii) Addition is associative because it is associative in V.

(iii) V has a zero element 0 € V. To see that this vector lies in W, observe that W is
non-empty, so it contains some vector « € W. Then Oa =0 € W by Lemma 1.3.

(iv) If @« € W, then o € V, so there is a unique vector (—«a) € V' so that
a+(—a)=0
But we know that 0 € W, so by Lemma 1.3 once again,

(—a)=0— () =0+ (-1)a e W

(v) For each a € W, we have 1 -a = a in V. But the scalar multiplication on W is
the same as that of V| so the same property holds in W as well.

(vi) The remaining three properties of a vector space are satisfied in W because they
are satisfied in V' (Check!)

]
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Example 2.4. (i) Let V be any vector space, then W := {0} is a subspace of V.

(i)

(iii)

(iv)
(v)

(vii)

Similarly, W := V is a subspace of V. These are both called the trivial subspaces
of V.

Let V = F™ as in Example 1.2. Let
W= {(x1,29,...,2,) €V 121 =0}
Note that if o = (z1,22,...,2,), 08 = (Y1,Y2,.-.,Yn) € W and ¢ € F, then
r1n=1h=0=cr1+y1 =0

Hence, (ca+ ) € W. Thus W is a subspace by Theorem 2.3.
Note: If F' =R and n = 2, then W defines a line passing through the origin.
Let V = F™ as before, and let

W ={(x1,29,...,2,) €V :2qy =1}

Then W is not a subspace.

Note: If F = R and n = 2, then W defines a line that does not pass through the
origin.

Let V denote the set of all functions from F to F', and let W denote the set of all
polynomial functions from F' to F'. Then W is subspace of V.

Let V' = F™*™ denote the set of all n x n matrices over a field F'. A matrix A € V
is said to be symmetric if

Aij= A
for all 1 <17,5 < n. Let W denote the set of all symmetric matrices, then W is
subspace of V' (simply verify Theorem 2.3).
Let V = C™" denote the set of all n x n matrices over the field C of complex
numbers. A matrix A € V is said to be Hermitian (or self-adjoint) if

Ao = Apg

for all 1 < k,¢ < n. Then W is not a subspace of V because if A € W, and
1:=+/—1, then
(iA)k,Z = Z'Ak,g

while

iA)gr = tApg = —iAgr = —iAky
Hence if A a non-zero hermitian matrix, then iA is not hermitian.

The solution space of a system of homogeneous equations: Let A be an m X n
matrix over a field F', and let V' = F™ and set

W={XeV:AX =0}
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Then W is a subspace of V by the following lemma, because if X,Y € W and
c € I, then
AleX+Y)=c(AX)+ (AY)=04+0=0

socX +Y e W.

The next lemma says that matrix multiplication is linear.

Lemma 2.5. Let A be an m X n matrixz over a field F', and B, C' both be n X p matrices.
For any scalar d € F', we have

A(dB + C) =d(AB) + (AC)

Proof. For any 1 <7 <m and 1 < j < p, we have

[A(dB + C)]ij = Y _ Aixl(dB + C)i
k=1

= Aix(dBy; + Ch)
k=1

= dA;xBij + AixCh;
k=1

—d (Z Ai,kBk,j) + ) AiCh
k=1 k=1
= d[AB]; ; + [AC]i;
Hence the result. O

Theorem 2.6. Let V' be a vector space, and {W, : a € A} be a collection of subspaces
of V.. Then

W= W

a€A

1s a subspace of V.

Proof. We verify Theorem 2.3. If a, 5 € W and ¢ € F', then we wish to show that
ca+peW

Fix a € A. Then «, 8 € W,. Since W, is subspace
ca+ peWwW,

This is true for any a € A, so
ca+peWwW

as required. N
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Note: If V is a vector space, and S C V is any set, then consider the collection
F :={W : W is a subspace of V, and S C W}

of all subspaces of V' that contain S. Note that F is a non-empty set because V € F.
Hence, it makes sense to take the intersection of all members of F. By Theorem 2.6,
this intersection is once again a subspace.

Definition 2.7. Let V' be a vector space and S C V be any subset. The subspace
spanned by S is the intersection of all subspaces of V' containing S.

Note that this intersection is once again a subspace of V. Furthermore, if this intersection
is denoted by W, then W is the smallest subspace of V' containing S. In other words, if
W' is another subspace of V such that S C W/, then it follows that W C W".

Theorem 2.8. The subspace spanned by a set S is the set of all linear combinations of
vectors in S.

Proof. Define
W .= {01@1+C2052+...—|—Cn04n i € F,ai c S}

In other words, f € W if and only if there exist aj,as,...,qa, € S and scalars
€1,Co,...,C, € F such that

1=1
Then

(i) W is a subspace of V/
Proof. If a, 8 € W and ¢ € F, then write

n

o = E C; Q¢

=1

for some ¢; € F and «; € S. Similarly,
B=> d;f;
j=1
for some d; € F' and §; € S. Then
co + ﬁ - Z(CCZ'>0Q' —+ Z djﬁj
i=1 j=1

Thus, ca + S is also of the form in Equation I1.7, and so ca + 8 € W. So, by
Theorem 2.3, W is a subspace of V. ]
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(ii) If L is any other subspace of V' containing S, then W C L.
Proof. If 5 € W, then there exists ¢; € F' and «; € S such that

n
B = Z CiQy;
i=1
Since L is a subspace containing S, a; € L for all 1 <i <n. Hence, > . | ¢;o; € L.
Thus, W C L as required. O

By (i) and (ii), W is the smallest subspace containing S. Hence, W is the subspace
spanned by S. m

Example 2.9. (i) Let F =R,V = R? and S = {(1,0,1),(2,0,3)}. Then the sub-
space W spanned by S has the form

W = {e(1,0,1) +d(2,0,3) : ¢,d € R}
Hence, a = (a1, as,a3) € W if and only if there exist ¢,d € R such that
a=c(1,0,1) +d(2,0,3) = (c +2d,0,c + 3d)
Replacing x <+ ¢+ 2d,y <> c+ 3d, we get
a=(z,0,y)

Hence,

W ={(z,0,y) : z,y € R}
Thus, (2,0,5) € W but (1,1,1) ¢ W.

(ii) Let V be the space of all functions from F to ' and W be the subspace of all
polynomial functions. For n > 0, define f,, € V by

fn(x) =z"
Then, W is the subspace spanned by the set { fo, f1, fo, ...}
Definition 2.10. Let S;, .5, ..., 5, be k subsets of a vector space V. Define

S+ Sy + ...+ S,
to be the set consisting of all vectors of the form

] +ag 4+ ...+ o
where o; € S; for all 1 < ¢ < k.

Remark 2.11. If Wy, Ws, ..., W, are k subspaces of a vector space V', then
W:W1+W2—|—+Wk
is a subspace of V' (Check!)

26



3. Bases and Dimension

Definition 3.1. Let V be a vector space over a field F' and S C V be a subset of V.
We say that S is linearly dependent if there exist distinct vectors {aq,as,...,a,} C S
and scalars {cy,ca,...,c,} C F, not all of which are zero, such that

n
E C; 0y — 0
=1

A set which is not linearly dependent is said to be linearly independent.

Remark 3.2. (i) Any set which contains a linearly dependent set is linearly depen-
dent.

(ii) Any subset of a linearly independent set is linearly independent.

) The set {0} is linearly dependent. So, if S contains 0, then S is linearly dependent.
) If S = {a} where a # 0, then S is linearly independent.
)

(v) Aset S ={a1,q,...,qa,}islinearly independent if and only if, whenever ¢y, co, . .., ¢, €
F' are scalars such that .
Z Ci; = 0
i=1

(iii

(iv

then ¢, =0forall 1 <i<n.

(vi) Let S be an infinite set such that every finite subset of S is linearly independent,
then S is linearly independent.

Example 3.3. (i) If S = {aj1, a3}, then S is linearly dependent if and only if there
exists a non-zero scalar ¢ € F' such that

Qo = COp
In other words, aw lies on the line containing a;.

(ii) If S = {on, a9, g} is linearly dependent, then choose scalars ¢y, o, c3 € F' not all
zero such that
C1011 + Coug + C3ig = 0

Suppose that ¢; # 0, then dividing by ¢;, we get an expression
a1 = dQOéQ + d30(3

In other words, «; lies on the plane generated by {as, az}.
(iii) Let V =R3 and S = {ay, a9, a3} where

ap = (1,1,0)
as = (0,1,0)
as = (1,2,0)

Then S is linearly dependent because

a3 = 1 + Qg
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(iv) Let V = F" and define

e1:=(1,0,0,...,0)
€ :=(0,1,0,...,0)

€n :=(0,0,0,...,1)

Suppose c1, Ca, ..., c, € F are scalars such that

n
E Ci€; = 0
i=1

Then,
(c1,¢9,...,¢cn) =0=¢;=0 VI<i<n

Hence, {€1,¢€9,...,€,} is linearly independent.

Definition 3.4. A basis for V' is a linearly independent spanning set. If V' has a finite
basis, then we say that V' is finite dimensional.

Example 3.5. (i) If V.= F" and S = {1, €2, ..., €,} from Example 3.3, then S is a
basis for V. Hence, V is finite dimensional. S is called the standard basis for F™.

(ii) Let V = F™ and P be an invertible n x n matrix. Let Py, P,,..., P, denote the
columns of P. Then, we claim that S = {P, P»,..., P,} is a basis for V.

Proof. (i) S is linearly independent: To see this, suppose ci,¢a, ..., ¢, € F are
such that
61P1+CQP2+...+CnPn:0

Let X = (c1,¢9,...,¢,) € V, then it follows that
PX =0

But this implies X = IX = P~}(PX) = P71(0) = 0. Hence, ¢; = 0 for all
1< <n.

(ii) S is a spanning set for V: To see this, suppose Y = (z1,xs,...,x,) € V, then
consider
X =Py

so that PX =Y. It follows that, if X = (¢1,¢2,...,¢,), then
01P1+02P2+...+Cnpnzy

Hence the claim.
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(iii) Let V' be the space of all polynomial functions from F' to F. For n > 0, define

fn €V by

fo(z) = 2"
Then, as we saw in Example 2.9, S := {fo, f1, f2,...} is a spanning set. Also, if
Co, Ca, ..., Cp € F are scalars such that

Z cifi=0

i=0

Then, it follows that the polynomial

2 k
Co+cCcixr +cox” + ...+

is the zero polynomial. Since a non-zero polynomial can only have finitely many
roots, it follows that ¢; = 0 for all 0 < ¢ < k. Thus, every finite subset of S is
linearly independent, and so S is linearly independent. Hence, S is a basis for V.

(iv) Let V be the space of all continuous functions from F' to F', and let S be as in the
previous example. Then, we claim that S is not a basis for V.

(i) S remains linearly independent in V/

(ii) S does not span V: To see this, let f € V be any function that is non-zero,
but is zero on an infinite set (for instance, f(z) = sin(z)). Then f cannot be
expressed as a polynomial, and so is not in the span of S.

Remark 3.6. Note that, even if a vector space has an infinite basis, there is no such
thing as an infinite linear combination. In other words, a set S is a basis for a vector
space V' if and only if

(i) Every finite subset of S is linearly independent.

(ii) For every av € V, there exist finitely many vectors oy, as, ..., a, in S and scalars

C1,Ca,...,C, € F such that
n
o = E C;O;
i=1

Hence, the symbols

does not make sense.

Theorem 3.7. Let V' be a vector space which is spanned by a set {Bi, B2, ..., Bm}-
Then, any linearly independent set of vectors in 'V 1is finite, and contains no more than
m elements.
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Proof. Let S be a set with more than m elements. Choose {ay, s, ..., a,} C S where
n > m. Since {f1,0s,..., By} is a spanning set, there exist scalars {4;; : 1 < i <

m,1 < j <n} such that
Qj = Z Ai jBi
i=1

Let A = (A, ;) be the corresponding matrix, then A is an m x n matrix, where m < n.
By Lemma 1.2.10, there is a vector X = (z1, %2, ..., %,) such that X # 0 and

AX =0

Now consider

T101 + Toig + ...+ Ty, = ixjozj
7=1
=) (Z Az‘,jﬁz)
j=1 i=1
= Z Z 5 Ai 3 B;

i=1 j=1
= Z ( Ai,jxj) 52
i=1 \j=1
= Z(AX )iBi
i=1
=0
Hence, the set {ay, aq,...,a,} is not linearly independent, and so S cannot be linearly
independent. This proves our theorem. O

Corollary 3.8. If V is a finite dimensional vector space, then any two bases of V' have
the same (finite) cardinality.

Proof. By hypothesis, V has a basis S consisting of finitely many elements, say m := |5].
Let T be any any other basis of V. By Theorem 3.7, since S is a spanning set, and T is
linearly independent, it follows that 7T is finite, and

7] <m
But by applying Theorem 3.7 again (in reverse), we see that
S| < |7

Hence, |S| = |T'|. Thus, any other basis is finite and has cardinality m. O
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This corollary now allows us to make the following definition, which is independent of
the choice of basis.

Definition 3.9. Let V' be a finite dimensional vector space. Then, the dimension of V
is the cardinality if any basis of V. We denote this number by

dim(V)

Note that V' = {0}, then V' does not contain a linearly independent set, so we simply
set
dim({0}) :=0

The next corollary is essentially a restatement of Theorem 3.7.

Corollary 3.10. Let V be a finite dimensional vector space and n := dim(V'). Then

(i) Any subset of V' which contains more than n vectors is linearly dependent.

(ii) Any subset of V' which is a spanning set must contain at least n elements.

Example 3.11. (i) Let F' beafield and V := F", then the standard basis {e1, €, ..., €,}
has cardinality n. Therefore,
dim(F") =n

(ii) Let F' be a field and V := F™ ™ be the space of m X n matrices over F. For
1 <i<m,1<j<n,let B% denote the matrix whose entries are all zero, except
the (i,7)™ entry, which is 1. Then (Check!) that

S:={B":1<i<m,1<j<n}

is a basis for V. Hence,
dim(F™ ™) = mn

(iii) Let A be an m X n matrix, and consider the subspace
W:={XeF": AX =0}

Let R be a row-reduced echelon marix that is row equivalent to A. Let r denote
the number of non-zero rows in R, then (as in Lemma 1.2.10), the subspace

(X € F": RX =0}
has dimension (n — r) (Check!). Hence, dim(W) = (n —r).

Lemma 3.12. Let S be a linearly independent subset of a vector space V. Let 5 € V be a
vector which is not in the subspace spanned by S. Then SU{S} is a linearly independent
set.
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Proof. Let {a1,as,...,a,} C S and ¢, ¢a, ..., Cn,Ccme1 € F are scalars such that
11 + 0 + .o+ Cpy + G S =10

Suppose ¢,,+1 # 0, then we may rewrite the above equation as

—C1 —C9 —Cm,
b= oy + g+ ...+
Cm+1 Cm+1 Cm+1

o777

Hence, (3 is in the subspace spanned by S - a contradiction. Hence, it must happen that
Cma1 =0
Then, the above equation reduces to
a1 + o + ...+ oy, =0

But S is linearly independent, so ¢; = 0 for all 1 <7 < m. So we conclude that SU {3}
is linearly independent. [

Theorem 3.13. Let W be a subspace of a finite dimensional vector space V', then every
linearly independent subset of W is finite, and is contained in a (finite) basis of V.

Proof. Let Sy C W be a linearly independent set. If S is a linearly independent subset of
W containing Sy, then S is also linearly independent in V. Since V' is finite dimensional,

|S] < n:=dim(V)

Now, we extend Sy to form a basis of W: If Sy spans W, there is nothing to do, since S
is a linearly independent set. If Sy does not span W, then there exists a 5, € W which
does not belong to the subspace spanned by Sy. By Lemma 3.12,

Sy =Sy U{pi}

is a linearly independent set. Once again, if S; spans W, then we stop the process.

If not, we continue as above to take a vector 5y € W so that

Sy = S U{fB}

is linearly independent. Thus proceeding, we obtain (after finitely many such steps), a
set

Sm:SOU{BhBQa'”uBm}

which is linearly independent, and must span W. O

Corollary 3.14. If W 1is a proper subspace of a finite dimensional vector space V', then
W is finite dimensional, and
dim(W) < dim(V)
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Proof. Since W # {0}, there is a non-zero vector a € W. Let
SO = {CY}

Then S is linearly independent. By Theorem 3.13, there is a finite basis S of W
containing Sy. Furthermore, by the previous proof, we have that

|S] < dim(V)

Hence,
dim(W) < dim(V)

Since W # V| there is a vector § € V which is not in W. Hence, T = S U {8} is a
linearly independent set. So by Corollary 3.10, we have

|SU{B} < dim(V)

Hence,

dim(W) = | S| < dim(V)
]

Corollary 3.15. Let V' be a finite dimensional vector space and S C V be a linearly
independent set. Then, there exists a basis B of V' such that S C B.

Proof. Let W be the subspace spanned by S. Now apply Theorem 3.13. O]

Corollary 3.16. Let A be an n X n matriz over a field F' such that the row vectors of
A form a linearly independent set of vectors in F™. Then, A is invertible.

Proof. Let {a1,as,...,a,} be the row vectors of A. By Corollary 3.14, this set is a
basis for F™ (Why?). Let ¢; denote the i'" standard basis vector, then there exist scalars

{B;;:1<j <n} such that
€ = Z B@jO&j
j=1

This is true for each 1 <i < n, so we get a matrix B = (B; ;) such that

BA=1
By Corollary 1.4.9, A is invertible. ]
Theorem 3.17. Let Wy and Wy be two subspaces of a vector space V', then
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Proof. Let {ay,as,...,ax} be a basis for the subspace W;NW,. By Theorem 3.13, there
is a basis
By = {0, .., 1, P, ., Bn}
of W1, and a basis
By ={oq, 0, .. 71,72, -, Ym )
of W5. Consider

B:{a17a2a"'7&k7/817ﬂ27"'7/8na’71a727"'77m}
We claim that B is a basis for W; + Ws.

(i) B is linearly independent: If we have scalars ¢;, d;, e; € F such that

k n m
Zciozi + Zdjﬁj + 263’75 =0
i=1 j=1 s=1

Consider the vector .

d = Zes% (IL.2)

s=1

Then 6 € Wy since By C W5, Furthermore,

i=1 j=1

so 0 € Wy as well. Hence, 6 € W1 N W, so there exist scalars f; such that

k
0= fuo
=1

By Equation I1.2; we see that

k m
> feawt ) (=e)ys =0
(=1 s=1
But the set B, is linearly independent, so we conclude that

ffzes:()

forall 1 </ <k and 1 < s <m. From this and Equation II.2, we conclude that
0 = 0. Hence, from Equation II.3, we have

k n
ZCiOéi + Z djﬁj = 0
=1 j=1

But the set Bj is linearly independent, so we conclude that
C; = dj = 0

forall 1 <i¢<k,1<j<n. Thus, B is linearly independent as well.
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(ii) B spans W; + Wy: Let a € Wy + Wa, then there exist oy € Wi and ay € Wy such
that
a =1+ Qo

Since B is a basis for Wy, there are scalars ¢;, d; such that

k n
= Z c;oy + Z djﬁj
i=1 j=1

Similarly, there are scalars e, f, € F' such that

k m
= e+ Y fru
s=1 /=1

Combining the like terms in these equations, we get

k

o = Z(Cz -+ 61')061' -+ djﬁj + Zfz’)/e
1 /=1

i=1 j=
Thus, B spans Wy + Ws.

Hence, we conclude that B is a basis for W; + W5, so that
dim(W,+Ws) = |B| = k+m+n = |B|+|Bs| —k = dim(W;) +dim(Ws) —dim(W, NWs)
m

4. Coordinates

Remark 4.1. Let V be a vector space and B = {ay, as, . .., a,} be a basis for V. Given
a vector « € V| we may express it in the form

n

a= Z Ciy; (IL.4)

=1

for some scalars ¢; € F'. Furthermore, this expression is unique. If d; € F' are any other

scalars such that .
o = Z djO{j
j=1

then ¢; = d; for all 1 < i < n (Why?). Hence, the scalars {¢1,ca,...,¢,} are uniquely
determined by «, and also uniquely determine . Therefore, we would like to assocate
to a the tuple

(Cl, Co, ... ,Cn)
and say that ¢; is the i"* coordinate of . However, this only makes sense if we fix the
order in which the basis elements appear in B (remember, a set has no ordering).
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Definition 4.2. Let V be a finite dimensional vector space. An ordered basis of V is a
finite sequence of vectors o, g, ..., a, which together form a basis of V.

In other words, we are imposing an order on the basis B = {1, s, ..., a,} by saying
that aq is the first vector, as is the second, and so on. Now, given an ordered basis B
as above, and a vector a € V', we may associate to a the tuple

1

Co
[a]s =

Cn

provided Equation II.4 is satisfied.
Example 4.3. Let F' be a field and V = F". If B = {€1,€9,...,€,} is the standard

ordered basis, then for a vector a = (z1,22,...,2,) € V, we have
T
T2
o] =
Tn
However, if we take B’ = {e,,€1,€1,...,€,_1} as the same basis ordered differently (by
a cyclic permutation), then
T
T
(g = | 2
Tn—1
Remark 4.4. Now suppose we are given two ordered bases B = {ay,aq,...,a,} and

B = {p,Pa,...,0n} of V (Note that these two sets have the same cardinality). Given
a vector a € V', we have two expressions associated to «

C1 d1

Co d2
[als =] . | and [o]p =

Cn d,

The question is, How are these two column vectors related to each other?

Observe that, since B is a basis, for each 1 <7 < n, there are scalars P;; € F' such that

Bi = Z P (IL.5)
j=1
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Now observe that

o = 2”: d;3;
=1
=D _d (Z Pj,z‘%‘)
i=1 j=1
-3 (Sam)o
j=1 \i=1

However,
n
o = E G
i=1

so by the uniqueness of these scalars, we see that

C]' = Z Pj,zdz
i=1
for each 1 < j < n. Hence, we conclude that
[als = Plals
where P = (P;;).

Now consider the expression in Equation I1.5. Reversing the roles of B and B’, we obtain
scalars ) € F such that

n
Qp = Z Qi,kﬁz‘
i=1

Combining this with Equation I1.5, we see that

Q= 2; Qi k (2 Pj,z‘%‘) = Z (Z sz@k) Qj

j=1 \i=1

But the {a;} are a basis, so we conclude that

- 1 k=y
Z P;iQik = !
p 0 :k#j
Thus, if Q = (Q;;), then we conclude that
PO =1

Hence the matrix P chosen above is invertible and @@ = P~!. The following theorem is
the conclusion of this discussion.
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Theorem 4.5. Let V' be an n-dimensional vector space and B and B’ be two ordered
bases of V.. Then, there is a unique n X n invertible matriz P such that, for any ainV,

we have
[a]s = Pla]s

and
o]z = P~ [als

Furthermore, the columns of P are given by
Py = [Bils

Definition 4.6. The matrix P constructed in the above theorem is called a change of
basis matrix.

(End of Week 2)

The next theorem is a converse to Theorem 4.5.

Theorem 4.7. Let P be an n x n invertible matriz over F'. Let V' be an n-dimensional
vector space over F and let B be an ordered basis of V. Then there is a unique ordered
basis B' of V' such that, for any vector a € V', we have

[a]s = Pla]s

and
[o]s = P~ Y[als

Proof. We write B = {1, g, ...,a,} and set P = (P;;). We define
Bi = Z Pjia; (IL.6)
=1

Then we claim that B’ = {1, 52, ..., s} is a basis for V.

(i) B’ is linearly independent: If we have scalars ¢; € F' such that

n

ZCzﬂz‘ =0

=1

i i CZ‘Pj’Z’Oéj =0

i=1 j=1

Then we get

Rewriting the above expression, and using the linear independence of B, we con-

clude that .
3 P
i=1

foreach 1 <j <n. If X = (c1,c,...,¢,) € F™, then we conclude that
PX =0

However, P is invertible, so X = 0, whence ¢; =0 for all 1 <17 < n.

38



(ii) B’ spans V: If a € V, then there are scalars d; € F' such that
a=> da; (IL.7)
i=1

Now let @ = (Q;;) = P!, then we have PQ = I, so
& 0 :i#j
> rou-{] 7
— Li=
Thus, from Equation I1.6, we get

Z Qi = Z Z QriPjrey
k=1

k=1 j=1

= Z (Z Pj,ka,i) a;
=1

j=1 \k=

= Oéi
Hence, if o € V' as above, we have
=3 o =3 Qi =3 (z di@k,i) s
i=1 i=1 k=1 k=1 \i=1

Thus, every vector a € V' is in the subspace spanned by B’, whence B’ is a basis
for V.

Finally, if o € V' and suppose

d1 C1

d2 Co
[Oz]lg = : and [OK]B/ =

dn Cn

so that Equation I1.7 holds, then by Equation II.8, we see that

n
Cr = E Qk,idi
i=1

Hence,
By symmetry, it follows that

This completes the proof. n
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Example 4.8. Let ' = R and V = R? and B = {e€, 62} the standard ordered basis.

For a fixed 6 € R, let
p._ cos(f) —sin(6)
© \sin(f)  cos(6)

Then P is an invertible matrix and

o (i, i)

Then B’ = {(cos(6),sin(#)), (—sin(f), cos(d))} is a basis for V. It is, geometrically, the
usual pair of axes rotated by an angle 0. In this basis, for a = (21, x2) € V, we have

s = ()

5. Summary of Row Equivalence

Definition 5.1. Let A be an m x n matrix over a field F', and write its rows as vectors
{ag, a9, ..., a,} C F™.

(i) The row space of A is the subspace of F'™ spanned by this set.

(ii) The row rank of A is the dimension of the row space of A.
Theorem 5.2. Row equivalent matrices have the same row space.

Proof. If A and B are two row-equivalent m x n matrices, then there is an invertible
matrix P such that
B =PA

If {ag,aq,...,an} are the row vectors A and {f1, fa, ..., B} are the row vectors of B,

then .
Bi = Z B ja;
j=1
If W4 and Wp are the row spaces of A and B respectively, then we see that

{B1, B2y B} CTWa
Since Wp is the smallest subspace containing this set, we conclude that
Wpg C Wy
Since row equivalence is an equivalence relation, we have W, C Wy as well. O

Theorem 5.3. Let R be a row-reduced echelon matriz, then the non-zero rows of R form
a basis for the row space of R.
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Proof. Let pq, po, ..., p, be the non-zero rows of R and write

Pi = (Ri,l’ Ri,27 S Ri,n)

By definition, the set {p1, ps, ..., pr} spans the row space Wx of R. Therefore, it suffices
to check that this set is linearly independent. Since R is a row-reduced echelon matrix,
there are positive integers ky < ko < ... < k, such that, for all 1 < r

(i)
(i)

R(i,j) = 01if j < k;

Hence, if there are scalars ¢; € F' such that

zr: cipi =0
i=1

Then consider the k;h entry of the vector in the LHS, and we have

0= [zr: Cipi]
=1 k
= Z Gi [Pz‘]kj
i=1
= ZT: CiR(’i, kj)
i=1

.
= b=
=1

J

Hence each ¢; = 0, whence {p1, p2, ..., p-} is a linearly independent set. ]

Theorem 5.4. Let F' be a field and m,n € N be positive integers. Given a subspace
W < F™ with dim(W) < m, there is a unique m X n row reduced echelon matriz R
whose row space s W.

Proof.

(i)

Existence: Since dim(WW) < m, there is a spanning set of W consisting of m
vectors. Let A be the m x n matrix whose rows are these vectors. Then the row
space of Ais W. Let R be a row-reduced echelon matrix that is row-equivalent to
A. Then by Theorem 5.2, the row space of R is also W.

Uniqueness: Let R and S be two row-reduced echelon matrices with the same
row space W. Let p1,p2,...,p, be the non-zero row vectors of R. Write p; =
(Ri1,Ria,...,Riy). Since R is row-reduced, there are integers ki, ko, . .., k, such
that, for ¢ <r,

41



(i) R(i,j) =01if j <k
(i) R(i,k;) = di;
(iil) k1 < ko < ... <k,

By Theorem 5.3, the set {p1, pa2, ..., p,} forms a basis for W. Hence, S has exactly
r non-zero rows, which we enumerate as ny,1s,...,n,.. Furthermore, there are
integers (1, (s, ..., ¢, such that, for : <r

(i) S(z,5)=0if j < ¢,
(i) S(i,¢;) = d;,
(iii) by <ly <...<U,
Write n; = (b1, ba, ..., b,). Then, there exist scalars ¢y, ¢o, ..., ¢, € F such that

= Z CipPi
=1

Then observe that

r

bi, = _ ciR(i, kj)

i=1

.
= b,
=1

Hence,
m=) bip; (1L.9)
i=1

It now follows from the conditions on {R(i,j)} listed above that the first non-zero
entry of n; occurs bk31 for some 1 < s; < r. It follows that

b = ks,
Thus proceeding, for each 1 <1 < r, there is some 1 < s; < r such that
l; =k,
Since both sets of integers are strictly increasing, it follows that
b=k ViI<i<r
Now consider the expression in Equation I1.9, and observe that
b, = S(1,k;) =0if 1 > 2

Hence, 11 = p;. Thus proceeding, we may conclude that n; = p; for all ¢, whence
S =R.
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]

Corollary 5.5. Every m xn matriz A is row-equivalent to one and only one row-reduced
echelon matrix.

Proof. We know that A is row-equivalent to one row-reduced echelon matrix from The-
orem [.2.9. If A is row-equivalent to two row-reduced echelon matrices R and S, then
by Theorem 5.3, both R and S have the same row space. By Theorem 5.4, R=5. [

Corollary 5.6. Let A and B be two m x n matrices over a field F'. Then A is row-
equivalent to B if and only if they have the same row space.

Proof. We know from Theorem 5.2 that if A and B are row-equivalent, then they have
the same row space.

Conversely, suppose A and B have the same row space. By Theorem 1.2.9, A and
B are both row-equivalent to row-reduced echelon matrices R and S respectively. By
Theorem 5.2, R and S have the same row space. By Theorem 5.4, R = S. Hence, A
and B are row-equivalent to each other. O
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I1l. Linear Transformations

1. Linear Transformations

Definition 1.1. Let V and W be two vector spaces over a common field F'. A function
T :V — W is called a linear transformation if, for any two vectors «, § € V and any

scalar ¢ € F', we have
T(ca+ ) = cT'(a) +T(P)

Example 1.2.

(i) Let V be any vector space and I : V' — V be the identity map. Then I is linear.

(ii) Similarly, the zero map 0 : V' — V is a linear map.

(i) Let V = F" and W = '™, and A € F'™*" be an m X n matrix with entries in F.

Then T : V — W given by
T(X):=AX

is a linear transformation by Lemma I1.2.5.

(iv) Let V be the space of all polynomials over F. Define D : V' — V be the ‘derivative’
map, defined by the rule: If

f(x) =co+crx+cox® + ...+ cpa”

Then
(Df)(z) = c1 + 2c0m + ... + ezt

(v) Let FF = R and V be the space of all functions f : R — R that are continu-
ous (Note that V is, indeed, a vector space with the point-wise operations as in
Example I1.1.2). Define T: V' — V by

T(f)(z) = / it

(vi) With V' as in the previous example and W = R, we may also define T : V. — W
by

T(f) = / F(t)dt

Remark 1.3. If T : V — W is a linear transformation
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(i) T(0) = 0 because if a := T'(0), then
2a=a+a=T0)+T0)=T0+0)=T(0) =«

Hence, o = 0 by Lemma II.1.3.

(ii) If B is a linear combination of vectors {ay, as, ..., a,, }, then we may write
n
b= Z Gt
i=1
for some scalars ¢y, co,...,c, € F. Then it follows that

n

T(B) = Z CiT(%‘)

=1

Theorem 1.4. Let V be a finite dimensional vector space over a field F' and let {ay, ag, ..., a,}
be an ordered basis of V. Let W be another vector space over F' and {B1, B2, ..., n} be

any set of n vectors in W. Then, there is a unique linear transformation T :'V — W
such that

Proof.

(i) Existence: Given a vector a € V', there is a unique expression of the form

n

o = E C; O

=1

We define T': V. — W by
T(a) := Z ¢if;
i=1

Since the above expression is uniquely associated to «, this map is well-defined.
Now we check linearity: If
p= Z diy;
i=1

and ¢ € I a scalar, then we have

ca+ = Z(cci + d;) oy

i=1

So by definition

n

T(ca+B) = (ce; + d)f

=1
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Now consider

T(a) ( czﬁz> + Z dif3;
Z cc; +d;)p

(ca +6)

Hence, T' is linear as required.

(ii) Uniqueness: If S : V' — W is another linear transformation such that
Then for any a € V', we write

n
o = E C;O;
=1

So that, by linearity,

n

S(a) =) B =T(a)

i=1

Hence, T'(a) = S(a) foralla € V,so T = S.

Example 1.5.

(i) Let oy = (1,2),a2 = (3,4). Then the set {a;, s} is a basis for R? (Check!).
Hence, there is a unique linear transformation 7" : R? — R? such that

T(aq) = (3,2,1) and T'(a2) = (6,5,4)
We find T'(e2): To do that, we write
€2 = C1(V] + Colvg = (Cl + 302, 201 + 402) (1 0)

Hence,
Cc1 = —2,01 =1

So that

T(EQ) = —QT(CH) + T(Oég) = —2<3, 2, 1) + (6, 5, 4) = (O, 17 2)

(ii) If T: F™ — F™ is a linear transformation, then 7" is uniquely determined by the
vectors

46



If a = (xq,29,...,2,) € F™, then it follows that
T(a) = Z T3
i=1

So if we write B for the matrix whose row vectors are 31, 5, ..., B, then
T(a) =aB

Hence, a linear tranformation T : F™ — F™ is given by multiplication by an m xn
matrix.

Definition 1.6. Let T : V — W be a linear transformation.

(i) The range of T is the set
Rr ={T(a):a €V}

(ii) The kernel of T (or the nullspace of T) is the set
ker(T) ={a €V :T(a) =0}

Lemma 1.7. If T : V — W is a linear transformation, then
(i) Rr is a subspace of W
(ii) ker(T) is a subspace of V.
Proof. Exercise. (Verify Theorem I1.2.3) O

Definition 1.8. Let V' be a finite dimensional vector space and T : V' — W a linear
transformation.

(i) The rank of T is dim(Ry), and is denoted by rank(7T)
(ii) The nullity of T is dim(ker(T")), and is denoted by nullity (7).

The next result is an important theorem, and is called the Rank-Nullity Theorem

Theorem 1.9. Let V' be a finite dimensional vector space and T :'V — W a linear
transformation. Then
rank(T) 4+ nullity(T) = dim(V)

Proof. Let {aj,as,...,ar} be a basis of ker(7T"). Then, by Corollary I1.3.15, we can
extend it to form a basis

B = {041, Aoy ooy Oy OXfpt 1, At 0, . .. ,O{n}
of V. Consider the set
S = {T(ar1), T(aky2), ..., T(an)} C Ry

We claim that this set is a basis.
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(i) S is linearly independent: If ¢xy1, Cria,. .., ¢, € F are scalars such that

n

Z ¢iT(a;) =0

i=k+1

By linearity

T ( z": cz-ozz-) =0= Zn: c;ay € ker(T)

i=k+1 i=k+1
Hence, there exist scalars dy,ds, ..., d; € F such that

n k
Z C,0; = Z djOéj

i=k+1 j=1

Since the set B is linearly independent, we conclude that

Ci:():dj

foralll1 < j <k, k+1<1i<n. Hence, we conclude that S is linearly independent.

(ii) S spans Rr: If B € R(T), then there exists o € V such that § = T'(«). Since B is
a basis for V, there exist scalars ¢y, co, ..., ¢, € F such that

o = Z C;0;
i=1
Hence,
B=T(a) =) T ()
i=1

But T'(e;) = 0 for all 1 <i < k. Hence,

B = Z ¢ T (o)

i=k+1

This proves the theorem.

2. The Algebra of Linear Transformations

Lemma 2.1. Let V and W be two vector spaces over a common field F'. Let U,T : V —
W be two linear transformations, and ¢ € F' a scalar.

(i) Define (T +U):V — W by

(T+U)(a) =T(a) + U(c)
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(ii) Define (cT):V — W by
(cT)(ar) :== T ()
Then (T + U) and cT' are both linear transformations.

Proof. We prove that (T + U) is a linear transformation. The proof for (¢T") is similar.
Fix a, 8 € V and d € F' a scalar, and consider

(T+U)(da+ B)=T(da+ B) + U(da+ B)
=dT(a) +T(8) + dU(a) + U(B)
= d(T() + U(a)) +(T(8) + U(B))
=d(T+U)(a) +(T+U)(B)
Hence, (T'+ U) is linear. O

Definition 2.2. Let V and W be two vector spaces over a common field F. Let L(V, W)
be the space of all linear transformations from V' to W.

Theorem 2.3. Under the operations defined in Lemma 2.1, L(V,W) is a vector space.
Proof. By Lemma 2.1, the operations
+: L(V,W) x L(V,W) — L(V,IW)

and
 Fx L(V,W) — L(V,W)

are well-defined operations. We now need to verify all the axioms of Definition II.1.1.
For convenience, we simply verify a few of them, and leave the rest for you.

(i) Addition is commutative: If .U € L(V, W), we need to check that (T'+ U) =
(U 4+ T). Hence, we need to check that, for any o € V,

(U+T)(a)=(T+U)(x)
But this follows from the fact that addition in W is commutative, and so
(T+U)a)=T(a)+ U(a) =U(a) + T(a) = (U +T)(c)
(ii) Observe that the zero linear transformation 0 : V' — W is the zero element in
L(V,W).
(iii) Let d € Fand T,U € L(V, W), then we verify that
d(T'+U)=dT +dU
So fix a € V, then
[d(T+U)] (o) =d(T +U)(«v)
= d(T(a) + U(a))
=dT(a) + dU(«)
= (dT + dU)(«a)
This is true for every ainV, so d(T' + U) = dT + dU.
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The other axioms are verified in a similar fashion. OJ

Theorem 2.4. Let V and W be two finite dimensional vector spaces over F. Then
L(V,W) is finite dimensional, and

dim(L(V, W)) = dim(V') dim(WW)

Proof. Let
B = {Ozl,a/g, R ,an} and B, = {51762) s 7B’m}

be bases of V' and W respectively. Then, we wish to show that
dim(L(V,W)) = mn

For each 1 <p <m,1 < g <n, by Theorem 1.4, there is a unique EP? € L(V,W) such
that
0 :i#gq
EP(a;) = 0,48 = ,
5]0 1=q
We claim that
S ={EP":1<p<m,1<q<n}

forms a basis for L(V,W).

(i) S is linearly independent: Suppose ¢,, € F' are scalars such that

m

Z 2”: Cp PP =0

p=1 g=1

Then evaluating this expression on «; gives

Z Cp,iﬁp = O
p=1

But B’ is a linearly independent set in W, so
pi=0 VI<p<m

This is true for each 1 < i < n, proving that S is linearly independent.
(ii) S spans L(V,W): Let T' € L(V,W), then for each 1 <1i < n,

T(;) e W

so it can be expessed as a linear combination of elements of B’ in a unique way.

So we write
m

T(ai) = Z ap,iBp

p=1
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We define S € L(V, W) by

n

S = i Z a, B

p=1 q=1
and we claim that S = T. By Theorem 1.4, it suffices to verify that
S(a;) =T(o;) V1<i<n

so consider

This proves that S = T as required. Hence, S spans L(V, ).
]

Theorem 2.5. Let V.W and Z be three vector spaces over a common field F. Let
TeL(V,W)and U € L(W,Z). Then define UT : V — Z by

(UT)(e) := U(T(e))
Then (UT) € L(V, Z)
Proof. Fix a, 6 € V and ¢ € F, and note that

(UT)(ca+ B) =U(T(ca+ B))

— U(eT(a) + T(5))
= U(T()) + U(T(B))
= c(UT)(a) + (UT)(B)
Hence, (UT) is linear. O

Definition 2.6. A linear operator is a linear transformation from a vector space V' to
itself.

Note that L(V,V) now has a ‘multiplication’ operation, given by composition of linear
operators. We let I € L(V, V) denote the identity linear operator. For T' € L(V, V), we
may now write

=TT

and similarly, 7™ makes sense for all n € N. We simply define 7° = I for convenience.
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Lemma 2.7. Let U, T\,T, € L(V,V) and c € F. Then
(i) IU=UI=U
(i) U(Ty+Ty) =UT, + UTs
(iii) (Ty + To)U = ThU + ToU
(iv) c(UTy) = (cU)Ty = U(cTh)
Proof.
(i) This is obvious
(ii) Fix o € V and consider
[U(Th + 1)) (a) = U (Th + T2)(a))
=U (Th (o) + Tr(w))
=U(Ti(o)) + U(Tx(a))
= (UT)(e) + (UTz)()
= UTy + UTy) (o)
This is true for every a € V, so

U(T, +Tp) = UT, + UTy

(iii) This is similar to part (ii) [See [Hoffman-Kunze, Page 77|

(iv) Fix o € V and consider

This is true for every a € V, so
c(UT) = (cU)Th
The other equality is proved similarly.

Example 2.8.

(i) Let A € F™ and B € FP*™ be two matrices. Let V = F" W = F™ and
Z = FP  and define T' € L(V,W) and U € L(W, Z) by

T(X)=AX and U(Y) = BY
by matrix multiplication. Then, by Lemma I1.2.5,
(UT)(X) = U(T(X)) = U(AX) = B(AX) = (BA)(X)
Hence, (UT) is given by multiplication by (BA).
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(i)

(i)

Let V be the vector space of polynomials over F. Define D : V — V by the
‘derivative’ operator (See Example 1.2). If f € V' is given by

f(x) =co+ x4+ cx® + ...+ cpa”
Then D(f) € V is the function
D(f)(z) = c1 + 2cow + 3ezz” ...+ nepa™

Let T : V — V be the linear transformation

Then, if f,(x) := 2™ and n > 1, then

(DT = TD)(fn)(z) = DT(fn)(x) = TD(fn)(x)
= D(xf,(x)) — T(naz™")
= D(2™) — na"
=(n+1)z" — na"
= fn(x)
By Theorem 1.4,
DI'—TD =1

In particular, DT # TD. Hence, composition of operators is not necessarily a
commutative operation.

Let B = {ay, aq,...,a,} be an ordered basis of a vector space V. For 1 < p,q <n,
let EP7 € L(V,V') be the unique operator such that

EP ;) = 6,400

The n? operators {EP?: 1 < p,q < n} forms a basis for L(V,V) by Theorem 2.4.
Now consider
Ep,qET,S

For a fixed 1 <17 < n, we have

EPUE™ () = EP(6; 40u,)
= 0; s 7 (avy)

= 04,50r,qp

Hence
)
EpquT:S — 57' qu:S
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Now suppose T, U € L(V, V) are two operators. Then, by Theorem 2.4, there are
scalars (a; ;) and (b; ;) such that

T=> apE"andU=> >3 b E"
p=1 ¢g=1 r=1 s=1
Now consider UT € L(V, V), and using the above relation, we calculate

p=1 ¢g=1 r=1 s=1

= Z Z Z Z ap by s0p o EP°

p=1 ¢g=1 r=1 s=1

= Z Z Z ap gby s EP*

p=1 g=1 s=1
Hence, if we associate
Tw— A:=(a;;)and U — B := (b;;)

Then
UT — AB

(End of Week 3)

Definition 2.9. A linear transformation T : V — W is said to be invertible if there is
a linear transformtion S : W — V such that

ST = [V and T'S = [W
Definition 2.10. A function f : S — T between two sets is said to be

(i) ingective if f is one-to-one. In other words, if z,y € S and f(z) = f(y), thenx =y

(ii) surjective if f is onto. In other words, for any z € T, there exists © € S such that
fl) = 2.

(iii) bijective if f is both injective and surjective.

Theorem 2.11. Let T : V — W be a linear transformation. Then T is invertible if and
only if T is bijective.

Proof. (i) If T is invertible, then there is a linear transformation S : V' — W as above.

(i) S is injective: If a,, § € V are such that T'(«a) = T'(f), Then
ST («) = ST(P)
But ST = Iy, so a = £.
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(ii) S is surjective: If g € W, then S(B) € V, and
T(S(B)) = (T'S)(B) = Iw(B) = B

(ii) Conversely, suppose T is bijective. Then, by usual set theory, there is a function
S : W — V such that
ST = ]V and TS = IW

We claim S is also a linear map. To this end, fix ¢ € F and o, 8 € W. Then we
wish to show that
S(ca+ p) =cS(a) + S(B)

Since T is injective, it suffices to show that
T (S(ca+ B)) =T (cS(a) + 5(8))

Bu this follows from the ‘linearity of composition’ (Lemma 2.7). Hence, S is linear,
and thus, T is invertible.
O

Definition 2.12. A linear transformation 7' : V' — W is said to be non-singular if, for
any a € V
Ta)=0=a=0

Equivalently, 7" is non-singular if ker(7") = {0y}

Theorem 2.13. Let T : V — W be a non-singular matrixz. If S is a linearly independent
subset of V', then T(S) = {T(«) : a« € S} is a linearly independent subset of W.

Proof. Suppose {b1, B2, ...,0,} C T(S) are vectors and ¢y, co,...,c, € F are scalars

such that .
Z cifi =0
i=1

Then for each 1 < i < n, there exists «; € S such that §; = T'(«;), so that

Z CiT(Odi) =0
i=1
Using linearity, we see that
T (Z CiOél') =0
i=1

Since 7' is non-singular, it follows that

n

ZCiOéi =0

=1

Since S is linearly independent, it follows that ¢; = 0 for all 1 < i < n. Hence, T(S) is
linearly independent. [l
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Example 2.14. (i) Let T : R? — R? be the linear map

T(z,y) = (z,9,0)

Then T is clearly non-singular, and is not surjective.

(ii) Let V be the space of polynomials over a field F. Define D : V' — V to be the
‘derivative’ operator from earlier. Define £ : V' — V be the ‘integral’ operator,
described as follows: If f € V is given by

f(x) =co+ x4 cox® + ... +cpa”

Then define ) 5 .
x T "
F = — — 4. -
(Ef)(x) cox+012+023+ +Cn+1
Then it is clear that
DE = Iy

However, ED # Iy because ED is zero on constant functions. Furthermore, E is
not surjective because constant functions are not in the range of F.

Hence, it is possible for an operator to be non-singular, but not invertible. This, however,
is not possible for an operator on a finite dimensional vector space.

Theorem 2.15. Let V and W be finite dimensional vector spaces over a common field
F such that
dim(V') = dim(W)

For a linear transformation T : V. — W, the following are equivalent:

(i) T is invertible.
(i1) T is non-singular.
(11i) T is surjective.
() If B= {1, aq,...,a,} is a basis of V, then T(B) = {T (1), T (a2),...,T(ay)} is
a basis of W.
(v) There is some basis {aq,ag,...,an} of V' such that {T(ay), T (), ..., T(ay)} is
a basis for W.
Proof.
(i) = (di): If T is invertible, then T is bijective. Hence, if @ € V' is such that T'(a)) = 0, then
since 7'(0) = 0, it must follow that o = 0. Hence, T is non-singular.

(13) = (i4i): If T is non-singular, then nullity(7") = 0, so by the Rank-Nullity theorem, we know
that
rank(7") = rank(7") + nullity(7") = dim(V') = dim(W)

But R is a subspace of W, and so by Corollary I1.3.14, it follows that Ry = W.
Hence, T is surjective.
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(13i) = (i): If T is surjective, then Ry = W. By the Rank-Nullity theorem, it follows that
nullity(7) = 0. We claim that 7T is injective. To see this, suppose «, 8 € V are
such that T'(«) = T'(8), then T'(aw — ) = 0. Hence,

a=pF=0=a=p

Thus, T is injective, and hence bijective. So by Theorem 2.11, T' is invertible.

(1) = (iv): If Bis a basis of V and T is invertible, then 7" is non-singular by the earlier steps.
Hence, by Theorem 2.13, T'(B) is a linearly independent set in . Since

dim(W) =n
it follows that this set is a basis for W.
(1v) = (v): Trivial.

(v) = (dit): Suppose {aq,aq, ..., a,} is a basis for V such that {T'(ay), T(cw),..., T ()} is a
basis for W, then if 8 € W, then there exist scalars ¢y, co, ..., c, € F such that

p= Z CiT(ai>

Hence, if
n

a:chaiEV

i=1

Then 8 = T'(«). So T is surjective as required.

3. Isomorphism

Definition 3.1. An isomorphism between two vector spaces V and W is a bijective
linear transformation 7' : V' — W. If such an isomorphism exists, we say that V and W
are isomorphic, and we write V = W.

Note that if 7 : V' — W is an isomorphism, then so is 7~* (by Theorem 2.11). Similarly,
it T:V —WandS: W — Z are both isomorphisms, then so is ST : V' — Z. Hence,
the notion of isomorphism is an equivalence relation on the set of all vector spaces.

Theorem 3.2. Any n dimensional vector space over a field F' is isomorphic to F".

Proof. Fix a basis B := {ay,aq,...,a,} CV, and define T : F™ — V by

n
T(xy, 29, ...,x,) := inai
i=1

Note that T" sends the standard basis of F™ to the basis B. By Theorem 2.15, T" is an
isomorphism. O
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4. Representation of Transformations by Matrices

Let V and W be two vector spaces, and fix two ordered bases B = {ay,,...,a,}
and B = {01,52,...,08m} of V and W respectively. Let T : V. — W be a linear
transformation. For any 1 < j < n, the vector T'(a;) can be expressed as a linear
combination

T(ag) =Y AiBi
i=1

By the notation of section 4, this means

Since the basis B is also ordered, we may now associate to T the m x n matrix

A171 ALQ e Al,j e Al,n
A A'Q’l A.272 . . A.Q,j . . A27n
Ami Ama oo Ami oo A

In other words, the j* column of A is [T'(c;)]s

Definition 4.1. The matrix defined above is called the matriz associated to T and is
denoted by
[T]5

Now suppose a € V', then write

T1
n Ty
a = ijaj = [a]p =
j=1
T,

Then
T(a) = z”: ;T ()
j=1
= Z L (Z Ai,jﬁi)
j=1 i=1

n m

=Y (Aijz)) B
=1

=1 j=1
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Hence,
n
> e ArgTy

i1 A2
[T(a)]s = i .

_ = Ala]s
D et Am,iT;
Hence, we obtain the following result

Theorem 4.2. Let V,W, B, B’ be as above. For each linear transformationT : V — W,
there is an m X n matriz A = [T)8, in F™™ such that, for any vector a € V,

Furthermore, the map
©:L(V,W)— Fmm

gien by
T — [T

1$ a linear isomorphism of F-vector spaces.

Proof. Using the construction as before, we have that © is a well-defined map.

(i) © is linear: If 7,8 € L(V,W), then write A := [T]5, and B = [S]%,. Then the ;%
columns of A and B respectively are

[T'()]s and [S(a;)]s
Hence, the j™ column of [T + S]5, is
[(T"+ ) (a))]s = [T(eg) + S(a;)ls = [T(e)]z + [S(ay)]s

Hence, ©(T + S) = 6(T) + ©(S).
Similarly, if 7€ L(V, W) and ¢ € F, then O(cT') = cO(T), so © is linear.
(i) © is injective: If T,.S € L(V, W) such that [T])5, = [S]5, then, for each 1 < j < n,
we have
[T(g)ls = [S(ay)]s
Hence, T'(crj) = S(e ) for all 1 < j < n, whence S =T by Theorem 1.4.

(ili) O is surjective: Note that T is an injective function, and
dim(L(V,W)) = nm = dim(F™*")

by Theorem 2.4 and Example 11.3.11. Hence, T is an isomorphism by Theo-
rem 2.15.

]
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Definition 4.3. Let V be a finite dimensional vector space over a field F', and B be an
ordered basis of V. For a linear operator T' € L(V, V), we write

This is called the matrixz of T' relative to the ordered basis B.
Note that, if a € V, then, by this notation,
[T()]s = [T]sla]s
Example 4.4.
(i) Let V.= F* W = F™ and A € F™*". Define T : V — W by
T(X)=AX

If B={e,€,...,6,} and B = {f4, 2, ..., Bm} be the standard bases of V' and
W respectively, then

T(Ej) = Al,jﬁl + Agjjﬁg —|— . —|— Am,j@m

Hence,
A]_’]
A27_]
[T(e)ls =] .
A j
Hence,

(i) Let V=W =R? and T(X) = AX where

31
=0 2)
If B = {e1, €2}, then [T']5 = A, but if B = {e, €1}, then

T(ea) = (1,2) =29+ leg = [T(e2)]5 = (?)

(el = (3)
[T]s = (? g)

Hence, the matrix [T']p very much depends on the basis.

Similarly,

Hence,
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(iii) Let V=F?=W and T : V — W be the map T(z,y) := (x,0). If B denotes the
standard basis of V', then
10

(iv) Let V be the space of all polynomials of degree < 3 and D : V. — V be the
‘derivative’ operator. Let B = {ap, a1, az, a3z} be the basis given by

a;(r) == 2
Then D(ap) =0, and for i > 1,
D(a;)(z) =iz ' = D(ay) = ia;_,

Hence,

[D]s =

o O O O
o O O
o O NN O
O W o o

Let T : V. — W and S : W — Z be two linear transformations, and let B =
{an,00,...,a,}, B ={B1,52,...,0m}, and B” = {71,7%,...,7,} be fixed ordered bases
of V,W, and Z respectively. Suppose further that

A= [T]g/ = (Cl@j) and B := [S]g:/ = (bs,t)
Set C := [ST]%,, and observe that, for each 1 < j < n, the j column of C' is
[ST(a))] 5
Now note that
ST(y) = S(T'(ay))

)

k=1

Il
N

ax,;S(Bk)

(Z bz k’)/z)
(Z bi,kak,j> Yi
1 \k=1

(Zgzl b1 kar, ;)
(D ke b2kar )

Ms

i
I

'Mﬁ I MS

(2

Hence,

(ST (aj)]sr = :
(D ke bpra,)
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By definition, this means
Cij = Zbi,kak,j
k=1
Hence, we get
Theorem 4.5. Let T :V — W and S : W — Z as above. Then
Remark 4.6.

(i) This above calculation gives us a simple proof that matrix multiplication is asso-
ciative (because composition of functions is clearly associative).

(ii) If T, U € L(V, V), then the above theorem implies that

[UTs = [U]s[T]s

(iii) Hence, if T' € L(V,V) is invertible, with inverse U, then
[Uls[Ts = [T]5lU]s = 1

where I denotes the n x n identity matrix (Here, n = dim(V')). So if T" is invertible
as a linear transformation, then [7]z is an invertible matrix. Furthermore,

(775 = [T]5'

Conversely, if [Tz is an invertible matrix with inverse B, then by Theorem 4.2,
there is a linear map U € L(V, V') such that

(S| = B

Hence, it follows that
[ST]s = [T'S]s =[]

where I denotes the identity linear map on V. Since the map T+ [T is injective
(again by Theorem 4.2), it follows that

ST =T58=1
so T is invertible.

Let T' € L(V,V) be a linear operator and suppose we have two ordered bases

B: {a17a27~--7an} and Blz{ﬁl:ﬁ%"'vﬁn}

of V. We would like to know how the matrices

[T] B and [T] B’
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are related.

By Theorem I1.4.5, there is an invertible n x n matrix P such that, for any a € V,
[a]s = Pla]s

Hence, if o € V, then
[T'(a)]s = P[T ()]s = P[T]slo]s

But
[T(a)ls = [T]sla]s = [T]sP[o]s

Equating these two, we get
[T|sP = P[Ts

(since the above equations hold for all & € V'). Since P is invertible, we conclude that
[T)s = P~'[T]sP
Remark 4.7. Let U € L(V, V) be the unique linear operator such that
Ula;) = B;

for lal 1 < j < n, then U is invertible since it maps one basis of V' to another (by
Theorem 2.15). Furthermore, if P is the change of basis matrix as above, then

B = Z P ja;
i=1
Since U(w;) = B, we conclude that
P =[Uls
Hence, we get the following theorem.

Theorem 4.8. Let V' be a finite dimensional vector space over a field F, and let

B = {04170527"'70471} and B' = {ﬁlaﬁ?a--'vﬁn}
be two ordered bases of V.. If T € L(V,V) and P is the change of basis matriz (as in

Theorem I1.4.5) whose j™ column is
Py =Bls

Then
[T)s = P~'[T]sP
Equivalently, if U € L(V,V) is the invertible operator defined by U(a;) = [; for all
1 <5 <n, then
[T = [U™']5[T)5[U]s
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Example 4.9.
(i) Let V. =R? B = {e,e} and B = {1, B2}, where
ﬁl = €1 + € and 62:2€1+€2

Then the change of basis matrix as above is

P=(1 1)
r=(32)

Hence, if T € L(V, V) is the linear operator given by T'(x,y) := (x,0), then observe
that

(i) T(B) = T(1,1) = (1,0) = =B + B, while T(fs) = (2,0) = —28; + 203, so

that
o= (3 5)

Hence,

(ii) Now note that

so that

which agrees with Theorem 4.8.

(ii) Let V be the space of all real polynomials of degree < 3, and let B = {ap, aq, az, a3}
be the basis given by

() = 2
Define a new basis {fy, 51, B2, 83} by
Bi(z) = (x4 2)°

Then

Bo = g

B =20 + oy

62 = 4040 + 20&1 + oo

B3 = 8ap + 12a1 + 63 + g
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Hence, the change of basis matrix is

o
o0 N o —~
<+ < = O

N — O O

Hence,

Now let D : V — V be the derivative operator. Then,

Hence,

(ii) Now we saw in Example 4.4 that

S o MmO

o N O O

— o O O

So note that

™
00 & —~

< < — O

N — oo
— o oo
(\
~
— N~
cComo —H e~ M
oONOO FNOO
— o000 A0 0o
o000 OO0 OO
0 N © 0 N ©
[ = | = | = |
R
oN oo
™ ™
| /@< | 7292 oo o
- OO0 OO0 OO0 oo
I Il I
0
1_[
Q,

65



which agrees with Theorem 4.8.
This leads to the following definition for matrices.

Definition 4.10. Let A and B be two n X n matrices over a field F. We say that A is
stmilar to B if there exists an invertible n X n matrix P such that

B=P'AP

Remark 4.11. Note that the notion of similarity is an equivalence relation on the set
of all n x n matrices (Check!). Furthermore, if A is similar to the zero matrix, then A
must be the zero matrix, and if A is similar to the identity matrix, then A = I.

Finally, we have the following corollaries, the first of which follows directly from Theo-
rem 4.8.

Corollary 4.12. Let V' be a finite dimensional vector space with two ordered bases B
and B'. Let T € L(V,V), then the matrices [Tz and [T|p are similar.

Corollary 4.13. Let V = F" and A and B be two n X n matrices. Define T : V — V
be the linear operator
T(X)=AX

Then, B is similar to A if and only if there is a basis B' of V' such that
[Tls =B

Proof. By Example 4.4, if B denotes the standard basis of V', then
[Ts=A

Hence if B’ is another basis such that [T]g = B, then A and B are similar by Theo-
rem 4.8.

Conversely, if A and B are similar, then there exists an invertible matrix P such that
B=P1'AP

Let B' = {p1, B2, - .., Bn} be given by the formula

n
By =Y Pie
=1

Then, since P is invertible, it follows from Theorem 2.15, that B’ is a basis of V. Now
one can verify (please check!) that

[T]s = B
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5. Linear Functionals

Definition 5.1. Let V' be a vector space over a field F. A linear functional on V is a
linear transformation L : V — F.

Example 5.2.
(i) Let V' = F™ and fix an n tuple (a1, aq,...,a,) € F". We define L : V — F by

n
L(zy,xq,...,2,) == Zaixi
i=1

Then L is a linear functional.

(ii) Conversely, if L : F™ — F'is a linear functional, and we set a; := L(¢;), then, for

any a = (x1,%a,...,7,) € V, we have
i=1 i=1 i=1
Hence, L is associated to the tuple (a1, aq, ..., a,). In fact, if B = {e1,€9,...,€6,}

is the standard basis for F™ and B’ := {1} is taken as a basis for F', then
[L]g’ - (a17 ag, . .. 7a'rL)

in the notation of the previous section.

(iii) Let V' = F™" be the vector space of n X n matrices over a field F. Define
L:V — F by

L(A) = trace(A) = Z A
i=1

Then, L is a linear functional (Check!)

(iv) Let V be the space of all polynomials over a field F', and let ¢ € F. Define
L;:V — F by
L(f) = f(t)
obtained by ‘evaluating a polynomial at ¢’. This is a linear functional (Check!)

(v) Let V= C(]a,b]) denote the vector space of all continuous functions f : [a,b] — F,
and define L : V — F by

b
L) = [ s
Then L is a linear functional.

Definition 5.3. Let V' be a vector space over a field F'. The dual space of V is the
space
V*:=L(V,F)
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Remark 5.4. Let V be a finite dimensional vector space and B = {ay, s, ..., a,} be
a basis for V. By Theorem 2.4, we have

dim(V*) = dim(V) =n
Note that B’ = {1} is a basis for F. Hence, by Theorem 1.4, for each 1 < i < n, there
is a unique linear functional f; such that
filag) =i
Now observe that the set B* := {f1, fo,..., fu} is a linearly independent set, because if

¢; € F are scalars such that
n

Zcifi =0

i=1
Then for a fixed 1 < j <n, we get

(Z sz7,> (O{j) =0= Cj = 0
i=1
Hence, it follows that B* is a basis for V*.

Theorem 5.5. Let V' be a finite dimensional vector space over a field F' and B =
{ai, a9, ...,a,} be a basis for V. Then there is a basis B* = {fi, fo,..., fn} of V*
which satisfies

filay) =iy

for all 1 <i,5 <n. Furthermore, for each f € V*, we have
F=>Y floa)f;
i=1
and for each o € V', we have
o= Z fila)ay
i=1

Proof. (i) We have just proved above that such a basis exists.

(ii) Now suppose f € V*, then consider the linear functional given by

g = Z flai) fi

Evaluating at o;, we see that

9(ay) = (Z f(Oéifi) (a;) = f(ay)

i=1

By the uniqueness of Theorem 1.4, we have that f = g as required.
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(iii) Finally, if & € V, then we write

n
o = E C;O;
i=1

Applying f; to both sides, we see that

¢ = fi(e)
as required.
O
Definition 5.6. The basis constructed above is called the dual basis of B.
Remark 5.7. If V is a finite dimensional vector space and B = {1, as, ..., a,} is an

ordered basis for V, then the dual basis B* = {f1, fa, ..., fn} allows us to recover the
coordinates of a vector in the basis B. In other words, if a € V| then

fi(a)
ol = fz(:CY)

fule)

Example 5.8. Let V' be the space of polynomials over R of degree < 2. Fix three
distinct real numbers ty,t5,t3 € R and define L; € V* by

Li(p) := p(t:)

We claim that the set S := {Lj, Lo, L3} is a basis for V*. Since dim(V*) = dim(V') = 3,

it suffices to show that S is linearly independent. To see this, fix scalars ¢; € R such

that
3
Z CiLi =0
i=1

Evaluating at the ‘standard basis’ B = {ag, a1, as} of V' (where a;(z) = %), we get
three equations

Cc1+ Cy + C3 = 0
t101 + tQCQ + t303 =0
t%Cl + t%CQ + t%CzJ, =0

But the matrix
1 1 1

b1 to 13
ti ot 13
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is an invertible matrix when ¢y, 15,3 are three distinct numbers. Hence, we conclude
that

Cl = Cy = C3 = 0
Hence, S forms a basis for V*. We wish to find a basis B’ = {p1, p2, ps} of V such that

S is the dual basis of B’. In other words, we wish to find polynomials py, ps, and p3 such
that

pi(ti) = 0y
One can do this by hand, by taking
(,CE — tg)(.ilﬁ — t3)
pile) = (tr —t2)(ts — t3)
(.’L‘ — tl)(fL’ — t3>
pelz) = (ta — t1)(t2 — t3)
(ZE — tg)([E — t1>
Pa() (ts — ta)(ts — t1)

Remark 5.9. Let V be a n-dimensional vector space and f € V* be a non-zero linear
functional. Then the rank of f is 1 (Why?). So by the rank-nullity theorem,

dim(Ny) =n—1
where Ny denotes the null space of f.

Definition 5.10. If V' is a vector space of dimension n, then a subspace of dimension
(n — 1) is called a hyperspace.

We wish to know if every hyperspace is the kernel of a non-zero linear functional. To do
that, we need a definition.

Definition 5.11. Let V' be a vector space and S C V be a subset of V. The set
SO.={feV*: fla)=0 VacS}

is called the annihilator of S.

Now the following facts are easy to prove (Check!)

Example 5.12. Let V be a finite dimensional vector space.

(i) For any set S C V, SY is a subspace of V*.
(i) If S = {0}, then S° = V*.
(iii) If S =V, then S° = {0}.
(iv) If S} C Sy, then S C SY.
(v) For any subset S C V, if W = span(S), then

SOZWo
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Theorem 5.13. Let V' be a finite dimensional vector space over a field F', and let W
be a subspace of V. Then

dim(W) + dim(W?°) = dim(V)

Proof. Suppose dim(W) =k and S = {aq, as, ..., ax} be a basis for W. Choose vectors
{Qks1, 2y ...y} C V osuch that B = {ay,a9,...,a,} is a basis for V. Let B* =
{f1, f2, ..., fu} be the dual basis of B, so that, for any 1 <, j < n, we have

filay) = biy
So if k41 < i < n, then, for any 1 < j <k, we have
fila;) =0
Since S is a basis for W, it follows (Why?) that
fi € we

Hence, T := {frs1, fut2,---» fn} C WO Since B* is a linearly independent set, so is
T. We claim that 7 is a basis for W°. To see this, fix f € W?, then f € V* so by
Theorem 5.5, we have

= fla)f;
i=1
But f(a;) =0forall 1 <i<k, so
F=> flaif;
i=k+1

Hence, T spans W? as required.

We now conclude that
dim(V) =n =k + (n — k) = dim(W) + dim(W?)
O

Corollary 5.14. If W is a k-dimensional subspace of an n-dimensional vector space V.,
then there exist (n — k) hyperspaces Wy, W, ... W, _y such that

n—=k
W:Qm

Proof. Consider the proof of Theorem 5.13. We constructed a basis T := { fri1, fxa2,- - fu}
of W9, Set

Vii= ker(fi)
and set .
X= 1V
i=k+1

We claim that W = X proving the result.
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(i) If « € W, then, since T C W, we have
a € ker(f;)

for all k+1 <i<n. Hence, a € X.

(ii) Conversely, if @ € X, then a € V', so we write

o = Z fi(a)ozi

by Theorem 5.5. But a € ker(f;) for all k +1 <i <mn, so

k

o= Z fila)ay

i=1
But S ={aj,ag,...,a} CW,s0a e W.
]

Corollary 5.15. Let Wi and Wy be two subspaces of a finite dimensional vector space
V. Then Wy = Ws if and only if WD = W2.

Proof. Clearly, if W, = Ws, then W = WY.

Conversely, suppose W; # Wy, then we may assume without loss of generality, that
there is a vector « € Wy \ Wy. Let S = {ay, s, ..., a,} be a basis for Wy, then the set
SU{a} is also linearly independent. So by Theorem 11.3.13, there is a basis B containing
S U {a}. Hence, by the proof of Theorem 5.13, there is a linear functional f € B* such
that

flai) =0
for all 1 <7 <k, but
fla)=1
Hence, f € WP, but f ¢ WJ. Thus, W # Wy as required. O

(End of Week 4)

6. The Double Dual

Definition 6.1. Let V' be a vector space over a field F' and let a € V. Define L, :
V* — F by
Lo(f) == f(a)

The proof of the next lemma is an easy exercise.

Lemma 6.2. For each o € V| L,, is a linear functional on V*
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Definition 6.3. The double dual of V' is the vector space V** := (V*)*

Theorem 6.4. Let V be a finite dimensional vector space. The map © : V. — V** given
by

18 a linear isomorphism.
Proof.

(i) © is well-defined because L, € V** for each a € V' by the previous lemma.
(ii) © is linear: If a, B € V, then, for any f € V*

Lats(f) = fla+B) = fla) + f(B) = La(f) + Lp(f) = (La + Ls)(f)

Hence,
Lotg= Lo+ Lg
Hence, © is additive. Similarly, L., = cL, for any ¢ € F', so © is linear.

(iii) © is injective: If a € V is a non-zero vector, then consider W; := span(«) and
W2 = {O} Since W1 7’é WQ,
Wy # Wy

by Corollary 5.15. Since WY = V*, it follows that there is a linear functional
f € V* such that

fla) #0
Hence, L, # 0. Thus, (Why?)

Ola)=0=a=0

so © is injective.

(iv) Now note that
dim(V) = dim(V*) = dim(V™")

so O is surjective as well.

Corollary 6.5. If L € V**, then there exists a € V' such that

L(f) = fla) VfeV?

Corollary 6.6. If B is a basis of V*, then there exists a basis B’ of V' such that B is
the dual basis of B'.
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Proof. Write B = {fi, fa,..., fu}. By Theorem 5.5, there is a basis S = {Ly, Lo, . ..

of V** such that

Li(f;) = 03
For each 1 < < n, there exists a; € V such that L; = L,,. In other words,
filow) = bi;

for all 1 <i,7 <n. Now set S = {a1,9,...,a,}. Then

(i) S is linearly independent: If ¢; € F such that
co; =0
Applying f; to this expression, we have
c; =0

This is true for each 1 < j < n, so § is linearly independent.

(ii) Since dim(V') = n, it follows that S is a basis for V.

Recall that, if S C V, we write

SO={feV*:fla)=0 VacS}
Definition 6.7. If S C V*, we write

SO={aecV:fla)=0 VfeS}
Note that the two definitions agree if we identify V' with V** via ©.

Theorem 6.8. If S is any subset of a finite dimensional vector space V', then
(S9° = span(9)
Proof. Let W := span(S), then, by Example 5.12,
GO — /0

Therefore, we wish to show that W0 = (W?)°.

) Ln}

(i) Observe that, if « € W and f € W°, then f(a) = 0. Hence, a € (W?)°. Thus,

W c (W?)°
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(i) Now note that T an (W?°)? are both subspaces over V. By Theorem 5.13, we have
dim(W) + dim(W?°) = dim(V)

and
dim(W?) 4 dim((W°)?) = dim(V*) = dim (V)

Hence, dim(W) = dim((1W°)?). By Corollary 11.3.14, we conclude that
W = (WO)O
O
We now wish to prove Corollary 5.14 for vector spaces that are not finite dimensional.

Definition 6.9. Let V be a vector space. A subspace W C V is called a hyperspace if
(i) W #V (ie. W is a proper subspace)
(ii) For any subspace N of V such that

WCcNCV

we must have W =N or N =V.
In other words, a hyperspace is a mazimal proper subspace.
Theorem 6.10. Let V' be a vector space over a field F'.

(i) If f € V* is non-zero, then ker(f) is a hyperspace.
(i) If W C V is a hyperspace, then there exists f € V* such that W = ker(f)

Proof.

(i) If f € V* is non-zero, then W := ker(f) is a subspace of V. Furthermore, since
f # 0, it follows that ker(f) # V. Now suppose N is a subspace of V such that

WcCcNcCV
We wish to conclude that W = N or N = V. Suppose W # N, then we will show
that N =V.
Since W # N and W C N, there is a vector « € N such that o ¢ W. Hence,

fla) #0

Fix g € V, then we wish to show that § € N.
o If f(5)=0,then 5 €W CN
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(i)

o If f(5) # 0, then set

Then

Hence, vy € W C N, so

5:74-@@6]\7

f(@)

Either way, we conclude that 5 € N. This is true for any g € V,s0o V = N as
required.

Now let W C V be a hyperspace. Since W # V', choose a ¢ W, so that
W + span(«)

is a subspace of V' by Remark I1.2.11. Since o ¢ W, this subspace is not . Since
W is a hyperspace, it follows that

V =W + span(«)
Hence, for each g € V, there exists v € W and ¢ € F such that
B=7+ca
We claim that this expression is unique: If
=+ +da
Then
(v=7) = (=)o
But (y —+') € W and a ¢ W. So we conclude (Why?) that
c=¢
Hence, v =« as well. Thus, we define g : V' — F by
9(B) =c
Then, (Check!) that ¢ is a linear functional. It is now clear that

ker(g) =W

as required.
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Lemma 6.11. Let f,g € V* be two linear functionals. Then

ker(f) C ker(g)
if and only if there is a scalar ¢ € F' such that g = cf

Proof. Clearly, if g = c¢f for some ¢ € F', then ker(f) C ker(g).

Conversely, suppose ker(f) C ker(g). If g = 0, then take ¢ = 0. Otherwise, f must also
be non-zero, so that ker(f) is a hyperspace. Since ker(g) # V', we conclude that

ker(f) = ker(g)
Now choose a vector a € V such that f(«) # 0. Consider

f(@)
Then we claim that g = cf. So set
h:=g—cf
and we wish to show that A = 0. Note that, if a € ker(f) = ker(g), then h(a) =0, so
ker(f) C ker(h)

Furthermore, by construction,

h(a) =0
Since a ¢ ker(f), it follows that ker(h) is a subspace of V' that is strictly larger than
ker(f). But ker(f) is a hyperspace, so

ker(h) =V
whence h = 0 as required. O]

We now extend this lemma to a finite family of linear functionals.
Theorem 6.12. Let f1, fa, ..., fn,g € V*. Then, g is a linear combination of { f1, fa, ..., fu}
if and only iof

ﬂker(fi) C ker(g)

i=1

Proof.
(i) If there are scalars ¢; € F' such that

n

g = Zcifi

i=1

Then if « € ker(f;) for all 1 < ¢ < n, then g(a) = 0. So

ﬂ ker(f;) C ker(g)
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(ii) Conversely, suppose
ﬂker(fi) C ker(g)
i=1

holds, then we proceed by induction on n.
e If n =1, then this is Lemma 6.11.

e Suppose the theorem is true for n = k — 1, and suppose n = k. So set
W := ker(fx), and restrict g, f1, fo, ..., fr—1 to W to obtain linear functionals

g i, f5 .o, fi_y. Now, if @ € W such that
f((a):() Vi<i<k-1

(2

Then, by definition,
k
a € ﬂ ker(f;)

i=1
Therefore, g(a) = 0. Hence, ¢’(a) = 0, so, by induction hypothesis,

k—1
9= Z cifi

1=

1
for some scalars ¢; € F.. Now consider h € V* given by
-1
=1

k
h=g-> af;
Then, h =0 on W = ker(f). Hence,
ker(fy) C ker(h)
By Lemma 6.11, there is a scalar ¢ € F' such that h = cf;, whence

g=cafit+cafo+ ... Fcroifio1 +cfi

as required.

7. The Transpose of a Linear Transformation

Let T : V — W be a linear transformation. Given g € W*, we define f € V* by the
formula

fla) = g(T()) (IL.1)

Note that f is, indeed, a linear functional. Thus, we get an association
w* = v
which sends g — f.
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Theorem 7.1. Given a linear transformation T : V. — W, there is a unique linear
transformation

T W* = V*
gien by the formula
T'(g9)(e) = g(T(ex))
for each g € W* and o € V.. The map T" is called the transpose of T'.

Proof.

(i) We have just explained that T* is well-defined. ie. if g € W*, then T%(g) € V*.

(ii) Now suppose g1,92 € W*, and set fi := T*(g1), fo = T*(g2) and f5 = T"(g1 + g2).
Then, for any a € V', we have

f3(a) = (91 + 92)(T(@)) = 1(T()) + g2(T () = fre) + fale)

Hence,
Tg1+ g2) = T"(91) + T"(g2)

Similarly, T%(cg) = ¢T"(g) for ¢ € F,g € W*. Hence, T" is linear.
]

Theorem 7.2. Let T : V. — W be a linear transformation between finite dimensional
vector spaces. Then

(i) ker(T*) = Range(T)°
(i1) rank(T") = rank(T)
(iii) Range(T") = ker(T)°
Proof.
(i) For any g € W™,
T(g)(a) = g(T(e))

So if g € ker(T"), then g(T(a)) = 0 for all @« € V, whence g(5) = 0 for all
$ € Range(T), so
g € Range(T)°

Hence, ker(T%) C Range(T)°?. Conversely, if g € Range(T)°, then
9g(T(a)) =0 VaeV

whence, T%(g) = 0. So the reverse containment also holds.
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(i)

(i)

Let r := rank(7") and m = dim(W), then by Theorem 5.13, we have
r + dim(Range(7T)°?) = m = dim(Range(T)%) = m —r

But 7% : W* — V* is a linear transformation with m = dim(WW*). So by Rank-
Nullity, we have
nullity(T") 4 rank(T") = m

But by the first part, we have
nullity(T") = dim(Range(T)%) = m —r

so that rank(7T") = r = rank(7).
Now if a € ker(T'), then, for any g € W*,

T'(g)(a) = g(T () = g(0) = 0
Hence, T'(g) € ker(T)° for all g € W*, so that
Range(T") C ker(T)"
But if n = dim(V'), then by Rank-Nullity,
rank(T") = rank(7T") = n — nullity(T)
and by Theorem 5.13, we have
dim(ker(T)°) + nullity(T) = n

Hence,
dim(Range(T")) = dim(ker(T)°)

so by Corollary 11.3.14, we have

Range(T") = ker(T)"

]

Theorem 7.3. LetT : V — W be a linear transformation between two finite dimensional
vector spaces, and fix two ordered bases B and B’ of V' and W respectively. Then, we
consider the matriz

A=T%

Now consider T : W* — V* and the ordered bases (B')* of W* and B* of V*. We again

have a matrix

Then,

B =11
Bi,j — Aj,’L
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Proof. Write

B={a,as,...,a,}

B = {61, B2, B}

B* = {fi, fa,.., fu}
(B ={g1,92,-- -, gm} so that
filay) =9d;;, V1<i,j<n, and
9:(B;) =0y V1<ij<m

Furthermore, we have the expressions

T(ow) =) Agife, V1<i<n

k=1

T'(g5) = ZBi,jfia Vi<j<m

i=1

But by definition,
T'(g;)(ci) = g;(T (i)

=gj (Z Ak;zﬁk)
k=1

Ak,z‘gj(ﬁk)

NE

i

1

Il
2

.
.

But for the linear functional f = T%(g;), we have the formula

by Theorem 5.5. Hence,
T'(g5) = 3T (o)) = 3 Ase
i=1 i=1
By the uniqueness of the expression
T'(g;) = iBz',jfi
i=1

we conclude that B; ; = A, ; as required.
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Definition 7.4. Let A be an m X n matrix over a field F, then the transpose of A is
the n x m matrix B whose (i, j)' entry is given by

Bi; =4,

Therefore, the above theorem says that, once we fix (coherent, ordered) bases for
V,W,V* and W*, then the matrix of T* is the transpose of the matrix of 7T

Definition 7.5. Let A be an m X n matrix over a field F'.

(i) The column space of A is the subspace of F spanned by the n columns of A.

(ii) The column rank of A is the dimension of the column space of A.

Theorem 7.6. Let A be an m X n matriz over a field F', then

row rank(A) = column rank(A)

Proof. Define T : F™ — F™ by
T(X):=AX

Let B and B’ denote the standard bases of F™ and F™ respectively, so that
715 = A
by Example 4.4. Then, by Theorem 7.3,
(T = A
Now note that the columns of T are the images of T under B. Hence,

column rank(A) = rank(7)

Similarly,
row rank(A) = rank(7T")

The result now follows from Theorem 7.2. ]
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IV. Polynomials

1. Algebras

Definition 1.1. A [linear algebra over a field F is a vector space A together with a
multiplication map

X  Ax A— A

denoted by
(o, B) = a8

which satisfies the following axioms:

(i) Multiplication is associative:

a(By) = (aB)y
(ii) Multiplication distributes over addition

a(f+7v) =af +ayand (a+ B)y = ay + By

(iii) For each scalar ¢ € F,

c(ap) = (ca)f = a(ch)
If there is an element 14 € A such that
lya=a=aly

for all @ € A, then 14 is called the identity of A, and A is said to be a linear algebra
with identity. Furthermore, A is said to be commutative if

af = Pa
for all a, 5 € A.

Example 1.2.

(i) Any field is an algebra over itself, which has an identity, and is commutative.

(ii) Let A = M, (F) be the space of all n x n matrices over the field F. With multi-
plication given by matrix multiplication, A is a linear algebra. Furthermore, the
identity matrix I, is the identity of A. If n > 2, then A is not commutative.
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(iii) Let V be any vector space and A = L(V, V') be the space of all linear operators on
V. With multiplication given by composition of operators, A is a linear algebra.
Furthermore, the identity operator is the identity of A. Once again, A is not
commutative unless dim(V) = 1.

(iv) Let A = C]0,1] be the space of continuous F-valued functions on [0,1]. With
multiplication defined pointwise,

(f - 9)(x) = flx)g(x)

Then A is a linear algebra. The constant function 1 is the identity of A, and it is
commutative.

(v) Let A = C.(R) be the space of real-valued continuous functions on R which have
compact support (A function f: R — R is said to have compact support if the set
{z € R: f(x) # 0} has compact closure). This is a linear algebra over R which
is commutative, but does not have an identity (This requires a proof, which I will
leave as an exercise).

We will now construct an important example. Fix a field F. Define

P> = {(f07f17f27"'7fn7"') : fl S F}
be the set of all sequences from F'. We now define operations on F'*° as follows:

(i) Addition: Given two sequences f = (fi),g = (gi), we write
f+g9:=(fi+g)
(ii) Scalar multiplication: Given f = (f;) € F'*° and ¢ € F, define
c- f=(cfi)

(iii) Vector multiplication: This is the Cauchy product. Given f = (f;),9 = (g;) € F*°,
we define the sequence f - g = (z;) € F*> by

=0

Thus,
fg = (fog0, fogr + gof1, fogz + fro1 + gofa,-..)

Now, one has to verify that F**° is, indeed, an algebra over F' (See [Hoffman-Kunze, Page
118]). Furthermore, it is clear that,

fg=gygf
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so F'*° is a commutative algebra. Furthermore, the element
1=(1,0,0,...)
plays the role of the identity of F'*°. Now define
x:=(0,1,0,0,...)

Then note that
2 =(0,0,1,0,0,...),2° = (0,0,0,1,0,...),...

In other words, if we set 2° = 1, then for each integer £ > 0, we have
(xk)z = 5i,k
Now, one can check that the set
{1,z,2% 2% ..}
is an infinite linearly independent set in F'*°.

Definition 1.3. The algebra F> is called the algebra of formal power series over F.
An element f = (fo, f1, f2,...) € F* is written as a formal expression

f = Z fnxn
n=0

Note that the above expression is only a formal expression - there is no series convergence
involved, as there is no metric.

2. Algebra of Polynomials

Definition 2.1. Let F[z] be the subspace of F* spanned by the vectors {1, z,z?, ...}.
An element of F[z] is called a polynomial over F'

Remark 2.2.

(i) Any f € F[z] is of the form

f=fo+ fiz+ for® + .. 4 fuz"

(ii) If f, # 0 and fi, = 0 for all & > n, then we say that f has degree n, denoted by
deg(f).

(iii) If f = 0 is the zero polynomial, then we simply define deg(0) = 0.
(iv) The scalars fo, fi,..., f, are called the coefficients of f.

(v) If f = ca® then f is called a scalar polynomial.
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(vi) If f,, = 1, then f is called a monic polynomial.
Theorem 2.3. Let f, g € Flx] be non-zero polynomials. Then

(i) fg is a non-zero polynomial.

(i) deg(fg) = deg(f) + deg(g)
(ii) If both f and g are monic, then fg is monic.
() fg is a scalar polynomial if and only if both f and g are scalar polynomials.

(v) If f +g #0, then
deg(f +g) < max{deg(f), deg(g)}

Proof. Write
=) fie'and g =) gz’
i=0 =0

with f,, # 0 and g,, # 0. Then, by Equation IV.1, we have
(fOk = figri
i=0

Now note that, if 0 < i <n, and k — i > m, then g,_; = 0. Hence, In particular,
(fg)k=0ifk—n>m
Hence, deg(fg) < n -+ m. But

(fg)n+m = fnGm # 0
so deg(fg) = n+m. Thus proves (i), (ii), (iii) and (iv). We leave (v) as an exercise. [

Corollary 2.4. For any field F', F[z] is a commutative linear algebra with identity over
F.

Corollary 2.5. Let f,g,h € F[x] such that fg = fh. If f # 0, then g = h.

Proof. Note that f(g — h) = 0. Since f # 0, by part (i) of Theorem 2.3, we conclude
that (g — h) = 0. O

Remark 2.6. If f,g € F|[z] are expressed as

f=> fia'and g =" g;z’
=0 =0
Then

m+n S
fo=>_ (Z frgs_r> z*

s=0 r=0
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In the case f = ca™ and g = da", we have
(cx™)(dz") = (ed)x™ ™

Hence, by distributivity of addition in F[z], we get

fg=>Y_>_ figix'H

i=0 j=0

Definition 2.7. Let A be a linear algebra with identity over a field F. We write 1 = 1 4,
and for each o € A, we write o = 1. Then, given a polynomial

[ = Z fz’xi
i=0

in Flz], and a € A, we define f(a) € A by
fla)y=>" fio'
i=0

Example 2.8. Let f € Clx] be the polynomial f = 2 + 2.
(i) f A=C and o =2 € C, then
fla)=2"+2=6
(i) If A=C and a = 3£ € A, then
fla) =1

(iii) If A= M5(C) is the algebra of 2 x 2 matrices over C, and
1 0
o=(4 )
10 1 0\ (3 0
f(B):z(o 1)*(—1 2) = (—3 6)

(iv) If A= L(V,V) where V = C3, and T € A is the linear operator given by

Then

T(x1, 2, 73) = (iV/2w1, 25,1V 213)
Then f(T') € A is the operator

F(T)(xq, 29, 23) = (0,322,0)
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(v) If A=Clz] and g = 2* + 3i, then
f(g) = =7+ 6iz" 4 2°

Theorem 2.9. Let A be a linear algebra with identity over F, let f,g € F[z| be two
fized polynomials, let o € A, and ¢ € F be a scalar. Then

(i) (cf +g)(a) = cf(a) + g(a)
(i) (fg)(a) = fla)g(a)

Proof. We prove (ii) since (i) is easy. Write

f=> fia'and g =" g;z’
i=0 =0
So that

f9=>.>" figz™

i=0 j=0

Hence,

(End of Week 5)

3. Lagrange Interpolation

Theorem 3.1. Let F' be a field and ty, ta, ..., t, be (n+ 1) distint elements of F'. Let V
be the subspace of F|x] consisting of polynomials of degree < n. Define L; : V — F by

Lz(f) = f(tz)
Then S := {Lo, Lo, ..., L,} is a basis for V*.
Proof. 1t suffices to show that S is the dual basis to a basis B of V. For 0 < i < n,
define P, € V by

pi:H(w_ti) _ (x—to)(x —t1) ... (v —tiq)(x —tipq) ... (v — 1)

i t; — 1 (t; —to)(t; —t1) ... (t; —tiy)(ti — tiw1) ... (t; — ty)

Then we claim that B = {Py, P, ..., P,} is a basis for V. Note that {1,z,2?,...,2"}isa
basis for V', so dim(V') = n+1. Hence, it suffices to show that B is linearly independent.
So suppose ¢; € F are such that

n

ZCZ‘PZ:O

=0
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where the right hand side denotes the zero polynomial. Now applying L; to this expres-
sion, and note that

Li(P;) = 6y,
Hence,
Cj = Lj (Z Cl,P1> =0
i=0
This is true for all 0 < j < n, so B is a basis for V', and so S is a basis for V*. O
Remark 3.2.

(i) By Theorem II1.5.5, any f € V may be expressed in the form
f=Y ft)P
i=0

This is called the Lagrange Interpolation formula
(i) If f = 27, then we obtain

f= itm
=0

2 ..., 2"} forms a basis for V, it follows that the matrix

Since the collection {1, x,

1ty 2 ... 0
1ty 2 ... 1]
1 t, 2 ... t"

is invertible by Theorem [1.4.5. This is called a Vandermonde matriz.

Definition 3.3. Let V' be as above and let W be the space of all polynomial functions
on F' of degree < n. For each f € V, define f € W by

f(t) = f(t)

In other words, we send each formal polynomial to the corresponding polynomial func-
tion.

Theorem 3.4. The map V. — W given by f — f defined above is an isomorphism of
vector spaces.

Proof. Let T(f) := f, then T is linear by Theorem 2.9. Since dim(V) = dim(W) = n+1,
it suffices to show that T is injective. If f =0, then f(¢) = 0 for all t € F. In particular,
if we choose (n + 1) distinct elements {to,t1,...,t,} C F, then

ft)=0 Yo<i<n

By Theorem 3.1, it follows that f = 0. Hence, ker(7') = {0} so T is injective. O
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Definition 3.5. Let I' be a field and A and A be two linear algebras over F. A map
T: A— Ais said to be an isomorphism if

(i) T is bijective.
(ii) 7T is linear.
(i) T(aB) =T ()T (B) for all a, f € A
If such an isomorphism exists, then we say that A and A are 1somorphic.

Theorem 3.6. Let A = Flz] and A denote the algebra of all polynomial functions on
F', then the map

fef

induces an isomorphism A — A of algebras.

Proof. Once again, by Theorem 2.9, T" is a morphism of algebras. Also, T is injective as
in Theorem 3.4. Since 7' is clearly surjective, T' is an isomorphism. O]

Example 3.7. Let V' be an n-dimensional vector space over F' and B be an ordered
basis for V. By Theorem II1.4.2, we have a linear isomorphism

©:L(V,V)— F"™" given by T — [T

Furthermore, by Theorem II1.4.5, © is multiplicative, and hence an isomorphism of
algebras. Now if
=3 e
i=0

is a polynomial in F[z], and T" € L(V, V'), then we may associate two polynomials to it:

n

F(T) =3 T and f(Tls) = 3 elTl;

1=0

where f(T) € L(V,V) and f([T]|g) € F™™. Since © is linear and multiplicative, it
follows that

[f(D)]s = f([T]s)
4. Polynomial ldeals

Lemma 4.1. Let f,d € Flx] such that deg(d) < deg(f). Then there exists g € F|x]
such that either

f=dg or deg(f —dg) < deg(f)
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Proof. Write
m—1
f=anx™+ Z a;z"
i=0

n—1
d=bya" + Y bjal
§=0

with a,, # 0 and b, # 0. Since m > n, take

am m—n

bn
Then this g works. [

Theorem 4.2 (Euclidean Division). Let f,d € F[z| with d # 0. Then there exist
polynomials q,r € F[z]| such that

(i) f=dg+r

(i1) Either r =0 or deg(r) < deg(d)

g:

The polynomials q,r satisfying (i) and (ii) are unique.
Proof.
(i) Uniqueness: Suppose ¢, 71 are another pair of polynomials satisfying (i) and (ii)
in addition to ¢,r. Then
dlgp—q)=r—mn
Furthermore, if » — ry # 0, then by Theorem 2.3,
deg(r — r1) < max{deg(r),deg(r1)} < deg(d)
But
deg(d(q1 — q)) = deg(d) + deg(q — q1) = deg(d)
This is impossible, so r = 1, and so ¢ = ¢, as well.
(ii) Existence:
(i) If deg(f) < deg(d), we may take ¢ =0 and r = f.
(ii) If f =0, then we take ¢ =0 =r.
(iii) So suppose f # 0 and
deg(d) < deg(f)
We now induct on deg(f).

e If deg(f) =0, then f = cis a constant, so that d is also a constant. Since
d # 0, we take

qgq=-¢€rl

and r = 0.
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e Now suppose deg(f) > 0 and that the theorem is true for any polynomail
h such that deg(h) < deg(f). Since deg(d) < deg(f), by the previous
lemma, we may choose g € F[x] such that either

[ =dg or deg(f —dg) < deg(f)

If f = dg, then we take ¢ = g and r = 0 and we are done. If not, then
take
h:=f—dg

By induction hypothesis, there exists ¢o, 79 € F[z] such that
h =dgs + 19
with either 7o = 0 or deg(ry) < deg(h). Hence,
f=dlg+aq)+r

with the required conditions satisfied.

Definition 4.3. Let d € F[x] be non-zero, and f € F[z]| be any polynomial. Write
f=dg+r withr =0 or deg(r) < deg(d)

(i) The element g is called the quotient and r is called the remainder.

(ii) If r = 0, then we say that d divides f, or that f is divisible by d. In symbols, we
write d | f. If this happens, we also write ¢ = f/d.

(iii) If r # 0, then we say that d does not divide f and we write d 1 f.
Corollary 4.4. Let f € Flz| and ¢ € F. Then (x —c) | f if and only if f(c) = 0.

If this happens, we say that ¢ is a root of f (or a zero of f).

Proof. Take d := (z — ¢), then deg(d) = 1, so if f = qd + r, then either r = 0 or
deg(r) = 0. So write r € F', then

f=ale=c)+r
Evaluating at ¢ by Theorem 2.9, we see that
&) =0+r

Hence,
f=aq(z—c)+ f(c)
Thus, (x —¢) | f if and only if f(c) = 0. O
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Corollary 4.5. Let f € F[z| is non-zero, then f has atmost deg(f) roots in F.
Proof. We induct on deg(f).
e If deg(f) =0, then f € F' is non-zero, so f has no roots.

e Suppose deg(f) > 0, and assume that the theorem is true for any polynomial g
with deg(g) < deg(f). If f has no roots in F', then we are done. Suppose f has a
root at ¢ € F, then by Corollary 4.4, write

f=alz—c)
Note that deg(f) = deg(q) + deg(z — ¢), so

deg(q) < deg(f)

By induction hypothesis, ¢ has atmost deg(q) roots. Furthermore, for any b € F,

f(b) = q(b)(b—c)

So if b € F is a root of f and b # ¢, then it must follow that b is a root of f.
Hence,

{Roots of f} = {c} U{Roots of ¢}
Thus,

[{Roots of f}| <1+ [{Roots of ¢}| <14 deg(q) <1+ deg(f)— 1= deg(f)

Definition 4.6. Let f € F[z]| be the polynomial
=3
i=0
Then the derivative of f is the polynomial
Df = Z ic;r' ™!
i=1

This defines a linear operator D : F[zx] — F[z]. The higher derivatives of f are denoted
by D?f, D3f,. ...

Theorem 4.7 (Taylor’s Formula). Let f € F[z]| be a polynomial with deg(f) < n, then

1=y T
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Proof. By the binomial theorem, we have

Hence, Taylor’s formula holds when f = ™. Now by linearity, if

n
=2 ana”
m=0

then by linearity of D* and the evaluation map (Theorem 2.9), we have

n

D*f(e) = am(D*a™)(c)

m=0

Hence,

"\ DFf(c E DFz™)(c K
]i:()(x_c) :Zzam( k')()(x_c)

=0 k=0 m=0

_ Z (Z D), C)k)

k=0

= E amx™
m=0

=/

o

]
Definition 4.8. Let f € Fz] and ¢ € F, then we say that ¢ is a root of f of multiplicity

rif
(i) (@=o)" [ f
(ii) (x =) 1 f

Lemma 4.9. Let S = {f1, fo,..., [u} C F[x] be a set of non-zero polynomials such that
no two elements of S have the same degree. Then S is a linearly independent set.

Proof. We may enumerate S so that, if k; :== deg(f;), then
ki<ko<...<k,

We proceed by induction on n := |S|. If n = 1, then the theorem is true because f; # 0.
So suppose the theorem is true for any set 7' as above such that || < n — 1. Now
suppose ¢; € F' such that

n

Zcifi =0

=1
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Let m := k,, — 1, then observe that
D"fi=0 V1<i<n-1
and that D™ f, # 0. Applying D™ to the above equation, we see that
D" f, =0

Since D™ f,, # 0, it follows that ¢, = 0 (by Corollary 2.5). Hence,

n—1
Z ¢ifi=0
i=1
By induction, it follows that ¢; =0 for all 1 < i < n. O

Proposition 4.10. Let V' be the vector subspace of Fx] of all polynomials of degree
<n. For anyce F, the set

{17 ($ - C)a (iIZ’ - 0)27 SRR (Q? o c)n}
forms a basis for V.
Proof. The set is linearly independent by Lemma 4.9 and spans V' by Theorem 4.7. [

Theorem 4.11. Let f € F|x] be a polynomial with deg(f) < n, and ¢ € F. Then c is
a root of f of multiplicity r € N if and only if

(i) D¥f(c) =0 for all0 <k <r—1
(ii) D" f(c) # 0.
Proof.

(i) Suppose c is a root of f of multiplicity r, then we may write

f=@=ayg

since (x — ¢)" | f. Furthermore, if g(c¢) = 0, then (x — ¢) | g by Corollary 4.4, so
that would imply that
(=) f

This is not possible, so g(c¢) # 0. Since deg(g) < n — r, by applying Taylor’s
formula to g, we see that

f=(e—ecf [i D7), c)m]

m!
m=0

— (ZE _ C)m-i-r
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By Taylor’s formula,

The set {1, (x—c), (x—c)?,...,(x—c)"} forms a basis for the space of polynomials
of degree < n by Proposition 4.10, so there is only one way to express f as a linear
combination of these polynomials. Hence,

Dkf(c)_ 0 0<k<r-—1
I A G R

(k—r)!
Hence, D*f(c) =0 for all 0 < k <r —1 and
D" f(c) = g(e)r! #0

since g(c) # 0
Conversely, suppose conditions (i) and (ii) are satisfied, then Taylor’s formula gives

A
k=r
where
n—r Dm+rf c .
7= (m—l—v“()')(w_c)
m=0
Thus, (z —¢)" | f. Furthermore,
D" f(c
g(c) = # # 0

so that (x — ¢)" { f, so that ¢ is a root of f of multiplicity r.
O

Definition 4.12. A subset M C F|[z] is called an ideal of Flx] if M is a subspace of
F[z] such that, for any f € M and g € F[z], the product fg lies in M.

Example 4.13.

(i)

If d € F[z] is a polynomial, set
M :={dg: g € Flz|}

Then M is an ideal of F[z]. This is called the principal ideal of F|x] generated by
d. We denote this ideal by
M = dF|x]

Note that the generator d may not be unique (See below)
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(i)

If dy,ds,...,d, € Flx], the define
M = {dig1 + dags + ... + dpgn : g; € Flz]}

Then M is an ideal of F[z], called the ideal generated by dy,ds, . .., d,.

Theorem 4.14. If M C F|x] is a non-zero ideal of F[z|, then there is a unique monic
polynomial d € F[x| such that M is the principal ideal generated by d.

Proof.

(i)

Existence: Since M is non-zero, we may define

S = {deg(g) : g€ M,g# 0}

Then S is a non-empty subset of NU{0}, so it contains a minimal element. Hence,
there exists d € M such that

deg(d) < deg(g) Vge M

Since M is a subspace, we may multiply d by a scalar (if necessary) to ensure that
d is monic. Set
M' := dF|[z]

Since M is an ideal, M" C M. To show the reverse containment, let f € M. By
Euclidean division Theorem 4.2, we may write

f=dqg+r
where 7 = 0 or deg(r) < deg(d). Since r = f — dgq, we conclude that » € M. Since
deg(d) < deg(g) Vg€ M

it must happen that r = 0. Hence, f = dg € M'. Thus, M = M’ as required.

Uniqueness: If dy,dy € M are two monic polynomials such that
M = d, F|x] = dyFx]
Then d; € M, so there exists g € F[z] such that d; = dyg. Thus,
deg(dy) > deg(dy)

By symmetry, it follows that deg(ds) = deg(d;), so that g € F. Since both d; and
ds are monic, we conclude that

g=1

so that d; = dy as required.

97



Corollary 4.15. Let p1,pa,...,pn € F[x] where not all the p; are zero. Then, there
exists a unique monic polynomial d € F[z]| such that

(i) d|p; for all 1 <i<n.
(i) If f € Flx] is any polynomial such that f | p; for all 1 <i <n, then f |d.
Proof.

(i) Existence: Let M be the ideal generated by py,pa, ..., pn, and let d be its unique
monic generator (by Theorem 4.14). Then, for each 1 <1i < n, we have p;, € M =
dF[z], so

d | p;
Furthermore, if f | p; for all 1 <i < n, then there exist g; € F[z] such that
pi=fgi
Since d is in the ideal M, there exist f; € F[x] such that

d= Zflpz = Zfzfgz = (Zﬂ%) f

So that d | f.

(ii) Uniqueness: If dy,ds € Fx] are two polynomials satisfying both (i) and (ii), then
dy | p; for all 1 < i < n implies that d; | d;. By symmetry, we have dy | d;. This
implies (Why?) that

d1 = Cdg

for some constant ¢ € F'. Since both d; and dy are monic, we conclude that d; = d».
O
Definition 4.16. Let p1,ps, ..., p, € F[z] be polynomials (not all zero).

(i) The monic polynomial d € F|x] satisfying the conditions of Corollary 4.15 is called
the greatest common divisor (gcd) of p1, pa, ..., p,. If this happens, we write

d = (p17p27 LR 7pn)
(ii) We say that pq,pa, ..., p, are relatively prime if (p1,p2,...,pn) =1

Example 4.17.

(i) Let p; = (z+2) and py = (22 + 8z + 16) € R[], and let M be the ideal generated

by {p1,p2}. Then
(> 4+ 82+ 16) = (v +6)(z +2) + 4

Hence, 4 € M, so M contains scalar polynomials. Therefore, 1 € M, whence
(p1,p2) =1

(ii) If p1,po,...,pn € Flx] are relatively prime, then the ideal M generated by them
is all of F|z]. Hence, there exist fi, fa,..., fn € F[z] such that

Z fivi=1
i—1
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5. Prime Factorization of a Polynomial

Definition 5.1. Let F' be a field and f € F[z]. f is said to be

(i) reducible if there exist two polynomials g, h € F[z| such that deg(g),deg(h) > 1
and

f=gh
(ii) drreducible or prime if f is not a scalar, and it is not reducible.
Example 5.2.

(i) If f € F[z] has degree 1, then f is prime because deg(gh) = deg(g) + deg(h).
(i) f = 2%+ 1 is reducible in C[z] because f = (z +1)(z — 1)
(iii) f = x? + 1 is irreducible in R[z] because if f = gh with deg(g), deg(h) > 1, then
since

deg(g) + deg(h) = deg(gh) = deg(f) =2
it follows that deg(g) = deg(h) = 1, so we may write

g=ar+bh=cr+d

Multiplying, we get equations

ac =1
ad +bc=0
bd =1

This implies (Check!) that a? + b* = 0 which is not possible for a,b € R unless
a =0b=0. Thus, f is irreducible.

Remark 5.3.

(i) If p € F[z] is prime and d | p, then either d = ¢p for some constant ¢ € F ord € F.

(ii) If p,q € F[x] are both primes and p | ¢, then p = ¢q (because a prime polynomial
cannot be a scalar).

Theorem 5.4 (Euclid’s Lemma). Let p, f, g € F[x] where p is prime. If p | (fg), then
eitherp| f orp|g

Proof. Assume without loss of generality that p is monic. Let d = (f,p). Since d | p is
monic, and p is irreducible, we must have that either

d=pord=1

If d = p, then p | f, and we are done.
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If not, then d = 1, so by Example 4.17, there exist fy, po € F[x] such that

Jof +pop =1

So that
g = fofg+ popyg

Now observe that p | fg and p | p, so
plg

The proof of the next corollary follows by induction (Check!).
Corollary 5.5. Let p, fi, fa, ..., fu € Fx] where p is prime. If

p|(f1f2--~fn)

Then there ezists 1 < i <n such that p | f;

Theorem 5.6 (Prime Factorization). Let F' be a field and f € F[z]| be a non-scalar
monic polynomial. Then, f can be expressed as a product of finitely many monic prime

polynomials. Furthermore, this expression is unique (upto rearrangement).

Proof.

(i) Existence: We induct on deg(f). Note that by assumption, deg(f) > 1.

e If deg(f) =1, then f is prime by Example 5.2.

e Now assume deg(f) > 2 and that every polynomial h with deg(h) < deg(f)
has a prime factorization. Then, if f is itself prime, there is nothing to prove.
So suppose f is not prime. Then, by definition, there exist g,h € Flx] of

degree > 1 such that
f=gh

Since f is monic, we may arrange it so that g and h are both monic as well.
But then deg(g),deg(h) < deg(f), so by induction hypothesis, both g and h
can be expressed a product of primes. Thus, f can also be expressed as a

product of primes.

(ii) Uniqueness: Suppose that

=Dz . Pn=q01q2 . Gm

where p;, ¢; € F[z] are monic primes. We wish to show that n = m and that (upto

reordering), p; = ¢; for all 1 <1i < n. We induct on n.
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o If n =1, then
f=m=qq. . gn

Since p; is prime, there exists 1 < j < m such that p; | ¢;. But both p; and
¢; are monic primes, so p; = ¢; by Remark 5.3. Assume WLOG that j =1,
so by Corollary 2.5, it follows that

@43 .- Gm =1

Since each ¢; is prime (and so has degree > 2), this cannot happen. Hence,
m = 1 must hold.

e Now suppose n > 2, and we assume that the uniqueness of prime factorization
holds for any monic polynomial h that is expressed as a product of (n — 1)
primes. Then, we have

Pl g gm

So by Corollary 5.5, there exists 1 < j < m such that p; | ¢;. Assume WLOG
that j = 1, then (as before),

Pr=q
must hold. Hence, by Corollary 2.5, we have
D2pP3 .- -Pn = q2G3 - - Gm

By induction hypothesis, we have (n — 1) = (m — 1) and p; = ¢; for all
2 < j < m (upto rearrangement). Thus,

n=mandp,=¢ V1<i<n

as required.

Definition 5.7. Let f € F[z] be a non-scalar monic polynomial, and write

f—qq. . qm

where each ¢; is prime. Combining like terms, we get
f=p'py" )

where the p; are distinct primes. This is called the primary decomposition of f (and it
is also unique).

Remark 5.8. Suppose that f, g € F[x| are monic polynomials with primary decompo-
sition

f=ppy? ... pimand g = py"ph® . pt
(where some of the n;, m; may also be zero). Then (Check!) that the g.c.d. of f and g
is given by
min{n,,m,}

(f, g) _ prlnin{nl,ml }p;nin{nz,mg} L
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The proof of the next theorem is now an easy corollary of this remark.

Theorem 5.9. Let f € Flx] be a non-scalar polynomial with primary decomposition

f=ppy" )

Write
fi= /oy =] »"
1#]
then the polynomials f1, fa, ..., fr are relatively prime

Theorem 5.10. A polynomial f € F[x] is a product of distinct irreducible polynomials
over F if and only if (f,Df) =1

Proof.

(i) Suppose that f is a product of distinct irreducible polynomials. So the prime
decomposition of f has the form

f=pip2...pr

where the p; are mutually distinct primes, and let d = (f,Df). If d # 1, then
there is a monic prime g such that

qld

Hence, q | f, so by Corollary 5.5, there exists 1 < ¢ < m such that ¢ | p;. Since ¢
and p; are both monic primes, it follows that

q = Ppi
Hence, we assume WLOG that ¢ = 1 so that p; | Df. Now we write
fi=1/p;

so by Leibnitz’ rule, we have

Df=D(p)fi+D(p2)f2+ ...+ D(po) fy
Now observe that p; | f; for all j > 2. Since py | Df, it follows that

b1 \ D(pl)fl

Now D(p;) is a polynomial whose degree is < deg(p1). So p1 1 D(p1). So by
Euclid’s Lemma Theorem 5.4, it follows that

Pl A

But fi = pops...pn, so by Corollary 5.5, it follows that there exists 2 < j < n
such that
p1lpj

Since both p; and p; are monic primes, it follows that p; = p;. This contradicts
the fact that the p; are all mutually distinct.
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(ii) Conversely, suppose f has a prime decomposition with at least one prime occuring
multiple times. Then, we may write

f=p
for some prime p € F[z] and some other g € F[z]|. Then, by Leibnitz’ rule,
Df =2pD(p)g + p*D(g)

Hence, p | D(f), so (f, Df) # 1.

Recall that, if p € F[z] has degree 1, then p is irreducible.

Definition 5.11. A field F' is said to be algebraically closed if every irreducible poly-
nomial over F' has degree 1.

Example 5.12.

(i) If F = R, then 22 + 1 € F[z] is irreducible by Example 5.2. Hence, R is not
algebraically closed.

(ii) By the Fundamental Theorem of Algebra, C is algebraically closed.

Remark 5.13. If F is algebraically closed, then any non-zero f € F[z] can be expressed
in form

f=clr—a)(x—az)...(x —ay,)

for some scalars ¢, a,as,...,a, € F.

(End of Week 6)
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V. Determinants

1. Commutative Rings

Definition 1.1. A ring is a set K together with two operations x : K x K — K and
+: K x K — K satisfying the following conditions:
(i) (K,+) is a commutative group.
(i) (zy)z = z(yz) for all x,y,z € K
(iii) z(y+2) =2y + 2z and (y+ 2)z =ya + zx for all z,y,2 € K
Furthermore, we say that K is commutative if xy = yx for all x,y € K. An element

1 € K is said to be a unit if 1z = x = z1 for all x € K. If such an element exists, then
K is said to be a ring with identity.

Example 1.2.

(i) Every field is a commutative ring with identity.
(ii) Z is a ring that is not a field.

Note: The important distinction between a commutative ring with identity and
a field is that, if F'is a field and x € F' is non-zero, then there exists y € F' such
that zy = yr = 1. In a ring, it is not necessary that every non-zero element has a
multiplicative inverse.

(iii) If Fis a field, then F[z] is a ring.

Definition 1.3. Let K be a commutative ring with identity. An m x n matriz over K
is a function A from the set {(i,7) : 1 <i <m,1 < j <n} to K. We write K"™*" for
the set of all m x n matrices over K.

As usual, we represent such a function the same way we do for matrices over fields.
Given two matrices A, B € K™ we define addition and mutliplication in the usual
way. The basic algebraic identities still hold. For instance,

A(B+C) = AB + AC, (AB)C = A(BC), . ..

Many of our earlier results about matrices over a field also hold for matrices over a ring,
except those that may involve ‘dividing by elements of K.
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2. Determinant Functions

Standing Assumption: Throughout the remainder of the chapter, K will denote a
commutative ring with identity.
Given an n X n matrix A over a ring K, we think of A as a tuple of rows

A (ag,ag, ..., qp)

We wish to define the determinant of A axiomatically so that the final formula we arrive
at will not be mysterious. One of the advantages of this approach is that it is more
conceptual and less computational.

Definition 2.1. Given a function D : K™*" — K, we say that D is n-linear if, given any
matrix A = (ay,as,...,q,) as above, and each 1 < j < n, the function D’ : K" — K
defined by

DJ() = D(Oél, Qg .o, QG105 Oy, . - ,Oén>
is linear. (ie. If 1,32 € K™ and ¢ € K, then D (cf; + 2) = cD(51) + D(52))
Example 2.2.

(i) Fix integers k1, ko, ..., ky, such that 1 < k; < n and fix a € K. Define D : K™*" —
K by
D(A) = aA(1,k)A(2, k) ... A(n, k)

Then, for any fixed 1 < j < n, the map D’ : K™ — K has the form
DI (B) = cA(j, k;) = cf
Hence, each D7 is linear, so D is n-linear.
(ii) As a special case of the previous example, the map D : K" — K by
D(A) = A(1,1)A(2,2) ... A(n,n)
is n-linear. (ie. D maps a matrix to the product of its diagonal entries).

(iii) Let n =2 and D : K*** — K be any n-linear function. Write {€;, €2} denote the
rows of the 2 x 2 identity matrix. For A € K?*2, we have

D(A) = D(Ay1€1 + A1 g€, As 161 + Ago€r)
= A11D(e1, Az 161 + Aso€a) + A1 o D(e2, Ag €1 + Asg€r)
= A1,1A2,1D<€1, 51) + A1,2A271D(€2, 61) + A1’1A272D(€1, 62) + A1’2A272D<€2’ 62)

Hence, D is completely determined by four scalars

a:= D(e1,€e1), b:= D(ey,e€9)
c:= D€y, €1), d:= D(eg,e€3)

Conversely, given any four scalars a, b, ¢, d, if we define D : K**? — K by
D(A) = A1 1As1a+ A1 2As1b+ Ay 1A sc + Ay 2 As0d

Then D defines a 2-linear map on K?2*2.
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(iv) For instance, we may define D : K**? — K by
D(A) = A1 422 — A12A2)
This is 2-linear and is the family ‘determinant’ of a 2 x 2 matrix.
Lemma 2.3. A linear combination of n-linear functions is n-linear.

Proof. Let Dy and Dy be two n-linear functions and ¢ € K be a scalar, then we wish to
show that
D3 = CD1 + DQ

is n-linear. So fix A = (a1, a9,...,0,) € K™ and 1 < j < n, and consider the map
Dj:K" - K

defined by
D}(B) = Ds(an, 2, -, 51, B, sy oy )
It is clear that . ' .
D} = ¢D] + D}
and each of D? and D} are linear. Hence, Dg is linear, so D is n-linear as required. [J

We now wish to isolate the kind of function that will eventually lead to the definition of
a ‘determinant’.

Definition 2.4. An n-linear function D is said to be alternating (or alternate) if both
the following conditions are satisfied:

(i) D(A) = 0 whenever two rows of A are equal.
(ii) If A" is obtained from A by exchanging two rows of A, then D(A") = —D(A).

Remark 2.5.

(i) We will show that the condition (i) implies the condition (ii) above.

(ii) It is not, in general, true that condition (ii) implies condition (i). It is true,
however, if 1 +1 # 0 in K (Check!)

Definition 2.6. An n-linear function D is said to be a determinant function if D is
alternating, and satisfies
D(I)=1

Example 2.7.
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(i) Let D be a 2-linear determinant function. As mentioned above, D has the form
D(A) = A171A271(l + A1’2A27lb + ALlAQ’QC + A172A2’2d

where

Since D is alternating,

Furthermore,
D(El, 62) = —D<€2, 61)

Hence,
D(A) = c(A11A22 — A1 2A21)

But since D(I) = 1, we conclude that ¢ = 1, so that
D(A) = A1 422 — A19A2)

Hence, there is only one 2-linear determinant function.

(ii)) Let F' be a field and K = F[z| be the polynomial ring over F'. Let D be any
3-linear determinant function on K, and let

Then
D(A) = D(ze; — 2%€3, €9, €1 + 23¢3)

= 2D(ey, €, €1 + 2%€3) — 22 D(e3, €2, €1 + 7¢€3)

= $D<61, €9, 61) + $4D(€1, €9, 63) — $2D(€3, €9, 61) — xSD(Gg, €9, 63)
Since D is alternating,
D(€17 €2, 61) == D(€37 €2, 63) - O

and
D(€3, €2, 61) = _D<€17 62763)

Hence,
D(A) = (’:lj4 + I'Q)D<El, €2, 63) = 3:4 + :B2

where the last equality holds because D(/) = 1.

Lemma 2.8. Let D be a 2-linear function with the property that D(A) = 0 for any 2 X 2
matriz A over K having equal rows. Then D is alternating.
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Proof. Let A be a fixed 2 x 2 matrix and A’ be obtained from A by interchanging two
rows. We wish to prove that

D(A') = —D(A)

So write A = («, ) as before, then we wish to show that

But consider
D(a+ B, a+ f) = D(a,a) + D(8,a) + D(a, ) + D(3, )
and note that, by hypothesis,
D(a+ f.a+ §) = D(a,a) = D(3,8) = 0

Hence,

D(a, 8)+ D(B,a) =0

as required. O

Lemma 2.9. Let D be an n-linear function on K™*™ with the property that D(A) = 0
whenever two adjacent rows of A are equal. Then, D is alternating.

Proof. We have to verify both conditions of Definition 2.4. Namely,

e D(A) =0 whenever two rows of A are equal.

e If A’ is obtained from A by exchanging two rows of A, then D(A") = —D(A).
We first verify condition (ii) and then verify (i).

(i) Suppose first that A’ is obtained from A by interchanging two adjacent rows of
A. Then, we assume without loss of generality that the rows a; and ay are inter-
changed. In other words,

A= (a,a,...,a,) and A" = (a9, a1, ..., Q)
But the same logic as in the previous lemma shows that

D(A') = —D(A)

(ii) Now suppose that A’ is obtained from A by interchanging row ¢ with row j where
1 < j. Then consider the matrix B; obtained from A by successively interchanging
rows
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This requires k := (j — i) interchanges of adjacent rows, so that
D(By) = (~1)*D(A)

Now A’ is obtained from B; by successively interchangning rows

(14 1)i
This requires (k — 1) interchanges of adjacent rows, so that

D(A) = (=1)"'D(By) = (-1)* ' D(A) = —D(4)

(iii) Finally, suppose A is any matrix in which two rows are equal, say o; = ;. If
j =i+1, then A has two adjacent rows that are equal, so D(A) = 0 by hypothesis.
If j > i+ 1, then we interchange rows (i + 1) <> j, to obtain a matrix B which has
two adjacent rows equal. Therefore, by hypothesis, D(B) = 0. But by step (ii),
we have

so that D(A) = 0 as well.

Definition 2.10.

(i) Let A € K™ be a matrix and 1 <4,7 <n. Then A(: | j) is the (n —1) x (n — 1)
matrix obtained by deleting the i row and the j** column of A.

(ii) If D is an (n — 1)-linear function and A is an n X n matrix, then we define D, ; as
D;;(A) := D(A(i | 7))
Theorem 2.11. LeT'n > 1 and D be an (n — 1)-linear function. For each 1 < j < mn,
define a function Ej : K™" — K by

n

Ej(A) =) (1) A; ;Di;(A)

=1

Then E; is an alternating function on K™*". Furthermore, if D is a determinant func-
tion, then so is .

Proof.
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(i)

(i)

(i)

If Ais an n x n matrix, then the scalar D;;(A) is independent of the i*" row of
A. Furthermore, since D is (n — 1)-linear, it follows that D; ; is linear in all rows

except the " row. Hence,
A= Ai;Di;(A)

is n-linear. By Lemma 2.3, it follows that E; is n-linear.

To prove that £} is alternating, it suffices to show (by Lemma 2.9) that E;(A) =0
whenever any two adjacent rows of A are equal. So suppose A = (a1, an, ..., Q)
and oy = agy1. If i ¢ {k,k + 1}, then the matrix A(i | j) has row equal rows, so
that D; j(A) = 0. Therefore,

Ej(A) = (=1)"Y Ay ;Dyj(A) + (=) Ay i Dy 5 (A)
Since ap = g1,
Apj = Agpry and A(k | j) = Ak + 11 j)

Hence, Ej(A) = 0. Thus E is alternating.

Now suppose D is a determinant function and I™ denotes the n x n identity
matrix, then 1™ (j | j) is the (n — 1) x (n — 1) identity matrix 7™, Since
IZ-(Z) = 0, , we have

E;(I™) = Dj,(I"™) = D(I" V) = 1
so that F; is a determinant function.

O

Corollary 2.12. Let K be a commutative ring with identity and let n € N. Then, there
exists at least one determinant function on K™ ™.

Proof. For n = 1, we simply define D([a]) = a.

For n > 1, we assume by induction that we have constructed a determinant function on
K@=Dx(=1) By Theorem 2.11, we may construct a determinant function on K™*". [

Example 2.13. We have already seen that any determinant function D : K?*? — K
must be of the form

D(B) = B11B2s — B12Bs s =: | B|

Let A € K**3 then we define E; as in Theorem 2.11. Then

3
Ei(A) = (~1)""A;1D; 1 (A)
i=1
= A11D11(A) — As1D91(A) + A3 1 D3 1(A)

A2 2 A2 3 Al 2 Al 3
=A ’ ' ' ’ A
b (A3,2 As s Aso Asg + A3

— Ay,

(Al,Q A173>
Aso Ao
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, and

Similarly, we may calculate that
A A
+ A ) B _ A
22 (As,l Ass 52

Agq Az A Aig

Azy Asgz Agy Aggz
Agr Agp A A LA Aip Ang
Asq Aso Asq Aso 33 Agq Ao

It follows from Theorem 2.11 that E;, Es, and Es5 are all determinant functions. In fact,

we will soon prove (and you can verify if you like) that

— Ags

By =FEy=FE;3

We take one example to describe this phenomenon: Let K = R[z] and

A= 0 T —2 1
0 0 r—3

(L)
(
b ota)[rea|(t )
(

Similarly, one can check that

Then

o700
(5" %)

El(A):(x—l)‘(mgz xig)’—gﬂ

E3(A) = (z = 1)(z - 2)(z - 3)

as well.

3. Permutations and Uniqueness of Determinants

Remark 3.1. (i) Let D be an n-linear function, and A € K™ " be a matrix with
TOWS (1, (g, . . ., Q. Then,

; = ZA(Z,])EJ
7=1
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where {€1, €9, ..., €,} denote the rows of the identity matrix /. Since D is n-linear,
we see that

D(A) = ZA(I,j)D(ej,ag, o)

= Z Z A1, 7)A2,k)D(€j, e, a3, . .. )
i &

= Y AL kDA k) .. A(n k) D(er,  €nys - sy
k1,k2,....kn

(ii) Now suppose that D is also alternating. Then,
D(le, €koy - - vy Ekn) =0

for any tuple (k1, ko, ..., k,) such that any two k; coincide. Hence, we conclude
that

DA) = Y AL k)AQ2k)... A(n,kn)D(ex,, ks - - - €1,

k17k2 ~~~~~ kn,

where the sum is taken over all tuples (ki, k2, ..., k,) such that the {k;} are mu-
tually distinct integers with 1 < k; < n.

Definition 3.2.
(i) Let X be a set. A permutation of X is a bijective function o : X — X.
(ii) If X ={1,2,...,n}, then a permutation of X is called a permutation of degree n.

(iii) We write S,, for the set of all permutations of degree n. Note that, since X :=
{1,2,...,n} is a finite set, a function o : X — X is bijective if and only if it is
either injective or surjective.

Now, in the earlier remark, a tuple (ki, ks, ..., k,) is equivalent to a function
o: X — X given by o(i) = k;

To say that the {k;} are mutually distinct is equivalent to saying that o is injective (and
hence bijective). We now conclude the following fact.

Lemma 3.3. Let D be an n-linear alternating function. Then, for any A € K™, we
have

D(A) = Z A(1,0(1)A(2,0(2)) ... A(n,0(n))D(ex1), €0(2)s - - - » Ea(n))

O'GSn

Remark 3.4. If 01,09 € S,,, then the composition o1 o 05 is also a bijection of X, and
hence we get a binary operation

0:5,x8,—S5,
Observe that
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(i) Composition is associative:

01 0(0'2003) = (01 00'2) O 03

(ii) If 7 =idy, then

ocoOT=TOCO
holds for all o € S,,.

(iii) If o € S, there is an inverse function ¢! : X — X which is also bijective, and
satisfies

Hence, the pair (S,,0) is a group, and is called the symmetric group of degree n.

Definition 3.5. A transposition is an element o € .S, such that, there exist 1 <i,5 <n
with ¢ # j such that

kook¢{i g}
olk)y=¢7 k=i
1 k=

We will need the following fact, which we will not prove (it will hopefully be proved in
MTH301 - if not, you can look up [Conrad]).

Theorem 3.6. Fvery o € S,, can be expressed in the form
O =TiTy...Tk
where each 7; is a transposition. This expression is not necessarily unique, but if
O=MmNo ... Nk
is another such expression where each n; is a transposition, then
k=k mod (2)
Definition 3.7. Let 0 € S,

(i) We say that o is an even permutation if it can be expressed as an even number of
transpositions. If it can be expressed as an odd number of transpositions, then we
say that o is odd. Note that this definition makes sense (ie. an odd permutation
cannot also be even) because of the previous theorem.

(ii) The sign function is the map sgn : S,, — {£1} given by

() 1 1 0 1S even
segn(o) =
& —1 :o0isodd
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Example 3.8.

(i) If 7 is a transposition, then sgn(r) = —1.

(ii) If o € S, is the permutation given by

(123 4
7=\21 4 3
Then, o can be expressed as a product of two transpositions (Check!), so

sgn(o) = +1

Lemma 3.9. Let D be an n-linear alternating function, and o € S,,. Then

D(€x(1): €0(2), - - - » €a(n)) = sgn(0)D(I)
Proof.
(i) Suppose first that o is a transposition
Lok ¢ i, g}

ok)=<j k=1
1 k=7

Then the matrix
A = (€5(1):€5(2)s - - -+ €o(n))

is obtained from the identity matrix by interchanging the i** row with the j** row
(and keeping all other rows fixed). Hence,

D(A) = (=1)D(I) = sgn(o)D(I)

(ii) Now suppose o is any other permutation, then write o as a product of transposi-
tions
g =T1T2...Tk

Thus, if we pass from
(1,2,...,n) = (0(1),0(2),...,0(n))

there are exactly k interchanges if pairs. Since D is alternating, each such inter-
change results in a multiplication by (—1). Hence,

D(€5(1)s €5(2)s - - - » o)) = (—1)*D(I) = sgn(o)D(I)
The next theorem is thus a consequence of Lemma 3.3 and Lemma 3.9.
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Theorem 3.10. Let D be an n-linear alternating function and A € K™*"™. Then

D(A) = | Y AL o(1)A(2,0(2)... A(n,o(n))sgn(0) | D(I)

UESn

Recall that a determinant function is one that is n-linear, alternating, and satisfies
D(I) = 1. From the above theorem, we thus conclude

Corollary 3.11. There is exactly one determinant function
det : K" — K
Furthermore, if A € K™", then

det(A) = Z sgn(c)A(1,0(1))A(2,0(2)) ... A(n,o(n))

gESy

Furthermore, if D : K™™ — K 1is any n-linear alternating function, then
D(A) = det(A)D(I)
for any A € K™
Theorem 3.12. Let K be a commutative ring with identity, and A, B € K™*". Then
det(AB) = det(A) det(B)
Proof. Fix B, and define D : K™*" — K by
D(A) := det(AB)
Then
(i) D is n-linear: If C' = (ay, ag, ..., ay,), we write
D(C) = D(ay, g, ..., ap)
Then observe that
D(oy, o, ... ) =det(an B, B, ... ay)

where o; B denotes the 1 x n matrix obtained by multiplying the 1 x n matrix «a;
by the n X n matrix B. Now note that

(e; + cal}) B = a; B + ca; B
Since det is n-linear, it now follows that
D(a, @9,y oy, QG 4 €O, Qg .oy Q)
=det(ay B, 2B, ...,a; 1B, (a; + cal)B,a; 1B, ..., a,B)
=det(yB,asB,...,a; 1B,;B,a; 1B, ..., a,B)
+cdet(ayB,auB,...,a;_1B,a.B,a; 1B, ..., a,B)
= D(aq, ;. .., Q1,0 Qg1 -y Q) + eD(Q, Qg o 1, O iy ey Q)

This is true for each 1 <7 < n. Hence, D is n-linear.
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(ii) D is alternating: If a; = «; for some i # j, then
o, B = o;B
Since det is alternating,
det(anB,asB,...,a,B) =0
and so D(aq, ag, ..., ;) = 0. Thus, D is alternating by Lemma 2.9.
Thus, by Corollary 3.11, it follows that
D(A) = det(A)D(I)
Now observe that D(I) = det(IB) = det(B). This completes the proof. O
(End of Week 7)

4. Additional Properties of Determinants

Theorem 4.1. Let K be a commutative ring with identity, and let A € K™*™ be an

n X n matriz over K. Then
det(A") = det(A)

Proof. Let o € S, be a permutation of degree n, then
Al o(i) = A(o(i), 1)
Hence, by Corollary 3.11, we have
det(A') = ) " sgn(o 1),1)A(0(2),2) ... A(o(n),n)

But if o(i) = j, then o71(j) = 4, so A(o(i),i) = A(j,071(j)). Multiplying, we get
A(o(1),1)A(0(2),2)... A(a(n),n) = A(1,0 (1) A(2,07(2))... A(n,0 ' (n))
Furthermore,
oot =1= sgn(o)sgn(c™') =sgn(l) =1 = sgn(o) =sgn(c ")

The map o — o~ ! is a permutation of S,,, so we get

det(A") = ) sgn(0)A(o(1), 1)A(0(2),2) ... A(o(n), n)
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Lemma 4.2. Let A, B € K™*". Suppose that B is obtained from A by adding a multiple
of one row of A to another (or a multiple of one column of A to another), then det(A) =
det(B).

Proof.

(i) Suppose the rows of A are aj,qw,...,a,, and assume that the rows of B are
a1, Qo + caq, ag, . .. a,. Then, using the fact that det is n-linear, we have

det(B) = det(ay, ag + cag, ag, . .., ap)
= det(ay, a9, as,...,q,) + cdet(aq, aq, a3, . .., )

= det(A) + ¢(0) = det(A)

(ii) Now suppose B is obtained by replacing a column of A by a multiple of another,
then B! is obtained from A’ by replacing a row by a multiple of another row.
Hence, by the first part

det(B") = det(A")

The result now follows from Theorem 4.1.

Theorem 4.3. Let A€ K™ B € K™ and C € K**°, then

det (61 g) — det(A) det(C)

where 0 denotes the s X r zero matrixz over K.

Similarly, if D € K**", then

det (é g) — det(A) det(C)

where 0 denotes the r X s zero matrix over K.

Proof. Note that the second formula follows from the first by taking adjoints, so we only
prove the first one.

(i) Define a function D : K*** — K by

D(C) = det (g‘ f,)

Then, it is clear that D is s-linear and alternating. So by Corollary 3.11, we
conclude that
D(C) = det(C)D(I)
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(ii) Now consider

D(I) = det (13 ?)

Fix an entry B;; of B, and consider the matrix U obtained by subtracting B; ;
times the (s + 7) row of the given matrix (161 ?) from itself. Then, U is of the

)

where B; ; = 0. Furthermore, by Lemma 4.2, we have

A B A B
det(o ]>:det(0 [)

Repeating this process finitely many times, we conclude that

D(I) = det (’g ?) — det (‘3 ?)

(iii) Finally, consider the function D: K™ — K by
~ A0
D(A) = det < 0 ])

Then D is an n-linear and alternating function, so by Corollary 3.11, we have

form

D(A) = det(A)D(I)

However, 15([) =1, so by part (i), we have

det <‘§ g) — det(C) det(A)

Example 4.4. Consider K = QQ and

1 -1 2 3
2 2 0 2
A= 4 1 -1 -1
1 2 3 0

Label the rows of A as a1, as, a3, and ay. Replacing as by as —2a1, we get a new matrix

1 -1 2 3
0 4 —4 -4
4 1 -1 -1
1 2 3 0
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Note that this new matrix has the same determinant as that of A by Lemma 4.2. Doing
the same for ag and ay, we get

1 -1 2 3

0 4 -4 -4
0 5 -9 —-13
0o 3 1 =3

Now label these rows 1, £2, B3, and S4, we may replace B3 by 3 — 262 to get

1 -1 2 3

0 4 —4 —4

0 0 —4 -8

0o 3 1 =3

Also replacing 54 by B4 — %BQ, we get

1 -1 2 3
0 4 -4 -4
B = 0 0 —4 -8
0 0 4 0

Now note that det(B) = det(A), and by Theorem 4.3, we have

det(A) = det ((1) _41) det (_44 _08> = (4)(32) = 128

Recall that, in Theorem 2.11, we had defined, for each 1 < 7 < n,

n

E;(A) = Z(—l)iHAm det(A(i5))

=1

and shown that this function is also a determinant function. By Corollary 3.11, we have
that

n

det(A) = S(=1)*9 A, ; det(A(il) (V.1)

i=1
Definition 4.5. Let A € K™*"
(i) For 1 <i,j < n, the (i,j) cofactor of A is
Cig = (=1)" det(A(ilj))
(ii) The (classical) adjoint of A is the matrix adj(A) whose (i, j)™ entry is Cj;.
Theorem 4.6. For any A € K™*™, then

adj(A)A = Aadj(A) = det(A)l
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Proof. Fix A € K™ and write adj(A) = (C;;) as above.

(i) Observe that, by our formula (Equation V.1), we have
i=1

(ii) Now fix 1 < k < n, and supopse B is the matrix obtained by replacing the ;"
column of A by the k' column, then two columns of B are the same, so

det(B) =0

Furthermore, B(i|j) = A(i]j), so by Equation V.1,

n

0= 3 (~1)* By, det(B(il;))

=1

= (1) A det(AG)

n
= E AirCij
=1

Hence, we conclude that
i A xCij = 0, det(A)
i=1
Since adj(A); ; = C;;, we conclude that
adj(A)A = det(A)I
(iii) Now consider the matrix A, and observe that A*(i|j) = A(j|i)". Hence, we have
(=1)™ det(A"(i]5)) = (=1)"*" det(A(jli))
Thus, the (i, j)!" cofactor of A is the (j,i)" cofactor of A’. Hence,
adj(A") = adj(A)'
(iv) Now applying part (ii) to A?, we have
adj(A") A" = det(A)I
Transposing this equation, we get
Aadj(A) = Aadj(A")" = det(A)I = det(A)I

by Theorem 4.1.
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]

Note that, throughout this discussion, we have only used the fact that K is a commuta-
tive ring with identity, and we have not needed K to be a field. We can thus conclude
the following theorem.

Theorem 4.7. Lert K be a commutative ring with identity, and A € K™™. Then, A
is invertible over K if and only if det(A) is invertible in K. If this happens, then A has
a unique tnverse given by

A7t = det(A) tadj(A)
In particular, if K is a field, then A is invertible if and only if det(A) # 0.
Example 4.8.

(i) Let K = Z denote the ring of integers, and

()

Then det(A) = —2 which is not invertible in K, so A is not invertible over K.

(ii) However, if you think of A as a 2 x 2 matrix over Q, then A is invertible. Since

adj(4) = (_43 _12)

—-1/4 =2
-1+
4= (—3 1 )
(iii) Let K := R[x], then the invertible elements of K are precisely the non-zero scalar
polynomials (Why?). Consider

24+x r+1 2 -1 T+ 2
A'_(x—l 1 and B := ?—2r+3 x

we have

Then,
det(A) =z + 1 and det(B) = —6

Hence, B is invertible, but A is not. Furthermore,

) T —xr—2
adj(B) = (—:r2+2:17—3 552—1)

B_lz_—l x —x—2
6 \—22+2x—3 22-—1

Hence,
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Remark 4.9. Let T" € L(V) be a linear operator on a finite dimensional vector space
V, and let B and B’ be two ordered bases of V. Then, there is an invertible matrix P
such that

[Tz = P YTz P

Since det is multiplicative, we see that
det([T]B) = det([T]B/)

We may thus define this common number to be the determinant of 7', since it does not
depend on the choice of ordered basis.

Theorem 4.10 (Cramer’s Rule). Let A be an invertible matriz over a field F, and
suppose Y € F" is given. Then, the unique solution to the system of linear equations

AX =Y

is given by X = (x;) where
.lej =
det(A)

where Bj is the matriz obtained by replacing the j™ column of A by Y.

Proof. Note that if AX =Y, then

adj(A)AX = adj(A)Y
= det(A)X = adj(A)Y

n

= det(A)x; = Y adj(A);y;

=1
=1
= det(B])

(Check the last line!). This completes the proof. O
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VI. Elementary Canonical Forms

1. Introduction

Our goal in this section is to study a fixed linear operator 7" on a finite dimensional
vector space V. We know that, given an ordered basis B, we may represent T as a
matrix

15
Depending on the basis B, we may get different matrices. We would like to know
(i) What is the ‘simplest’ such matrix A that represents 7.
(ii) Can we find the ordered basis B such that [Tz = A.

The meaning of the term ‘simplest’ will change as we encounter more difficulties. For
now, we will understand ‘simple’ to mean a diagonal matriz, ie. one in the form

¢t 00 0
0 ¢ 0 0
D=10 0 c 0
0 0 0 cn

Now, if B = {ay,aq,...,a,} is an ordered basis such that [T]|z = D, then, for each
1 <11 < n, we have
T(Oll) = C;(¢;

This leads to the next section.

2. Characteristic Values

Definition 2.1. Let T" be a linear operator on a vector space V.

(i) A scalar ¢ € F is called a characteristic value (or eigen value) of T if, there exists
a non-zero vector o € V' such that

T(a) = ca

(ii) If this happens, then « is called a characteristic vector (or eigen vector).
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(iii) Given ¢ € F, the space
{a eV :T(a) =ca}

is called the characteristic space (or eigen space) of T associated with c¢. (Note
that this is a subspace of V)

Note that, if T € L(V'), we may write (1" — ¢I) for the linear operator a — T'(a) — ca.
Now c is a characteristic value if and only if this operator has a non-zero kernel. Hence,

Theorem 2.2. Let T' € L(V) where V is a finite dimensional vector space, and ¢ € F.
Then, TFAE:

(i) ¢ is a characteristic value of T
(i1) (T — cl) is non-singular (ie. not invertible)

(7i) det(T —cl) =0
Recall that det(7T—cI) is defined in terms of matrices, so we make the following definition.
Definition 2.3. Let A be an n X n matrix over a field F.

(i) A characteristic value of A is a scalar ¢ € F' such that

det(A—¢cl)=0

(ii) The characteristic polynomial of A is f € F[x] defined by
f(x) =det(zl — A)
Note that deg(f) = n, and that f is monic.
Lemma 2.4. Similar matrices have the same characteristic polynomial.
Proof. If B = P~'AP, then

det(z] — B) = det(P~(z] — A)P) = det(aI — A)

Remark 2.5.

(i) The previous lemma allows us to make sense of the characteristic polynomial of a
linear operator: Let T' € L(V'), then the characteristic polynomial of T" is simply

f(z) = det(zl — A)
where A is any matrix that represents the operator (as in Theorem I11.4.2).

Hence, deg(f) = dim(V) =: n, so T has atmost n characteristic values by Corol-
lary IV.4.5.
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Example 2.6.

(i) Let T' € L(R?) be the linear operator given by

T(xy,29) = (—29,71)

If B denotes the standard basis, then

A:=[T|p= ((1) _01>

Hence, the characteristic polynomial of 7" is given by

F(x) = det(z] — A) = det (_ﬂ i) =241

Hence, T has no characteristic values.

(i) However, if we think of the same operator in L(C?), then T has two characteristic
values {i,—i}. Now we wish to find the corresponding characteristic vectors.

(i)

(i)

If ¢ =i, then consider the matrix

(A —il) = (‘f :ﬁ)

It is clear that, if oy = (1, —i), then oy € ker(A —il). Furthermore, by row
reducing this matrix, we arrive at

B <—Oz —01)
so the rank of (A —iI) is 1, and so it has nullity 1 as well. Thus,
ker(T — iI) = span{ay }
If ¢ = —i, then consider the matrix
(A+il) = G _@1)
Now, as = (1,7) is a characteristic vector. Once again, row reducing this

matrix yields
i —1
(0 )

so by the same argument, dim(ker(A + 7)) = 1. Hence,

ker(T + i) = span{as}
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(iii) Let A be the 3 x 3 real matrix given by

31 -1
A=12 2 -1
2 2 0

Then the characteristic polynomial of A is

r—3 -1 1
flx)=det| -2 2-2 1| =2®-5224+82—4=(z—1)(z—2)?
—2 -2 =z

So A has two characteristic values, 1 and 2.

(iv) Let T € L(R?) be the linear operator which is represented in the standard basis
by A. We wish to find characteristic vectors associated to these two characteristic
values:

(i)

Consider ¢ = 1 and the matrix

2 1 -1
A-T=[(2 1 -1
2 2 -1
Row reducing this matrix results in
2 1 -1
B={(0 0 0
01 0

From this, it is clear that (A — I) has rank 2, and so has nullity 1 (by Rank-
Nullity). It is also clear that ay = (1,0,2) € ker(A — I). Hence, a; is a
characteristic vector, and the characteristic space is given by

ker(A — I) = span{a; }

Counsider ¢ = 2 and the matrix

1 1 -1
A-2I=1(2 0 -1
2 2 =2
Row reducing this matrix results in
1 1 -1
cC=10 -2 1
0 0 0

Hence, (A —21) has rank 2, so has nullity 1, once again. Also, it is clear that
as = (1,1,2) € ker(A — 2I). Hence, ay is a characteristic vector, and the
characteristic space is given by

ker(A — 2I) = span{as}
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Definition 2.7. An operator 7' € L(V) is said to be diagonalizable if there is a basis
for V' each vector of which is a characteristic vector of 7.

Remark 2.8.

(i)

(i)
(i)

If B is a basis satisfying the requirement of this definition, then
[T

is a diagonal matrix.

Note that there is no requirement that the diagonal entries be distinct. They may
all be equal too!

We may as well require (in this definition) that V' has a spanning set consisting of
characteristic vectors. This is because any spanning set will contain a basis.

Example 2.9.

(i)
(i)

(i)

In Example 2.6 (i), 7" is not diagonalizable because it has no characteristic values.

In Example 2.6 (ii), 7" is diagonalizable, because we have found two characteristic
vectors B := {aq,as} where a; = (1, —i) and ap = (1,4) which are characteristic
vectors. Since these vectors are not scalar multiples of each other, they are linearly
independent. Since dim(C?) = 2, they form a basis. In this basis B, we may

represent 1" as
—i 0

In Example 2.6 (iv), we have found that 7" has two linearly independent charac-
teristic vectors {ay, s} where oy = (1,0,2) and ay = (1,1,2). However, there
are no other characteristic vectors (other than scalar multiples of these). Since
dim(R3) = 3, this operator does not have a basis consisting of characteristic vec-
tors. Hence, T" is not diagonalizable.

Lemma 2.10. Suppose T' € L(V) is a diagonalizable operator, with distinct character-
istic values ¢y, ¢, ..., c,. Then the characteristic polynomial of T has the form

flx)=(x—c))®(x —c)® ... (v —c)%

Furthermore, the multiplicity d; is the dimension of the characteristict space ker(T' —c¢;1).

Proof. Since T is diagonalizable, there is a ordered basis B = {ay, s, . .., a;,} such that
01[1 0 0 ... 0
0 CQIQ 0 ... 0
A== | . SR :
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where Iy, I5, ... I} are the identity matrices of dimension e¢; = dim(ker(A—c¢;I)). Now the
characteristic polynomial of T" is the same as that of A, whose characteristic polynomial
has the form

f(z) =det(zx] — A) = (x — c1)™(x — )2 ... (x — )™

Furthermore,
06, 0 0 0
0 (cg—c1)ly O 0
Aol = (ca —c1)la
0 0 0 (Ck - Cl)Ik

Since ¢; # ¢ for all ¢ > 2, we have
d; = dim(ker(A — ¢, 1))
and similarly, d; = dim(ker(A — ¢;I)) as required. Hence the result. O

Lemma 2.11. Let T € L(V),c € f and a € V such that Taw = ca. Then, for any
polynomial f € F[z], we have

Proof. Exercise. O

Lemma 2.12. Let T € L(V) and ¢y, ¢a, . .., ¢ be the distinct characteristic values of T,
and let W; :=ker(T — ¢;I) denote the corresponding characteristic spaces. If

W:W1+W2++Wk

Then
dim(W) = dim(W;) + dim(Ws) 4 ... + dim (W)

In fact, if B;,1 <1 < k are bases for the W;, then B = LI B, is a basis for W.
Proof.

(i) If ¢ # j and suppose a € W; N W, then T'ow = ¢;a0 = ¢;a. Since ¢; # ¢, it follows
that o = 0. Hence,
WinW; =0

In particular,
B == U?:lgi == l—'?:lgi

(ii) Now suppose f; € W; are vectors such that

Pr+Be+...+B=0
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We claim that §; = 0 for all 1 < ¢ < k. To see this, note that T'5; = ¢;3;. Hence,
if f € F[z], then by Lemma 2.11,

k

0= F(T) B+ Bt ot ) = D flei)

i=1

Since {c1,c,. .., ¢} are distinct scalars, there exist polynomials {fi, fo,..., fi}
such that

filei) = bi
(by Lagrange interpolation - Theorem IV.3.1). Applying f; in the above equation,
we conclude that

k
0= Z filei)Bi = B;
i=1

This is true for every 1 < 7 < k. Hence the claim.

(iii) Now we claim that B is a basis for W. Since B clearly spans W, it suffices to
show that it is linearly independent. So suppose there exist scalars d; and vectors
7; € B such that

l
> diy =0
j=1

Then, by separating out the terms from each B;, we obtain an expression of the
form

Bi+ 0B+ ...+ 06.=0

where 3; € W, for each 1 < ¢ < k. By the previous step, we conclude that g; = 0.
However, f3; is itself a linear combination of the vectors in B;, which is linearly
independent. Hence, each v; must be zero.

Thus, B is linearly independent, and hence a basis for W. This proves the result. O

Theorem 2.13. Let T € L(V), and c1,c¢q,...,c, € F be the distinct characteristic
values of T, and let W; := ker(T — ¢;I). Then, TFAE:

(i) T is diagonalizable.
(ii) The characteristic polynomial of T' is

f=(@—c)®(x—c)®...(x— cp)™

where d; = dim(W;) for all 1 <i < k.
(1it) dim(Wy) + dim(Ws) + ... + dim(Wy) = dim(V).

Proof.

(i) = (iz): This is the content of Lemma 2.10.
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(i) = (iéi): If (id) holds, then

But deg(f) = dim(V') because f is the characteristic polynomial of T". Hence, (iii)
holds.

(i7i) = (i): By Lemma 2.12, it follows that

V=W+W+...+W,

Hence, the basis B from Lemma 2.12 is a basis for V' consisting of characteristic
vectors T'. Thus, T' is diagonalizable.

]

Remark 2.14. Let A € F™" be a square matrix and c¢y,cs,...,c; be the distinct
characteristic values of A. Let W; C F™ be the subspace

W;={X e F": (A-cl)X =0}

and let B; = {a;1,a59,...,q;,,} be an ordered basis for ;. Placing these basis vectors
in columns, we get a matrix

P = [061’1041,2 AR TEE YRS DN I 00, R PRI € 771 [0 7% I ak,nk]

Then, the set B = U¥_|B; is a basis for F™ if and only if P is a square matrix. In that
case, P is a invertible matrix, and P~ AP is diagonal.

Example 2.15. Let T' € L(R3?) be the linear operator represented in the standard basis
by the matrix

5 —6 —6
A=|-1 4 2
3 -6 —4

(i) We first compute the characteristic polynomial of A: f = det(z = A)

(x —5) 6 6
det 1 r—4 =2
-3 6 r+4

Subtracting column 3 from column 2 gives us a new matrix with the same deter-
minant by Lemma V.4.2. Hence,

r—5 0 6 r—5 0 6
f=det 1 -2 =2 | =(z—2)det 1 1 =2
-3 2—z z+4 -3 -1 z+4
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Now adding row 2 to row 3 does not change the determinant, so

z—5 0 6
f=(x—2)det 1 1 =2
-2 0 z+2

Expanding along column 2 now gives

f= (= 2)det (""“_‘25 w%) (-2 =30 +2) = (z— 2z —1)

(ii) Hence, the characteristic values of T" are 1 and 2.
(iii) We wish to determine the dimensions of the characteristic spaces, W, and Ws.

(i) Consider the case ¢ = 1, and the matrix

4 —6 —6
A-I)=[-1 3 2
3 —6 =5
Row reducing this matrix gives
4 —6 —6 4 —6 —6
08 L)lelo s L)=nB
0o 3 2 0 0 0

Hence, rank(A — 1) =2
(ii) Consider the case ¢ = 2: We know that
rank(A — 27) < 2
since (A — 2I) is a singular matrix. Furthermore, we know that
rank(A — I) +rank(A — 2I) < dim(R?) =3

So it follows that rank(A—217) = 1 and equality holds in the previous equation.

Hence, we conclude by Theorem 2.13 that 7" is diagonalizable.

(iv) We now determine a basis consisting of characteristic vectors:
(i) Consider the case ¢ = 1: Using the matrix B above, we solve the system of

linear equations BX = 0. This gives a solution

a1 = (3, —1,3)

(ii) Consider the case ¢ = 2, and the matrix

3 —6 —6
(A—2)=|-1 2 2
3 —6 —6
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Row reducing gives

3 —6 —6
C=10 0 O
0 0 0

So solving the system C'X = 0 gives two solutions

az = (2,1,0) and a3 = (2,0,1)

(v) Thus, we get an ordered basis
B = {(37 _17 3)7 (27 L 0)7 (27 07 1)}

consisting of characteristic vectors of T'. Furthermore,

100
Tls=1{0 2 0] :=D
00 2

(vi) Furthermore, if P is the matrix

3 2 2
P=|-110
3 01
Then
P 'AP =D

3. Annihilating Polynomials

(End of Week 8)

Recall that: If V' is a vector space, then L(V') is a (non-commutative) linear algebra with
unit. Hence, if f € F[z] is a polynomial and 7" € L(V'), then f(T) € L(V') makes sense
(See Definition 1V.2.7). Furthermore, the map f — f(T) is an algebra homomorphism

(Theorem 1V.2.9). In other words, if f,g € F[z] and ¢ € F, then

(f +¢g)(T) = J(T) + cg(T) and (fg)(T) = f(T)g(T) (VL1)

Definition 3.1. Let 7" € L(V') be a linear operator on a finite dimensional vector space

V. Define the annihilator of T to be

Ann(T) :={f € Flz] : f(T) =0}
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Lemma 3.2. IfV is a finite dimensional vector space and T' € L(V'), then Ann(T) is a
non-zero ideal of F[z].

Proof.

(i)

(i)

If f,g € Ann(T), then f(T') = g(T) = 0. Hence, if ¢ € F, then

(f +¢g)(T) =0

by Equation VI.1, so (f 4+ c¢g) € Ann(T"). Thus, Ann(T") is a vector subspace of

If f € Ann(T) and g € Flx], then f(T) = 0, so by Equation VI.1, we have
(fo)(T) = f(T)g(T) =0

so fg € Ann(T). Thus, Ann(7T) is an ideal of F[z].

Suppose n := dim(V), then dim(L(V)) = n? by Theorem II1.2.4. By Corol-
lary I1.3.10, the set
{1, T,T%...,7"}

is linearly dependent. Hence, there exist scalars a; € F,0 < i < n? (not all zero)
such that ,
Z aiTi =0
i=0
Hence, if f € F[z] is the (non-zero) polynomial
7’L2
F=3
=0

Then f € Ann(T"). Thus, Ann(7T) # {0}.
[

Definition 3.3. Let 7' € L(V) be a linear operator on a finite dimensional vector space
V. The minimal polynomial of T is the unique monic generator of Ann(7T).

Remark 3.4. Note that the minimal polynomial p € F[z| of T has the following prop-
erties:

(iii

)
(i)
)
)

(iv

(i) p is a monic, non-zero polynomial.

p(T) =

If fe F[ ] is another polynomial such that f(7") = 0, then p | f.
In particular, if f € F[z] is any other polynomial such that f(7') = 0, then

deg(f) > deg(p)
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The same argument that we had above also applies to the algebra F™*™.

Definition 3.5. If A € F™*" is a square matrix, then we define the annihilator of A to
be the set

Ann(A) = {f € Fla]: f(A) =0}

Once again, this is a non-zero ideal of F[z]. So we may define the minimal polynomial
of A the same way as above.

Remark 3.6.

(i)

(i)

If T'e L(V) is a linear operator and B is an ordered basis of V. We write
A= [T] B
Then, by Example IV.3.7, for any f € F[z], we have

[f(T)]s = f(A)

Since the map S — [S]p is an isomorphism from L(V') to F™*™ (by Theorem I11.4.2),
it follows that
f(A)=0in F"" & f(T) =01in L(V)

Hence,
Ann(T) = Ann([T))

In particular, 7" and [T have the same minimal polynomial. Hence, in what
follows, whatever we say for linear operators also holds for matrices.

Now we consider the following situation: Consider R C C as a subfield, and let
A € M,(R) be an n X n square matrix with entries in R. Let p; € R[z] be
the minimal polynomial of 7" with respect to R. In other words, p; is the monic
generator of the ideal

Anng(T) ={f e R[z] : f(T) =0}

Similarly, let p € Clz] be the minimal polynomial of 7" with respect to F'. In other
words, p is the monic generator of the ideal

Amng(T) = {g € Cla] : g(T') = 0}
Note that, since R C C, we have
Anng(T) C Annc(T)
In particular, p; € Anng(7), so that

p | p1 in C[z]
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Conversely, p € Clz] can be expressed in the form p = h + ig for some h, g € R[z],
so that
0 =p(A) = h(A) + ig(A)

so that h(A) = g(A) = 0. Hence, p; | h and p; | g in R[z]. Thus,
p1 | pin Clz]

We conclude that p; = p (because they are both monic). Thus, if A € M,(R),
then the minimal polynomial of A with respect to R is the same as the minimal
polynomial of A with respect to C.

Theorem 3.7. Let T' € L(V') where V' is a finite dimensional vector space. Then, the
characteristic polynomial of T and the minimal polynomial of T have the same roots
(except for multiplicities).

Proof. Let p € F[x] denote the minimal polynomial of 7" and let f € F[x] denote the
characteristic polynomial of T', given by

(i)

f=det(zl —-T)

If c € Fis aroot of p, then by Corollary IV.4.4, (x —c¢) | p, so there exists ¢ € F[z]
such that

p=(r—c)g
Since deg(q) < deg(p) it follows that ¢(7") # 0 by Remark 3.4. Hence, there exists
B € V such that

a:=q(T)(B) #0
Then, since p(T') = 0, we have
0=p(T)B = (T —ch)g(T)B = (T = cI)(a)
Hence, c is a characteristic value of 7', so f(c) = 0.

Conversely, suppose ¢ € F is such that f(c) = 0, then c¢ is a characteristic value of
T, so there exists a € V' non-zero such that

By Lemma 2.11, we have
But p(T') =0, so

plc)a =0
Since a # 0, it follows that p(c) = 0 by Lemma I1.1.3.
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Remark 3.8. Suppose T is a diagonalizable operator with distinct characteristic values
€1,Co, ..., Cx. Then, by Lemma 2.10, the characteristic polynomial of 7" has the form

f=(xz— cl)d1 (x — 02)d2 (= ck)d’“

where d; is the dimension of the characteristic subspace associated to ¢;. Let ¢ € F[z]
be the polynomial

g=(r—c)(xr—co)...(x —cp)

If o € V is a characteristic vector of T" associated to the characteristic value ¢;, then
qTya=(T—-cl)(T—cI)...(T—cl)a=0

since (1'—¢;I) and (T — ¢;I commute for all 1 <, j < k. Since V has a basis consisting
of characteristic vectors of T, it follows that

q(T) =0

Let p € Flz| denote the minimal polynomial of T'; then p and f share the same roots
by Theorem 3.7. Thus, by Corollary IV.4.4, it follows that

(z—c)l|p

for all 1 <7 < k. Hence, ¢ | p. But ¢(T') =0, so p | ¢ by Remark 3.4. Since both p and
q are monic, we conclude that

p=q=(r—c1)(x—ca)...(x —cp)

Thus, if T is diagonalizable, then the minimal polynomial of 7" is the product of distinct
linear factors.

We now consider the following examples, the first two of which are from Example 2.6.
Example 3.9.

(i) Let T € L(R?) be the linear operator given by
T(x1,32) = (=2, 71)

In the standard basis B, the associated matrix of 7" is given by

So, the characteristic polynomial of T is
f=a2*+1
Considering T' € L(C?), the characteristic polynomial of T is
f=(@—i)(x+1i)
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By Theorem 3.7, the minimal polynomial of 7" in Clz] is
p=(r—i)(z+i)=2"+1
By Remark 3.6, the minimal polynomial of 7" in R[z] is also
p=a>+1

(ii) Let A be the 3 x 3 real matrix given by

31 -1
A=12 2 -1
2 2 0

Then the characteristic polynomial of A is
f=(-1)(-2)?

By Theorem 3.7, the minimal polynomial of A has the form
p=(r—1)(z—2)

Observe that

2 1 -1\ /1 1 -1 2 0 —1
A-DA-2)=[21 1] |2 0 =1]={2 0 —1
2 2 -1/ \2 2 -2 4.0 —2

Therefore, p # (z — 1)(x — 2). One can then verify that
(A-1)(A-20)*=0
Thus, the minimal polynomial of A is
p=(—-1E-27"=f

(iii) Let T € L(R3) be the linear operator (from Example 2.15) represented in the
standard basis by the matrix

5 —6 —6
A=|-1 4 2
3 —6 —4

Then the characteristic polynomial of T is
f=@-1)(@-2)"

Hence, by Theorem 3.7, the minimal polynomial of 7" has the form
p=(v—1)(z—2)

But by Remark 3.8, the minimal polynomial is a product of distinct linear factors.
Hence,

p=(r 1) -2
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Theorem 3.10. [Cayley-Hamilton] Let T be a linear operator on a finite dimensional
vector space and f € F[z] be the characteristic polynomial of T. Then

(1) =0

In particular, the minimal polynomial of T divides the characteristic polynomial of T.

Proof.

(i)

(i)

Set
K :={g(T): g€ Flz]}

Since the map g — ¢(7') is a homomorphism of rings, it follows that K is a
commutative ring with identity.

Let B = {1, a9,...,a,} be an ordered basis for V', and set A := [T|g. Then, for
each 1 <i < n, we have

n n
TO[Z‘ = E Ajﬂ'Oéj = E 5i’jTOéj
j=1 j=1

Hence, if B € K™ is the matrix whose (i, 7)!" entry is given by
Bi,j = 5i,jT — AjJ‘I
then we have
BOéj =0
forall 1 <j <n.
Observe that, for n = 2,

B — T— Al,lj _AQ’l_[
o —A172] T — AZQ]

Hence,

det(B) = (T — Al,l[)(T — A272[) — A172A2’1I = f(T)

More generally, f is the polynomial given by f = det(xI — A) = det(z] — A*) (by
Theorem V.4.1), and
(l’[ — At)i,j = (51'7]'[)’} — Aj,i

Hence,

J(T) = det(B)

Hence, to prove that f(T) is the zero operator, it suffices to prove that
det(B)a; =0

forall 1 <j<n.
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(iv) Let B := adj(B) be the adjoint of B. By Theorem V.4.6, we have
BB = det(B)I
Since Ba; = 0, it follows that
det(B)a; =0
This completes the proof.
[

The advantage of the Cayley-Hamilton theorem is that it is easier to determine the
minimal polynomial now.

Example 3.11. Let A € M4(Q) be the 4 x 4 rational matrix given by

01 01
1010
A= 01 01
1 010
One can compute (do it!) that
20 20
02 0 2
2 _
=190 2 of ™d
0 2 0 2
040 4
4 0 40
3 _
A= 0 40 4
4 0 4 0
Thus,
A® =44

Hence, if f € Q[z] is the polynomial
f=2°—dx =x(z+2)(zx—2)
Then, the minimal polynomial p € Q[z] of A must divide f.
(i) Note that, since A is not a scalar polynomial,
deg(p) > 2
Hence, there are four possible candidates for p

z(z+2),z(x—2),(x+2)(x—2), or f

139



(ii) It is clear from the above calculation that

A2 4 24
Hence, p # x(z + 2).
(iii) Similarly,
A2 4924
Hence, p # z(z +2)
(iv) Similarly,
A% £ 4]

Hence, p # (x — 2)(x + 2)

Hence, the minimal polynomial of A is
p=f=xz(x+2)(z—2)

Now, the characteristic polynomial g € Q[x] is a polynomial of degree 4, p | g and g has
the same roots as p. Thus, there are three options for g, namely

23 (x 4+ 2)(z — 2), 2(x + 2)*(z — 2), or x(z + 2)(z — 2)°

We now row reduce A to get

1 010

1 010

A= 10 1 0 1
01 01

1 010

. 00 0O
01 01
0101
1010

. 0000
0101

00 0O

Hence,

rank(A) = 2

Thus, nullity(A) = 2. Thus, the characteristic value 0 has a 2-dimensional characteristic
space. Thus, it must occur with multiplicity 2 in the characteristic polynomial of T" (by
Lemma 2.10). Hence,
2
g=1x(r—2)(z+2)
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4. Invariant Subspaces

Definition 4.1. Let T' € L(V') be a linear operator on a vector space V', and let W C V

be a subspace. We say that W is an invariant subspace for T' if, for all a € W, then
T(«) € W. In other words, T (W) C W.

Example 4.2.

(i) For any T, the subspaces V' and {0} are invariant. These are called the trivial
invariant subspaces.

(ii) The null space of T is invariant under 7', and so is the range of T'.

(i) Let F' be a field and D : Flx] — F[z] be the derivative operator (See Exam-
ple II1.1.2). Let W be the subspace of all polynomials of degree < 3, then W is
invariant under D because D lowers the degree of a polynomial.

(iv) Let T € L(V) and U € L(V) be an operator such that
TU =UT

Then W := U(V), the range of U is invariant under 7: If § = U(«a) for some
a €V, then
Ub=TU(a) =U(T(a)) e U(V) =W

Similarly, if N := ker(U), then N is invariant undeer T If § € N, then U(53) = 0,
SO
U(T(B) =TU(B) =T(0)=0

so T'(B) € N as well.

(v) A special case of the above example: Let g € F[x] be any polynomial, and U :=
g(T), then
Ur=TU

(vi) An even more special case: Let g =x — ¢, then U = g(T) = (T —cl). If c € F' is
a characteristic value of T', then

N :=ker(U)

is the characteristic subspace associated to c¢. This is an invariant subspace for 7.

(vii) Let T € L(R?) be the linear operator given in the standard basis by the matrix

0 -1
=)
We claim that 7 has no non-trivial invariant subspace. Suppose W C R? is a
non-trivial invariant subspace, then
dim(W) =1

So if @ € W is non-zero, then T'(a)) = ca for some scalar ¢ € F'. Thus, « is a char-
acteristic vector of T'. However, T" has no characteristic values (See Example 2.6).
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Definition 4.3. Let T € L(V) and W C V be a T-invariant subspace. Then Ty €
L(W) denotes the restriction of T" to W. ie. For a € W, Ty (a) = T'(«).

Note that this is well-defined precisely because W is T-invariant.

Remark 4.4. Suppose W C V is a T-invariant subspace, and let B’ = {ay, ag, ..., .}
be an ordered basis for W. Let B = {1, as,...,a,} be an ordered basis for V' extending
B’ (See Theorem 11.3.13). Let A = [T]s, so that, for each 1 < j < n, we have

n
TOéj = Z Ai’jOéi
i=1
Now, since W is T-invariant, it follows that, for each 1 < 7 < r, we have
TOéj - W

can be expressed a linear combination of the elements of B’. By the uniqueness of this
expansion, we have

-
TOéj = Z Ai’jOéi
i=1
Hence, if 7 < r and i > r, we have
Ay =0

Thus, A can be written in block form

B C
= (0 )
where B is an r x r matrix, D is an (n —r) X (n — r) matrix, and C' is an r X (n —r)

matrix. Note that
[Tw]gl =B

in this expression as well.

Lemma 4.5. Let T € L(V) and W C V be a T-invariant subspace, and Ty denote the
restriction of T to W. Then,

(i) The characteristic polynomial of Ty, divides the characteristic polynomial of T'.

(i) The minimal polynomial of Ty divides the minimal polynomial of T.
Proof.

(i) Consider the characteristic polynomial of T, denoted by f, and the characteristic
polynomial of Ty, denoted by g. Let B’ be an ordered basis for W, and B be an
ordered basis for V' containing B’. Write

A = [T]B/ and B = [TW]B/
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So that A has a block form (as above) given by
B C
1=(1 5)

Then, by Remark 2.5, we have
f =det(z] — A) and g = det(z] — B)
However, by Theorem V.4.3, we have
det(zl — A) = det(z] — B) det(z — D)

Hence, g | f

Consider the minimal polynomial of 7', denoted by p, and the minimal polynomial
of Ty, denoted by ¢. Then, by Example IV.3.7, we have

p(4)=0

However, for any k € N, A*¥ has the form

B C
k_ k
v= (0 )

for some r x (n — r) matrix Cy. Hence, for any polynomial h € Fz],
h(A)=0= h(B)=0

In particular, p(B) = 0. But ¢ is the minimal polynomial for B, so ¢ | p by
definition.

[]

Remark 4.6. Let T € L(V), and let ¢y, ¢ca,...,c; denote the distinct characteristic
values of T'. Let W; := ker(T — ¢;I) denote the corresponding characteristic spaces, and
let B; denote an ordered basis for W;.

(i)

Set
Wi=W,+Wy+...+Wyand B:=LF B

By Lemma 2.12, B is an ordered basis for W and
dim(W) = dim(W;) + dim(W3) + ... + dim (W)

Now, we write
B; = {Oéz‘,h A2, ... 705i,ni}

and

B = {06171,06172, ey 1, (21,0029, ..., 02y, .o, O 1, B2, ... 7ak,nk}
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(iii)

Then, we have
Taij = ciovij

for all 1 < i < k,1 < j < n;. Hence, W is a T-invariant subspace, and if
B := [Tw]g, we have

ty, 00 ... 0O
0 t2 0 ... 0O
0 0 0 ... t

where each t; denotes a n; X n; block matrix ¢;1,,,.
Thus, the characteristic polynomial of Ty, is

g=(r—c1)"(x — )™ ... (x —cp)"™*
Let f denote the characteristic polynomial of 7', then by Lemma 4.5, we have that
g | f. Hence, the multiplicity of ¢; as a root of f is at least n; = dim(W;).

Furthermore, it is now clear (as we proved in Theorem 2.13) that 7" is diagonalizable
if and only if
n=dim(W)=n;+mns+ ...+ ny

Definition 4.7. An operator 7' € L(V) is said to be triangulable if there exists an
ordered basis B of V' such that [T is an upper triangular matrix. ie.

Remark 4.8.

(i)

(i)

11 A4i2 4dAi3 ... Q1n
0 ag2 Q23 ... Q2
[T]B = 0 0 assz ... a3np
0 0 0 ... aw
Observe that, if B = {aj, as,...,a,} is an ordered basis, then the matrix [Tz is

upper triangular if and only if, for each 1 < i < mn,

To; € span{ay, ag, ..., q;}

If T' is a triangulable matrix, and A := [T']g is an upper triangular matrix as above,
then the characteristic polynomial of 7' is

f=det(xl — A)

By expanding along the first column, we get

Q22 Q23 ... d2gq
f=(@—ay)det | 0 ass ... asg,
0 0 ... anp
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(i)

By induction, we may prove that

f=@—a1)(x—az2)...(z—an,)

Hence, by combining the like terms, we see that the characteristic polynomial has
the form

f=(x—c)®(x—c)®...(x—cp)™

where the ¢y, cs,. .., ¢ are the distinct characteristic values of T'. In particular, if
T is triangulable, then the characteristic polynomial can be factored as a product
of linear terms.

Since the minimal polynomial divides the characteristic polynomial (by Cayley-
Hamilton - Theorem 3.10), it follows that, if T" is triangulable, then the minimal
polynomial can be factored as a product of linear terms.

We will now show that this last condition is also sufficient to prove that 7' is triangulable.
For this, we need a definition.

Definition 4.9. Let T € L(V),W C V be a T-invariant subspace, and let a € V be a
fixed vector.

(i)

(i)

The T'-conductor of a into W is the set

S(a, W) := Sp(a, W) ={g € Flz] : g(T)a € W}

If W = {0}, then the T-conductor of « into W is called the T-annihilator of c.

Example 4.10.

(i)

(i)

(iii)

If W is any T-invariant subspace and a € W, then
S(a, W) = Flz]

Conversely, if a ¢ W, then S(a, W) # Fx].

If Wy C W, then
S(Od,Wl) C S(CK, Wg)

For any T-invariant subspace W and any a € V', we have
Ann(T) C S(a, W)

In particular, if p € F[z] is the minimal polynomial of T, then p € S(«, W).

Lemma 4.11. Let T € L(V) and W C V be an invariant subspace of T'. Then,

(i) W is invariant under f(T) for any polynomial f € F|x].
(ii) For each a € V', the T-conductor of a into W, S(a, W) is an ideal in F|z]

145



Proof.
(i) If B € W, then T8 € W. Since W is T-invariant, we have
T°B=T(TB) e W
Thus proceeding, we conclude that
™peW
for all n > 0. By linearity, we conclude that
fMpew
for all f € F[z]
(ii) We prove both conditions of Definition IV.4.12.
e S(a,W)isasubspace of Flz]: If f,g € S(a, W) and ¢ € F, then, by definition
f(T)a e W and g(T)a € W
Since W is a subspace,

(f +cg)(Ta= f(T)a+cg(T)a € W
o If g S(a, W) and f € F|z], then by definition
Bi=g(TacW
By part (i), we conclude that
(f9)(Ta = f(T)g(T)a = f(T)BeW

]

Remark 4.12. We conclude that there is a unique monic polynomial p, w € F[z] such
that, for any f € Flx],
feSla,W)epaw | f

We will often conflate the ideal and the polynomial, and simply say that p,w is the
T-conductor of € W.

By Example 4.10 (iii), every T-conductor divides the minimal polynomial of 7'
Example 4.13.

(i) If @ € V is a characteristic vector of 7" with characteristic value ¢, and W C V' is
any T-invariant subspace of V', then

1 aeW

S(a7W):{($—C) o g W
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1) Let € e the operator which 18 expressed In the standar asis =
ii) Let T L(R?) be th hich i d in th dard basis B
{€1, €2, €3} by the matrix

A:

S O
S W =
= O O

and let W = span{e; }.
o If a = ¢, then S(a, W) = Flx]
e If @ = €: Observe that the minimal polynomial of A is (Check!)
p=(r—=2)(x—3)(r—-4
Since a ¢ W and p,w | p, we have many options for p, w, namely

(x —2),(x=3),(x—4),(zr —2)(x —3),(x —3)(x —4),(x —2)(x — 4), and p

a-a- G )~
Hence, S(es, W) = (z — 3)

e If & = e3: Since €3 is a characteristic vector with characteristic value 4, it
follows from part (i) that

Note that

S(a, W)= (z—4)

(End of Week 9)

Lemma 4.14. Let T € L(V) be an operator on a finite dimensional vector space V' such
that the minimal polynomial of T is a product of linear factors

p=(@x—c)* (z—c)?...(x — ¢
Let W # V' be a proper T-invariant subspace of V.. Then, there exists « € V' such that

(i) a g W

(it) (T —cl)a € W for some characteristic value ¢ € F.

In other words, the T-conductor of a into W is of the form (x—c) for some characteristic
value ¢ € F.

Proof. Let 5 € V be any vector such that 8 ¢ W. Let g = pgw be the T-conductor of
S in W. Then, since 8 ¢ W,
g7#1

Furthermore, by Remark 4.12, we have that

glp

147



Hence, there exist 0 < e; < r; such that
g=(r—c1)"(x —c2)?...(x —cp)*

In other words, g is a product of linear terms. Since g # 1, it follows that there exists
1 <1 < k such that e; > 0. Hence,

(x—c)lyg
So combining the other terms, we write
g=(z—c)h

for some polynomial h € Fx] with deg(h) < deg(g). Since g is the monic generator of
S(B,W) we have that
a:=h(T)g¢W

However,

(T'—c)a=g(T)BeW
as required. N

Theorem 4.15. Let V' be a finite dimensional vector space and T € L(V'). Then T is
triangulable if and only if the minimal polynomial of T is a product of linear polynomials
over F.

Proof. 1f T is triangulable, then the minimal polynomial is a product of linear factors
by Remark 4.8 (iii).

Conversely, suppose the minimal polynomial p € F[z] has the form
p=(x—c)"(x—c)...(x —cx)™*
We now construct a basis B = {ay, as, ..., a,} such that, for each 1 <1i < n,
{a1,as,...,q;} is linearly independent, and T'o; € {aq,az,...,q;} (VI.2)
Observe that the ¢; are precisely the characteristic values of T'. We proceed by induction:

e Set Wy = {0}. By Lemma 4.14, there exists a3 € V such that a; # 0 and, there
exists 1 <4 < k such that
(T — 01]>Oé1 =0

e Suppose that we have construction aq,as,...,a; such that Equation VI.2. We
now construct o;,1. Let

m = Spa’n{ala A, ... aai}
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If W; = n, then we are done, so suppose W; # n. Applying Lemma 4.14, there
exists a1 ¢ W;, and a characteristic value ¢ € F' such that

(T —cla € W,
Hence, {a1,as, ..., a;41} is linearly independent, and
Ta;1 = span{ag, g, ..., 41}
as required.
O

Recall that a field F'is said to be algebraically closed if any polynomial over F' can be
factored as a product of linear terms (See Definition IV.5.11).

Corollary 4.16. Let F' be an algebraically closed field, and A € F™*™ be an n X n matrix
over F'. Then, A is similar to an upper triangular matriz over F.

The next theorem gives us an easy (verifiable) way to determine if a linear operator is
diagonalizable or not.

Theorem 4.17. Let V' be a finite dimensional vector space over a field F and T € L(V).
Then T 1s diagonalizable if and only if the minimal polynomial of T s a product of
distinct linear terms.

Proof.

(i) Suppose T is diagonalizable, there is an ordered basis B such that the matrix
A = [T is diagonal.

01[1 0 0 0
0 62]2 0 0
A= 0 0 63]3 0

where the ¢; are all distinct. The minimal polynomial of A is clearly

p=(x—c)(r—c)...(x —cx)
(See also Remark 3.8).

(ii) Conversely, suppose the minimal polynomial of 7" has this form, we let
W; = ker(T — ¢;1)
denote the characteristic space associated to the characteristic value ¢;, and let
W=Wy+Wy+...+ W,

To show that T is diagonalizable, it suffices to show that W = V (See Theo-
rem 2.13).
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e Note that, if 5 € W, then

B=p5+0B2+...+ Bk

for some f; € W;. Hence,
Tﬁzclﬁl—FCgﬂg—l—...—{—Ckﬁk€W1+W2+...+Wk:W

So that W is T-invariant.

e Furthermore, if h € Fz] is a polynomial, then the above calculation shows
that

h(T)B = h<cl>ﬁ1 + h<c2>ﬁ2 +...+ h(Ck)ﬁk

e Now, if W # V| then by Lemma 4.14, there exists o € V such that anotinW,
but there exists 1 < ¢ < k such that

B:=(T—-claeW

If we set

g=]]-¢)

J#i
Then, p = (z — ¢)g, and g(c;) # 0.
e Now observe that the polynomial ¢ — ¢(¢;) has a root at ¢;. So by Corol-
lary 1V.4.4, there is a polynomial h € F[x] such that
q—q(c) = (x = c)h
Hence,
q(T)a — q(c;))a = (T — ¢;))h(T)ae = h(T)(T — ¢;)ac = h(T)B

Furthermore,

0=p(T)a=(T—cl)q(T)o

Hence, ¢(T')a is a characteristic vector with characteristic value ¢;. In partic-
ular,
qT)a e W

Thus,
q(ci)or=q(T)a — h(T)B €W

Since q(¢;) # 0, we conclude that o € W.

This is a contradiction, which proves the W = V must hold. Hence, T" must be
diagonalizable.

]
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5. Direct-Sum Decomposition

Given an operator T on a finite dimensional vector space V', our goal in this chapter was
to find an ordered basis B of V' such that the matrix representation

T]s

is of a particularly ‘simple’ form (diagonal, triangular, etc.). Now, we will phrase the
question in a slightly more sophisticated manner. We wish to decompose the underlying
space V' as a sum of invariant subspaces, such that the restriction of 7' to each such
invariant subspace has a simple form.

We will also see how this relates to the results of the earlier sections.

Definition 5.1. Let Wy, W5, ..., W, be subspaces of a vector space V. We say that
Wi, Wa, ..., Wy are independent if, for any vectors aq, ao, ..., a; with a; € W, for all
1<i<k, if

o +ag+...+a,=0

then a; =0 forall 1 <i <k.

Remark 5.2.

If £ = 2, then two subspaces W; and W5 are independent if and only if W, N Wy = {0}
(Check!)

For an example of this phenomenon, look at Lemma 2.12.

If Wy, Wy, ..., Wy are independent, then any vector
aeW: =W +Wy+...+ W,
can be expressed uniquely as a sum of elements «; € W;
a=o1+ay+ ...+

Lemma 5.3. Let V' be a finite dimensional vector space and Wy, Ws, ..., W)y be subspaces
of V, and let W := W, +Wo + ...+ Wy. Then, TFAE:

(i) Wy, Ws, ..., Wy are independent.
(i) For each 2 < j <k, we have

W;N(Wy +We+ ...+ W,;_4) ={0}

(111) If B; is an ordered basis for W;, then B := L, B; is a basis for W.
Proof.
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(i) = (i):

(ii) = (iid):

(idd) = (i):

Suppose
OéEWjﬂ(Wl—f—WQ—F...—i—VVj,l)

Then write o = oy + s + ...+ a;_q for a; € W;;1 <4 < j— 1. Then,
ap+a+...+a 1+ (—a)=0
Since the W; are independent, it follows that o; = 0 for all 1 <7 < 7 — 1 and
a = 0, as required.
Let B; be a basis for W;, then, for any i # j, we claim that
BNB;=0
If not, then suppose a € B; N B, for some pair with ¢ # j, we may assume that
1> j, then
aeW,Nn(Wy+Wo+ ...+ W+ Wi +...+Wiy)
This implies a = 0, but 0 cannot belong to any linearly independent set. Now,

B = ¥, B; is clearly a spanning set for W, so it suffices to show that it is linearly
independent. So suppose B; = {fi1, 8iz2, ..., Bin, } and ¢;; are scalars such that

k  n;
Z Z Cz',jﬁi,j =0

i—1 j—1
Write «; := 2?21 ¢;.;Pij, then a; € W; and
art+as+...+a,=0

Since Wy, Ws, ..., W} are independent, we conclude that o; = 0 for all 1 <1 < k.
But then, since B; is linearly independent, it must happen that ¢;; = 0 for all
1 <j < n;as well.

Suppose B; := {Bi1, Bis- - -, Bim, } is a basis for W; and B := U¥_, B; is a basis for
W. Now suppose «; € W; such that
041+C¥2+...+Oék20

Express each «a; as a linear combinations of vectors from B; by

n;
@ =) ciibiy
j=1

Adding these up, we get
k

Z 2 ¢ijibi; =0

i=1 j=1
Since the collection B is linearly independent, we conclude that ¢;; = 0 for all
1 <1<k, 1< 5 <n; Hence,

a; = O

for all 1 <1 < k as required.
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]

Definition 5.4. If any (and hence all) of the above conditions hold, then we say that
W is an (internal) direct sum of the W;, and we write

W=W,eWy®...0 W

Example 5.5.

(i)

(i)

(iii)

If V' is a vector space and B = {aj,as,...,a,} is any basis for V, let W, :=
span{c;}. Then
V=WwieW,d...eoW,

Let V = F™" be the space of n x n matrices over F'. Let W; denote the set
of all symmetric matrices (a matrix A € V is symmetric if A = A"), and let W5

denote the set of all skew-symmetric matrices (a matrix A € V' is skew-symmetric
if A= —A"). Then, (Check!) that

V=W &W,

Let T' € L(V) be a linear operator and let ¢y, ¢y, . .., ¢ denote the distinct charac-
teristic values of T, and let W; := ker(T" — ¢;I) denote the corresponding charac-
teristic subspaces. Then, Wy, Ws, ... W} are independent by Lemma 2.12. Hence,
if T' is diagonalizable, then

Definition 5.6. Let V' be a vector space. An operator E € L(V) is called a projection
if B2 = E.

Remark 5.7. Let E € L(V') be a projection.

(i)

(i)

(iii)

If we set R := E(V') to be the range of E and N := ker(E), then note that g € R
if and only if 5 =

Proof. If p = Ef, then € R. Conversely, if § € R, then § = E(a) for some
a €V, sothat Ef = E*(a) = E(a) =3 O

Hence, V.=R& N

Proof. If a € V, then write & = Fa + (o« — E(«)) and observe that E(a) € R and
(o — E(a)) € N. Furthermore, if 5 € RN N, then E(f8) = 0. But by part (i), we
have 8 = E(f) = 0. Hence, RN N = {0}. Thus, R and N are independent. [

Now, suppose W7 and Wy are two subspaces of V' such that V' = W; @& W5 then
any vector a € V' can be expressed uniquely in the form a = a1 + as with o; € W;
for i = 1,2. Now, the map F : V — V given by o — a4 is a linear map (Check!)
and is a projection (Check!) with range W; and kernel W5 (Check all of this!).
This is called the projection onto Wi (along W5 ).
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(iv) Note that any projection is diagonalizable. If R and N as above, choose ordered
bases B; for R and By for N. Then, by Lemma 5.3, B = (B;,B5) is an ordered
basis for V. Now, note that, for each 8 € B;, we have F(5) = ( and for each
B € By, we have E(f) = 0. Hence, the matrix

[Els = (é 8>

where I denotes the k x k identity matrix, where k = dim(R).

Projections may be used to describe direct-sum decompositions: Suppose
V=WeW,d...a W
then any vector o € V' can be expressed uniquely as
a=o1+ay+ ...+ g

with o € W; for all 1 <4 < k. Then, the map E; : V — V defined by o — «; is a
projection onto W;, and

ker(Ej):W1+W2+...+Wj,1+W/j+1—|—...+Wk

Hence, in operator theoretic terms, this means that the identity operator decomposes as
a sum of projections
I=FE +FEy+...+ E;

This leads to the next theorem.

Theorem 5.8. IfV = W1 dWod. . . ®Wy, then there exist k linear operators Fy, Es, ..., Ey,
in L(V) such that

(i) Each Ej is a projection (ie. E = E;)
(i) E;E; =0 if i # j (ie. they are mutually orthogonal)
(iii) I = By + By + ... + B
(i) The range of E; is W; for all 1 < j <k.
Conversely, if Ey, Es, ..., E, € L(V) are linear operators satisfying the conditions (1)-

(iv), then
V=WaeW,d...eW,

where W; is the range of ;.

Proof. We only prove the converse direction as one direction is described above. So
suppose Ei, Fs, ..., By € L(V) are operators satisfying (i)-(iv), then we wish to show
that

VZWl@WQ@..-®Wk

where W; is the range of FE;.
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(i) Since [ = Ey + Ey + ... Ey, for any o € V', we have
a=Fi(a)+ Ey(a)+ ...+ E(a)
and E;(a) € W; for all 1 <4 < k. Hence,

V=W +We+...+W,

(ii) To show that the W; are independent, suppose «; € W; are such that
a1 tas+...+a,=0
Note that, for each 1 < i < k, we have o; = E;(«;). So fix 1 < j < k, and consider
0=FEjlaqa+as+...+ai) = E;j(Ey(aq) + Ea(az) + ... + Ex(ag))
But E;E; =0 if i # j, so we have
E;(Ej(a;)) =0

But E;(E;(cj)) = a; so that a; = 0 for all 1 < j < k. Hence, the Wy, Ws, ..., W
are independent as required.

]

6. Invariant Direct Sums

Given an operator 7' € L(V') on a vector space, we wish to find a decomposition
V=WaeW, ... W,

where each W; is invariant under 7. Write T; := T'|y,€ L(W;), then, for any vector
a €V, write o uniquely as a sum

a=o1+ay+ ...+

with «; € W;, then
T(a) = Tl(O./l) + TQ(O./Q) + ...+ Tk(ak)

If this happens, we say that T is a direct sum of the T;’s.

In terms of matrices, this is what this means: Given an ordered basis B; of W;, the basis

B = (By,Bs,...,B;) is an ordered basis for V. Since W; is T' invariant, we see that
A 0 0 0
0 Ay, 0 0
Tlg=|0 0 A 0
0 0 0 A
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where

Hence, [T is a block diagonal matrix, and we say that [T is a direct sum of the A,;’s.

What we need to begin this discussion is an understanding of such a decomposition in
terms of projections.

Theorem 6.1. Let V' be a vector space and Wi, Wy, ... Wy be subspaces such that
V=WeW, ... W,

and let E; be the projection onto W; (as in Theorem 5.8). Let T € L(V'), then each W
1s T-invariant if and only if
TE; = E;T

foralll <i<k.
Proof.
(i) f TE; = E;T for each 1 < i <k, then for any o € W;, we have E;(a) = a, so
T(a) =TE)(a) = ET(a) € W,

Hence, W; is T-invariant.

(ii) Conversely, if W; is T-invariant, then for any a € V', we have E;(«) € W;, so
TEI(Oé) S VVZ

Hence,

Now recall that we have
a=Ei(a)+ Ey(a)+ ...+ Ex(a)
Hence,
ET(a) = E; (TE|(a) + TEy(a) + ...+ TEg(a)) = E;TE;(«)
But TE;(«) € W; so E;TE;(a) = TE;(«). Hence,
ET(a) =TE;(a)
This is true for any a € V, so we are done.

]

The next theorem may be thought of as an ‘operator theoretic’ characterization of di-
agonalizability (See Theorem 2.13).
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Theorem 6.2. Let V' be a vector space and T € L(V') be an operator with ¢y, co, ..., cx
its distinct characteristic values. Suppose T is diagonalizable, then there exist operators
Ey, Ey, ..., E, € L(V) such that

(i) T'=c1E1 4+ coFy+ ... + e Fg
(ii)) | =Ey+ Ey+ ...+ E)
(iii) EiE; =0 if i # 5.
(iv) Each E; is a projection.
(v) E; is the projection onto ker(T — ¢;I).

Conversely, suppose there are non-zero operators Ey, Es, ..., Ey € L(V) and distinct
scalars ¢y, Ca, . . ., ¢k satisfying conditions (i), (ii) and (iii), then

e T is diagonalizable.
e The constants ci,ca,...,cp are the distinct characteristic values of T.
e Conditions (1v) and (v) are satisfied.

Proof.

(i) Suppose T is diagonalizable with distinct characteristic values ¢, ¢, ..., cx. Let
W; :=ker(T — ¢;I), then by Theorem 2.13,

V=wWeW,o...0 W,

Let E; be the projection onto W, then by Theorem 5.8, conditions (ii), (iii), (iv)
and (v) are satisfied. Furthermore, if & € V', then write

a=Fi(a)+ Ey(a)+ ...+ Ex(a)

so that
T(a) =TE(a) + TEy(a) + ...+ TE(«)

But Ei(a) € Wy =ker(T — ¢11), so TE (a) = ¢ Ei(«). Similarly, we get
T(Oé) = ClEl (CY) -+ CQEQ(O() + ...+ CkEk(Oé)

This is true for any o € V', so condition (i) holds.

(ii) Now suppose there are non-zero operators Ey, Es,...E, € L(V) and distinct
scalars ¢y, co, . . ., ¢ satisfying conditions (i), (ii) and (ii), then

e Since [ = By + Ey + ...+ E and E;F; = 0if ¢ # j, we have

Hence, E; is a projection.
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e Once again, since T' = c1 By + coFy + ... + ¢, B, and E;E; = 0 if ¢ # 7, we
have
TE'z = (01E1 + CQEQ + ...+ CkEk)Ez = CZEE = CZ'Ei

Since E; is non-zero consider W; to be the range of E;, then for any g € W,
we have E;() = 3, so

T(B) = TE(B) = c;Ei(B) = ;3

Since W; # {0}, it follows that each ¢; is a characteristic value of T'. Further-
more, we have that
W; C ker(T — ¢;1)

e To show equality, suppose a € ker(T' — ¢;I), then

n

0=(T—c)a=>» (¢;—c)Eila)

j=1
For all j # i, it follows that F;(a) = 0 (Why?). Hence,
a=Ei(a)eW;

Thus, W; = ker(T — ¢;)

e [t remains to show that T" does not have any other characteristic values other
than the ¢;: For any scalar ¢ € F with ¢ # ¢; for all 1 <1 < k, we have

(T—cl)=(c1 —c)Ey+ (ca —c)Ey+ ...+ (cx — ¢)Ex,
so if & € V such that (T'— cI)a = 0, then
(¢; — ¢)Ei(a) = 0(Why?)
Since ¢; # ¢, it follows that E;(«) = 0. This is true for all 1 < i <k, so
a=FEi(a)+ Ey(a)+...+ Ey(a) =0

Thus, c1,ca,...,c, are all the characteristic values of T'.

e Finally, we wish to show that T is diagonalizable, but since the ¢; are all
distinct, the subspaces Wi, Ws, ... W) are independent (see the proof of
Lemma 2.12). Since

we have

so by Theorem 2.13, T" is diagonalizable.
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Theorem 6.3. Let T' be a diagonalizable operator, and express T as
T=cE+cEy+ ...+ cEL
as in Theorem 6.2. Then, for any polynomial g € F[z|, we have
9(T) = glcr) By + glca) B2 + ... + glex) By,

Proof. By linearity of both sides, it suffices to verify the theorem if g = 2. Suppose
2
g = x°, then

g(T)=T% = (i cE> (Zn: chj>
i=1 Jj=1
= Xn: CiCjEZ'Ej

ij=1

S R
=1
=1

= Z 9(ci) E;
=1

Now proceed by induction on m (Do it!). ]
Example 6.4.

(i) Express a diagonalizable operator T as
T:ClE1+CgE2+...+CkEk

as in Theorem 6.2, and for 1 < j < k, let p; denote the Lagrange polynomials

pj:H(x—ci)

iy (6 —¢)
Then, we have p;(¢;) = d; ;. Hence, by Theorem 6.3,
p;(T) = Ej

Thus, the E; not only commute with 7', they may be expressed as polynomials in
T.
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(ii) As a consequence of Theorem 6.3, for any polynomial g € F[z], we have
gT)=0<9(c;)=0 V1<i<k
In particular, if p is the minimal polynomial of T’
p=(x—c)(r—c)...(x —cx)
(See Remark 3.8). Then p(7') =0
This observation leads us to another proof of Theorem 4.17.

Theorem 6.5. Let T € L(V) be a linear operator whose minimal polynomial is a product
of distinct linear terms. Then, T s diagonalizable.

Proof. Write the minimal polynomial of T" as
p=(x—c))(r—c)...(x —cx)

Let p; € F[z] be the Lagrange polynomial as above

T fe

idi I i)

Then, p,(¢;) = 6;;. If g € Fx] is any polynomial of degree < (k — 1), then

9= Zg(ci)pi
1=1

by the Lagrange interpolation formula (Remark 1V.3.2). In particular, taking g = 1, the
scalar polynomial, and taking g = x, we have

l=pi+p2+...+p
T =c1pr+cap2 + ...+ CiPk

(Note that we are implicitly assuming that k& > 2 - check what happens when k = 1).
So if we set
E; = p;(T)

Then, we have

[:E1+E2+...+Ek, and
T201E1+CQE2+...+CkEk

Now, for any pair ¢ # j, consider the polynomial p;p;. Note that,

(v —c) | pipj
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for all 1 <r < k. Hence, the minimal polynomial divides p;p;,

p | pipj
But by the earlier observation, p(7') = 0. Hence,
EiE; = pi(T)p;(T) =0

Finally, we note that E; = p;(T) # 0 because deg(p;) < deg(p) and p is the minimal
polynomial of T'. Since the ¢y, co, ..., ¢ are all distinct, we may apply Theorem 6.2 to
conclude that 7T is diagonalizable. O]

(End of Week 10)

7. Simultaneous Triangulation; Simultaneous
Diagonalization

Let V' be a finite dimensional vector space, and let F C L(V') be a collection of linear
operators on V. We wish to know when we can find an ordered basis B of V' such that
[T)5 is triangular (or diagonal) for all 7" € F. We will assume that F is a commuting
family of operators, ie.

TS =ST

for all S, T € F.

Definition 7.1. For a subspace W C V| we say that W is F-invariant if T(W) C W
for all T € F.

Compare the next lemma to Lemma 4.14.

Lemma 7.2. Let F be a commuting family of triangulable operators on V', and let W
be a proper F-invariant subspace of V. Then, there exists a € V' such that

(i) a ¢ W

(i) For each T € F,T« is in the subspace spanned by W and «.
Proof. We first assume that F is finite, and write it as F = {11, T5,...,T,}.

(i) Since T} € F is triangulable, the minimal polynomial of 7} is a product of linear
terms (by Theorem 4.15). By Lemma 4.14, there exists 51 € V and a scalar ¢; € F
such that

o f1g W
° (Tl —Clj)ﬂl e W

So, we set
%I:{5€VZ(T1—01[)ﬁ€W}

Then, V] is a subspace of V' (Check!) and W C Vi, V; # W.
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(i)

(iii)

We claim that V; is F-invariant: Let S € F, then for any § € Vi, we have
(Th —c ) eW
Since W is F-invariant, we have
S(Ty —al)feW
But S and T; commute, so
(Ty — 1 1)S(B) e W
By construction, this implies S(8) € V4. Hence, S(V1) C V; for all S € F, proving

the claim.

Let Uy = T3|Vi be the restriction of Ty to Vi. Since T3 is diagonalizable, the
minimal polynomial of 75 is also a product of linear terms by Theorem 4.15. Since
U, is a restriction of T5, the minimal polynomial of U, is a divisor of the minimal
polynomial of 75 by Lemma 4.5. Hence, the minimal polynomial of U, is also a
product of linear terms. Applying Lemma 4.14 to U, (the ambient vector space is
now V4, and W is the still the proper invariant subspace), there exists f, € V; and
a scalar ¢y € F such that

e B¢ W
o (Ih —cxl)eW

Note that, since B € Vi, we also have
o (T' —c )P eW

Once again, set
Vo:={BeVi:(Ty—c ) eW}

Then, V5 is a subspace of Vi, and properly contains W. Applying the same logic
again, we see that V5 is also F-invariant. Therefore, we may set Us := T3y, and
proceed as before.

Proceeding this way, after finitely many steps, we arrive at a vector 5, € V such
that

° B¢ W

e For each 1 <i < n, there exist scalars ¢; € F' such that

(E - Czl)ﬁn € w

Thus, « := 3, works.

Now suppose F is not finite, choose a maximal linearly independent set Fy, C F (ie.
Fo is a basis for the subspace of L(V') spanned by F). Since L(V') is finite dimensional
(see Theorem I11.2.4), Fy is finite. Therefore, by the first part of the proof, there exists
a € V such that
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e a¢ W
o T'a € span(W U {a}) for all T € F

Now if T' € F, then T is a linear combination of elements from Fy. Thus,
Ta € span(W U {a})
as well (since span(WW U {a}) is a subspace). Thus, a works for all of F. O

The proof of the next theorem is identical to that of Theorem 4.15, except we replace a
single operator by the set F and apply Lemma 7.2 instead of Lemma 4.14.

Theorem 7.3. Let V be a finite dimensional vector space over a field F, and let F be
a commuting family of triangulable operators on V. Then, there exists an ordered basis
B of V such that [Tz is upper triangular for each T € F.

Corollary 7.4. Let F be a commuting family of n X n matrices over a field F. Then,
there exists an invertible matriz P such that P~YAP is triangular for all A € F.

Theorem 7.5. Let F be a commuting family of diagonalizable operators on a finite
dimensional vector space V. Then, there exists an ordered basis B such that [T]g is
diagonal for all'T € F.

Proof. We induct on n := dim(V'). If n = 1, there is nothing to prove, so assume that
n > 2 and that the theorem is true over any vector space W with dim(W) < n.

Now, if every operator in F is a scalar multiple of the identity, there is nothing to prove,
so assume that this is not the case, and choose an operator 1" € F that is not a scalar
multiple of the identity. Let {c1, co,. .., cx} be the characteristic values of T'. Since T is
diagonalizable and not a scalar multiple of I, it follows that k£ > 1. Set

W; = ker(T — ¢;1), 1<i<k
Then, dim(W;) < n for all 1 < < k.

So fix 1 <i <k, then, each W; is F-invariant (Check!). Let F; := {S; := S|w,: S € F},
then F; C L(W) is a commuting family of linear operators on W;. Now, let S € F
be fixed, then S is diagonalizable, so its minimal polynomial is a product of distinct
linear terms by Theorem 4.17. But the minimal polynomial of S; divides the minimal
polynomial of S (by Lemma 4.5). Hence, S; is diagonalizable by Theorem 4.17 as well.
Thus, the induction hypothesis applies, and there is an ordered basis B; of W; such that
[S;]s, is diagonal for all S; € F;.

Doing this for each 1 < i < k, we obtain ordered bases By, Bs, . .., By for Wy, Wy, ... . W}
respectively. Now, by Theorem 2.13

B= (B, B,,..., B

is an ordered basis for V and each S € F is diagonal in this basis. m
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8. The Primary Decomposition Theorem

In the previous few sections, we have looked for a way to decompose an operator into
simpler pieces. Specifically, given an operator T" € L(V') on a finite dimensional vector
space V', one looks for a decomposition of V' into a direct sum of T-invariant subspaces

V:T/VlEBWQ@@Wk

such that T; := T'|w, is, in some sense, elementary. In the two theorems we proved (see
Theorem 4.17 and Theorem 4.15), we found that we could do so provided the minimal
polynomial of T" factored as a product of linear terms.

However, this poses two possible problems: The minimal polynomial may not have
enough roots (for instance, if the field is not algebraically closed), or if the characteristic
subspaces do not span the entire vector space (this prevents diagonalizability). Now, we
wish to find a general theorem that holds for any operator over any field.

This theorem is general, and therefore quite flexible, as it relies on only one fact, that
holds over any field; namely, that any polynomial can be expressed uniquely as a product
of irreducible polynomials (See Theorem IV.5.6). [It does, however, have the drawback
of not being as powerful as Theorem 4.17 or Theorem 4.15.]

Theorem 8.1. (Primary Decomposition Theorem) Let T € L(V') be a linear operator
over a finite dimensional vector space over a field F'. Let p € Flx] be the minimal
polynomial of T', and express p as

Tk

p=p1'Py -y
where the p; are distinct irreducible polynomials in F|x] and the r; are positive integers.
Set

W; .= ker(p;(T)™), 1<i<k
Then
(i) V=WaeWa.. oW
(ii) Each W; is invariant under T.
(iii) If T; := T|w,, then the minimal polynomial of T; is p;'.
Proof.
(i) For 1 <i <k, set

7 p
fi= Hpj] - Py
i J
Then, the polynomials fi, fo, ..., fi are relatively prime. Hence, by Example [V.4.17,
there exist polynomials g1, ¢go, ..., gr € F[z| such that

1= figi + faga+ ...+ frok

Set h; := f;g;, and set E; := h;(T). We now use these operators F; to construct a
direct sum decomposition as in Theorem 5.8.
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(ii) First note that

Now, if ¢ # j, then pl* | fif; for all 1 < s < k. Hence, p | f;f;. Thus,
fi) f5(T) =0
Hence, F;E; =0 if i # j.
(iii) Now, we claim that W; is the range of E;
e Suppose « is in the range of F;, then E;(a) = a. Then

because p(T') = 0. Hence, « € ker(p;(T)") = W;

e Conversely, if o € W;, then p;(T)" "« = 0. But, for any j # i, we have

P | [

(VL3)

Therefore, Ejo = f;(1)g,;(T)a = g;(T)fj(T)oc = 0. But by Equation VI.3,

we have
a=FEi(a)+ Exa)+ ...+ Ex(a) = Ei(a)

and so « is in the range of F; as required.

(iv) By construction, each W; is invariant under 7', since it is the kernel of an operator

that commutes with 7" (See Example 4.2).

(v) We consider T; := T|w,, and we wish to show that the minimal polynomial of 7;

is p;'.

e Since p;(T)" is zero on W, by definition, we have p;(T;)" =

e Now suppose ¢ is any polynomial such that ¢g(7;) = 0. We wish to show that

pi'lg
If o is in the range of E;, then g(T)a = 0. Thus, for all « € V,
gM)Eia=0= g(T)fi(T)g:;(T)aa =0

This is true for all &« € V', so ¢(T") f;(T)g:(T") = 0. Thus,

p|gfigi=pi| 9figi

Now consider the expression

figr + fogo 4+ ... + frgr =1
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By construction,
So if p; | figs, then it would follow that
pi |l
This contradicts the assumption that p; is irreducible. Hence, p; t fig;. Thus,
(pi, figi) =1

By Equation VI.4, and Euclid’s Lemma (See the proof of Theorem IV.5.4),
it follows that

pi'lyg
Hence, the minimal polynomial of 7; must be p;".

]

Corollary 8.2. Let T € L(V) and let Ey, Fs, ..., Ey be the projections occurring in the
primary decomposition of T'. Then,

(i) Each E; is a polynomial in T.

(i) If U € L(V) is a linear operator that commutes with T, then U commutes with
each E;. Hence, each W; is invariant under U.

Remark 8.3. Suppose that 7' € L(V) is such that the minimal polynomial is a product
of (not necessarily distinct) linear terms

p=(x—c)"(x—c)...(x —cx)™*

Let £, Es, ..., E}y be the projections occurring in the primary decomposition of 7. Then
the range of E; is the null space of (1" — ¢;)™ and is denoted by W;. We set

D= ClEl + CQEQ + ... CkEk

Then, by Theorem 6.2, D is diagonalizable, and is called the diagonalizable part of T.
Note that, since each F; is a polynomial in 7', D is also a polynomial in 7. Now, since
Ey+ Ey+ ...+ E, = I, we have equations

T=TE,+TEy+ ... +TE,
D =ciEi+cFEy+ ...+ cp By, and we set
N:T—D:(T—Cl)E1+<T—Cg)E2++<T—Ck)Ek

Then, N is also a polynomial in 7. Hence,
ND = DN
Also, since the E; are mutually orthogonal projections, we have
N?= (T —c\)?’Ey + (T — )’ By + ...+ (T — )’ By
Thus proceeding, if r > max{r;}, we have

N = (T—Cl)rEl —|—(T—C2)TE2++(T—Ck)TEk =0
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Definition 8.4. An operator N € L(V') is said to be nilpotent if there exists r € N such
that N" = 0.

We leave the proof of the next lemma as an exercise.
Lemma 8.5. If T' € L(V) is both diagonalizable and nilpotent, then T = 0.

Theorem 8.6. Let T' € L(V') be a linear operator whose minimal polynomial is a product
of linear terms. Then, there exists a diagonalizable operator D and a nilpotent operator
N such that

(i) T=D+N
(ii) ND = DN

Furthermore, the operators D, N satisfying conditions (i) and (ii) are unique.

Proof. We have just proved the existence of these operators above. As for uniqueness,
suppose

T=D +N'
where D’ is diagonalizable, N’ is nilpotent, and D'N’ = N'D’. Then, D'T = T'D' and
N'T = TN’, and therefore, D’ and N’ both commute with any polynomial in 7. In
particular, we conclude that D’ and N’ commute with both D and N. Now, consider

the equation
D+N=D'+N’

We conclude that
D—-—D =N —-N

Now, the left hand side of this equation is the difference of two diagonalizable operators
that commute with each other. Therefore, by Theorem 7.5, D and D’ are simultaneously
diagonalizable. This forces (D — D') to be diagonalizable.

Now, consider the right hand side. N’ and N are both commuting nilpotent operators.
Suppose that N = N2 = 0, consider

r

(NHJWT=§:<DAWN“j

§=0

which holds because they commute. So if we take r := max{r;,r}, then we conclude
that
(N'=N)"=0

Hence, we have that (D — D’) = (N’ — N) is both diagonalizable and nilpotent. By
Lemma 8.5, we conclude that

D=D and N =N’

as required. N
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Corollary 8.7. Let V' be a finite dimensional vector space over C and T € L(V') be an
operator. Then, there ezists a unique pair of operators (D, N) such that D is diagonal-
1zable, N 1is nilpotent, DN = ND, and

T=D+N
Furthermore, these operators are both polynomauals in T .

Let us understand what the matrix equivalent of this theorem looks like. The next
lemma states that an upper triangular matrix is nilpotent if all its diagonal entries are
Z€ro.

Lemma 8.8. Let A= (A, ;) be an n x n matriz such that A;; =0 if i < j. Then, A is
nilpotent.

Proof. Consider
A6, 5) =Y AirArg = Y AinAr,
k=1

k=j+1
Hence,
A%(i,j)=0if i <j+1
Thus proceeding, we see that
A(i,5)=0ifi<j+4+r—1
It follows that A™ = 0. O

Remark 8.9. Let T' € L(V') be linear operator whose minimal polynomial is a product
of distinct linear terms. Then, by Theorem 4.15, there is a basis B of V' such that

A= [T]B

is upper triangular. Write
A=B+C

where B is diagonal, and C' = (C; ;) has the property that C;; = 0 for all ¢ < j. By
Lemma 8.8, C' is nilpotent. Let D, N € L(V') be the unique linear operators such that

[D]B = B and [N]B =C
Then, T'= D + N is the decomposition of T" guaranteed by Theorem 8.6.
The next example is a continuation of Example 2.6.

Example 8.10. For instance, T € L(R?) is represented in the standard basis by the
matrix

3 1 -1
A=12 2 -1
2 2 0
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(i) By our earlier calculations, the characteristic polynomial of A is

f=(@=2x-1)

For ¢ = 1, we have ker(A — I) = span{ay } where a; = (1,0, 2), and for ¢ = 2, we
have ker(A — 2I) = span{as} where ay = (1, 1, 2).

(ii) Now consider

11 -1\ /11 -1 1 -1 0
(A-2?*=12 0 -1 (2 0 —=1]=(0 0 O
2 2 -2/ \2 2 -2 2 -2 0

This is row-equivalent to the matrix

1
C =

o O =

0
0

o O O

which has nullity 2. Apart from as, if we set a3 = (1, 1,0), then
Cas =0
Since a3 is not a scalar multiple of as, we conclude that
ker((A — 21)?) = span{as, as}

(iii) Observe that

Aa3 = = 2(1/2 + 2@3

QSN

(iv) Hence, B = {1, a3, as} is an ordered basis for R?, and

1 00 1 00 0 00
Tls=(0 2 2| ={02 0]+[0 0 2
0 0 2 0 0 2 0 0 0
b b
Observe that
o 0 0 0 R
DN=1|10 0 4] =ND
0 0 0

The first matrix on the right hand side is diagonal, and the second is nilpotent (by
Lemma 8.8). Hence, if D, N € L(R?) are the unique linear operators such that

[D]g =D, and [N]g =N
Then, D is diagonalizable, N is nilpotent, DN = N D, and
T=D+N
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VIl. The Rational and Jordan Forms

1. Cyclic Subspaces and Annihilators

Definition 1.1. Let 7" € L(V') be a linear operator on a finite dimensional vector space
V and let a € V. The cyclic subspace generated by « is

Z(a;T) :={g(T)a : g € Flz]} = span{a, T, T?a, ...}

Lemma 1.2. Z(a;T) is the smallest subspace of V' that contains o and is invariant
under T'.

Proof. Clearly, Z(«a;T) is a subspace, it contains « and is invariant under 7". So suppose
M is any other subspace which contains o and is T'=invariant, then o € M implies that
Ta € M, and so T?(a)) € M and so on. Hence,

TFo e M
for all k£ > 0, whence Z(a;T) C M. O
Definition 1.3. A vector a € V' is said to be a cyclic vector for T if Z(a;T) = V.

Example 1.4.
(i) If « =0, then Z(o; T) = {0} for any operator 7T

(ii) Z(«;T) is one dimensional if and only if « is a characteristic vector of T

Proof. If a is a characteristic vector, then there exists ¢ € F' such that Ta = ca.
Hence, for any polynomial g € F[z], we have

g(T)a = g(c)a € span{a}

Thus, Z(a;T) = span{a} and is therefore one dimensional. Conversely, if Z(«;T)
is one-dimensional, then o # 0 by part (i). Hence,

Z(c; T') = span{a}

In particular, since Ta € Z(«a;T), there exists ¢ € F such that Ta = ca as
required. O]

(iii) If T = I is the identity operator, then Z(a;T) = span{a} for any vector o € V.
In particular, if dim(V') > 1, I does not have a cyclic vector.
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(iv) Let T € L(R?) be the operator given in the standard basis by the matrix

00
=)
e If @ = €y, then T'(a) = 0, and so « is a characteristic vector of T". Hence,

Z(o; T) = spanf{a}

e If & = ¢, then T'(«) = €5. Hence, Z(«; T) contains both €; and €, whence

Z(a;T) = R?

Definition 1.5. Given an operator T' € L(V') and a vector a € V', the T-annihilator of

« is the set
M(o;T) :={g € Flz] : g(T)ax = 0}

Lemma 1.6. For any non-zero T € L(V'), M(a;T) is a non-zero ideal of F|x].

Proof. That M («; T) is an ideal is easy to check (Do it!). Also, the minimal polynomial
of T is non-zero and is contained in M (o;T'). Hence, M(a;T) # {0}. O

The next definition is a slight abuse of notation.
Definition 1.7. The T-annihilator of « is the unique monic generator p, of M(a;T)

Remark 1.8. Since the minimal polynomial of 7" is contained in M (c;T'), it follows
that p, divides the minimal polynomial. Furthermore, note that

deg(pa) > 0
if  #0. (Why?)
Theorem 1.9. Let o € V' be a non-zero vector and p,, be the T-annihilator of c.
(i) deg(pa) = dim(Z(e; T)).
(ii) If dim(pa) = k, then the set {a, Ta,, T?cx, ..., T* *a} forms a basis for Z(o;T).

(111) If U is the linear operator on Z(co; T) induced by T, then the minimal polynomial
of U 15 pq.

Proof.
(i) We prove (i) and (ii) simultaneously.

o Let S := {a,Ta,..., T*1a} C Z(a;T). If S is linearly dependent, then
there would be a non-zero polynomial ¢ € F[z] such that

q(T)a=0

and deg(q) < k. This is impossible because p, is the polynomial of least
degree with this property. Hence, S is linearly independent.
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e We claim that S spans Z(«; T'): Suppose g € F[z], then by Euclidean division
Theorem IV.4.2, there exists polynomials ¢, € F[z] such that

9 =(qpatT
and either r = 0 or deg(r) < k. Then, since p,(T)a = 0, it follows that
g(T)a=rT)a
But, r(T)a € span(S). Thus, S spans Z(«;T).
(ii) Now consider part (iii).
(i) Since po(T)a = 0, it follows that
Pa(U)g(T)ex = pa(T)g(T)a = g(T)pa(T)a = 0

This is true for any g € F[z]. Hence,

pa(U) =0

(ii) Now suppose h € F[z] is a non-zero polynomial of degree < k such that
h(U) = 0, then
0=hU)a=h(T)x

This is impossible because p, is the polynomial of least degree with this
property. Hence, h(U) # 0.

Thus, p, is the minimal polynomial of U.

]

Corollary 1.10. If a« € V is a cyclic vector for T, then the minimal polynomial of T,
the characteristic polynomial of T', and p. all coincide.

Proof. Let f and p denote the characteristic and minimal polynomials of T" respectively.
Then, by Cayley-Hamilton,
plf

Furthermore, p(T") = 0 implies that p(T")a = 0. Hence,

Pa|p
Since all three polynomials are monic, it now suffices to prove that
Pa=f
But p, | f and by Theorem 1.9,
deg(pa) = dim(Z(a; T)) = dim(V) = deg(f)

Hence, p, = f and we are done. O
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Remark 1.11. Let U € L(WV) is a linear operator on a finite dimensional vector space
W with cyclic vector a. Then, write the minimal polynomial of U as

P="Pa=co+crx+... +cat
Then, by Theorem 1.9, the set
B={a,Ua,Ua,....U"a} = {ai,q0,..., 04}
forms an ordered basis for W. Now, if 0 <i < k — 1, then
U(w) = aigq
And, since p,(U) = 0, we have
coa + o U(a) + U (@) + ... + e U a) + UF(a) = 0

Hence
)
Ulag) = —cooq — crag — ... — Cp_10,

Thus, the matrix of U in this basis is given by

000 ... 0 =—c

100 ... 0 —a
Ug=|(0 10 ... 0 —c

000 ... 1 —cp

Definition 1.12. Let f € F[z] be a monic polynomial written as

f:co+clx+02x2+...+ckxk

Then, the companion matriz of f is the matrix

000 0 —c
100 0 —q
A—]o 10 0 —c
000 ... 1 —cy

Theorem 1.13. Let U be an operator on a finite dimensional vector space W. Then,
U has a cyclic vector if and only if there is some ordered basis B of W such that the
matriz [Ulg is the companion matriz of the minimal polynomial of U.

Proof. We have just proved one direction: If U has a cyclic vector, then there is an
ordered basis B such that [U]z is the companion matrix to the minimal polynomial.
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Conversely, suppose there is a basis B such that [U]g is the companion matrix to the
minimal polynomial p, then write B = {ay, ag, ..., ax}. Observe that, by construction,

; = Uiil(Oq)

for all ¢ > 1. Thus, Z(«a;;U) = V because it contains B. Thus, a; is a cyclic vector for
U. O

Corollary 1.14. If A is the companion matriz of a monic polynomial p € Fx], then p
1s both the minimal polynomial and characteristic polynomial of A.

Proof. Let T € L(F™) be the linear operator whose matrix in the standard basis is
A. Then, T has a cyclic vector by Theorem 1.13. By Corollary 1.10, the minimal
and characteristic polynomials of T" coincide. Therefore, it suffices to show that the
characteristic polynomial of A is p. We prove this by induction on k := deg(p).

(i) If deg(p) = 1, then write p = ¢ + z, then
A = (—CQ)

so the characteristic polynomial of A is clearly f =z + ¢ = p.

(ii) Suppose that the theorem is true for any polynomial ¢ with deg(q) < k, and write

000 ...0 —c
100 0 —q
A—]l0o 10 0 —c
000 ... 1 —cpy

Hence, the characteristic polynomial of A is given by

r 0 0 0 Co
—1 T 0 0 C1
f=det] 0 -1 2 0 Co
0 0 O -1 z4cpq
zr 0 ... O c1 O 0 ... 0 Co
-1 z ... 0 Co -1 « ... 0 Co
= zdet . ) ) + det . . .
0 0o ... —1 T+ Crp_q 0 0o ... —1 X+ Crp_q

Now, the first matrix that appears on the right hand side is the companion matrix
to the polynomial
g=c+cxr+...+ ck_lxk_Q + s
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So by induction, the first term is
z(cy + cow + ..+ g2 4 2
Now by expanding along the first row of the second term, we get

-1 x ... O
(—=1)*"eo det I
0o 0 ... —1

This matrix is an upper triangular matrix with —1’s along the diagonal. Hence,

this term becomes
(1) eo(=1) " =g

Thus, we get
f=a(lci+er+.. . oz 2 +2" ) e =p
as required.

[
(End of Week 11)

2. Cyclic Decompositions and the Rational Form

The goal of this section is to show that, for a given operator T" € L(V'), there exist
vectors ayq, g, ..., . € V such that

V=Z(a;T)® Z(ayT)D... 0 Z(a; T)

In other words, V' is the direct sum of T-invariant subspaces such that each subspace
has a T-cyclic vector. This is a hard theorem, and we break it into many smaller pieces,
so it is easier to digest.

Definition 2.1. Let W C V be a subspace of V. A subspace W/ C V is said to be
complementary to W if V.=W & W".

Remark 2.2. Let '€ L(V) and W C V be a T-invariant subspace, and suppose there
is a complementary subspace W’ C V which is also T-invariant. Then, for any g € V,
there exist v € W and 7' € W’ such that

B=v+7
Since W and W’ are both T-invariant, for any polynomial f € F[x], we have
FT)B = f(T)y+ fF(T)

where f(T)y € W and f(T)y € W'. Hence, if f(T)8 € W, then it must happen that
f(T)y =0, and in that case,

FT)B = f(T)y

175



This leads to the next definition.

Definition 2.3. Let 7' € L(V) and W C V a subspace. We say that W is T-admissible
if

(i) W is T-invariant.
(ii) For any f € V and f € Flz], if f(T)8 € W, then there exists v € W such that
F(T)B = f(T)y
We now make some comments about 7-conductors.
Remark 2.4. Fix 7' € L(V), and a T-invariant subspace W C V.

(i) Given a vector @ € V', we had defined (See Definition VI.4.9) the T-conductor of
a into W as the ideal

Sla; W) :={f € Flz]: f(T)a € W}

We saw in Lemma VI.4.11 that S(a; W) is an ideal of F[z], and its unique monic
generator is also termed the T-conductor of a into W. We denote this polynomial
by

s(a; W)

(ii) Now, different vectors have different T-conductors. Furthermore, for any o € W,
we have

deg(s(a; W)) < dim(V)

because the minimal polynomial has degree < dim(W) (by Cayley-Hamilton), and
every T-conductor must divide the minimal polynomial. We say that a vector
B €V is maximal with respect to W if

deg(s(8; W)) = max deg(s(a; W))
[e1S
In other words, the degree of the T-conductor of 3 is the highest among all T-
conductors into W. Note that such a vector always exists.

The next few lemmas are all part of a larger theorem - the cyclic decomposition theorem.
The textbook states it as one theorem, but we have broken into smaller parts for ease
of reading.

Lemma 2.5. Let T € L(V) be a linear operator and Wy C V' be a proper T-invariant
subspace. Then, there exist non-zero vectors By, Ba, ..., B, in V such that

(i) V=Wo+Z(B;T)+ Z(p;T)+ ...+ Z(B;T)
(i1) For1 <k <r, if we set

Wi =Wo+ Z(B;;T)+ Z(Bo; T) + ... + Z(Bi; T)

Then each By is mazimal with respect to Wy_1.
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Proof. Since W, is T-invariant, there exists f; € V which is maximal with respect to
Wy. Note that, by Example VI.4.10, for any o € Wy, s(a; W) = 1 if and only if a € W},
Since W # V, there exists some € V such that 5 ¢ W. Hence,

deg(s(8;W)) >0
Therefore, f; ¢ W and

deg(s(B1; W) >0

Hence, if we set
Wy =Wy + Z(61;T)

Then Wy C Wy. If Wy = V| then there is nothing more to do. If not, we observe that
W1 is also T-invariant, and repeat the process. Each time, we increase the dimension by
at least one, so since V' is finite dimensional, this process must terminate after finitely
many steps. 0

Remark 2.6. In the decomposition above, note that
Wi =Wo+Z(Bi;T)+ Z(Bx:T) + ...+ Z(B; T)
Hence, if o € Wy, then one can express a as a sum

a= o+ g (1)1 + g2(T) B2+ ... + gi(T) Bs

for some polynomials g; € F[z], and By € Wy. Note, however, that this expression may
not be unique.

Lemma 2.7. LetT € L(V) and Wy C V be a T-admissible subspace. Let By, Po, ..., Br €
V' be vectors satisfying the conditions of Lemma 2.5. Fix a vector 8 €V and 1 < k <,
and set

f = s(8;Wi_1)
to be the T-conductor of 5 into Wy_1. Suppose further that f(T)5 € Wx_1 has the form
k—1
F(T)B =5+ Zgz‘(T)ﬁi (VIL1)
i=1

where By € Wy. Then
(i) flgi foralll<i<k-—1
(ii) Bo = f(T)yo for some vy € Wy.
Proof. If k =1, then f = s(8; Wy) so that
F(T)B = By € Wy

Hence, part (i) of the conclusion is vacuously true, and part (ii) is precisely the require-
ment that Wy is T-admissible.

Now suppose k > 2.
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(i) For each 1 <i <k — 1, apply Euclidean division (Theorem 1V.4.2) to write
gi = fh; 4+ r;, such that r; = 0 or deg(r;) < deg(f)

We wish to show that r; = 0 for all 1 < ¢ < k — 1. Suppose not, then there is a
largest value 1 < j < k — 1 such that r; # 0.

(ii) To that end, set
k—1

vi=p0- Z hi(T)B; € Wi
i=1
Then, v — 8 € Wy_4, so (Why?)
$(7; Wi—1) = s(B; Wi—1) = f
Furthermore,

k—1
F(T)y = Bo+ Z ri(T)Bi

With j as above, we get
J
F(T)y=Bo+ > _ri(T)B; and r; # 0,deg(r;) < deg(f) (VIL.2)
=1

(ili) Now set p := s(y, W,_1). Since W;_; C Wjy_4, we have

f=s(y;Wia)|p
So choose g € F[z]| such that p = fg. Applying ¢g(T) to Equation VIL.2, we get

p(T)y = (T + Y o(T)rT) + 9(T)ry (D)5,

By definition, p(T)y € W;_;, and the first two terms on the right-hand-side are
also in W;_;. Hence,

g(T)r;(T)B; € Wi
Hence, s(8;; W;_1) | grj. By condition (ii) of Lemma 2.5, we have

deg(gr;) > deg(s(8;; Wj-1))

Hence, it follows that
deg(r;) > deg(f)
which is a contradiction. Thus, it follows that r; =0 for all 1 <7 < k — 1. Hence,

flai

foralll1 <i<k-—-1.
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(iv) Finally, back in Equation VIIL.1, we have

k—1
FT)8 =By + 3 F(T)h(T)B
i=1
Hence, we conclude that
Bo = f(T)y

with v defined as above. This completes the proof.
O

Recall that (Definition V1.4.9), for an operator T € L(V) and a vector o € V', the
T-annihilator of « is the unique monic generator of the ideal

S(e;{0}) :={f € Flz] : f(T)a = 0}

Theorem 2.8 (Cyclic Decomposition Theorem - Existence). Let T' € L(V') be a linear
operator on a finite dimensional vector space V', and let Wy be a proper T-admissible
subspace of V.. Then, there exist non-zero vectors oy, s, ..., q, in V with respective
T-annihilators pi,pa, ..., p, such that

(1)) V=Wo® Z(a;T)® Z(ag;T) D ... Z(a; T)

(11) pr | pr—1 for all k =2,3,...,r.
Note that the above theorem is typically applied with Wy = {0}.
Proof.

(i) Start with vectors Sy, (2, ..., [, € V satisfying the conditions of Lemma 2.5. To
each vector § = (3 and the T-conductor f = pi, we apply Lemma 2.7 to obtain

Pi(T)k = T 0 + 3 D)D),

where vy € Wy and hq, hs, ..., h, are polynomials. Now set

k—1

a =B =0 — Y hil(T)B; (VIL3)
=1

Then, S — a € Wy_1, so (Why?)
S(Oék; Wk—l) = S(BkQ Wk—l) = Pk

(ii) Note that
But, pr = s(ag; Wi_1). Hence, it follows that, for any polynomial f € F[z], if
f(T)a € Wy_q, then py | f. But this implies that f(7)a = 0. Hence,

Wk,1 N Z(Oék; T) = {O}
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(iii) Now if a € Wy, then since Wy, = Wy + Z(8k; T'), we write

a =B+ g(T)Bk

for some g € F[x] and 8 € W}_;. Using Equation VII.3, we have
k-1
9(T)Bx = g(T)ax + g(T)vo + > g(T)hi(T)B;
i=1

Hence, if 5" := 8+ g(T)y0 + Z;:ll g(T)h;(T)B;, we have ' € Wy_1 and
a=f+g(T)ay

Thus,
Wi =Wi1 + Z(ay; T)

(iv) By the previous step, we conclude that
Wi =Wi1@ Z(ou; T)
By induction, we have
We=Wo® Z(a;T)® Z(a; T) D ... D Z(ay; T)
In particular, we have

V=WydZ(a;T)® Z(a;T)® ... Z(cy;T)

(v) To verify condition (ii), observe that p;(T)a; =0 for all 1 <i <7, so
(Do =0=0+p1(T)ar + p2(T)az + ... + pr—1(T) a1
Taking 8 = o and f = p; in Lemma 2.7, we conclude that

Pr | pi
foralll <i<k-1.
O

Definition 2.9. Let T' € L(V') be a fixed operator, f € F[z] a polynomial, and W C V
a subspace. We write
W ={fTa:aec W}

Note that this is also a subspace of V.

Lemma 2.10. Let T € L(V) and f € F|[z].
(i) Ifa €V, then fZ(a;T) = Z(f(T)e; T).
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(i) If V=Via@&Vad...® Vi where each V; is T-invariant, then

fV=meffao.. ofV

(iii) If a,y € V both have the same T-annihilator, then f(T)a and f(T)y have the

same T-annihilator. Therefore,

dim(Z(f(T)a; T)) = dim(Z(f(T)y; T))

Proof.

(i)

(iii)

We prove containment both ways: If 5 € Z(«;T), then write § = ¢g(T)a, so that

f)B = f(T)g(T)a=g(T)f(T)a € Z(f(T)a; T)
Hence, fZ(o;T) C Z(f(T)a; T). The reverse containment is similar.

If p €V, then write
B=0+0Ba+ ...+ B

where [3; € V;. Then, since each V; is T-invariant, we have
FMB=fD)/+ DB+ + D) fVit Vot .+ [Vi
Now, suppose v € fV; N (fVi+ fVo+ ...+ fV;_1), then write
v=fT)8; = f(T)Br+ [(T)B2+ ...+ f(T)Bj
where 3; € V; for all 1 < i < j. But each V; is T-invariant, so
f(I)B;i e Vi

for all 1 <+ < j. By Lemma VI1.5.3,

Vin(Vi+Va+...+ V1) ={0}
Hence, v = f(T)5; = 0. Thus,

fVin(fVi+ fVa+...+ fVio1) = {0}

So by Lemma VI.5.3, we get part (ii).

Suppose p denotes the common annihilator of a and v, and let g and h denote the
annihilators of f(T)a and f(7T')y respectively. Then

g(M) f(T)a =0
Hence, p | gf, so that
g(M)f(T)y=0

Hence, h | g. Similarly, g | h. Since both are monic, we conclude that g = h.
Finally, the fact that

dim(Z(f(T)a; T)) = dim(Z(f(T)y; T))

follows from Theorem 1.9.
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Definition 2.11. Let 7" € L(V) be a linear operator and W C V be a T-invariant
subspace. Define

SV;W):={feFlz]: f(T)aeW VYaeV}

Then, it is clear (as in Lemma VI.4.11) that S(V; W) is a non-zero ideal of F[z]. We
denote its unique monic generator by pyy .

Theorem 2.12 (Cyclic Decomposition Theorem - Uniqueness). Let T € L(V') be a linear
operator on a finite dimensional vector space V' and let Wy be a proper T-admissible
subspace of V. Then, suppose we are given mon-zero vectors o, Qs,...,a, in V. with
respective T'-annihilators pq, pa, ..., p, such that

(i) V=W Z(a;T)® Z(ay;T)® ... d Z(a,; T)
(i1) pi | px—1 for all k =2,3,...,r.

And suppose we are given non-zero vectors yi,¥a, . . ., v¥s € V with T-annihilators gy, gs, - . ., gs
such that

(1)) V=WodZ(1;T)®Z(v;T)® ... Z(vs;T)
(17) gr | gp—1 for allk =2,3,...s.

Then, r = s and v; = o for all 1 <i <.

Proof. (i) We begin by showing that p; = ¢;. In fact, we show that

P1 = g1 = Pwy

For g € V, we write

B =B+ fLlT)m + fo(T)v2 + ... + fo(T)s

for some fy € Wy and polynomials f; € F[x]. Then
g1(T)B = g1(T)Bo + Z g(T) fi(T)vi
i=1

By hypothesis, g; | g1 for all i > 1. Since ¢;(T")y; = 0, we conclude that

g (T)B = g(T)By € Wy

Hence, g, € S(V; Wy).
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(i)

(i)

(v)

Now suppose f € S(V;Wp), then, in particular, f(T)y; € Wy. But, f(T)m €
Z(v1;T) as well. Since this is a direct sum decomposition,

f(T)n=0

But ¢ is the T-annihilator of 7, so it follows that g; | f. Hence, we conclude that

gl = pr

By symmetry, p1 = pw, as well. Hence, g = p;.

Now suppose r > 2, then
dim(Wy) + dim(Z(ay; 7)) < dim(V)
Since p; = g1, by Lemma 2.10, we have
dim(Z(ay; T)) = dim(Z(y; T))

Hence,
dim(Wpy) + dim(Z(y1; 7)) < dim(V)

Thus, we must have that s > 2 as well.

We now show that ps = go. Observe that, by Lemma 2.10, we have
p2V = pWo & Z(pa(T)ar; T) ® Z(p2(T)a; T) & ... & Z(p2(T) s T)
Similarly, we have
PV = poWo @ Z(p2(T)71;T) @ Z(po(T)y2; T) © ... ® Z(po(T)vs; T)  (VILA)

However, since p; | po for all i > 2, we have pyo(T)c; = 0 for all ¢ > 2. Thus, the
first sum reduces to

paV = paWo & Z(pa(T)eu; T) (VIL5)
Now note that p; = g;. Therefore, by Lemma 2.10, we conclude that
dim(Z(pa(T)as; T)) = dim(Z (p2(T')71; 1))
By comparing Equation VII.4 and Equation VIL.5, we conclude that
dim(Z (p2(T)y:; 7)) = 0

for all ¢ > 2. Hence,
p2(T)v =0
for all ¢ > 2. In particular, we must have go | ps.

By symmetry, we have py | go as well. Therefore, py = go.
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(vi) By proceeding in this way, we conclude that r = s and p; = ¢g; forall 1 <7 <.
O

Remark 2.13. Let T' € L(V) be a linear operator. Applying Theorem 2.8 with Wy =
{0} gives a decomposition of V' into a direct sum of cyclic subspaces

V=Z(;T)® Z(axT)®...® Z(an; T)

and let py,po,...,p, be the T-annihilators of «; so that py | pp_1 for all & > 2.

Now, consider the restriction T; of T to Z(a;;T), and let B; be the ordered basis of
Z(a; T) from Theorem 1.9

Bi = {Ozi, T(Oji), T2(O./7;), e ,Tki_l(ai)}

where k; = deg(p;). Then the matrix

is the companion matrix of p; (See Remark 1.11). Furthermore, if we take B :=
(Bi1,Ba,...,B,), then B is an ordered basis of V' (by Lemma VI.5.3), and the matrix of
T in this basis has the form

A 0 0 0

0 Ay O 0

T])g=|0 0 As 0
0 0 0 A,

Furthermore, by Theorem 2.12, the polynomials occurring in this decomposition are
unique, and therefore, the companion matrices are also unique.

Definition 2.14. An n x n matrix over a field F' is said to be in rational form if A can
be expressed as a direct sum of matrices A;, Ao, ..., A,, where each A; is the companion
matrix of a monic polynomial p; € F|z], and, furthermore, p; | p;—y for alli =2,3,...,r.

Therefore, a consequence of the existence and uniqueness of the cyclic decomposition
gives us the following result.

Corollary 2.15. Let B denote an n x n matrixz over a field F'. Then, B is similar to
one and only one matrix A over F which is in rational form.

Proof. Let T € L(F™) be the linear operator given by T(X) = BX. Then, by Re-
mark 2.13, there is an ordered basis B of F™ such that

A= [T]B

is in rational form. Now, B is similar to A by Theorem I11.4.8. Let p;, 1 < i < r denote
the polynomials associated to this matrix A.
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Now suppose C'is another matrix in rational form, expressed as a direct sum of matrices
C;,1 <i < s, where each C; is the companion matrix of a monic polynomial g; € F[x]
satisfying ¢; | g;—1 for all @ > 2. Let B; C B be the basis for the subspace W; of F™
corresponding to the summand C;. Then,

[OZ]Bz

is the companion matrix of g;. By Corollary 1.14, the minimal and characteristic poly-
nomials of C; are both g;. By Theorem 1.13, C; has a cyclic vector ;. Thus,

Wi = Z(B:;T)

so that
F'"=ZpB;T)® Z(Bo;T) @ ... @ Z(Bs;T)

By the uniqueness in Theorem 2.12; it follows that »r = s and ¢g; = p; for all 1 <1 < r.
Hence,
C=A

as required. N

Definition 2.16. Let 7' € L(V'), and consider the (unique) polynomials py,pa, ..., p,
occurring in the cyclic decomposition of T'. These are called the invariant factors of T.

These invariant factors are uniquely determined by 7. Furthermore, we have the follow-
ing fact.

Lemma 2.17. Let T' € L(V) be a linear operator with invariant factors py,pa, ..., pr
satisfying p; | pi—1 for alli1=2,3,...,r. Then,

(i) The minimal polynomial of T is p;
(i) The characteristic polynomial of T is p1ps ... py.
Proof.
(i) Assume without loss of generality that V' # {0}. Apply Theorem 2.8 and write
V=Z(a;T)® Z(ayT)D...® Z(a; T)

where the T-annihilators py,ps, ..., p, of a1, s, ..., a, are such that py | px_; for
all k=2,3,...,r. If a« € V, then write

a= fi(T)ar+ fo(T)az + ... + fr(T)a,

for some polynomials f; € F[x]. For each 1 <i <r, p; | p1, so it follows that
p(T)a =Y pi(T)fi(T)as = > fi(T)pr(T)e; = 0
i=1 i=1

Hence, p1(T) = 0. Furthermore, since p; is the T-annihilator of «a;, it follows that,
for any polynomial ¢ € Flz], if deg(q) < deg(p1), then ¢(T)a; # 0. Hence, p; is
the minimal polynomial of 7.
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(ii) As for the characteristic polynomial of 7', consider the basis B in Remark 2.13

such that
A:=[T]s
is in rational form. Write
A 0 0 0
0 Ay, 0 0
A=10 0 As 0
0O 0 0 A,

where each A; is the companion matrix of p;. Then, the characteristic polynomial
of T is the characteristic polynomial of A. However, A is a block-diagonal matrix,
so the characteristic polynomial of A is given by the product of all the characteristic
polynomials of the A; (This follows from Theorem V.4.3). But, by Corollary 1.14,
the characteristic polynomial of A; is p;. Hence, the characteristic polynomial of

T is p1ps ... Dy
O

Recall that (Corollary 1.10) if T € L(V') has a cyclic vector, then its characteristic and
minimal polynomials both coincide. The next corollary is a converse of this fact.

Corollary 2.18. Let T € L(V') be a linear operator on a finite dimensional vector space.

(i) There exists « € V' such that the T-annihilator of a is the minimal polynomial of
T.

(i) T has a cyclic vector if and only if the characteristic and minimal polynomials of
T coincide.

Proof.

(i) Take o = «v, then p; is the T-annihilator of «, which is also the minimal polyno-
mial of 7" by Lemma 2.17.

(ii) If T has a cyclic vector, then the characteristic and minimal polynomial coincide
by Corollary 1.10. So suppose the characteristic and minimal polynomial coincide,
and label it p € F[x]. Then, deg(p) = dim(V'). So if we choose a € V' from part
(i), then, by Theorem 1.9,

dim(Z(a;T)) = deg(p) = dim(V)

So V = Z(a;T), and thus, T has a cyclic vector.

Example 2.19.
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(i) Suppose T' € L(V) where dim(V) = 2, and consider two possible cases:

(i) The minimal polynomial of T has degree 2: Then the minimal polynomial
and characteristic polynomial must coincided, so T" has a cyclic vector by
Corollary 2.18. Hence, there is a basis B of V' such that the matrix of T is

[T = ((1) :2)

is the companion matrix of its minimal polynomial.

(ii) The minimal polynomial of 7" has degree 1, then 7" is a scalar multiple of the
identity. Thus, there is a scalar ¢ € F' such that, for any basis B of V', one

has
[T = (S 2)

(ii) LeT T € L(R?) be the linear operator represented in the standard ordered basis
by

5 —6 —6
A=1-1 4 2
3 -6 —4

In Example VI.2.15, we calculated the characteristic polynomial of 7" to be
f=(-1)(-2)?

Furthermore, we showed that T is diagonalizable. Since the minimal and character-
istic polynomials must share the same roots (by Theorem VI.3.7) and the minimal
polynomial must be a product of distinct linear factors (by Theorem VI.4.17), it
follows that the minimal polynomial of T" is

p=(r—1)(xr—2)
So consider the cyclic decomposition of T', given by
R?*=Z(a;T) @ Z(ay;T)® ... & Z(a,; T)

By Theorem 1.9, dim(Z(«y;T)) is the degree of its T-annihilator. However, by
Lemma 2.17, this T-annihilator is the minimal polynomial of 7. Thus,

dim(Z(a1;T)) = deg(p) = 2
Since dim(R?) = 3, there can be atmost one more summand, so r = 2. Hence
R® = Z(a;T) ® Z(a; T)

And furthermore, dim(Z(aw;T)) = 1. Hence, ay must be a characteristic vector
of T by Example 1.4. Furthermore, the T-annihilator of oy, denoted by p, must
satisfy

pp2 = f
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by Lemma 2.17. Hence,
pe = (x —2)
so the characteristic value associated to as is 2. Thus, the rational form of 1" is

—2
B—

o = O
N O O

3
0
where the upper left-hand block is the companion matrix of the polynomial

p=(r—-1(z—-2)=2—-3z+2

We had seen in Remark 2.2 that if Wy C V is a T-invariant subspace which has a
complementary subspace that is also T-invariant, then Wy is T-admissible. The next
corollary is the converse of this fact.

Corollary 2.20. Let T € L(V) be a linear operator on a finite dimensional vector
space and Wy be T-admissible subspace of V. Then there is a subspace W/ that is
complementary to Wy that is also T-invariant.

Proof. Let Wy be a T-admissible subspace. If Wy = V| then take W) = {0}. If not,
then apply Theorem 2.8 to write

V=Wo®Z(a;T)® Z(a;T)® ... Z(a,; T)
and take
Wy :=Z(a;T)® Z(ag; T) & ... & Z(ay; T)
O

Theorem 2.21 (Generalized Cayley-Hamilton Theorem). Let T' € L(V') be a linear op-
erator on a finite dimensional vector space with minimal polynomial p and characteristic
polynomial f. Then,

(i) plf
(i) p and f have the same prime factors, except for multiplicities.

(11i) If the prime factorization of p is given by

S
then the prime factorization of f is
=l
where
L dim(ker(/(7)"))
' deg(f:)
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Proof. Consider invariant factors pi,ps,...,p, of T such that p; | p;—; for all i > 2.
Then, by Lemma 2.17, we have
pr=pand f=pips...p;

Therefore, part (i) follows. Furthermore, if ¢ € F|z] is an irreducible polynomial such
that

qlf
then by Theorem IV.5.4, there exists 1 < i < r such that ¢ | p;. However, p; | py = p, so
q|p

Thusm part (ii) follows as well.

Finally, consider the primary decomposition of 7" Theorem VI.8.1. Here, we get
V:I/Vl@WQEB@Wk

where each W; = ker(f;(T)") and the minimal polynomial of T; = T|w, is f*. Now,
apply part (ii) of this result to the operator 7;. The minimal polynomial of 7} is f;*, so
the characteristic polynomial of T; must be of the form

i
for some d; > r;. Furthermore, it is clear that d; deg( f;) is the degree of this characteristic
polynomial, so
d; deg(f;) = dim(W;)

Hence,

g - dim(W;) _ dim(ker(f; (7))
© deg(fi) deg(f;)

But, as discussed in Lemma 2.17, the characteristic polynomial of T is the product of
the characteristic polynomials of the T;. Hence,

f= fd1 da di;
=Ji J2" - Tk
as required. N

(End of Week 12)

3. The Jordan Form

In this section, we wish to give another description of a linear operator 7' € L(V') in terms
of a ‘simple’ matrix. This time, we start with the observation from Theorem VI.8.6, that
T can be expressed as a sum

T=D+ N
where D is diagonal, N is nilpotent, and DN = ND. We begin with the following
observation about the cyclic decomposition of a nilpotent operator.
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Definition 3.1. A k x k elementary nilpotent matrixz is a matrix of the form

00 0 0 0
10 0 00
010 0 0

A=10 01 00
000 ..10

Note that such a matrix A (being a lower triangular matrix with zeroes along the diag-
onal), is a nilpotent matrix by an analogue of Lemma VI.8.8.

Lemma 3.2. Let N be a nilpotent operator on a finite dimensional vector space V.
Then, there is an ordered basis B of V' such that

A 0 0 0
0 Ay O 0
0O 0 0 A,
where each A; is a k; X k; elementary nilpotent matrix. Here, ki, ko, ..., k. are positive

integers such that
ki +ko+ ...+ k. =n and r = nullity(N)

Furthermore, we may arrange that

ky > ke > ... >k,

Proof.

(i) Consider the cyclic decomposition of N obtained from Theorem 2.8
V=Z(a1;N)® Z(ag; N) & ... Z(ay; N) (VIL6)

where aq, o, ...,a, € V are non-zero vectors with T-annihilators py,ps,...,pr
such that p;y1 | p; for all ¢ = 1,2,...,r — 1. Since N is nilpotent, the minimal

polynomial of N is

p=2a"

for some k& < n. Since each T-annihilator divides the minimal polynomial (See
Remark 1.8), each p; is of the form 2%, and the divisibility condition implies that
ki > ko> ... >k,

Furthermore, by Lemma 2.17, we know that p; = p, so that k; = k.
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(ii) Now, the companion matrix for z¥ is precisely the k; x k; elementary nilpotent
matrix. Thus, one obtains an ordered basis B such that

A= [T]B

has the required form.

(iii) We now verify that r = nullity(/V). To do this, we show that the set
S = {N" o, N2ty ... N¥""la,}

forms a basis for ker(NV).

e Note that N*~la; € Z(a;; N). Since these subspaces as independent, it
follows that S is linearly independent.

e To show that S spans ker(N), fix a € ker(N). By the decomposition of
Equation VII.6, we write

a = (N + fo(Nas + ...+ f(N)a,

for some polynomials f; € F[z]. Furthermore, by Theorem 1.9, we may
assume that

deg(fi) < deg(p;) = ki
for all 1 < ¢ < r. Now observe that

0= N(a)= Z N fi(N)a

Once again, since the decomposition of Equation VII.6 is a direct sum de-
composition, it follows that

Hence, p; | xf;. But since deg(f;) < k;. it follows that
ki—1

fi = CGT

for some constant ¢; € F'. Thus,

T
o= E e NF 1o,
i=1

Thus, S spans ker(N) as required.
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Definition 3.3. A kx k elementary Jordan matriz with characteristic value c is a matrix
of the form

c 00 .00
1 ¢ 0 .00
A=101 ¢ .00
000 ... 1°c

Theorem 3.4. Let T' € L(V') be a linear operator over a finite dimensional vector space
V' whose characteristic polynomial factors as a product of linear terms. Then, there is
an ordered basis B of V' such that the matrix

0 A O 0
0 0 0 Ay,

J9 0 0 0

o J9 o 0

Ai=]0 o JY 0
o 0 0 .. JY

where each Jj@ 15 an elementary Jordan matriz with characteristic value c;. Furthermore,

the sizes of matrices Jj@ decreases as j increases. Furtheremore, this form is uniquely
associated to T'.

Proof.
(i) Existence: We may assume that the characteristic polynomial of T" is of the form
f=(@—c)®(x—c)?... (x—cp)™

where ¢y, co, ..., ¢ are distinct scalars and d; > 1. By Theorem 2.21, the minimal
polynomial is of the form

p= (x - Cl)rl (1’ — CQ)TQ ... (x — ck)rk

for some integers 0 < 1y, < di. If W; := ker(T — ¢;I)™, then the primary decompo-
sition theorem (Theorem VI.8.1) says that

192



Let T; denote the operator on W; induced by T'. Then, the minimal polynomial of
T, is

pi=(z —c)"
Let N; := (T; — ¢;I) € L(W;), then N; is nilpotent, and has minimal polynomial

g ==z"

Furthermore,

Now, choose an ordered basis B; of W; from Lemma 3.2 so that
Bi = [NJBZ

is a direct sum of elementary nilpotent matrices. Then,

is a direct sum of elementary Jordan matrices with characteristic value ¢;. Fur-
thermore, by the constrution of Lemma 3.2, the Jordan matrices appearing in each
A; increase in size as we go down the diagonal.

(ii) Uniqueness:

o If A; is a d; X d; matrix, then the characteristic polynomial of A; is
( —c;)*

Hence, by Theorem V.4.3, the characteristic polynomial of A (and hence of

T) is

f=(@—c)®(x—c)®...(x — cp)™
Thus, it follows that, upto ordering, ¢y, ca, ..., cx and dy, ds, . . . , di are uniquely
determined.

e Now, the direct sum decomposition of A into the A; gives a direct sum de-
composition

We claim that W; = ker((T" — ¢;1)") where n = dim(V). Clearly,

(A—¢)"=0o0on W;
Furthermore, det(A; — ¢;I) # 0, so
W; = ker(T — ¢;)"

Hence, the subspaces W; are uniquely determined.
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e Finally, if T; denotes the restriction of 7" to W;, then the matrix A; is the
rational form of 7T;. Hence, A; is uniquely determined by the uniqueness of
the rational form (Theorem 2.12).

]

Definition 3.5. An n x n matrix A that is in the form described in Theorem 3.4 is
called a Jordan matriz, and is called the Jordan form of the associated linear operator.

Remark 3.6. We make some observations about a Jordan matrix A.

(i)
(i)

(iii)

(iv)

Every entry of A not on or immediately below the principal diagonal is zero.

One the diagonal of A occur the k distinct characteristic values of T'. Also, each
characteristic value ¢; is repeated d; times, where d; is the multiplicity of the ¢; as
a root of the characteristic polynomial.

For each 7, the matrix A; is the direct sum of n; elementary Jordan matrices J]@
with characteristic value ¢;. Furthermore,

n; = dimker(T — ¢; 1)
Hence, T is diagonalizable if and only if n; = d; for all 1 <i < k.

For each 1 <1 < k, the first block Jl(i) in the matrix A; is an r; X r; matrix, where
r; is the multiplicity of ¢; as a root of the minimal polynomial of T". This is because
the minimal polynomial of the nilpotent operator (T; — ¢;I) is z".

Corollary 3.7. If B is an nxn matriz over a field F' and if the characteristic polynomial
of B factors completely over F', then B is similar over F to an n xn matrix A in Jordan
form, and A is unique upto rearrangement of the order of its characteristic values.

This matrix A is called the Jordan form of B. Note that the above corollary automati-
cally applies to matrices over algebraically closed fields such as C.

Example 3.8.

(i)

Suppose 7' € L(V) with dim(V') = 2 where V is a complex vector space. Then,
the characteristic polynomial of T is either of the form

f=(z—c)(x—cy) for c; # ¢y or (z— c)?
In the first case, T' is diagonalizable and is Jordan form is
. C1 0
(6 2)
2

In the second case, the minimal polynomial of T" may be either (z — ¢) or (x — ¢)*.
If the minimal polynomial is (x — ¢), then

T=cl

If the minimal polynomial is (x — ¢)?, then the Jordan form of T is
c 0
1=(2)
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(ii) Let A be the 3 x 3 complex matrix given by

o O

A:

QN
o N O

The characteristic polynomial of T is

f=(z-2)z+1)

e If the minimal polynomial of T" is f, then A is similar to the matrix

20 0
B=|(12 0
00 -1
e If the minimal polynomial of T"is (x — 2)(x + 1), then A is similar to the
matrix
2 0
B=|0 2
0 0
Now,
0 00
(A=20)(A+1)=1[3a 0 O
ac 0 0

Thus, A is similar to a diagonal matrix if and only if a = 0.

195



VIIl. Inner Product Spaces

1. Inner Products

Given two vector a = (1, T2, 23), 8 = (y1, ¥2, y3) € R3, the ‘dot product’ of these vectors
is given by
(a]B) = 2191 + 2292 + T3Y3

The dot product simultaneously allows us to define two geometric concepts: The length

of a vector is defined as
]| == ()

and the angle between two vectors can be measured by

6 := cos™ (%)

While we will not usually care about the ‘angle’ between two vectors in an arbitary
vector space, we will care about when two vectors are orthogonal, ie. («|B) = 0. The
abstract notion of an inner product allows us to introduce this kind of geometry into
the study of vector spaces.

Note that, throughout the rest of this course, all fields will necessarily have to be either
R or C.

Definition 1.1. An inner product on a vector space V over a field F' (= R or C) is a
function

V x V — F given by (a, 8) — (a|B)

such that, for all vectors o, 5,7 € V and ¢ € F', we have

Note that, from (ii) and (iii), it follows that

(alcf) = e(alp)

Example 1.2.
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(i) Let V = F™ with the standard inner product: If @ = (x1,29,...,2,),8 = (Y1,Y2,- .-, Yn) €

V', we define
(alB) = szyz
If F =R, this is

(alB) = szyz

(ii) If F =R and V = R?, we may define another inner product by
(a|B) = z1y1 — Tay1 — T1Y2 + 4T2Yo
where oo = (21, 22) and 8 = (y1,y2). Note that
(a]a) = (21 — 29)* + 323

so it safisfies condition (iv) of Definition 1.1. The other axioms can also be verified
(Check!).

(iii) Let V' = F™*™ then the standard inner product on F™ may be borrowed to V to
give

(A|B) = ZA”B”

We define the conjugate transpose of a matrix B (denoted by B*) by

(B%)ij = Bi.i
Then, it follows that

(A|B) = Z A; ;B;,; = trace(AB") = trace(B*A)

(iv) Let V = F™1 be the space of n x 1 (column) matrices over F and let @ be a fixed
n X n invertible matrix. For X,Y € V. define

(X]Y) == Y*Q*"QX

This is an inner product on V. When @) = I, then this can be identified with the
standard inner product from Example (i).

(v) Let V = C0,1] be the space of all continuous, complex-valued functions defined
on the interval [0,1]. For f,g € V, we define

(flg) == / F()gtt

Then, this is an inner product on C10, 1].
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(vi) Let W be a vector space and (+]-) be a fixed inner product on W. We may construct
new inner products as follows. Let T': V' — W be a fixed injective (non-singular)
linear transformation, and define py : V x V — F by

pr(a, B) == (Ta|TP)

Then this defines an inner product pr on V. We give some special cases of this
example.

e Let V be a finite dimensional vector space with a fixed ordered basis B =
{ag,as,...,a,}. Let W = F" with the standard ordered basis {€1, €3, ..., €,}
and let T": V' — W be an isomorphism such that

T(ag) =€

for all 1 < j <n (See Theorem II1.3.2). Then, we may use T" to inherit the
standard inner product from Example (i) by

n n n
pr(Q_wiey 3 yon) = D i
j=1 i=1 k=1

In particular, for any basis B = {a1, as, ..., a,} of V| there is a inner product
(+]-) on V' such that

(v, o) = i
forall 1 <i,5 <n.
e Now take V=W = (C[0,1] and T : V' — W be the operator

T(f)(E) = tf(t)

Then, T is non-singular (Check!), and the new inner product on V' inherited
from the inner product from Example (v) is

pr(fog) = /O FOgD Rt

Remark 1.3. Let (-]-) be a fixed inner product on a vector space V. Then,
(@|8) = Re(a|f) + ilm(a|f)
But, for any z € C, one has Im(z) = Re(—iz), so
Im(a|f) = Re[—i(a|B)] = Re(alif)

Hence,
(a[B8) = Re(a|B) + Re(a|iB)

Thus, the inner product is completely determined by its ‘real part’.
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Definition 1.4. Let V' be an inner product space. For a vector a € V', the norm of «

is the scalar

o] == (ale)’?

Note that this is well-defined because (aja) > 0 for all & € V. Furthermore, axiom (iv)
implies that ||«|| = 0 if and only if @ = 0. Thus, the norm of a vector may profitably be
thought of as the ‘length’ of the vector.

Remark 1.5. The norm and inner product are intimately related to each other. For
instance, one has (Check!)

loc &= BII* = Jlal® & 2Re(a|8) + [|b]*

for all a, 8 € V. Hence, if F =R, one has

(@18) = Zlla+ B ~ Hlla— B

and if ' = C, one has

1 1 | |
(al8) = Flla+ I = 7lla = BIP + Zlla+ i8I = Zlla = B

(Please verify this statement!). These equations show that the inner product may be
recovered from the norm, and are called the polarization identities. They may be written

(in the complex case) as
4

1
() =7 > _i"la+i"8|?

n=1

Note that this identity holds regardless of whether V' is finite dimensional or not.

Definition 1.6. Let V be a finite dimensional inner product space and B = {ay, s, . .., }
be a fixed ordered basis of V. Define G € F™*" by

Gij = (0, )
This matrix G is called the matriz of the inner product in the ordered basis B.

Note that, for any a, 5 € V, we may write

n n
a= E ;o and 3 = E Yi QU
i=1 =1
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Then

(al) = <Z ol)
- éma@w)
- éwréyﬂj)
=SS agilonay)

i=1 j=1
=Y'GX
where X and Y are the coordinate matrices of o and 3 in the ordered basis B.

Remark 1.7. Let G be a matrix of the inner product in a fixed ordered basis B, then

(i) G is hermitian: G = G* because

GZ]’ = Gij = (aj|lai) = (ailay) = Gy
(ii) Furthermore, for any X € F™! we have

X*GX >0

if X # 0. Hence, G is invertible (because if GX = 0, then X # 0 would violate
this condition). Furthermore, for any scalars xy, zs, ..., z, € I, we have

Z [L’iGi’jZL‘j >0
'7j

This implies, in particular, that G;; > 0 for all 1 <+ < n. However, this condition
alone is not suffices to ensure that the matrix G is a matrix of an inner product.

(iii) However, if G is an n X n matrix such that
Z IiGi,jl’j >0
1:7‘7‘

for any scalars x1,zo,...,, € F not all zero, then GG defines an inner product on
V by
(a]B8) =Y"GX

where X and Y are the coordinate matrices of a and S in the ordered basis B.
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2. Inner Product Spaces

Definition 2.1. An inner product space is a (real or complex) vector space V together
with a fixed inner product on it.

Recall that, for a vector a € V, we write |a|| := (aa)'/?

Theorem 2.2. Le V' be an inner product space. Then, for any o, € V and scalar
c € F, we have

(1) [leall = |elllall
(i) |la]| > 0 and ||| =0 if and only if o =0
(i) [(|B)] < [lal[[I5]
(i) lla+ Bl < llafl +[|A]]
Proof.
(i) We have ||ca||* = (calca) = c(a|ca) = ce(ala) = |c*|a||?
(ii) This is also obvious from the axioms.

(iii) If @ = 0, there is nothing to prove since both sides are zero, so assume a # 0.
Then set
(Blar)

(0%
]|

V=0

Then, (y|a) = 0. Furthermore

0< > = (1)
(- g5 O,

[lev]? ]
_ (818) - (ﬁm(’glﬂ)
~ 57 - L)
Hence,
[(@lB)] < llalll|A]l

(iv) Now observe that
la+ Bl = (o + Bla + B) = (ala) + (B]8) + 2Re(a|B)
Using part (iii), we have
2Re(a|B) < 2[(alB)] < 2[|a|[|]]

Hence,
lee =+ B11* < (el + 118112

and so [la + B[ < fla + [[5]]-
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]

Remark 2.3. The inequality in part (iii) is an important fact, called the Cauchy-
Schwartz inequality. In fact, the proof shows more: If o, 5 € V are two vectors such
that equality holds in the Cauchy-Schwartz inequality, then

(Bl)
=pf—-——-a=0
V= e

Hence, it follows that

b = ca

for some scalar ¢ € F. Conversely, if 5 = ca, then equality holds as well (Check!).
Therefore, if {a, 5} is a linearly independent set, then the inequality is strict.

Example 2.4.

(i) Applying the Cauchy-Schwartz inequality to the standard inner product on C"
gives

" N /2, p 1/2
Yot (Sm) ()
i=1 k=1 k=1
(ii) For matrices A, B € F™*" one has

|trace(B* A)| < trace(A*A)Y*trace(B*B)"/?

(iii) For continuous functions f, g € C|0, 1], one has

[ s < ([ 1rpa) " ([ wcrar) "

Definition 2.5. Let V be an inner product space.

(i) Two vectors «, 5 € V are said to be orthogonal if («|f) = 0.
(ii) A set S C V issaid to be orthogonal if any two distinct vectors in S are orthogonal.
(iii) A set S C V is said to be orthonormal if it is orthogonal, and |la|| = 1 for all
ach.
Example 2.6.

(i) The zero vector is orthogonal to any other vector.

(ii) If F™is endowed with the standard inner product, then the standard basis {1, €, ..., €,}
is an orthonormal set.

2

(iii) The vectors (z,y) and (z,—y) € R? are orthogonal (R? is equipped with the

standard inner product).
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(iv) Let V = C™*", the space of complex n x n matrices, and let E”? be the matrix
Ep i = (510, 5q,j
If V is given the inner product of Example 1.2 (iii), then

(

Thus, S = {EP9:1 < p,q <n} is an orthonormal set.
(v) Let V. =C[0,1]. For n € N, set

) = trace(EPIE®") = 64.50p,

fn(z) := cos(2mnx), and g,(z) = sin(27nz)

Then, the set S = {1, f1, g1, f2, g2, . . .} is an infinite orthogonal set. If we consider
complex-valued functions, we may take

ho() i= fo(z) + ign(z) = 2™
Then, the set {h, : n = £1,+2,...} is an infinite orthogonal set.
Theorem 2.7. An orthogonal set of non-zero vectors is linearly independent.

Proof. Let S C V be an orthogonal set, and let ay, as,...,a, € S and ¢; € F be scalars
such that
o + g + ...+, =0

For 1 < j < n, we take an inner product with «; to get
0 = ¢;(alay)

Since a; # 0, this forces ¢; = 0 for all 1 < j < n. Thus, every finite subset of S is
linearly independent. So S is linearly independent (See Remark 11.3.2 (vi)). O

Corollary 2.8. Let S = {ay,aq,...,a,} is an orthogonal set of non-zero vectors, and

B € span(S), then
B Z /B|O|4|z2

Proof. Write
p= Z CiCy;
i=1
and take an inner product with o; to see that
(Bley) = ejlaglay) = ¢jllayl®

Solving for ¢; gives the required expression. n
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Theorem 2.9 (Gram-Schmidt Orthogonalization). Let V' be an inner product space
and {p1, B2, ..., 0.} C V be a set of linearly independent vectors. Then, there exists
orthogonal vectors {ay, as, ..., a,} such that

Span{ozl, Qg, ... Jan} = Spa’n{ﬁlv /827 s 76n}

Proof. We proceed by induction on n. If n =1, we set ay = (.

If n > 1: Assume, by induction, that we have constructed orthogonal vectors {aq, s, ..., a1}
such that
Span{&b Qa, ... 7047171} = Span{ﬁb 527 v 76n71}

We now define

Q1= P —

If o, = 0, then (3, € span{ay,as,...,a,_1} = span{fi, B2, ..., Bn_1}. This contradicts
the assumption that the set {1, Ba, ..., 5.} is linearly independent. Hence,

a, £ 0

Furthermore, if 1 <7 <n —1,

— |owl?
(Bnlay)
(ﬁn’ J) ||Oéj||2 (aj|a])
=0
Since {1, ag, ..., a, 1} is orthogonal, this shows that the set {ay, as, ..., a,} is orthog-

onal. Now, it is clear that

(879 S Span{ﬁna ap, g, . .. 7O~/n—1} - Span{ﬁna ﬁla /627 oo 7/871—1}

and so
span{ay, o, ..., a,} Cspan{f1, B, ..., Bn}

However, span{ i, (2, ..., B, } has dimension n, and {ay, s, . .., o, } has n elements and
is linearly independent by Theorem 2.7. Thus,

Span{&ly Qg ... 70571} = Span{ﬁl? /827 s JBTL}
This completes the proof. n

Corollary 2.10. Fvery finite dimensional inner product space has an orthonormal basis.
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Proof. We start with any basis B = {f1, 2, ..., s} of V. By Gram-Schmidt orthogo-

nalization (Theorem 2.9), there is an orthogonal set {a, s, ..., a,} such that
span{ay, g, ..., a,} =V
Now simply take {o, a), ..., )} where
/ &
T eyl

Example 2.11.

(i) Consider the vectors

/31 = (3 0 4)
B :=(—1,0,7)
P :=(2,9,11)

in R3 equipped with the standard inner product. Applying the Gram-Schmidt
process, we obtain the following vectors

] = (3,074)
(. - ((_170 7)|<3’O74))
Q9 —( 1,0, 7) ||( 0, )H (3,0,4)
—(-1,0,7) - ;2(304)
—(=1,0,7) — (3,0,4)
:( 4,0,3)
((2,9,11)[(3,0,4)) ((2,9,11)](-4,0,3))
= @9 =TT GO T T Ceer (B0
= (2,9,11) — 2(3,0,4) — (—4,0,3)
— (0,9,0)

The vectors {a1, aq, a3} are mutually orthogonal and non-zero, so they form a
basis for R?. To express a vector 3 € R? as a linear combination of these vectors,
we may use Corollary 2.8 and write

& (Bl
=2 ol

If 8 = (x1,x9,x3), this reduces to

3x1 + 43 —4x, + 33 To
ap +

25 1 o5 2t s

(ilfl,l'g,fl?g) = 9
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For instance,

3 1 2
(1,2,3) = 5(3,0,4) + g(—4,0,3) + 5(0,9,0)
Equivalently, the dual basis {fi, fo, f3} to the basis {1, as, a3} is given by

3r; + 4x

fi(@y, 29, 23) = %
—4x; 4 3w

fo(w1, 09, 3) = %
x

f3(wa, w9, 03) = 52

Finally, observe that the orthonormal basis one obtains from this process is

1
"= 2(3,0,4
al 5(77)
o/—l( 4,0,3)
2_5 )
a3 = (0,1,0)

The Gram-Schmidt process is itself obtained as a special case of an interesting geomet-
rical notion; that of a projection onto a subspace. Given a subspace W of an inner
product space V' and a vector o € W, one is often interested in a vector a € W that is
closest to . If B € W, this vector would be  of course, but in general, we would like a
way of computing this vector a from f.

Definition 2.12. Given a subspace W of an inner product space V and a vector 5 € V,
a best approrimation to 5 by vectors in W is a vector a € W such that

18 —al < 18—l
for all v € W.

Note that we do not know, as yet, if such a vector exists. However, if one thinks about
the problem geometrically in R? or R?, one observes that is one is looking for a vector
a € W such that (8 — «) is perpendicular to W.

Theorem 2.13. Let W be a subspace of an inner product space V and let B € V.
(i) The vector « € W is a best approximation to B by vectors in W if and only if
(8 —alv)
for ally € W.

(i) If a best approximation to B by vectors in W exists, then it is unique.
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(iii) If W is finite dimensional and {ay, s, ..., a,} is any orthonormal basis for W,

then the vector .

a:= (Bl

k=1

is the (unique) best approximation to B by vectors in W.
Proof.
(1)

e Suppose a € W is a best approximation to g by vectors in W and v € W,

then
18 =12 = 1(8 — @) + (a = )|
=18 =l + 2Re(5 — ala =) +[|a — 7
> 16— a?
Hence,

2Re( — ala —9) + o = 7[> = 0
for all v € W. Replacing v by 7 := a+ v € W, we conclude that

2Re(B —alr) +[I7|* = 0
for all 7 € W. In particular, if v € W is such that v # «, then we may set

_ _B-aa-9)
T T e @)

Then the inequality reduces to the statement

(6 —ala—)P (5~ ala =)

—2
lov =2 a—1?

>0

But this last inequality holds if and only if

(6—ala=9)=0

This must hold for all v € W with v # «, so we conclude t hat

(B—aly)=0
for all v € W.
e Conversely, suppose that (6 — a|y) = 0 for all v € W, then we have (as
above)

18 =17 =18 = a) + (a = )|
=18 — all* + 2Re(8 — ala — ) + [la — 7|
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(i)

(iii)

However, a € W so a — v € W, so that

(6 —ala=7)=0

Thus,
18 =A* =118 = al* + lla =4I > [|18 — af*

This is true for any v € W, so « is a best approximation to § by vectors in

w.

Now we show uniqueness: If o and o’ are two best approximations to /3 by vectors
in W, then o, ' € W and by part (i), we have

(B—aly)=(B-aly) =0
for all a € W. In particular,
la =P =(a—dla—ad)=(a—Bla—d)+(B—-d|la—a)=0+0=0

Hence, a = o/.

Now suppose W is finite dimensional and {a, s, ..., a,} is an orthonormal basis
for W. Then, for any v € W, one has

T= Z(’Y’%)Oék
k=1

by Corollary 2.8. If & € W is such that (8 — «|y) = 0 for all v € W, then one has

(Blag) — (a|og) = (B — alox) =0
Hence,
(alag) = (Blow)
for all 1 < k <n. Hence,

n n

a = (aap)ar =Y (Blar)ay

k=1 k=1

]

Definition 2.14. Let S be a subset of an inner product space V. The orthogonal
complement of S is the set

St={BecV:(Bla)=0 VacS}

Note that (Check!) St is a subspace of V regardless of whether S is a subspace or not.
Furthermore, if 0 € S, then

SnS*t={0}
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Definition 2.15. Let WW be a subspace of an inner product space V.

(i) If p € V, the best approximation a € W to 8 by vectors in W is called the
orthogonal projection of 5 on W.

(ii) If W is finite dimensional, define a map E : V' — W which sends  to . This is
exists and is well-defined by Theorem 2.13.

Corollary 2.16. Let W be a finite dimensional subspace of an inner product space V.,
and let E denote the orthogonal projection of V- on W. Then, the map

BB —E)
is the orthogonal projection of V onto W+.
Proof.
(i) Fix p € V and set v:= 3 — E(f). If n € W, then
(8~ E(8)ln) =0

by Theorem 2.13. Hence,
yewt

(i) Furthermore, if 7 € W+, then
18—71> = |E(B)+8—EB)—7> = |EB) I+ 8—E(8)—7|]*+2Re(E(3)|6—E(5)—7)
However, E(3) € W, and 8 — E(3) € W so
B—EB(B)-TewW"
whence (E(B)|8 — E(B) — 1) = 0. Thus,
1B =71 =1EBI?+ 18- EQB) —7II> > |EB)I* =I5 - (8- EBG)I?
Hence, § — F(f3) is a best approximation to S by vectors in W+,

]

Theorem 2.17. Let W be a finite dimensional subspace of an inner product space V,
and let E : V — W denote the orthogonal projection of V- on W. Then,
(i) E is a linear transformtion
(ii) E is idempotent (ie. E* = E)
(iii) ker(E) = W+
(iv) Furthermore,
V=WaoWw"
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Proof.

(i) f a, 8 € V and ¢ € F, then set

(iii)

J o= cB(a) + E(B)
Now, since E(«), E(8) € W, we have that v € W. Furthermore, we know that
a—FE(a) € W and g — E(B) € W+

by Theorem 2.13. Hence,
(ca+B)—yeWt

since W+ is a subspace of V. Therefore, it follows from Theorem 2.13 that
E(ca+ ) =7

Hence, E is linear.

If v € W, then clear E() =+ since v is the best approximation to itself. Hence,
if B € V, one has

Thus, B2 = E.

Let B € V, then E(B) € W is the unique vector such that 3 — E(3) € W=. Hence,
if € WL, then
E(B)=0

Conversely, if 8 € V is such that E(3) = 0, then 8 = 3 — E(8) € W+. Thus,

ker(E) = W+

Finally, if 8 € V, then we may write
B=E(B)+ (8- Ep))
By Corollary 2.16, we have
E(8) € W and (8 — E(S)) e W+

Thus, V = W + W+, Since W N W+ = {0}, it follows that this is a direct sum

decomposition.

]

Corollary 2.18. Let W be a finite dimensional space of an inner product space V and
let E denote the orthogonal projection of V- on W. Then, (I — E) is the orthogonal
projection of V. on W=, It is an idempotent linear transformtion with range W+ and
kernel W.
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Proof. We know that (I — E) maps V to W+ by Corollary 2.16. Since E is a linear
transformation by Theorem 2.17, it follows that (I — E') is also linear. Furthermore,

(I-EP=(I-EI-E)=I+E*~-FE—-E=I+E-FE—-E=1-FE

Finally, observe that, for any g € V', one has (I — E)$ = 0 if and only if § = E(). This
happens (Check!) if and only if 5 € W. ]

Remark 2.19. The Gram-Schmidt orthogonalization process (Theorem 2.9) may now
be described geometrically as follows: Given a linearly independent set {51, fa, ..., Bn}
in an inner product space V', define operators P, P, ..., P, as follows:

P =1

and, for k > 1, set P, to be the orthogonal projection of V' on the orthogonal complement
of

Wy, == span{Si, Ba, ..., Br-1}

Such a map exists by Corollary 2.18. The Gram-Schmidt orthogonalization now yields
vectors

ap = DP(Br),1 <k<n

Corollary 2.20 (Bessel’s Inequality). Let {aq,ag,...,a,} be an orthogonal set of non-
zero vectors in an inner product space V. If 3 € V', then

| 5|04k: 2

and equality holds if and only if

B € span{ay, as, ..., a,}

Proof. Set

_ i (5|04k)ak
= llowl?
and
0:=f—n
Then, (y|0) = 0. Hence,
18I = 171" + 1011 = [l1I*

Finally, observe that

H7H2:<i(|]ﬁ ’“’Z foi?” >

k=1
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Since (o]o) = 0 if @ # j, we conclude that

il = Z e

This proves the inequality.
Now, equality holds if and only if 6 = 0; or, equivalently,

— (8
3=7=3 ot

k=1

This clearly implies that 5 € span{ay, ag, ..., a,}. Conversely, if 5 € span{ay, ag, ..., an},
then g = v by Corollary 2.8. [

Example 2.21. Let V' = ([0, 1], the space of continuous, complex-valued functions on
[0,1]. Then, for any f € C[0, 1], one has
< [[iswpa

/ f 727mkt dt

k=—n

(End of Week 13)

3. Linear Functionals and Adjoints

Remark 3.1.

(i) Let V' be a vector space over a field F. Recall (Definition III1.5.1) that a linear
functional is a linear transformation L : V' — F. Furthermore, we write V* :=
L(V, F) for the set of all linear functionals on V' (See Definition II1.5.3).

(ii) Consider the case V' = F". For a fixed n-tuple 5 := (ay, as,...,a,) € V, there is
an associated linear functional Lg : V' — F' given by

n

Lﬁ(xbl’m e 7%) = Zail‘i

i=1
Furthermore, every linear functional on F™ is of this form (See Example I11.5.2).

iii) Now suppose V' is an arbitrary inner product space with inner product (:|-). For
Yy
a fixed vector 5 € V, there is an associated linear functional Lz : V' — F given by

Lg(a) == ()

Note that this map is linear by the axioms of the inner product (Definition 1.1).
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We now show, just as in the case of F", that every linear functional on V' is of this form,
provided V is finite dimensional.

Theorem 3.2. Let V be a finite dimensional inner product space and L :'V — F be a
linear functional on V. Then, there exists a unique vector 3 € V such that

L(er) = (aP)
forall a € V.
Proof.
(i) Existence: Fix an orthonormal basis {aq, as,...,a,} of V (guaranteed by Corol-

lary 2.10). Set
f= ZL(O‘J')QJ
j=1

Then, for each 1 < i <n, we have
Lg(ew) = (il B) = ZL aj)(ailog) = L(ow)

Since Lg and L are both linear functionals that agree on a basis, it follows by
Theorem III.1.4 that
L=1Lg

as required.

(ii) Uniqueness: Suppose 3, 5" € V are such that Lz = Ly, then
(@B) = (a|F)
for all & € V. In particular, for « = § — ', we have
0=(alg—p)=8~-5"
Hence, 5 = (.
0

Theorem 3.3. Let V be a finite dimensional inner product space and T € L(V') be a
linear operator. Then, there exists a unique linear operator S € L(V') such that

(TalB) = (alSP)
forall a,f € V.
This operator is called the adjoint of T and is denoted by T™.
Proof.
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(i)

Existence: Fix f € V and consider L : V — F by
L(e) := (TeB)

Then L is a linear functional on V. Hence, by Theorem 3.2, there exists a unique
vector 3 € V such that

(alp) = (Talp)
for all « € V. Define S: V — V by

S(B) =4
so that
(a[SB) = (TalB)
for all a € V.
(i) S is well-defined: If g € V| then f’ € V is uniquely determined by the
equation

(@|8") = (Talp)
by Theorem 3.2. Hence, S is well-defined.
(ii) S is additive: Suppose [, 52 € V are chosen and (i, 5, € V are such that
(alfy) = (Talp) and (a|B;) = (Talf)
for all & € V. Then, let 8 := B + P2, then for any a € V' we have
(TalB) = (Talp) + (TalB) = (alfy) + (al5y) = (alBy + Bs)

Hence, by definition
S(B) = B1 + 5
as desired.
(iii) S respects scalar multiplication: Exercise (Similar to part (ii)).

Hence, we have constructed S € L(V') such that
(@|5(B)) = (Talf)

for all a, 5 € V.
Uniqueness: Suppose Si, Sy € L(V') such that

(a[51(8)) = (Te|B) = (| S25)
for all a, 3 € V. Then, for any g € V fixed,
(a]51(B)) = (a|S2(5))

for all & € V. As in the uniqueness of Theorem 3.2, we conclude that
S1 = 528
This is true for all g € V. Hence, S; = S.
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Theorem 3.4. Let V be a finite dimensional inner product space and let B := {ay, as, . ..
be an ordered orthonormal basis for V. Let T € L(V') be a linear operator and

A=[Tls
Then, Ay ; = (Tojlog).

Proof. Since B is an orthonormal basis, we have

n

a= Z(a|ak)ak

k=1

for any fixed a € V' (See Corollary 2.8). By definition of A, we have

TOéj = Z A]w'Oék
k=1
Hence,
Ay = (Tajlax)
as required. 0

The next corollary identifies the adjoint of an operator in terms of the matrix of the
operator in a fixed ordered orthonormal basis.

Corollary 3.5. Let V be a finite dimensional inner product space and T € L(V') be a
linear operator. If B is an ordered orthonormal basis for V, then the matriz

15
is the conjugate transpose of the matriz [Tg.

Proof. Set
A= [T]B and B := [T*}B

Then, by Theorem 3.4, we have
A]w’ = (Taj|ak) and Bk,j = (T*aj|0zk)

But, L
By; = (T"ajlan) = (aj|Tay) = (Taglay) = Ajx

as required. N

Remark 3.6.

(i) The adjoint of an operator 7" depends on the inner product.
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(ii) In an arbitrary ordered basis B that is not necessarily orthonormal, the relationship
between [T|s and [T*]z is more complicated than the one in Corollary 3.5.

Example 3.7.
(i) Let V = C™!, the space of complex n x 1 matrix with the inner product
(X|Y)=Y"X
Let A € C"*" be an n x n matrix and define T': V — V by
TX = AX
Then, for any Y € V., we have
(TX|)Y)=Y"AX = (A"Y)"' X = (X, A"Y)

Hence, T™ is the linear operator Y — A*Y. This is, of course, just a special case
of Corollary 3.5.

(ii) Let V = C™" with the inner product
(A|B) = trace(B*A)
Let M be a fixed n x n matrix and T': V' — V be the map
T(A):=MA
Then, for any B € V', one has
(TA|B) = trace(B*M A)
= trace(M AB™)
= trace(AB*M)
= trace(A(M*B))")
= (A|M"B)
Hence, T™ is the linear operator B +— M*B.

(iii) If £ is an orthogonal projection on a subspace W of an inner product space V,
then, for any vectors a, 5 € V', we have

(EalB) = (Ea|lES + (I — E)B)
= (EalEB) + (Ea|(I - E)p))

But Ea € W and (I — E)B € W+ by Corollary 2.16. Hence,
(Ea|p) = (Ea|EB)

Similarly,
(ol EB) = (EalEB)

Hence,
(el EB) = (EalB)
By uniqueness of the adjoint, it follows that £ = E*.

216



In what follows, we will frequently use the following fact: If Sy, Sy € L(V') are two linear
operators on a finite dimensional inner product space V' and

(S1(@)]8) = (S2()]B)
for all a, 8 € V. Then S| = S5. The same thing holds if
(a|S18) = (a|S28)
for all a, 8 € V. Now we prove some algebraic properties of the adjoint.

Theorem 3.8. Let V' be a finite dimensional inner product space. Let T, U € L(V') and
ce F. Then

(i) (T+U)*=T*+U*
(ii) (cT)* =¢T*
(i5i) (TU)* =U*T*
(iv) (T*)* =T
Proof.

(i) For a, B € V', we have

(T+ U)alB) = (Ta+ UalB)
= (Ta|B) + (UalB)
= (T"B) + (alU"P)
= (a|(T+ U)*8) = (a|(T" + U)B)

This is true for all o, 5 € V, so (by the uniqueness of the adjoint), we have
(T+U) =T"+U"

(ii) Exercise.
(ili) For o, B € V fixed, we have

(TU)a|B) = (T(U(a))]B)
= (U(a)|T75)
= (alUX(T"(8))

= (a|(TU)*B) = (a|(UT7)P)
Hence,
(TU) =U"T*

(iv) For «, 5 € V, we have
(@[(T7)"B) = (T", B) = (a|T'B)
Hence, T' = (T™)*.
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]

Definition 3.9. A linear operator 7' € L(V) is said to be self-adjoint or hermitian if
T=T".

Note that T is hermitian if and only if there is an ordered orthonormal basis B of V'
such that

T]s

is a self-adjoint matrix.

Definition 3.10. Let 7" € L(V) be a linear operator on a finite dimensional inner
product space V. Define

1 1
U = §(T+T*) and Uy := Z(T —T7)

Then, U; and U, are called the real and imaginary parts of T respectively.

Note that, if T € L(V') and U; and U, are as in Definition 3.10, then U; and U, are both
self-adjoint and
T = U + iU, (VIIL1)

Furthermore, suppose Sy, S5 are two self-adjoint operators such that
T =51 4+15

Then, we have (by Theorem 3.8) that

T =51 — iS5
Hence,
T+T
51: —; :UlandSQZUg

Hence, the expression in Equation VIII.1 is unique.

4. Unitary Operators

Recall that an isomorphism between vector spaces is a bijective linear map.

Definition 4.1. Let V and W be inner product spaecs over the same field F', and let
T :V — W be a linear transformation. We say that T’

(i) preserves inner products if (T'o|TB) = («|B) for all a, B € V.

(ii) is an isomorphism if T is bijective and preserves inner products.
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Note that, if T" is a linear transformation of inner product spaces that preserves inner
products, then for any o € V', one has

ITall = [l

Hence, T is necessarily injective. Furthermore, if T preserves inner products and is
bijective, then 7! is not only a linear map, but also preserves inner products. Hence,
this notion of isomorphism of inner product spaces is an equivalence relation (Compare
this with section 3). Hence, if such an isomorphism exists, we say that V' and W are
isomorphic. Compare the next theorem to Theorem I11.2.15.

Theorem 4.2. Let V and W be finite dimensional inner product spaces over the same
field F', having the same dimension, and let T : V. — W be a linear transformation.

Then, TFAE:
(i) T preserves inner products.
(i) T is an isomorphism of inner product spaces.
(11i) T carries every orthonormal basis for V onto an orthonormal basis for W

(iv) T carries some orthonormal basis for V' to an orthonormal basis for W.
Proof.

(1) = (d¢i): If T preserves inner products, then 7' is injective (as mentioned above). Since
dim(V) = dim(W), it must happen that T is surjective (by Theorem II1.2.15).
Thus, T is a vector space isomorphism.

(73) = (i4i): Suppose T' is an isomorphism and B = {a1,as,...,a,} is an orthonormal basis.
Then
(i, ) = b

Since T preserves inner products, it follows that
(TOéi, TO[j) = 6i,j

Hence, the set {T'(a1),T(a2),...,T(cv,)} is an orthonormal subset of W. Since
dim(W) = dim(V), it must form an orthonormal basis for W as well.

(131) = (iv): Obvious.

(iv) = (i): Let B = {aq,as,...,a,} bean orthonormal basis for V such that B’ = {T'(a), T(a), . . .

is an orthonormal basis for W. Then,
(TOdk, TOéj) = 5k,j

Now, for a, § € V fixed, we may express them as

n n

= 2(040%)0% and § = Z(ﬁlak)ak

k=1
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by Corollary 2.8. Hence

(Ta|TP) = < (oc]ozk)Tozk|Tﬁ>

k=1

= (alay)(Tay|TP)

=Y (alay) (Tak|2(5|%)Taj>

i=1
n n

= > (alan)(Bla)(Tay. Tay)

n n

=3 (alaw)(Bloy)(aklay)

k=1 j=1
= (a]f)

Hence, T' preserves inner products.

]

Corollary 4.3. Let V and W be two finite dimensional inner product spaces over the

same field F. Then, V and W are isomorphic (as inner product spaces) if and only if
dim(V) = dim(W).

Proof. Clearly, if V= W, then dim(V) = dim(W). Conversely, if dim(V') = dim (W),
then one may fix orthonormal bases B = {ay, s, ..., a,} and B’ = {1, fa, ..., Bn} of

V and W respectively (which exist by Corollary 2.10). Then, by Theorem III.1.4, there
is a linear map 7" : V' — W such that

Taj = b
for all 1 < 7 < n. This map is an isomorphism by Theorem 4.2. O
Example 4.4.
(i) Let V be an n-dimensional inner product space. Then, for any orthonormal basis
B ={aj,as,...,a,} of V one can define an isomorphism
T:V — F"
given by
Ta; =¢;
where {€1,€,...,€,} is the standard orthonormal basis for F™.
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(ii) Let V = C™!, the vector space of all complex n x 1 matrices, and let P € C"*"
be a fixed invertible matrix. Then, if G = P*P, then one can define two inner
products on V' by

(X|Y):=Y"X and [X|Y] :=Y"'GX

(See Example 1.2 (iii)). We write W for the vector space with the second inner
product, and define T": W — V by

TX .= PX
Then, T is clearly bijective. Furthermore,
(TX|TY)=(PY)'PX =Y'P'PX =Y*GX = [X|Y]

Hence, T preserves inner products, and is thus an isomorphism of inner product
spaces.

Lemma 4.5. Let V and W be inner product spaces over the same field F and let T :
V — W be a linear transformation. Then, T preserves inner products if and only if

[T = [|ev]
foralla e V.

Proof. Clearly, if T preserves inner products, then ||Ta| = ||«|| for all & € V' must hold.

Conversely, suppose T satisfies this condition, then we use the polarization identities
(See Remark 1.5). For instance, if F' = C, then this takes the form

(alB) = ZZ"HaH”ﬁHQ

for all o, 8 € V. Hence, it follows that

4 4 4

1 1 1
(Ta|TH) = ; ;i”HTaH"TBHQ =1 ;z‘“HT(aﬂ'”@)H? = Z i"[lac+i"B]* = (o] 5)
Thus, T" preserves inner products (The case when ' = R is entirely similar). ]

Definition 4.6. A unitary operator is an operator on an inner product space that is an
isomorphism onto itself.

Equivalently, it is an operator U : V — V that is surjective and preserves inner products,
or equivalently, satisfies
[Uall =[]l

for all & € V. Note that, if U; and U, are both unitaries, then U,U, is a unitary, and so
is U; . Hence, the set of all unitary operators in L(V) is a group.
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Theorem 4.7. Let U € L(V) be a linear operator on a finite dimensional inner product
space. Then, U is a unitary operator if and only if

vur=0"'U=1
Proof. Suppose U is a unitary operator, then for any o, 5 € V', one has

(U UalB) = Ual(UT)"B) = (Ua|UB) = (a|B)
Hence, U*U = I. Similarly, UU* = I holds as well.

Conversely, suppose U*U = UU* = I, then for any «, 8 € V, one has
(UalUp) = (UUa|B) = (alf)
Hence, U preserves the inner product. Furthermore, if Ua = 0, then
a=Ila=UTUa=0

Thus, U is injective. By Theorem II1.2.15, it follows that U is bijective, and thus a
unitary. O

Definition 4.8. An n X n matrix A is said to be a unitary if A* = AA* = I.

Note that, if A*A = I, then AA* = [ holds automatically by Corollary 1.4.9. Hence, A
is a unitary matrix if and only if, for all 1 <14, 7 < n, one has

n
> ArjAri =6
r=1

Thus, A is a unitary matrix if and only if the rows of A form an orthonormal collection of
vectors in F (with the standard inner product). Similarly, using the fact that AA* = I,
one sees that the columns of A must also form an orthonormal collection of vectors in
F™ (and hence an orthonormal basis).

Thus, a matrix A is unitary if and only if its rows (or its columns) form an orthonormal
basis for F"™ with the standard inner product.

Now, if B is an orthonormal basis for V' and 7' is any linear operator, then, if A := [Tz,
one has
[T"T]p = [T"]5[T]s = A"A

by Corollary 3.5. The next theorem is a simple corollary of this fact.

Theorem 4.9. Let U € L(V) be a linear operator on a finite dimensional inner product
space V. Then, U is a unitary operator if and only if there is an orthonormal basis B
of V' such that A := [U]p is a unitary matriz.
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Definition 4.10. A real or complex n x n matrix A is said to be orthogonal if A'A =
AAt =1,

Once again, if A'A = I, then one concludes that AA! = I automatically.

Now, observe that a real orthogonal matrix (ie. an orthogonal matrix with real entries)
is automatically unitary. Furthermore, a unitary matrix is orthogonal if and only if its
entries are all real.

Example 4.11.

(i) If A =|c]is a1 x 1 matrix, then A is orthogonal if and only if ¢ = £1 and A is
unitary if and only if ¢c = 1 (equivalently, ¢ = € for some 6 € R).

(i) Let
a= (1)

be a 2 x 2 matrix , then A is orthogonal if and only if
1 d —b
At — A1 =
ad — be (—C a )

1 = det(A'A) = det(A)?
so det(A) = +1. Hence, A is orthogonal if and only if

a b a b
Az(_b a) orA:(b —a)

where a,b € R are such that a® + b* = 1.

Since A is orthogonal,

(iii) For instance, if # € R, then the matrix

ao= (0 o)

is an orthogonal matrix. As an operator on R?, this represents a rotation by @
degrees.

(iv) Let
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If A is unitary, then

1 =det(A"A) = det(A") det(A) = det(A) det(A)

Hence, |det(A)| = 1, so det(A) = ¢ for some 6 € R. Hence, A is unitary if and

only if
a b
A= (—ewg ei‘g&)

where 6 € R and a,b € C are such that |a|> + [b> = 1.

Recall that the set U(n) of n X n unitary matrices forms a group under multiplication.
Set T"(n) to be the set of all lower-triangular matrices whose entries on the principal
diagonal are all positive. Note that every such matrix is necessarily invertible (since its
determinant would be non-zero). The next lemma is a short exercise. It can be proved
‘by hand’; or by a proof described in the textbook (See [Hoffman-Kunze, Page 306])

Lemma 4.12. T (n) is a group under matriz multiplication.

Theorem 4.13. Let B € C™" be an n X n invertible matrixz. Then, there exists a

unique lower-triangular matrix M with positive entries on the principal diagonal such
that U :== M B is unitary.

Proof.

(i) Existence: The rows /3, fa,. .., 3, form a basis for C". Let oy, q,...,a, be the
vectors obtained by the Gram-Schmidt process (Theorem 2.9). For each 1 <7 < k,
the set {a, g, ..., a} is an orthogonal basis for span{f;, Bs, ..., Bk}, and

k—1

Bl
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Then, M is lower-triangular and the entries on its principal diagonal are all posi-
tive. Furthermore, by construction, we have

n

- > M8

loell ~ 2

This implies that U = M B as required.

(ii) Uniqueness: Suppose M, My € T*(n) are such that M;B and M,B are both in
U(n). Since U(n) is a group, it follows that

MMyt = (M\B)(MyB)™ € U(n)
But, by Lemma 4.12,
MMy € T (n)
But, for any matrix U € U(n), one has
U* = Ufl
Thus,
(MM )" = (M My )~ € T (n)

But (M, M;*)* is the conjugate-transpose of a lower-triangular matrix, and is thus
upper-triangular. Thus, (M; My ')* is both lower and upper-triangular, and is thus
a diagonal matrix.

However, if a diagonal matrix is unitary, then each of its diagonal entries must have
modulus 1. Since the diagonal entries of M; M, ' are all positive real numbers, we

thus conclude that
MMy L=7p

whence M; = Ms, as required.

]

We set GL(n) to be the set of all n x n invertible matrices. Observe that GL(n) is also
a group under matrix multiplication. We conclude that

Corollary 4.14. For any B € GL(n), there exist unique matrices M € T*(n) and
U € U(n) such that
B=MU

Recall that two matrices A, B € F™*™ are similar if there exists an invertible matrix P
such that B = P~1AP.

Definition 4.15. Let A, B € F™*™ be two matrices. We say that they are

(i) wnitarily equivalent if there exists a unitary matrix U € U(n) such that B =
U tAU

(ii) orthogonally equivalent if there exists an orthogonal matrix P such that B =
P1AP.
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5. Normal Operators

The goal of this section is to answer the following question: Given a linear operator
T on a finite dimensional inner product space, under what conditions does V' have an
orthonormal basis consisting of characteristic vectors of 7?7 In other words, does there
exist an orthonormal basis B of V' such that [Tz is diagonal?

Clearly, T" must be diagonalizable in the sense of Definition VI.2.7. To see if we need
something more, we begin with a necessary condition. Suppose B = {ay, aq, ..., a,} is
an orthonormal basis with the property that

TOéj:CjOéj, j:1,2,...,7’l

Then, [Tz is a diagonal matrix, so by Theorem V.4.6, the matrix [T%|5 is also diagonal,
with diagonal entries ¢;. In other words,

T oy, = oy, k=1,2,...,n

If V is a real inner product space, then ¢, = ¢, so it must happen that T = T™.

If V is a complex inner product space, then it must happen that
TTr* =T"T
because any two diagonal matrices commute with each other. It turns out, this condition

is enough to ensure that such a basis exists.

Definition 5.1. We say that an operator 7' € L(V') defined on an inner product space
is normal if
T =TT

Clearly, every self-adjoint operator is normal, every unitary operator is normal; however
sums and products of normal operators need not be normal. We begin our study with
self-adjoint operators.

Theorem 5.2. Let V be an inner product space and T € L(V') be self-adjoint. Then,

(i) Each characteristic value of T' is real.

(ii) Characteristic vectors associated to different characteristic values are orthogonal.
Proof.

(i) Suppose ¢ € F' is a characteristic value of T" with characteristic vector «, then
a # 0, and

c(ala) = (cala) = (Ta|a)
= (a|T"a) = (o|Ta)

= (a]ca) = ¢(a|a)

Since (aja) # 0, it follows that ¢ = ¢, so that ¢ € R.
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(ii) Suppose T8 = df$ and d # ¢ and [ # 0, then

c(a|B) = (calB) = (T'a|B)

= (a|T"B) = (a|TB)
= (a]dB) = d(a|B)
= d(a|f)
Where the last equality follows from part (i). Since ¢ # d, it follows that («|f) =

0.0
[l

Theorem 5.3. Let V' # {0} be a finite dimensional inner product space and 0 # T €
L(V) be self-adjoint. Then, T has a non-zero characteristic value.

Proof. Let n := dim(V') > 0 and B be an orthonormal basis for V', and let
A= [T]g
Then, A = A*. Let W be the space of all n x 1 matrices over C with inner product
(XY):=Y"X

Define U : W — W be given by UX := AX, then U is a self-adjoint linear operator on
W, and the characteristic polynomial of U is

f=det(zl — A)

By the fundamental theorem of algebra, f has a root ¢ € C. Thus, there exists X € W
non-zero such that
AX =cX

Since U is self-adjoint, it follows by Theorem 5.2 that ¢ € R is real. Now consider two
cases:

(i) If V' is a complex inner product space, then we immediately obtain o € V' such
that Ta = ca.

(ii) If V is a real inner product space, then A has real entries. Since (A — ¢I) has real
entries, it follows that we may choose X to have real entries. Thus, there exists
a € V such that
Ta=cA

]

Theorem 5.4. Let V be a finite dimensional inner product space and T € L(V). If
W C V is a T-invariant subspace, then W+ is T*-invariant.
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Proof. Suppose W is T-invariant and @ € W+. We wish to show that T*(a) € W+. For
this, fix § € W, and note that

(T™()|B) = (a|TB) = 0
because T3 € W. This is true for all 5 € W, so T*a € W+ as required. n

Theorem 5.5. Let V' be a finite dimensional inner product space and T € L(V') be self-
adjoint. Then, there is an orthonormal basis of V', each vector of which is a characteristic
vector of T.

Proof. Assume dim(V') > 0. By Theorem 5.3, there exists ¢ € F' and a € V such that
a # 0 and

Ta = co

Set a; := a/||c|, then {a;} is orthonormal. Hence, if dim(V') = 1, then we are done.

Now suppose dim(V') > 1 and assume that the theorem is true for any self-adjoint
operator S € L(IW) on an inner product space V' with dim(V’) < dim(V). If oy as
above, set

W := span({a1 })

Then, W is T-invariant. So, by Theorem 5.4, V' := W+ is T*-invariant. But T = T*,
so we have a direct sum decomposition

V=waoV

of V into T-invariant subspaces. Now consider S := Ty € L(V'). By induction hy-
pothesis, V’ has an orthonormal basis B’ = {as, as,...,a,} each vector of which is a
characteristic vector of S. Thus,

B = {ozl,ozg, e ,O{n}
is an orthonormal basis for V', each vector of which is a characteristic vector of T'. [

The next corollary follows from Theorem 5.5 by applying it to the vector space V = C™**!.
Check the details!

Corollary 5.6. Let A be an n x n Hermitian (self-adjoint) matriz. Then, there is a
unitary matriz P such that P~YAP is diagonal. If A is a real symmetric matriz, then
there is a real orthogonal matriz P such that P~YAP is diagonal.

We now look to understand normal operators.

Theorem 5.7. Let V' be a finite dimensional inner product space and T € L(V') be
normal. If ¢ € F is a characteristic value of T with characteristic vector o, then ¢ is a
characteristic value of T™ with characteristic vector a.
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Proof. Suppose S is normal and g € V, then
ISBII* = (SBISB) = (B|S*SB) = (BISS*B) = (S*B|S*B) = 15" B|*
Hence, taking S = (T" — ¢I) (which is normal) and 5 = «, we see that
0= (T = chall = [(T* =2l)a]]
Thus, T*a = ¢a as required. ]

Theorem 5.8. Let V' be a finite dimensional complez inner product space and T € L(V)
be a normal operator. Then, there is an orthonormal basis of V', each vector of which is
a characteristic vector of T

Proof. Once again, we proceed by induction on dim(V'). Note that, since V' is assumed
to be a complex inner product space, every operator on V' has at least one characteristic
value (since the characteristic polynomial has a root by the fundamental theorem of
algebra). Therefore, if dim(V') = 1, there is nothing to prove.

Now suppose dim(V') > 1 and that the theorem is true for any complex inner product
space V' with dim(V’) < dim(V). Then, let a € V be a characteristic vector of T’
associated to any fixed characteristic value ¢ € C. Furthermore, taking a; := o/||¢||,
we set

W := span({a1 })

Then, W is T-invaraint. Hence, W+ is invaraint under 7 by Theorem 5.4.

However, by Theorem 5.7, W is also invariant under 7. Hence, W+ is invariant under
T = (T*)* as well. Thus, if
V=Wt
Then V' is invariant under 7" and T*. Thus, if S := Ty, then S is normal because
S* = T*|y» and these two operators must commute. Hence, by induction hypothesis, V’
has an orthonormal basis B’ = {as, as, . .., a,} consisting of characteristic vectors of S.
Hence,
B = {061,052,...,04”}

is an orthonormal basis of V' consisting of characteristic vectors of T'. O

Note that an n x n matrix A is said to be normal if AA* = A*A. The next corollary
follows from Theorem 5.8 as before.

Corollary 5.9. For every normal matriz A, there is a unitary matriz U such that
U—LAU is diagonal.

Remark 5.10.

(i) Theorem 5.8 is an important theorem, called the Spectral Theorem. Its generaliza-
tion to the case of infinite dimensional inner product spaces is a deep result that
you may learn in your fifth year.

229



(ii) The Spectral theorem does not hold for real inner product spaces. For instance,
a normal operator on such an inner product space may not even have one charac-
teristic value. For instance, we may consider the linear operator 7' € L(R?) given
in the standard basis by the matrix

(0 )

You may check that for most values of § € R such an operator has no (real)
characteristic values. However, such an opertor is always normal.

230



IX. Instructor Notes

(i) Given that the semester was entirely online, my expectations were low, but the
course was truly abysmal. I was simply recording videos and uploading them every
week with virtually no feedback from the students.

(ii) The assessment, hampered by poor administrative guidelines, was meaningless
as the students copied everything. Therefore, from my perspective, the entire
semester was a wash-out.

(iii) The material though, is fine, and can be used for future courses as is.
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