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I. Preliminaries

1. Fields

Throughout this course, we will be talking about “Vector spaces”, and “Fields”. The
definition of a vector space depends on that of a field, so we begin with that.

Example 1.1. Consider F = R, the set of all real numbers. It comes equipped with
two operations: Addition and multiplication, which have the following properties:

(i) Addition is commutative
x+ y = y + x

for all x, y ∈ F
(ii) Addition is associative

x+ (y + z) = (x+ y) + z

for all x, y, z ∈ F .

(iii) There is an additive identity, 0 (zero) with the property that

x+ 0 = 0 + x = x

for all x ∈ F
(iv) For each x ∈ F , there is an additive inverse (−x) ∈ F which satisfies

x+ (−x) = (−x) + x = 0

(v) Multiplication is commutative
xy = yx

for all x, y ∈ F
(vi) Multiplication is associative

x(yz) = (xy)z

for all x, y, z ∈ F
(vii) There is a multiplicative identity, 1 (one) with the property that

x1 = 1x = x

for all x ∈ F
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(viii) To each non-zero x ∈ F , there is an multiplicative inverse x−1 ∈ F which satisfies

xx−1 = x−1x = 1

(ix) Finally, multiplication distributes over addition

x(y + z) = xy + xz

for all x, y, z ∈ F .

Definition 1.2. A field is a set F together with two operations

Addition : (x, y) 7→ x+ y

Multiplication : (x, y) 7→ xy

which satisfy all the conditions 1.1-1.9 above. Elements of a field will be termed scalars.

Example 1.3. (i) F = R is a field.

(ii) F = C is a field with the usual operations

Addition : (a+ ib) + (c+ id) := (a+ c) + i(b+ d), and

Multiplication : (a+ ib)(c+ id) := (ac− bd) + i(ad+ bc)

(iii) F = Q, the set of all rational numbers, is also a field. In fact, Q is a subfield of R
(in the sense that it is a subset of R which also inherits the operations of addition
and multiplication from R). Also, R is a subfield of C.

(iv) F = Z is not a field, because 2 ∈ Z does not have a multiplicative inverse.

Standing Assumption: For the rest of this course, all fields will be denoted by F , and
will either be R or C, unless stated otherwise.

2. Matrices and Elementary Row Operations

Definition 2.1. Let F be a field and n,m ∈ N be fixed integers. Given m scalars
(y1, y2, . . . , ym) ∈ Fm and nm elements {ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, we wish to find n
scalars (x1, x2, . . . , xn) ∈ F n which satisfy all the following equations

a1,1x1 + a1,2x2 + . . .+ a1,nxn = y1

a2,1x1 + a2,2x2 + . . .+ a2,nxn = y2
...

am,1x1 + am,2x2 + . . .+ am,nxn = ym

This problem is called a system of m linear equations in n unknowns. A tuple (x1, x2, . . . , xn) ∈
F n that satisfies the above system is called a solution of the system. If y1 = y2 = . . . =
ym = 0, then the system is called a homogeneous.
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We may express a system of linear equations more simply in the form

AX = Y

where

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

...
...

am,1 am,2 . . . am,n

 , X :=


x1
x2
...
xn

 , and Y :=


y1
y2
...
ym


The expression A above is called a matrix of coefficients of the system, or just an m×n
matrix over the field F . The term ai,j is called the (i, j)th entry of the matrix A. In this
notation, X is an n× 1 matrix, and Y is an m× 1 matrix.

In order to solve this system, we employ the method of row reduction. You would have
seen this in earlier classes on linear algebra, but we now formalize it with definitions and
theorems.

Definition 2.2. Let A be an m× n matrix. An elementary row operation associates to
A a new m× n matrix e(A) in one of the following ways:

E1: Multiplication of one row of A by a non-zero scalar: Choose 1 ≤ r ≤ m and a
non-zero scalar c, then

e(A)i,j = Ai,j if i 6= r and e(A)r,j = cAr,j

E2: Replacement of the rth row of A by row r plus c times row s, where c ∈ F is any
scalar and r 6= s:

e(A)i,j = Ai,j if i 6= r and e(A)r,j = Ar,j + cAs,j

E3: Interchange of two rows of A:

e(A)i,j = Ai,j if i /∈ {r, s} and e(A)r,j = As,j and e(A)s,j = Ar,j

The first step in this process is to observe that elementary row operations are reversible.

Theorem 2.3. To every elementary row operation e, there is an operation e1 of the
same type such that

e(e1(A)) = e1(e(A)) = A

for any m× n matrix A.

Proof. We prove this for each type of elementary row operation from Definition 2.2.

E1: Define e1 by
e1(B)i,j = Bi,j if i 6= r and e1(B)r,j = c−1Br,j
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E2: Define e1 by

e1(B)i,j = Bi,j if i 6= r and e1(B)r,j = Br,j − cBs,j

E3: Define e1 by
e1 = e

Definition 2.4. Let A and B be two m × n matrices over a field F . We say that A
is row-equivalent to B if B can be obtained from A by finitely many elementary row
operations.

By Theorem 2.3, this is an equivalence relation on the set Fm×n. The reason for the
usefulness of this relation is the following result.

Theorem 2.5. If A and B are row-equivalent, then for any vector X ∈ F n,

AX = 0⇔ BX = 0

Proof. By Theorem 2.3, it suffices to show that AX = 0 ⇒ BX = 0. Furthermore, we
may assume without loss of generality that B is obtained from A by a single elementary
row operations. So fix X = (x1, x2, . . . , xn) ∈ F n that satisfies AX = 0. Then, for each
1 ≤ i ≤ m, we have

(AX)i =
n∑
j=1

ai,jxj = 0

We wish to show that

(BX)i =
n∑
j=1

bi,jxj = 0

We consider the different possible operations as in Definition 2.2

E1: Here, we have

(BX)i = (AX)i if i 6= r and (BX)r = c(AX)r

E2: Here, we have

(BX)i = (AX)i if i 6= r and (BX)r = (AX)r + c(AX)s

E3: Here, we have

(BX)r = (AX)i if i /∈ {r, s} and (BX)r = (AX)s and (BX)s = (AX)r

In all three cases, BX = 0 holds.
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Definition 2.6. (i) An m× n matrix R is said to be row-reduced if

(i) The first non-zero entry of each non-zero row of R is equal to 1.

(ii) Each column of R which contains the leading non-zero entry of some row has
all other entries zero.

(ii) R is said to be a row-reduced echelon matrix if R is row-reduced and further satisfies
the following conditions

(i) Every row of R which has all its entries 0 occurs below every non-zero row.

(ii) If R1, R2, . . . , Rr are the non-zero rows of R, and if the leading non-zero entry
of Ri occurs in column ki, 1 ≤ i ≤ r, then

k1 < k2 < . . . < kr

Example 2.7. (i) The identity matrix I is an n × n (square) matrix whose entries
are

Ii,j = δi,j =

{
1 : i = j

0 : i 6= j

This is clearly a row-reduced echelon matrix.

(ii) 0 0 1 2
1 0 0 3
0 1 0 4


is row-reduced, but not row-reduced echelon.

(iii) The matrix 0 2 1
1 0 3
0 1 4


is not row-reduced.

We now give an example to convert a given m × n matrix to a row-reduced echelon
matrix by a sequence of elementary row operations. This will give us the idea to prove
the next theorem.

Example 2.8. Set

A =


0 −1 3 2
0 0 0 0
1 4 0 −1
2 6 −1 5


We do this in the following steps, indicating each procedure by the notation from Defi-
nition 2.2.
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E3: By interchanging rows 2 and 4, we ensure that the first 3 rows are non-zero, while
the last row is zero. 

0 −1 3 2
1 4 0 −1
2 6 −1 5
0 0 0 0


(i) By interchanging row 1 and 3, we ensure that, for each row Ri, if the first non-zero

entry occurs in column ki, then k1 < k2 < . . . < kn. Here, we get
2 6 −1 5
1 4 0 −1
0 −1 3 2
0 0 0 0


E1: The first non-zero entry of Row 1 is at a1,1 = 2. We multiply the row by a−11,1 to

get 
1 3 −1

2
5
2

1 4 0 −1
0 −1 3 2
0 0 0 0


E2: For each following non-zero row, replace row i by (row i + (−ai,1 times row 1)).

This ensures that the first column has only one non-zeroe entry, at a1,1.
1 3 −1

2
5
2

0 1 1
2

−7
2

0 −1 3 2
0 0 0 0


In the previous two steps, we have ensured that the first non-zero entry of row 1
is 1, and the rest of the column has the entry 0. This process is called pivoting,
and the element a1,1 is called the pivot. The column containing this pivot is called
the pivot column (in this case, that is column 1).

E1: The first non-zero entry of Row 2 is at a2,2 = 1. We now pivot at this entry. First,
we multiply the row by a−12,2 to get

1 3 −1
2

5
2

0 1 1
2

−7
2

0 −1 3 2
0 0 0 0


E2: For each other row, replace row i by (row i + (−ai,2 times row 2)). Notice that

this does not change the value of the leading 1 in row 1. In this process, every
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other entry of column 2 other than a2,2 becomes zero.
1 0 −2 13
0 1 1

2
−7
2

0 0 7
2

−3
2

0 0 0 0


E1: The first non-zero entry of Row 3 is at a3,3 = 7

2
. We pivot at this entry. First, we

multiply the row by a−13,3 to get 
1 0 −2 13
0 1 1

2
−7
2

0 0 1 −3
7

0 0 0 0


E2: For each other row, replace row i by (row i + (−ai,3 times row 3)). Note that this

does not change the value of the leading 1’s in row 1 and 2. In this process, every
other entry of column 3 other than a3,3 becomes zero.

1 0 0 85
7

0 1 0 −23
7

0 0 1 −3
7

0 0 0 0


There are no further non-zero rows, so the process stops. What we are left with a
row-reduced echelon matrix.

A formal version of this algorithm will result in a proof. We avoid the gory details, but
refer the interested reader to [Hoffman-Kunze, Theorem 4 and 5].

Theorem 2.9. Every m × n matrix over a field F is row-equivalent to a row-reduced
echelon matrix.

Lemma 2.10. Let A be an m× n matrix with m < n. Then the homogeneous equation
AX = 0 has a non-zero solution.

Proof. Suppose first that A is a row-reduced echelon matrix. Then A has r non-zero
rows, whose non-zero entries occur at the columns k1 < k2 < . . . < kr. Suppose
X = (x1, x2, . . . , xn), then we relabel the (n−r) variables {xj : j 6= ki} as u1, u2, . . . , un−r.
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The equation AX = 0 now has the form

xk1 +

(n−r)∑
j=1

c1,juj = 0

xk2 +

(n−r)∑
j=1

c2,juj = 0

...

xkr +

(n−r)∑
j=1

cr,juj = 0

Now observe that r ≤ m < n, so we may choose any values for u1, u2, . . . , un−r, and
calculate the {xkj : 1 ≤ j ≤ r} from the above equations.

For instance, if c1,1 6= 0, then take

u1 = 1, u2 = u3 = . . . = un−r = 0

which gives a non-trivial solution to the above system of equations.

Now suppose A is not a row-reduced echelon matrix. Then by Theorem 2.9, A is row-
equivalent to a row-reduced echelon matrix B. By hypothesis, the equation BX = 0
as a non-zero solution. By Theorem 2.5, the equation AX = 0 also has a non-trivial
solution.

Theorem 2.11. Let A be an n × n matrix, then A is row-equivalent to the identity
matrix if and only if the system of equations AX = 0 has only the trivial solution.

Proof. Suppose A is row-equivalent to the identity matrix, then the equation IX = 0
has only the trivial solution, so the equation AX = 0 has only the trivial solution by
Theorem 2.5.

Conversely, suppose AX = 0 has only the trivial solution, then let R denote a row-
reduced echelon matrix that is row-equivalent to A. Let r be the number of non-zero
rows in R, then by the argument in the previous lemma, r ≥ n.

But R has n rows, so r ≤ n, whence r = n. Hence, R must have n non-zero rows, each
of which has a leading 1. Furthermore, each column has exactly one non-zero entry, so
R must be the identity matrix.

3. Matrix Multiplication

Definition 3.1. Let A = (ai,j) be an m × n matrix over a field F and B = (bk,`) be
an n× p matrix over F . The product AB is the m× p matrix C whose (i, j)th entry is
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given by

ci,j :=
n∑
k=1

ai,kbk,j

Example 3.2. (i) If

A =

(
1 2 −4
3 2 7

)
, and B =

−1 3
4 8
3 1


Then C := AB is a 2× 2 matrix given by

c1,1 = 1(−1) + 2(4) + (−4)(3) = −5

c1,2 = 1(3) + 2(8) + (−4)(1) = 15

c2,1 = 3(−1) + 2(4) + 7(3) = 26

c2,2 = 3(3) + 2(8) + 7(1) = 32

(ii) The identity matrix is

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1


n×n

If A is any m× n matrix, then
AI = A

Similarly, if B is an n× p matrix, then

IB = B

Theorem 3.3. Matrix multiplication is associative.

Proof. Let A,B,C be m×n, n×k, and k×` matrices over F respectively. Let D := BC
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and E := AB. Then

[A(BC)]i,j = [AD]i,j =
n∑
s=1

ai,sds,j

=
n∑
s=1

ai,s

(
k∑
t=1

bs,tct,j

)

=
n∑
s=1

k∑
t=1

ai,sbs,tct,j

=
k∑
t=1

(
n∑
s=1

ai,sbs,t

)
ct,j

=
k∑
t=1

ei,tct,j

= [EC]i,j = [(AB)C]i,j

This is true for all 1 ≤ i ≤ m, 1 ≤ j ≤ `, so (AB)C = A(BC).

An m× n matrix over F is called a square matrix if m = n.

Definition 3.4. An m×m matrix is said to be an elementary matrix if it is obtained
from the m×m identity matrix by means of a single elementary row operation.

Example 3.5. A 2× 2 elementary matrix is one of the following:

E1: (
c 0
0 1

)
or

(
1 0
0 c

)
for some non-zero c ∈ F .

E2: (
1 c
0 1

)
or

(
1 0
c 1

)
for some scalar c ∈ F .

E3: (
0 1
1 0

)
Theorem 3.6. Let e be an elementary row operation and E = e(I) be the associated
m×m elementary matrix. Then

e(A) = EA

for any m× n matrix A.

Proof. We consider each elementary operation
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E1: Here, the elementary matrix E = e(I) has entries

Ei,j =


0 : i 6= j

1 : i = j, i 6= r

c : i = j = r

And
e(A)i,j = Ai,j if i 6= r and e(A)r,j = cAr,j

But an easy calculation shows that

(EA)i,j =
m∑
k=1

Ei,kAk,j = Ei,iAi,j =

{
Ai,j : i 6= r

cAi,j : i = r

Hence, EA = e(A).

E2: This is similar, and done in [Hoffman-Kunze, Theorem 9].

E3: We leave this for the reader.

The next corollary follows from the definition of row-equivalence and Theorem 3.6.

Corollary 3.7. Let A and B be two m × n matrices over a field F . Then B is row-
equivalent to A if and only if B = PA, where P is a product of m × m elementary
matrices.

4. Invertible Matrices

Definition 4.1. Let A and B be n× n square matrices over F . We say that B is a left
inverse of A if

BA = I

where I denotes the n×n identity matrix. Similarly, we say that B is a right inverse of
A if

AB = I

If AB = BA = I, then we say that B is the inverse of A, and that A is invertible.

Lemma 4.2. If A has a left-inverse B and a right-inverse C, then B = C.

Proof.
B = BI = B(AC) = (BA)C = IC = C

In particular, we have shown that if A has an inverse, then that inverse is unique. We
denote this inverse by A−1.
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Theorem 4.3. Let A and B be n× n matrices over F .

(i) If A is invertible, then so is A−1 and (A−1)−1 = A

(ii) If A and B are invertible, then so is AB and (AB)−1 = B−1A−1. Hence, the
product of finitely many invertible matrices is invertible.

Proof. (i) If A is invertible, then there exists B so that AB = BA = I. Now B = A−1,
so since BA = AB = I, it follows that B is invertible and B−1 = A.

(ii) Let C = A−1 and D = B−1, then

(AB)(DC) = A(BD)C = AIC = AC = I

Similarly, (DC)(AB) = I, whence AB is invertible and (AB)−1 = DC as required.

Theorem 4.4. An elementary matrix is invertible.

Proof. Let E be the elementary matrix corresponding to a row operation e. Then by
Theorem 2.3, there is an inverse row operation e1 such that e1(e(A)) = e(e1(A)) = A.
Let B be the elementary matrix corresponding to e1, then

EBA = BEA = A

for any matrix A. In particular, EB = BE = I, so E is invertible.

Example 4.5. Consider the 2× 2 elementary matrices from Example 3.5. We have(
c 0
0 1

)−1
=

(
c−1 0
0 1

)
(

1 0
0 c

)−1
=

(
1 0
0 c−1

)
(

1 c
0 1

)−1
=

(
1 −c
0 1

)
(

1 0
c 1

)−1
=

(
1 0
−c 1

)
(

0 1
1 0

)−1
=

(
0 1
1 0

)
Theorem 4.6. For an n× n matrix A, the following are equivalent:

(i) A is invertible.

(ii) A is row-equivalent to the n× n identity matrix.

(iii) A is a product of elementary matrices.
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Proof. We prove (i)⇒ (ii)⇒ (iii)⇒ (i). To begin, we let R be a row-reduced echelon
matrix that is row-equivalent to A (by Theorem 2.9). By Theorem 3.6, there is a matrix
P that is a product of elementary matrices such that

R = PA

(i)⇒ (ii): By Theorem 4.4 and Theorem 4.3, it follows that P is invertible. Since A is
invertible, it follows that R is invertible. Since R is a row-reduced echelon square
matrix, R is invertible if and only if R = I. Thus, (ii) holds.

(ii)⇒ (iii): If A is row-equivalent to the identity matrix, then R = I in the above equation.
Thus, A = P−1. But the inverse of an elementary matrix is again an elementary
matrix. Thus, by Theorem 4.3, P−1 is also a product of elementary matrices.

(iii)⇒ (i): This follows from Theorem 4.4 and Theorem 4.3.

The next corollary follows from Theorem 4.6 and Corollary 3.7.

Corollary 4.7. Let A and B be m× n matrices. Then B is row-equivalent to A if and
only if B = PA for some invertible matrix P .

Theorem 4.8. For an n× n matrix A, the following are equivalent:

(i) A is invertible.

(ii) The homogeneous system AX = 0 has only the trivial solution X = 0.

(iii) For every vector Y ∈ F n, the system of equations AX = Y has a solution.

Proof. Once again, we prove (i)⇒ (ii)⇒ (i), and (i)⇒ (iii)⇒ (i).

(i)⇒ (ii): Let B = A−1 and X be a solution to the homogeneous system AX = 0, then

X = IX = (BA)X = B(AX) = B(0) = 0

Hence, X = 0 is the only solution.

(ii)⇒ (i): Suppose AX = 0 has only the trivial solution, then A is row-equivalent to the
identity matrix by Theorem 2.11. Hence, A is invertible by Theorem 4.6.

(i)⇒ (iii): Given a vector Y , consider X := A−1Y , then AX = Y by associativity of matrix
multiplication.

(iii)⇒ (i): Let R be a row-reduced echelon matrix that is row-equivalent to A. By Theo-
rem 4.6, it suffices to show that R = I. Since R is a row-reduced echelon matrix,
it suffices to show that the nth row of R is non-zero. So set

Y = (0, 0, . . . , 1)

Then the equation RX = Y has a solution, which must necessarily be non-zero
(since Y 6= 0). Thus, the last row of R cannot be zero. Hence, R = I, whence A
is invertible.

16



Corollary 4.9. A square matrix which is either left or right invertible is invertible.

Proof. Suppose A is left-invertible, then there exists a matrix B so that BA = I. If X
is a vector so that AX = 0, then X = B(AX) = (BA)X = 0. Hence, the equation
AX = 0 has only the trivial solution. By Theorem 4.8, A is invertible.

Now suppose A is right-invertible, then there exists a matrix B so that AB = I. If Y is
any vector, then X := B(Y ) has the property that AX = Y . Hence, by Theorem 4.8,
A is invertible.

Corollary 4.10. Let A = A1A2 . . . Ak where the Ai are n × n matrices. Then, A is
invertible if and only if each Ai is invertible.

Proof. If each Ai is invertible, then A is invertible by Theorem 4.3. Conversely, suppose
A is invertible and X is a vector such that AkX = 0, then

AX = (A1A2 . . . Ak−1)AkX = 0

Since A is invertible, this forces X = 0. Hence, the only solution to the equation
AkX = 0 is the trivial solution. By Theorem 4.8, it follows that Ak is invertible. Hence,

A1A2 . . . Ak−1 = AA−1k

is invertible. Now, by induction on k, each Ai is invertible for 1 ≤ i ≤ k− 1 as well.

(End of Week 1)
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II. Vector Spaces

1. Definition and Examples

Definition 1.1. A vector space V over a field F is a set together with two operations:

(Addition) + : V × V → V given by (α, β) 7→ α + β

(Scalar Multiplication) · : F × V → V given by (c, α) 7→ cα

with the following properties:

(i) Addition is commutative
α + β = β + α

for all α, β ∈ V
(ii) Addition is associative

α + (β + γ) = (α + β) + γ

for all α, β, γ ∈ V
(iii) There is a unique zero vector 0 ∈ V which satisfies the equation

α + 0 = 0 + α = α

for all α ∈ V
(iv) For each vector α ∈ V , there is a unique vector (−α) ∈ V such that

α + (−α) = (−α) + α = 0

(v) For each α ∈ V ,
1 · α = α

(vi) For every c1, c2 ∈ F and α ∈ V ,

(c1c2)α = c1(c2α)

(vii) For every c ∈ F and α, β ∈ V ,

c(α + β) = cα + cβ

(viii) For every c1, c2 ∈ F and α ∈ V ,

(c1 + c2)α = c1α + c2α
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An element of the set V is called a vector, while an element of F is called a scalar.

Technically, a vector space is a tuple (V, F,+, ·), but usually, we simply say that V is a
vector space over F , when the operations + and · are implicit.

Example 1.2. (i) The n-tuple space F n: Let F be any field and V be the set of all
n-tuples α = (x1, x2, . . . , xn) whose entries xi are in F . If β = (y1, y2, . . . , yn) ∈ V
and c ∈ F , we define addition by

α + β := (x1 + y1, x2 + y2, . . . , xn + yn)

and scalar multiplication by

c · α := (cx1, cx2, . . . , cxn)

One can then verify that V = F n satisfies all the conditions of Definition 1.1.

(ii) The space of m × n matrices Fm×n: Let F be a field and m,n ∈ N be positive
integers. Let Fm×n be the set of all m×n matrices with entries in F . For matrices
A,B ∈ Fm×n, we define addition by

(A+B)i,j := Ai,j +Bi,j

and scalar multiplication by
(cA)i,j := cAi,j

for any c ∈ F . [Observe that F 1×n = F n from the previous example]

(iii) The space of functions from a set to a field : Let F be a field and S a non-empty
set. Let V denote the set of all functions from S taking values in F . For f, g ∈ V ,
define

(f + g)(s) := f(s) + g(s)

where the addition on the right-hand-side is the addition in F . Similarly, scalar
multiplication is defined pointwise by

(cf)(s) := cf(s)

which the multiplication on the right-hand-side is that of F . Once again, it is easy
to verify the axioms (note that zero vector here is zero function).

� If S = {1, 2, . . . , n}, then the function f : S → F may be identified with a
tuple (f(1), f(2), . . . , f(n)). Conversely, any n-tuple (x1, x2, . . . , xn) may be
thought of as a function. This identification shows that the first example is
a special case of this example.

� Similarly, if S = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, then any function f : S →
F may be identified with a matrix A ∈ Fm×n where Ai,j := f(i, j). This
identification is a bijection between the set of functions from S → F and the
space Fm×n. Thus, the second example is also a special case of this one.
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(iv) The space of polynomial functions over a field : Let F be a field, and V be the set
of all functions f : F → F which are of the form

f(x) = c0 + c1x+ . . .+ cnx
n

for some scalars c0, c1, . . . , cn ∈ F . Such a function is called a polynomial function.
With addition and scalar multiplication defined exactly as in the previous example,
V forms a vector space.

(v) Let C denote the set of all complex numbers and F = R. Then C may be thought
of as a vector space over R. In fact, C may be identified with R2.

Lemma 1.3. (i) For any c ∈ F ,
c0 = 0

where 0 ∈ V denotes the zero vector.

(ii) If c ∈ F is a non-zero scalar and α ∈ V such that

cα = 0

Then α = 0

(iii) For any α ∈ V
(−1)α = −α

Proof. (i) For any c ∈ F ,

0 + c0 = c0 = c(0 + 0) = c0 + c0

Hence, c0 = 0

(ii) If c ∈ F is non-zero and α ∈ V such that

cα = 0

Then
c−1(cα) = 0

But
c−1(cα) = (c−1c)α = 1α = α

Hence, α = 0

(iii) For any α ∈ V ,

α + (−1)α = 1α + (−1)α = (1 + (−1))α = 0α = 0

But α + (−α) = 0 and (−α) is the unique vector with this property. Hence,

(−1)α = (−α)
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Remark 1.4. Since vector space addition is associative, for any vectors α1, α2, α3, α4 ∈
V , we have

α1 + (α2 + (α3 + α4))

can be written in many different ways by moving the parentheses around. For instance,

(α1 + α2) + (α3 + α4)

denotes the same vector. Hence, we simply drop all parentheses, and write this vector
as

α1 + α2 + α3 + α4

The same is true for any finite number of vectors α1, α2, . . . , αn ∈ V , so the expression

α1 + α2 + . . .+ αn

denotes the common vector associated to all possible re-arrangements of parentheses.

The next definition is the most fundamental operation in a vector space, and is the
reason for defining our axioms the way we have done.

Definition 1.5. Let V be a vector space over a field F , and α1, α2, . . . , αn ∈ V . A
vector β ∈ V is said to be a linear combination of α1, α2, . . . , αn if there exist scalars
c1, c2, . . . , cn ∈ F such that

β = c1α1 + c2α2 + . . .+ cnαn

When this happens, we write

β =
n∑
i=1

ciαi

Note that, by the distributivity properties (Properties (vii) and (viii) of Definition 1.1),
we have

n∑
i=1

ciαi +
n∑
j=1

djαj =
n∑
k=1

(ck + dk)αk

c

(
n∑
i=1

ciαi

)
=

n∑
i=1

(cci)αi

Exercise: Read the end of [Hoffman-Kunze, Section 2.1] concerning the geometric in-
terpretation of vector spaces, addition, and scalar multiplication.
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2. Subspaces

Definition 2.1. Let V be a vector space over a field F . A subspace of V is a subset W ⊂
V which is itself a vector space with the addition and scalar multiplication operations
inherited from V .

Remark 2.2. What this definition means is that W ⊂ V should have the following
properties:

(i) If α, β ∈ W , then (α + β) must be in W .

(ii) If α ∈ W and c ∈ F , then cα must be in W .

We say that W is closed under the operations of addition and scalar multiplication.

Theorem 2.3. Let V be a vector space over a field F and W ⊂ V be a non-empty set.
Then W is a subspace of V if and only if, for any α, β ∈ W and c ∈ F , the vector
(cα + β) lies in W .

Proof. Suppose W is a subspace of V , then W is closed under the operations of scalar
multiplication and addition as mentioned above. Hence, if α, β ∈ W and c ∈ F , then
cα ∈ W , so (cα + β) ∈ W as well.

Conversely, suppose W satisfies this condition, and we wish to show that W is subspace.
In other words, we wish to show that W satisfies the conditions of Definition 1.1. By
hypothesis, the addition map + maps W ×W → W , and the scalar multiplication map
· maps F ×W to W .

(i) Addition is commutative because it is commutative in V .

(ii) Addition is associative because it is associative in V .

(iii) V has a zero element 0 ∈ V . To see that this vector lies in W , observe that W is
non-empty, so it contains some vector α ∈ W . Then 0α = 0 ∈ W by Lemma 1.3.

(iv) If α ∈ W , then α ∈ V , so there is a unique vector (−α) ∈ V so that

α + (−α) = 0

But we know that 0 ∈ W , so by Lemma 1.3 once again,

(−a) = 0− (α) = 0 + (−1)α ∈ W

(v) For each α ∈ W , we have 1 · α = α in V . But the scalar multiplication on W is
the same as that of V , so the same property holds in W as well.

(vi) The remaining three properties of a vector space are satisfied in W because they
are satisfied in V (Check!)
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Example 2.4. (i) Let V be any vector space, then W := {0} is a subspace of V .
Similarly, W := V is a subspace of V . These are both called the trivial subspaces
of V .

(ii) Let V = F n as in Example 1.2. Let

W := {(x1, x2, . . . , xn) ∈ V : x1 = 0}

Note that if α = (x1, x2, . . . , xn), β = (y1, y2, . . . , yn) ∈ W and c ∈ F , then

x1 = y1 = 0⇒ cx1 + y1 = 0

Hence, (cα + β) ∈ W . Thus W is a subspace by Theorem 2.3.

Note: If F = R and n = 2, then W defines a line passing through the origin.

(iii) Let V = F n as before, and let

W = {(x1, x2, . . . , xn) ∈ V : x1 = 1}

Then W is not a subspace.

Note: If F = R and n = 2, then W defines a line that does not pass through the
origin.

(iv) Let V denote the set of all functions from F to F , and let W denote the set of all
polynomial functions from F to F . Then W is subspace of V .

(v) Let V = F n×n denote the set of all n×n matrices over a field F . A matrix A ∈ V
is said to be symmetric if

Ai,j = Aj,i

for all 1 ≤ i, j ≤ n. Let W denote the set of all symmetric matrices, then W is
subspace of V (simply verify Theorem 2.3).

(vi) Let V = Cn×n denote the set of all n × n matrices over the field C of complex
numbers. A matrix A ∈ V is said to be Hermitian (or self-adjoint) if

Ak,` = A`,k

for all 1 ≤ k, ` ≤ n. Then W is not a subspace of V because if A ∈ W , and
i :=
√
−1, then

(iA)k,` = iAk,`

while
iA)`,k = iA`,k = −iA`,k = −iAk,`

Hence if A a non-zero hermitian matrix, then iA is not hermitian.

(vii) The solution space of a system of homogeneous equations : Let A be an m × n
matrix over a field F , and let V = F n, and set

W := {X ∈ V : AX = 0}
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Then W is a subspace of V by the following lemma, because if X, Y ∈ W and
c ∈ F , then

A(cX + Y ) = c(AX) + (AY ) = 0 + 0 = 0

so cX + Y ∈ W .

The next lemma says that matrix multiplication is linear.

Lemma 2.5. Let A be an m×n matrix over a field F , and B,C both be n×p matrices.
For any scalar d ∈ F , we have

A(dB + C) = d(AB) + (AC)

Proof. For any 1 ≤ i ≤ m and 1 ≤ j ≤ p, we have

[A(dB + C)]i,j =
n∑
k=1

Ai,k[(dB + C)]k,j

=
n∑
k=1

Ai,k(dBk,j + Ck,j)

=
n∑
k=1

dAi,kBk,j + Ai,kCk,j

= d

(
n∑
k=1

Ai,kBk,j

)
+

n∑
k=1

Ai,kCk,j

= d[AB]i,j + [AC]i,j

Hence the result.

Theorem 2.6. Let V be a vector space, and {Wa : a ∈ A} be a collection of subspaces
of V . Then

W :=
⋂
a∈A

Wa

is a subspace of V .

Proof. We verify Theorem 2.3. If α, β ∈ W and c ∈ F , then we wish to show that

cα + β ∈ W

Fix a ∈ A. Then α, β ∈ Wa. Since Wa is subspace

cα + β ∈ Wa

This is true for any a ∈ A, so
cα + β ∈ W

as required.
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Note: If V is a vector space, and S ⊂ V is any set, then consider the collection

F := {W : W is a subspace of V, and S ⊂ W}

of all subspaces of V that contain S. Note that F is a non-empty set because V ∈ F .
Hence, it makes sense to take the intersection of all members of F . By Theorem 2.6,
this intersection is once again a subspace.

Definition 2.7. Let V be a vector space and S ⊂ V be any subset. The subspace
spanned by S is the intersection of all subspaces of V containing S.

Note that this intersection is once again a subspace of V . Furthermore, if this intersection
is denoted by W , then W is the smallest subspace of V containing S. In other words, if
W ′ is another subspace of V such that S ⊂ W ′, then it follows that W ⊂ W ′.

Theorem 2.8. The subspace spanned by a set S is the set of all linear combinations of
vectors in S.

Proof. Define
W := {c1α1 + c2α2 + . . .+ cnαn : ci ∈ F, αi ∈ S}

In other words, β ∈ W if and only if there exist α1, α2, . . . , αn ∈ S and scalars
c1, c2, . . . , cn ∈ F such that

β =
n∑
i=1

ciαi (II.1)

Then

(i) W is a subspace of V

Proof. If α, β ∈ W and c ∈ F , then write

α =
n∑
i=1

ciαi

for some ci ∈ F and αi ∈ S. Similarly,

β =
m∑
j=1

djβj

for some dj ∈ F and βj ∈ S. Then

cα + β =
n∑
i=1

(cci)αi +
m∑
j=1

djβj

Thus, cα + β is also of the form in Equation II.7, and so cα + β ∈ W . So, by
Theorem 2.3, W is a subspace of V .
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(ii) If L is any other subspace of V containing S, then W ⊂ L.

Proof. If β ∈ W , then there exists ci ∈ F and αi ∈ S such that

β =
n∑
i=1

ciαi

Since L is a subspace containing S, αi ∈ L for all 1 ≤ i ≤ n. Hence,
∑n

i=1 ciαi ∈ L.
Thus, W ⊂ L as required.

By (i) and (ii), W is the smallest subspace containing S. Hence, W is the subspace
spanned by S.

Example 2.9. (i) Let F = R, V = R3 and S = {(1, 0, 1), (2, 0, 3)}. Then the sub-
space W spanned by S has the form

W = {c(1, 0, 1) + d(2, 0, 3) : c, d ∈ R}

Hence, α = (a1, a2, a3) ∈ W if and only if there exist c, d ∈ R such that

α = c(1, 0, 1) + d(2, 0, 3) = (c+ 2d, 0, c+ 3d)

Replacing x↔ c+ 2d, y ↔ c+ 3d, we get

α = (x, 0, y)

Hence,
W = {(x, 0, y) : x, y ∈ R}

Thus, (2, 0, 5) ∈ W but (1, 1, 1) /∈ W .

(ii) Let V be the space of all functions from F to F and W be the subspace of all
polynomial functions. For n ≥ 0, define fn ∈ V by

fn(x) = xn

Then, W is the subspace spanned by the set {f0, f1, f2, . . .}

Definition 2.10. Let S1, S2, . . . , Sk be k subsets of a vector space V . Define

S1 + S2 + . . .+ Sk

to be the set consisting of all vectors of the form

α1 + α2 + . . .+ αk

where αi ∈ Si for all 1 ≤ i ≤ k.

Remark 2.11. If W1,W2, . . . ,Wk are k subspaces of a vector space V , then

W := W1 +W2 + . . .+Wk

is a subspace of V (Check!)
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3. Bases and Dimension

Definition 3.1. Let V be a vector space over a field F and S ⊂ V be a subset of V .
We say that S is linearly dependent if there exist distinct vectors {α1, a2, . . . , αn} ⊂ S
and scalars {c1, c2, . . . , cn} ⊂ F , not all of which are zero, such that

n∑
i=1

ciαi = 0

A set which is not linearly dependent is said to be linearly independent.

Remark 3.2. (i) Any set which contains a linearly dependent set is linearly depen-
dent.

(ii) Any subset of a linearly independent set is linearly independent.

(iii) The set {0} is linearly dependent. So, if S contains 0, then S is linearly dependent.

(iv) If S = {α} where α 6= 0, then S is linearly independent.

(v) A set S = {α1, α2, . . . , αn} is linearly independent if and only if, whenever c1, c2, . . . , cn ∈
F are scalars such that

n∑
i=1

ciαi = 0

then ci = 0 for all 1 ≤ i ≤ n.

(vi) Let S be an infinite set such that every finite subset of S is linearly independent,
then S is linearly independent.

Example 3.3. (i) If S = {α1, α2}, then S is linearly dependent if and only if there
exists a non-zero scalar c ∈ F such that

α2 = cα1

In other words, α2 lies on the line containing α1.

(ii) If S = {α1, α2, α3} is linearly dependent, then choose scalars c1, c2, c3 ∈ F not all
zero such that

c1α1 + c2α2 + c3α3 = 0

Suppose that c1 6= 0, then dividing by c1, we get an expression

α1 = d2α2 + d3α3

In other words, α1 lies on the plane generated by {α2, α3}.
(iii) Let V = R3 and S = {α1, α2, α3} where

α1 := (1, 1, 0)

α2 := (0, 1, 0)

α3 := (1, 2, 0)

Then S is linearly dependent because

α3 = α1 + α2
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(iv) Let V = F n, and define

ε1 := (1, 0, 0, . . . , 0)

ε2 := (0, 1, 0, . . . , 0)

...

εn := (0, 0, 0, . . . , 1)

Suppose c1, c2, . . . , cn ∈ F are scalars such that

n∑
i=1

ciεi = 0

Then,
(c1, c2, . . . , cn) = 0⇒ ci = 0 ∀1 ≤ i ≤ n

Hence, {ε1, ε2, . . . , εn} is linearly independent.

Definition 3.4. A basis for V is a linearly independent spanning set. If V has a finite
basis, then we say that V is finite dimensional.

Example 3.5. (i) If V = F n and S = {ε1, ε2, . . . , εn} from Example 3.3, then S is a
basis for V . Hence, V is finite dimensional. S is called the standard basis for F n.

(ii) Let V = F n and P be an invertible n × n matrix. Let P1, P2, . . . , Pn denote the
columns of P . Then, we claim that S = {P1, P2, . . . , Pn} is a basis for V .

Proof. (i) S is linearly independent: To see this, suppose c1, c2, . . . , cn ∈ F are
such that

c1P1 + c2P2 + . . .+ cnPn = 0

Let X = (c1, c2, . . . , cn) ∈ V , then it follows that

PX = 0

But this implies X = IX = P−1(PX) = P−1(0) = 0. Hence, ci = 0 for all
1 ≤ i ≤ n.

(ii) S is a spanning set for V : To see this, suppose Y = (x1, x2, . . . , xn) ∈ V , then
consider

X := P−1Y

so that PX = Y . It follows that, if X = (c1, c2, . . . , cn), then

c1P1 + c2P2 + . . .+ cnPn = Y

Hence the claim.
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(iii) Let V be the space of all polynomial functions from F to F . For n ≥ 0, define
fn ∈ V by

fn(x) = xn

Then, as we saw in Example 2.9, S := {f0, f1, f2, . . .} is a spanning set. Also, if
c0, c2, . . . , ck ∈ F are scalars such that

n∑
i=0

cifi = 0

Then, it follows that the polynomial

c0 + c1x+ c2x
2 + . . .+ ckx

k

is the zero polynomial. Since a non-zero polynomial can only have finitely many
roots, it follows that ci = 0 for all 0 ≤ i ≤ k. Thus, every finite subset of S is
linearly independent, and so S is linearly independent. Hence, S is a basis for V .

(iv) Let V be the space of all continuous functions from F to F , and let S be as in the
previous example. Then, we claim that S is not a basis for V .

(i) S remains linearly independent in V

(ii) S does not span V : To see this, let f ∈ V be any function that is non-zero,
but is zero on an infinite set (for instance, f(x) = sin(x)). Then f cannot be
expressed as a polynomial, and so is not in the span of S.

Remark 3.6. Note that, even if a vector space has an infinite basis, there is no such
thing as an infinite linear combination. In other words, a set S is a basis for a vector
space V if and only if

(i) Every finite subset of S is linearly independent.

(ii) For every α ∈ V , there exist finitely many vectors α1, α2, . . . , αn in S and scalars
c1, c2, . . . , cn ∈ F such that

α =
n∑
i=1

ciαi

Hence, the symbols

“
∞∑
n=1

cnαn”

does not make sense.

Theorem 3.7. Let V be a vector space which is spanned by a set {β1, β2, . . . , βm}.
Then, any linearly independent set of vectors in V is finite, and contains no more than
m elements.
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Proof. Let S be a set with more than m elements. Choose {α1, α2, . . . , αn} ⊂ S where
n > m. Since {β1, β2, . . . , βm} is a spanning set, there exist scalars {Ai,j : 1 ≤ i ≤
m, 1 ≤ j ≤ n} such that

αj =
m∑
i=1

Ai,jβi

Let A = (Ai,j) be the corresponding matrix, then A is an m× n matrix, where m < n.
By Lemma I.2.10, there is a vector X = (x1, x2, . . . , xn) such that X 6= 0 and

AX = 0

Now consider

x1α1 + x2α2 + . . .+ xnαn =
n∑
j=1

xjαj

=
n∑
j=1

xj

(
m∑
i=1

Ai,jβi

)

=
m∑
i=1

n∑
j=1

xjAi,jβi

=
m∑
i=1

(
n∑
j=1

Ai,jxj

)
βi

=
m∑
i=1

(AX)iβi

= 0

Hence, the set {α1, α2, . . . , an} is not linearly independent, and so S cannot be linearly
independent. This proves our theorem.

Corollary 3.8. If V is a finite dimensional vector space, then any two bases of V have
the same (finite) cardinality.

Proof. By hypothesis, V has a basis S consisting of finitely many elements, say m := |S|.
Let T be any any other basis of V . By Theorem 3.7, since S is a spanning set, and T is
linearly independent, it follows that T is finite, and

|T | ≤ m

But by applying Theorem 3.7 again (in reverse), we see that

|S| ≤ |T |

Hence, |S| = |T |. Thus, any other basis is finite and has cardinality m.
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This corollary now allows us to make the following definition, which is independent of
the choice of basis.

Definition 3.9. Let V be a finite dimensional vector space. Then, the dimension of V
is the cardinality if any basis of V . We denote this number by

dim(V )

Note that V = {0}, then V does not contain a linearly independent set, so we simply
set

dim({0}) := 0

The next corollary is essentially a restatement of Theorem 3.7.

Corollary 3.10. Let V be a finite dimensional vector space and n := dim(V ). Then

(i) Any subset of V which contains more than n vectors is linearly dependent.

(ii) Any subset of V which is a spanning set must contain at least n elements.

Example 3.11. (i) Let F be a field and V := F n, then the standard basis {ε1, ε2, . . . , εn}
has cardinality n. Therefore,

dim(F n) = n

(ii) Let F be a field and V := Fm×n be the space of m × n matrices over F . For
1 ≤ i ≤ m, 1 ≤ j ≤ n, let Bi,j denote the matrix whose entries are all zero, except
the (i, j)th entry, which is 1. Then (Check!) that

S := {Bi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis for V . Hence,
dim(Fm×n) = mn

(iii) Let A be an m× n matrix, and consider the subspace

W := {X ∈ F n : AX = 0}

Let R be a row-reduced echelon marix that is row equivalent to A. Let r denote
the number of non-zero rows in R, then (as in Lemma I.2.10), the subspace

{X ∈ F n : RX = 0}

has dimension (n− r) (Check!). Hence, dim(W ) = (n− r).

Lemma 3.12. Let S be a linearly independent subset of a vector space V . Let β ∈ V be a
vector which is not in the subspace spanned by S. Then S∪{β} is a linearly independent
set.
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Proof. Let {α1, α2, . . . , αm} ⊂ S and c1, c2, . . . , cm, cm+1 ∈ F are scalars such that

c1α1 + c2α2 + . . .+ cmαm + cm+1β = 0

Suppose cm+1 6= 0, then we may rewrite the above equation as

β =
−c1
cm+1

α1 +
−c2
cm+1

α2 + . . .+
−cm
cm+1

αm

Hence, β is in the subspace spanned by S - a contradiction. Hence, it must happen that

cm+1 = 0

Then, the above equation reduces to

c1α1 + c2α2 + . . .+ cmαm = 0

But S is linearly independent, so ci = 0 for all 1 ≤ i ≤ m. So we conclude that S ∪ {β}
is linearly independent.

Theorem 3.13. Let W be a subspace of a finite dimensional vector space V , then every
linearly independent subset of W is finite, and is contained in a (finite) basis of V .

Proof. Let S0 ⊂ W be a linearly independent set. If S is a linearly independent subset of
W containing S0, then S is also linearly independent in V . Since V is finite dimensional,

|S| ≤ n := dim(V )

Now, we extend S0 to form a basis of W : If S0 spans W , there is nothing to do, since S0

is a linearly independent set. If S0 does not span W , then there exists a β1 ∈ W which
does not belong to the subspace spanned by S0. By Lemma 3.12,

S1 := S0 ∪ {β1}

is a linearly independent set. Once again, if S1 spans W , then we stop the process.

If not, we continue as above to take a vector β2 ∈ W so that

S2 := S1 ∪ {β2}

is linearly independent. Thus proceeding, we obtain (after finitely many such steps), a
set

Sm = S0 ∪ {β1, β2, . . . , βm}

which is linearly independent, and must span W .

Corollary 3.14. If W is a proper subspace of a finite dimensional vector space V , then
W is finite dimensional, and

dim(W ) < dim(V )
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Proof. Since W 6= {0}, there is a non-zero vector α ∈ W . Let

S0 := {α}

Then S0 is linearly independent. By Theorem 3.13, there is a finite basis S of W
containing S0. Furthermore, by the previous proof, we have that

|S| ≤ dim(V )

Hence,
dim(W ) ≤ dim(V )

Since W 6= V , there is a vector β ∈ V which is not in W . Hence, T = S ∪ {β} is a
linearly independent set. So by Corollary 3.10, we have

|S ∪ {β}| ≤ dim(V )

Hence,
dim(W ) = |S| < dim(V )

Corollary 3.15. Let V be a finite dimensional vector space and S ⊂ V be a linearly
independent set. Then, there exists a basis B of V such that S ⊂ B.

Proof. Let W be the subspace spanned by S. Now apply Theorem 3.13.

Corollary 3.16. Let A be an n × n matrix over a field F such that the row vectors of
A form a linearly independent set of vectors in F n. Then, A is invertible.

Proof. Let {α1, α2, . . . , αn} be the row vectors of A. By Corollary 3.14, this set is a
basis for F n (Why?). Let εi denote the ith standard basis vector, then there exist scalars
{Bi,j : 1 ≤ j ≤ n} such that

εi =
n∑
j=1

Bi,jαj

This is true for each 1 ≤ i ≤ n, so we get a matrix B = (Bi,j) such that

BA = I

By Corollary I.4.9, A is invertible.

Theorem 3.17. Let W1 and W2 be two subspaces of a vector space V , then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2)
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Proof. Let {α1, α2, . . . , αk} be a basis for the subspace W1∩W2. By Theorem 3.13, there
is a basis

B1 = {α1, α2, . . . , αk, β1, β2, . . . , βn}
of W1, and a basis

B2 = {α1, α2, . . . , αk, γ1, γ2, . . . , γm}
of W2. Consider

B = {α1, α2, . . . , αk, β1, β2, . . . , βn, γ1, γ2, . . . , γm}

We claim that B is a basis for W1 +W2.

(i) B is linearly independent: If we have scalars ci, dj, es ∈ F such that

k∑
i=1

ciαi +
n∑
j=1

djβj +
m∑
s=1

esγs = 0

Consider the vector

δ :=
m∑
s=1

esγs (II.2)

Then δ ∈ W2 since B2 ⊂ W2. Furthermore,

δ = −

(
k∑
i=1

ciαi +
n∑
j=1

djβj

)
(II.3)

so δ ∈ W1 as well. Hence, δ ∈ W1 ∩W2, so there exist scalars f` such that

δ =
k∑
`=1

f`α`

By Equation II.2, we see that

k∑
`=1

f`α` +
m∑
s=1

(−es)γs = 0

But the set B2 is linearly independent, so we conclude that

f` = es = 0

for all 1 ≤ ` ≤ k and 1 ≤ s ≤ m. From this and Equation II.2, we conclude that
δ = 0. Hence, from Equation II.3, we have

k∑
i=1

ciαi +
n∑
j=1

djβj = 0

But the set B1 is linearly independent, so we conclude that

ci = dj = 0

for all 1 ≤ i ≤ k, 1 ≤ j ≤ n. Thus, B is linearly independent as well.
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(ii) B spans W1 +W2: Let α ∈ W1 +W2, then there exist α1 ∈ W1 and α2 ∈ W2 such
that

α = α1 + α2

Since B1 is a basis for W1, there are scalars ci, dj such that

α1 =
k∑
i=1

ciαi +
n∑
j=1

djβj

Similarly, there are scalars es, f` ∈ F such that

α2 =
k∑
s=1

esαs +
m∑
`=1

f`γ`

Combining the like terms in these equations, we get

α =
k∑
i=1

(ci + ei)αi +
n∑
j=1

djβj +
m∑
`=1

f`γ`

Thus, B spans W1 +W2.

Hence, we conclude that B is a basis for W1 +W2, so that

dim(W1+W2) = |B| = k+m+n = |B1|+|B2|−k = dim(W1)+dim(W2)−dim(W1∩W2)

4. Coordinates

Remark 4.1. Let V be a vector space and B = {α1, α2, . . . , αn} be a basis for V . Given
a vector α ∈ V , we may express it in the form

α =
n∑
i=1

ciαi (II.4)

for some scalars ci ∈ F . Furthermore, this expression is unique. If dj ∈ F are any other
scalars such that

α =
n∑
j=1

djαj

then ci = di for all 1 ≤ i ≤ n (Why?). Hence, the scalars {c1, c2, . . . , cn} are uniquely
determined by α, and also uniquely determine α. Therefore, we would like to assocate
to α the tuple

(c1, c2, . . . , cn)

and say that ci is the ith coordinate of α. However, this only makes sense if we fix the
order in which the basis elements appear in B (remember, a set has no ordering).
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Definition 4.2. Let V be a finite dimensional vector space. An ordered basis of V is a
finite sequence of vectors α1, α2, . . . , αn which together form a basis of V .

In other words, we are imposing an order on the basis B = {α1, α2, . . . , αn} by saying
that α1 is the first vector, α2 is the second, and so on. Now, given an ordered basis B
as above, and a vector α ∈ V , we may associate to α the tuple

[α]B =


c1
c2
...
cn


provided Equation II.4 is satisfied.

Example 4.3. Let F be a field and V = F n. If B = {ε1, ε2, . . . , εn} is the standard
ordered basis, then for a vector α = (x1, x2, . . . , xn) ∈ V , we have

[α]B =


x1
x2
...
xn


However, if we take B′ = {εn, ε1, ε1, . . . , εn−1} as the same basis ordered differently (by
a cyclic permutation), then

[α]B′ =


xn
x1
x2
...

xn−1


Remark 4.4. Now suppose we are given two ordered bases B = {α1, α2, . . . , αn} and
B′ = {β1, β2, . . . , βn} of V (Note that these two sets have the same cardinality). Given
a vector α ∈ V , we have two expressions associated to α

[α]B =


c1
c2
...
cn

 and [α]B′ =


d1
d2
...
dn


The question is, How are these two column vectors related to each other?

Observe that, since B is a basis, for each 1 ≤ i ≤ n, there are scalars Pj,i ∈ F such that

βi =
n∑
j=1

Pj,iαj (II.5)
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Now observe that

α =
n∑
i=1

diβi

=
n∑
i=1

di

(
n∑
j=1

Pj,iαj

)

=
n∑
j=1

(
n∑
i=1

diPj,i

)
αj

However,

α =
n∑
i=1

cjαj

so by the uniqueness of these scalars, we see that

cj =
n∑
i=1

Pj,idi

for each 1 ≤ j ≤ n. Hence, we conclude that

[α]B = P [α]B′

where P = (Pj,i).

Now consider the expression in Equation II.5. Reversing the roles of B and B′, we obtain
scalars Qi,k ∈ F such that

αk =
n∑
i=1

Qi,kβi

Combining this with Equation II.5, we see that

αk =
n∑
i=1

Qi,k

(
n∑
j=1

Pj,iαj

)
=

n∑
j=1

(
n∑
i=1

Pj,iQi,k

)
αj

But the {αj} are a basis, so we conclude that

n∑
i=1

Pj,iQi,k =

{
1 : k = j

0 : k 6= j

Thus, if Q = (Qi,j), then we conclude that

PQ = I

Hence the matrix P chosen above is invertible and Q = P−1. The following theorem is
the conclusion of this discussion.
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Theorem 4.5. Let V be an n-dimensional vector space and B and B′ be two ordered
bases of V . Then, there is a unique n× n invertible matrix P such that, for any αinV ,
we have

[α]B = P [α]B′

and
[α]B′ = P−1[α]B

Furthermore, the columns of P are given by

Pj = [βj]B

Definition 4.6. The matrix P constructed in the above theorem is called a change of
basis matrix.

(End of Week 2)

The next theorem is a converse to Theorem 4.5.

Theorem 4.7. Let P be an n× n invertible matrix over F . Let V be an n-dimensional
vector space over F and let B be an ordered basis of V . Then there is a unique ordered
basis B′ of V such that, for any vector α ∈ V , we have

[α]B = P [α]B′

and
[α]B′ = P−1[α]B

Proof. We write B = {α1, α2, . . . , αn} and set P = (Pj,i). We define

βi =
n∑
j=1

Pj,iαj (II.6)

Then we claim that B′ = {β1, β2, . . . , βn} is a basis for V .

(i) B′ is linearly independent: If we have scalars ci ∈ F such that

n∑
i=1

ciβi = 0

Then we get
n∑
i=1

n∑
j=1

ciPj,iαj = 0

Rewriting the above expression, and using the linear independence of B, we con-
clude that

n∑
i=1

Pj,ici = 0

for each 1 ≤ j ≤ n. If X = (c1, c2, . . . , cn) ∈ F n, then we conclude that

PX = 0

However, P is invertible, so X = 0, whence ci = 0 for all 1 ≤ i ≤ n.
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(ii) B′ spans V : If α ∈ V , then there are scalars di ∈ F such that

α =
n∑
i=1

diαi (II.7)

Now let Q = (Qi,j) = P−1, then we have PQ = I, so

n∑
k=1

Pj,kQk,i =

{
0 : i 6= j

1 : i = j

Thus, from Equation II.6, we get

n∑
k=1

Qk,iβk =
n∑
k=1

n∑
j=1

Qk,iPj,kαj

=
n∑
j=1

(
n∑
k=1

Pj,kQk,i

)
αj

= αi

Hence, if α ∈ V as above, we have

α =
n∑
i=1

diαi =
n∑
i=1

n∑
k=1

Qk,idiβk =
n∑
k=1

(
n∑
i=1

diQk,i

)
βk (II.8)

Thus, every vector α ∈ V is in the subspace spanned by B′, whence B′ is a basis
for V .

Finally, if α ∈ V and suppose

[α]B =


d1
d2
...
dn

 and [α]B′ =


c1
c2
...
cn


so that Equation II.7 holds, then by Equation II.8, we see that

ck =
n∑
i=1

Qk,idi

Hence,
[α]B′ = Q[α]B = P−1[α]B

By symmetry, it follows that
[α]B = P [α]B′

This completes the proof.
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Example 4.8. Let F = R and V = R2 and B = {ε1, ε2} the standard ordered basis.
For a fixed θ ∈ R, let

P :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Then P is an invertible matrix and

P−1 =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
Then B′ = {(cos(θ), sin(θ)), (− sin(θ), cos(θ))} is a basis for V . It is, geometrically, the
usual pair of axes rotated by an angle θ. In this basis, for α = (x1, x2) ∈ V , we have

[α]B′ =

(
x1 cos(θ) + x2 sin(θ)
−x1 sin(θ) + x2 cos(θ)

)

5. Summary of Row Equivalence

Definition 5.1. Let A be an m× n matrix over a field F , and write its rows as vectors
{α1, α2, . . . , αm} ⊂ F n.

(i) The row space of A is the subspace of F n spanned by this set.

(ii) The row rank of A is the dimension of the row space of A.

Theorem 5.2. Row equivalent matrices have the same row space.

Proof. If A and B are two row-equivalent m × n matrices, then there is an invertible
matrix P such that

B = PA

If {α1, α2, . . . , αm} are the row vectors A and {β1, β2, . . . , βm} are the row vectors of B,
then

βi =
m∑
j=1

Pi,jαj

If WA and WB are the row spaces of A and B respectively, then we see that

{β1, β2, . . . , βm} ⊂ WA

Since WB is the smallest subspace containing this set, we conclude that

WB ⊂ WA

Since row equivalence is an equivalence relation, we have WA ⊂ WB as well.

Theorem 5.3. Let R be a row-reduced echelon matrix, then the non-zero rows of R form
a basis for the row space of R.

40



Proof. Let ρ1, ρ2, . . . , ρr be the non-zero rows of R and write

ρi = (Ri,1, Ri,2, . . . , Ri,n)

By definition, the set {ρ1, ρ2, . . . , ρr} spans the row space WR of R. Therefore, it suffices
to check that this set is linearly independent. Since R is a row-reduced echelon matrix,
there are positive integers k1 < k2 < . . . < kr such that, for all i ≤ r

(i) R(i, j) = 0 if j < ki

(ii) R(i, kj) = δi,j

Hence, if there are scalars ci ∈ F such that

r∑
i=1

ciρi = 0

Then consider the kthj entry of the vector in the LHS, and we have

0 =

[
r∑
i=1

ciρi

]
kj

=
r∑
i=1

ci[ρi]kj

=
r∑
i=1

ciR(i, kj)

=
r∑
i=1

ciδi,j = cj

Hence each cj = 0, whence {ρ1, ρ2, . . . , ρr} is a linearly independent set.

Theorem 5.4. Let F be a field and m,n ∈ N be positive integers. Given a subspace
W < F n with dim(W ) ≤ m, there is a unique m × n row reduced echelon matrix R
whose row space is W .

Proof.

(i) Existence: Since dim(W ) ≤ m, there is a spanning set of W consisting of m
vectors. Let A be the m × n matrix whose rows are these vectors. Then the row
space of A is W . Let R be a row-reduced echelon matrix that is row-equivalent to
A. Then by Theorem 5.2, the row space of R is also W .

(ii) Uniqueness: Let R and S be two row-reduced echelon matrices with the same
row space W . Let ρ1, ρ2, . . . , ρr be the non-zero row vectors of R. Write ρi =
(Ri,1, Ri,2, . . . , Ri,n). Since R is row-reduced, there are integers k1, k2, . . . , kr such
that, for i ≤ r,
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(i) R(i, j) = 0 if j < ki

(ii) R(i, kj) = δi,j

(iii) k1 < k2 < . . . < kr

By Theorem 5.3, the set {ρ1, ρ2, . . . , ρr} forms a basis for W . Hence, S has exactly
r non-zero rows, which we enumerate as η1, η2, . . . , ηr. Furthermore, there are
integers `1, `2, . . . , `r such that, for i ≤ r

(i) S(i, j) = 0 if j < `i

(ii) S(i, `j) = δi,j

(iii) `1 < `2 < . . . < `r

Write η1 = (b1, b2, . . . , bn). Then, there exist scalars c1, c2, . . . , cr ∈ F such that

η1 =
r∑
i=1

ciρi

Then observe that

bkj =
r∑
i=1

ciR(i, kj)

=
r∑
i=1

ciδi,j

= cj

Hence,

η1 =
r∑
i=1

bkiρi (II.9)

It now follows from the conditions on {R(i, j)} listed above that the first non-zero
entry of η1 occurs bks1 for some 1 ≤ s1 ≤ r. It follows that

`1 = ks1

Thus proceeding, for each 1 ≤ i ≤ r, there is some 1 ≤ si ≤ r such that

`i = ksi

Since both sets of integers are strictly increasing, it follows that

`i = ki ∀1 ≤ i ≤ r

Now consider the expression in Equation II.9, and observe that

bki = S(1, ki) = 0 if i ≥ 2

Hence, η1 = ρ1. Thus proceeding, we may conclude that ηi = ρi for all i, whence
S = R.
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Corollary 5.5. Every m×n matrix A is row-equivalent to one and only one row-reduced
echelon matrix.

Proof. We know that A is row-equivalent to one row-reduced echelon matrix from The-
orem I.2.9. If A is row-equivalent to two row-reduced echelon matrices R and S, then
by Theorem 5.3, both R and S have the same row space. By Theorem 5.4, R = S.

Corollary 5.6. Let A and B be two m × n matrices over a field F . Then A is row-
equivalent to B if and only if they have the same row space.

Proof. We know from Theorem 5.2 that if A and B are row-equivalent, then they have
the same row space.

Conversely, suppose A and B have the same row space. By Theorem I.2.9, A and
B are both row-equivalent to row-reduced echelon matrices R and S respectively. By
Theorem 5.2, R and S have the same row space. By Theorem 5.4, R = S. Hence, A
and B are row-equivalent to each other.
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III. Linear Transformations

1. Linear Transformations

Definition 1.1. Let V and W be two vector spaces over a common field F . A function
T : V → W is called a linear transformation if, for any two vectors α, β ∈ V and any
scalar c ∈ F , we have

T (cα + β) = cT (α) + T (β)

Example 1.2.

(i) Let V be any vector space and I : V → V be the identity map. Then I is linear.

(ii) Similarly, the zero map 0 : V → V is a linear map.

(iii) Let V = F n and W = Fm, and A ∈ Fm×n be an m× n matrix with entries in F .
Then T : V → W given by

T (X) := AX

is a linear transformation by Lemma II.2.5.

(iv) Let V be the space of all polynomials over F . Define D : V → V be the ‘derivative’
map, defined by the rule: If

f(x) = c0 + c1x+ c2x
2 + . . .+ cnx

n

Then
(Df)(x) = c1 + 2c2x+ . . .+ ncnx

n−1

(v) Let F = R and V be the space of all functions f : R → R that are continu-
ous (Note that V is, indeed, a vector space with the point-wise operations as in
Example II.1.2). Define T : V → V by

T (f)(x) :=

∫ x

0

f(t)dt

(vi) With V as in the previous example and W = R, we may also define T : V → W
by

T (f) :=

∫ 1

0

f(t)dt

Remark 1.3. If T : V → W is a linear transformation
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(i) T (0) = 0 because if α := T (0), then

2α = α + α = T (0) + T (0) = T (0 + 0) = T (0) = α

Hence, α = 0 by Lemma II.1.3.

(ii) If β is a linear combination of vectors {α1, α2, . . . , αm}, then we may write

β =
n∑
i=1

ciαi

for some scalars c1, c2, . . . , cn ∈ F . Then it follows that

T (β) =
n∑
i=1

ciT (αi)

Theorem 1.4. Let V be a finite dimensional vector space over a field F and let {α1, α2, . . . , αn}
be an ordered basis of V . Let W be another vector space over F and {β1, β2, . . . , βn} be
any set of n vectors in W . Then, there is a unique linear transformation T : V → W
such that

T (αi) = βi ∀1 ≤ i ≤ n

Proof.

(i) Existence: Given a vector α ∈ V , there is a unique expression of the form

α =
n∑
i=1

ciαi

We define T : V → W by

T (α) :=
n∑
i=1

ciβi

Since the above expression is uniquely associated to α, this map is well-defined.
Now we check linearity: If

β =
n∑
i=1

diαi

and c ∈ F a scalar, then we have

cα + β =
n∑
i=1

(cci + di)αi

So by definition

T (cα + β) =
n∑
i=1

(cci + di)βi

45



Now consider

cT (α) + T (β) = c

(
n∑
i=1

ciβi

)
+

n∑
i=1

diβi

=
n∑
i=1

(cci + di)βi

= T (cα + β)

Hence, T is linear as required.

(ii) Uniqueness: If S : V → W is another linear transformation such that

S(αi) = βi ∀1 ≤ i ≤ n

Then for any α ∈ V , we write

α =
n∑
i=1

ciαi

So that, by linearity,

S(α) =
n∑
i=1

ciβi = T (α)

Hence, T (α) = S(α) for all α ∈ V , so T = S.

Example 1.5.

(i) Let α1 = (1, 2), α2 = (3, 4). Then the set {α1, α2} is a basis for R2 (Check!).
Hence, there is a unique linear transformation T : R2 → R3 such that

T (α1) = (3, 2, 1) and T (α2) = (6, 5, 4)

We find T (ε2): To do that, we write

ε2 = c1α1 + c2α2 = (c1 + 3c2, 2c1 + 4c2) = (1, 0)

Hence,
c1 = −2, c1 = 1

So that

T (ε2) = −2T (α1) + T (α2) = −2(3, 2, 1) + (6, 5, 4) = (0, 1, 2)

(ii) If T : Fm → F n is a linear transformation, then T is uniquely determined by the
vectors

βi = T (εi), 1 ≤ i ≤ m
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If α = (x1, x2, . . . , xm) ∈ Fm, then it follows that

T (α) =
m∑
i=1

xiβi

So if we write B for the matrix whose row vectors are β1, β2, . . . , βm, then

T (α) = αB

Hence, a linear tranformation T : Fm → F n is given by multiplication by an m×n
matrix.

Definition 1.6. Let T : V → W be a linear transformation.

(i) The range of T is the set
RT := {T (α) : α ∈ V }

(ii) The kernel of T (or the nullspace of T ) is the set

ker(T ) = {α ∈ V : T (α) = 0}

Lemma 1.7. If T : V → W is a linear transformation, then

(i) RT is a subspace of W

(ii) ker(T ) is a subspace of V .

Proof. Exercise. (Verify Theorem II.2.3)

Definition 1.8. Let V be a finite dimensional vector space and T : V → W a linear
transformation.

(i) The rank of T is dim(RT ), and is denoted by rank(T )

(ii) The nullity of T is dim(ker(T )), and is denoted by nullity(T ).

The next result is an important theorem, and is called the Rank-Nullity Theorem

Theorem 1.9. Let V be a finite dimensional vector space and T : V → W a linear
transformation. Then

rank(T ) + nullity(T ) = dim(V )

Proof. Let {α1, α2, . . . , αk} be a basis of ker(T ). Then, by Corollary II.3.15, we can
extend it to form a basis

B := {α1, α2, . . . , αk, αk+1, αk+2, . . . , αn}

of V . Consider the set

S := {T (αk+1), T (αk+2), . . . , T (αn)} ⊂ RT

We claim that this set is a basis.
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(i) S is linearly independent: If ck+1, ck+2, . . . , cn ∈ F are scalars such that

n∑
i=k+1

ciT (αi) = 0

By linearity

T

(
n∑

i=k+1

ciαi

)
= 0⇒

n∑
i=k+1

ciαi ∈ ker(T )

Hence, there exist scalars d1, d2, . . . , dk ∈ F such that

n∑
i=k+1

ciαi =
k∑
j=1

djαj

Since the set B is linearly independent, we conclude that

ci = 0 = dj

for all 1 ≤ j ≤ k, k+1 ≤ i ≤ n. Hence, we conclude that S is linearly independent.

(ii) S spans RT : If β ∈ R(T ), then there exists α ∈ V such that β = T (α). Since B is
a basis for V , there exist scalars c1, c2, . . . , cn ∈ F such that

α =
n∑
i=1

ciαi

Hence,

β = T (α) =
n∑
i=1

ciT (αi)

But T (αi) = 0 for all 1 ≤ i ≤ k. Hence,

β =
n∑

i=k+1

ciT (αi)

This proves the theorem.

2. The Algebra of Linear Transformations

Lemma 2.1. Let V and W be two vector spaces over a common field F . Let U, T : V →
W be two linear transformations, and c ∈ F a scalar.

(i) Define (T + U) : V → W by

(T + U)(α) = T (α) + U(α)
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(ii) Define (cT ) : V → W by
(cT )(α) := cT (α)

Then (T + U) and cT are both linear transformations.

Proof. We prove that (T + U) is a linear transformation. The proof for (cT ) is similar.
Fix α, β ∈ V and d ∈ F a scalar, and consider

(T + U)(dα + β) = T (dα + β) + U(dα + β)

= dT (α) + T (β) + dU(α) + U(β)

= d (T (α) + U(α)) + (T (β) + U(β))

= d(T + U)(α) + (T + U)(β)

Hence, (T + U) is linear.

Definition 2.2. Let V and W be two vector spaces over a common field F . Let L(V,W )
be the space of all linear transformations from V to W .

Theorem 2.3. Under the operations defined in Lemma 2.1, L(V,W ) is a vector space.

Proof. By Lemma 2.1, the operations

+ : L(V,W )× L(V,W )→ L(V,W )

and
· : F × L(V,W )→ L(V,W )

are well-defined operations. We now need to verify all the axioms of Definition II.1.1.
For convenience, we simply verify a few of them, and leave the rest for you.

(i) Addition is commutative: If T, U ∈ L(V,W ), we need to check that (T + U) =
(U + T ). Hence, we need to check that, for any α ∈ V ,

(U + T )(α) = (T + U)(α)

But this follows from the fact that addition in W is commutative, and so

(T + U)(α) = T (α) + U(α) = U(α) + T (α) = (U + T )(α)

(ii) Observe that the zero linear transformation 0 : V → W is the zero element in
L(V,W ).

(iii) Let d ∈ F and T, U ∈ L(V,W ), then we verify that

d(T + U) = dT + dU

So fix α ∈ V , then

[d(T + U)] (α) = d(T + U)(α)

= d (T (α) + U(α))

= dT (α) + dU(α)

= (dT + dU)(α)

This is true for every αinV , so d(T + U) = dT + dU .
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The other axioms are verified in a similar fashion.

Theorem 2.4. Let V and W be two finite dimensional vector spaces over F . Then
L(V,W ) is finite dimensional, and

dim(L(V,W )) = dim(V ) dim(W )

Proof. Let
B := {α1, α2, . . . , αn} and B′ := {β1, β2, . . . , βm}

be bases of V and W respectively. Then, we wish to show that

dim(L(V,W )) = mn

For each 1 ≤ p ≤ m, 1 ≤ q ≤ n, by Theorem 1.4, there is a unique Ep,q ∈ L(V,W ) such
that

Ep,q(αi) = δi,qβp =

{
0 : i 6= q

βp : i = q

We claim that
S := {Ep,q : 1 ≤ p ≤ m, 1 ≤ q ≤ n}

forms a basis for L(V,W ).

(i) S is linearly independent: Suppose cp,q ∈ F are scalars such that

m∑
p=1

n∑
q=1

cp,qE
p,q = 0

Then evaluating this expression on αi gives

m∑
p=1

cp,iβp = 0

But B′ is a linearly independent set in W , so

cp,i = 0 ∀1 ≤ p ≤ m

This is true for each 1 ≤ i ≤ n, proving that S is linearly independent.

(ii) S spans L(V,W ): Let T ∈ L(V,W ), then for each 1 ≤ i ≤ n,

T (αi) ∈ W

so it can be expessed as a linear combination of elements of B′ in a unique way.
So we write

T (αi) =
m∑
p=1

ap,iβp
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We define S ∈ L(V,W ) by

S =
m∑
p=1

n∑
q=1

ap,qE
p,q

and we claim that S = T . By Theorem 1.4, it suffices to verify that

S(αi) = T (αi) ∀1 ≤ i ≤ n

so consider

S(αi) =
m∑
p=1

n∑
q=1

ap,qE
p,q(αi)

=
n∑
q=1

ap,iβp

= T (αi)

This proves that S = T as required. Hence, S spans L(V,W ).

Theorem 2.5. Let V,W and Z be three vector spaces over a common field F . Let
T ∈ L(V,W ) and U ∈ L(W,Z). Then define UT : V → Z by

(UT )(α) := U(T (α))

Then (UT ) ∈ L(V, Z)

Proof. Fix α, β ∈ V and c ∈ F , and note that

(UT )(cα + β) = U(T (cα + β))

= U(cT (α) + T (β))

= cU(T (α)) + U(T (β))

= c(UT )(α) + (UT )(β)

Hence, (UT ) is linear.

Definition 2.6. A linear operator is a linear transformation from a vector space V to
itself.

Note that L(V, V ) now has a ‘multiplication’ operation, given by composition of linear
operators. We let I ∈ L(V, V ) denote the identity linear operator. For T ∈ L(V, V ), we
may now write

T 2 = TT

and similarly, T n makes sense for all n ∈ N. We simply define T 0 = I for convenience.
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Lemma 2.7. Let U, T1, T2 ∈ L(V, V ) and c ∈ F . Then

(i) IU = UI = U

(ii) U(T1 + T2) = UT1 + UT2

(iii) (T1 + T2)U = T1U + T2U

(iv) c(UT1) = (cU)T1 = U(cT1)

Proof.

(i) This is obvious

(ii) Fix α ∈ V and consider

[U(T1 + T2)] (α) = U ((T1 + T2)(α))

= U (T1(α) + T2(α))

= U(T1(α)) + U(T2(α))

= (UT1)(α) + (UT2)(α)

= (UT1 + UT2) (α)

This is true for every α ∈ V , so

U(T1 + T2) = UT1 + UT2

(iii) This is similar to part (ii) [See [Hoffman-Kunze, Page 77]]

(iv) Fix α ∈ V and consider

[c(UT1)] (α) = c [(UT1)(α)]

= c [U(T1(α))]

= (cU)(T1(α))

= [(cU)T1] (α)

This is true for every α ∈ V , so

c(UT1) = (cU)T1

The other equality is proved similarly.

Example 2.8.

(i) Let A ∈ Fm×n and B ∈ F p×m be two matrices. Let V = F n,W = Fm, and
Z = F p, and define T ∈ L(V,W ) and U ∈ L(W,Z) by

T (X) = AX and U(Y ) = BY

by matrix multiplication. Then, by Lemma II.2.5,

(UT )(X) = U(T (X)) = U(AX) = B(AX) = (BA)(X)

Hence, (UT ) is given by multiplication by (BA).
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(ii) Let V be the vector space of polynomials over F . Define D : V → V by the
‘derivative’ operator (See Example 1.2). If f ∈ V is given by

f(x) = c0 + c1x+ c2x
2 + . . .+ cnx

n

Then D(f) ∈ V is the function

D(f)(x) = c1 + 2c2x+ 3c3x
2 . . .+ ncnx

n−1

Let T : V → V be the linear transformation

T (f)(x) = xf(x)

Then, if fn(x) := xn and n ≥ 1, then

(DT − TD)(fn)(x) = DT (fn)(x)− TD(fn)(x)

= D(xfn(x))− T (nxn−1)

= D(xn+1)− nxn

= (n+ 1)xn − nxn

= xn

= fn(x)

By Theorem 1.4,
DT − TD = I

In particular, DT 6= TD. Hence, composition of operators is not necessarily a
commutative operation.

(iii) Let B = {α1, α2, . . . , αn} be an ordered basis of a vector space V . For 1 ≤ p, q ≤ n,
let Ep,q ∈ L(V, V ) be the unique operator such that

Ep,q(αi) = δi,qαp

The n2 operators {Ep,q : 1 ≤ p, q ≤ n} forms a basis for L(V, V ) by Theorem 2.4.
Now consider

Ep,qEr,s

For a fixed 1 ≤ i ≤ n, we have

Ep,qEr,s(αi) = Ep,q(δi,sαr)

= δi,sE
p,q(αr)

= δi,sδr,qαp

Hence,
Ep,qEr,s = δr,qE

p,s
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Now suppose T, U ∈ L(V, V ) are two operators. Then, by Theorem 2.4, there are
scalars (ai,j) and (bi,j) such that

T =
n∑
p=1

n∑
q=1

ap,qE
p,q and U =

n∑
r=1

n∑
s=1

br,sE
r,s

Now consider UT ∈ L(V, V ), and using the above relation, we calculate

TU =
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

ap,qbr,sE
p,qEr,s

=
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

ap,qbr,sδr,qE
p,s

=
n∑
p=1

n∑
q=1

n∑
s=1

ap,qbq,sE
p,s

Hence, if we associate

T 7→ A := (ai,j) and U 7→ B := (bi,j)

Then
UT 7→ AB

(End of Week 3)

Definition 2.9. A linear transformation T : V → W is said to be invertible if there is
a linear transformtion S : W → V such that

ST = IV and TS = IW

Definition 2.10. A function f : S → T between two sets is said to be

(i) injective if f is one-to-one. In other words, if x, y ∈ S and f(x) = f(y), then x = y

(ii) surjective if f is onto. In other words, for any z ∈ T , there exists x ∈ S such that
f(x) = z.

(iii) bijective if f is both injective and surjective.

Theorem 2.11. Let T : V → W be a linear transformation. Then T is invertible if and
only if T is bijective.

Proof. (i) If T is invertible, then there is a linear transformation S : V → W as above.

(i) S is injective: If α, β ∈ V are such that T (α) = T (β), Then

ST (α) = ST (β)

But ST = IV , so α = β.
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(ii) S is surjective: If β ∈ W , then S(β) ∈ V , and

T (S(β)) = (TS)(β) = IW (β) = β

(ii) Conversely, suppose T is bijective. Then, by usual set theory, there is a function
S : W → V such that

ST = IV and TS = IW

We claim S is also a linear map. To this end, fix c ∈ F and α, β ∈ W . Then we
wish to show that

S(cα + β) = cS(α) + S(β)

Since T is injective, it suffices to show that

T (S(cα + β)) = T (cS(α) + S(β))

Bu this follows from the ‘linearity of composition’ (Lemma 2.7). Hence, S is linear,
and thus, T is invertible.

Definition 2.12. A linear transformation T : V → W is said to be non-singular if, for
any α ∈ V

T (α) = 0⇒ α = 0

Equivalently, T is non-singular if ker(T ) = {0V }

Theorem 2.13. Let T : V → W be a non-singular matrix. If S is a linearly independent
subset of V , then T (S) = {T (α) : α ∈ S} is a linearly independent subset of W .

Proof. Suppose {b1, β2, . . . , βn} ⊂ T (S) are vectors and c1, c2, . . . , cn ∈ F are scalars
such that

n∑
i=1

ciβi = 0

Then for each 1 ≤ i ≤ n, there exists αi ∈ S such that βi = T (αi), so that

n∑
i=1

ciT (αi) = 0

Using linearity, we see that

T

(
n∑
i=1

ciαi

)
= 0

Since T is non-singular, it follows that

n∑
i=1

ciαi = 0

Since S is linearly independent, it follows that ci = 0 for all 1 ≤ i ≤ n. Hence, T (S) is
linearly independent.
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Example 2.14. (i) Let T : R2 → R3 be the linear map

T (x, y) := (x, y, 0)

Then T is clearly non-singular, and is not surjective.

(ii) Let V be the space of polynomials over a field F . Define D : V → V to be the
‘derivative’ operator from earlier. Define E : V → V be the ‘integral’ operator,
described as follows: If f ∈ V is given by

f(x) = c0 + c1x+ c2x
2 + . . .+ cnx

n

Then define

(Ef)(x) = c0x+ c1
x2

2
+ c2

x3

3
+ . . .+ cn

xn+1

n+ 1

Then it is clear that
DE = IV

However, ED 6= IV because ED is zero on constant functions. Furthermore, E is
not surjective because constant functions are not in the range of E.

Hence, it is possible for an operator to be non-singular, but not invertible. This, however,
is not possible for an operator on a finite dimensional vector space.

Theorem 2.15. Let V and W be finite dimensional vector spaces over a common field
F such that

dim(V ) = dim(W )

For a linear transformation T : V → W , the following are equivalent:

(i) T is invertible.

(ii) T is non-singular.

(iii) T is surjective.

(iv) If B = {α1, α2, . . . , αn} is a basis of V , then T (B) = {T (α1), T (α2), . . . , T (αn)} is
a basis of W .

(v) There is some basis {α1, α2, . . . , αn} of V such that {T (α1), T (α2), . . . , T (αn)} is
a basis for W .

Proof.

(i)⇒ (ii): If T is invertible, then T is bijective. Hence, if α ∈ V is such that T (α) = 0, then
since T (0) = 0, it must follow that α = 0. Hence, T is non-singular.

(ii)⇒ (iii): If T is non-singular, then nullity(T ) = 0, so by the Rank-Nullity theorem, we know
that

rank(T ) = rank(T ) + nullity(T ) = dim(V ) = dim(W )

But RT is a subspace of W , and so by Corollary II.3.14, it follows that RT = W .
Hence, T is surjective.
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(iii)⇒ (i): If T is surjective, then RT = W . By the Rank-Nullity theorem, it follows that
nullity(T ) = 0. We claim that T is injective. To see this, suppose α, β ∈ V are
such that T (α) = T (β), then T (α− β) = 0. Hence,

α = β = 0⇒ α = β

Thus, T is injective, and hence bijective. So by Theorem 2.11, T is invertible.

(i)⇒ (iv): If B is a basis of V and T is invertible, then T is non-singular by the earlier steps.
Hence, by Theorem 2.13, T (B) is a linearly independent set in W . Since

dim(W ) = n

it follows that this set is a basis for W .

(iv)⇒ (v): Trivial.

(v)⇒ (iii): Suppose {α1, α2, . . . , αn} is a basis for V such that {T (α1), T (α2), . . . , T (αn)} is a
basis for W , then if β ∈ W , then there exist scalars c1, c2, . . . , cn ∈ F such that

β =
n∑
i=1

ciT (αi)

Hence, if

α =
n∑
i=1

cnαi ∈ V

Then β = T (α). So T is surjective as required.

3. Isomorphism

Definition 3.1. An isomorphism between two vector spaces V and W is a bijective
linear transformation T : V → W . If such an isomorphism exists, we say that V and W
are isomorphic, and we write V ∼= W .

Note that if T : V → W is an isomorphism, then so is T−1 (by Theorem 2.11). Similarly,
if T : V → W and S : W → Z are both isomorphisms, then so is ST : V → Z. Hence,
the notion of isomorphism is an equivalence relation on the set of all vector spaces.

Theorem 3.2. Any n dimensional vector space over a field F is isomorphic to F n.

Proof. Fix a basis B := {α1, α2, . . . , αn} ⊂ V , and define T : F n → V by

T (x1, x2, . . . , xn) :=
n∑
i=1

xiαi

Note that T sends the standard basis of F n to the basis B. By Theorem 2.15, T is an
isomorphism.
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4. Representation of Transformations by Matrices

Let V and W be two vector spaces, and fix two ordered bases B = {α1, α2, . . . , αn}
and B′ = {β1, β2, . . . , βm} of V and W respectively. Let T : V → W be a linear
transformation. For any 1 ≤ j ≤ n, the vector T (αj) can be expressed as a linear
combination

T (αj) =
m∑
i=1

Ai,jβi

By the notation of section 4, this means

[T (αj)]B′ =


A1,j

A2,j
...

Am,j


Since the basis B is also ordered, we may now associate to T the m× n matrix

A =


A1,1 A1,2 . . . A1,j . . . A1,n

A2,1 A2,2 . . . A2,j . . . A2,n
...

...
...

...
...

...
Am,1 Am,2 . . . Am,j . . . Am,n


In other words, the jth column of A is [T (αj)]B′ .

Definition 4.1. The matrix defined above is called the matrix associated to T and is
denoted by

[T ]BB′

Now suppose α ∈ V , then write

α =
n∑
j=1

xjαj ⇒ [α]B =


x1
x2
...
xn


Then

T (α) =
n∑
j=1

xjT (αj)

=
n∑
j=1

xj

(
m∑
i=1

Ai,jβi

)

=
n∑
i=1

m∑
j=1

(Ai,jxj) βi
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Hence,

[T (α)]B′ =


∑n

j=1A1,jxj∑n
j=1A2,jxj

...∑n
j=1Am,jxj

 = A[α]B

Hence, we obtain the following result

Theorem 4.2. Let V,W,B,B′ be as above. For each linear transformation T : V → W ,
there is an m× n matrix A = [T ]BB′ in Fm×n such that, for any vector α ∈ V ,

[T (α)]B′ = A[α]B

Furthermore, the map
Θ : L(V,W )→ Fm×n

given by
T → [T ]BB′

is a linear isomorphism of F -vector spaces.

Proof. Using the construction as before, we have that Θ is a well-defined map.

(i) Θ is linear: If T, S ∈ L(V,W ), then write A := [T ]BB′ and B = [S]BB′ . Then the jth

columns of A and B respectively are

[T (αj)]B′ and [S(αj)]B′

Hence, the jth column of [T + S]BB′ is

[(T + S)(αj)]B′ = [T (αj) + S(αj)]B′ = [T (αj)]B′ + [S(αj)]B′

Hence, Θ(T + S) = Θ(T ) + Θ(S).

Similarly, if T ∈ L(V,W ) and c ∈ F , then Θ(cT ) = cΘ(T ), so Θ is linear.

(ii) Θ is injective: If T, S ∈ L(V,W ) such that [T ]BB′ = [S]BB′ , then, for each 1 ≤ j ≤ n,
we have

[T (αj)]B′ = [S(αj)]B′

Hence, T (αj) = S(αj) for all 1 ≤ j ≤ n, whence S = T by Theorem 1.4.

(iii) Θ is surjective: Note that T is an injective function, and

dim(L(V,W )) = nm = dim(Fm×n)

by Theorem 2.4 and Example II.3.11. Hence, T is an isomorphism by Theo-
rem 2.15.
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Definition 4.3. Let V be a finite dimensional vector space over a field F , and B be an
ordered basis of V . For a linear operator T ∈ L(V, V ), we write

[T ]B := [T ]BB

This is called the matrix of T relative to the ordered basis B.

Note that, if α ∈ V , then, by this notation,

[T (α)]B = [T ]B[α]B

Example 4.4.

(i) Let V = F n,W = Fm and A ∈ Fm×n. Define T : V → W by

T (X) = AX

If B = {ε1, ε2, . . . , εn} and B′ = {β1, β2, . . . , βm} be the standard bases of V and
W respectively, then

T (εj) = A1,jβ1 + A2,jβ2 + . . .+ Am,jβm

Hence,

[T (εj)]B′ =


A1,j

A2,j
...

Am,j


Hence,

[T ]BB′ = A

(ii) Let V = W = R2 and T (X) = AX where

A =

(
3 1
0 2

)
If B = {ε1, ε2}, then [T ]B = A, but if B = {ε2, ε1}, then

T (ε2) = (1, 2) = 2ε2 + 1ε1 ⇒ [T (ε2)]B =

(
2
1

)
Similarly,

[T (ε1)]B =

(
0
3

)
Hence,

[T ]B =

(
2 0
1 3

)
Hence, the matrix [T ]B very much depends on the basis.

60



(iii) Let V = F 2 = W and T : V → W be the map T (x, y) := (x, 0). If B denotes the
standard basis of V , then

[T ]B =

(
1 0
0 0

)
(iv) Let V be the space of all polynomials of degree ≤ 3 and D : V → V be the

‘derivative’ operator. Let B = {α0, α1, α2, α3} be the basis given by

αi(x) := xi

Then D(α0) = 0, and for i ≥ 1,

D(αi)(x) = ixi−1 ⇒ D(αi) = iαi−1

Hence,

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Let T : V → W and S : W → Z be two linear transformations, and let B =
{α1, α2, . . . , αn},B′ = {β1, β2, . . . , βm}, and B′′ = {γ1, γ2, . . . , γp} be fixed ordered bases
of V,W, and Z respectively. Suppose further that

A := [T ]BB′ = (ai,j) and B := [S]B
′

B′′ = (bs,t)

Set C := [ST ]BB′′ , and observe that, for each 1 ≤ j ≤ n, the jth column of C is

[ST (αj)]B′′

Now note that

ST (αj) = S(T (αj))

= S

(
m∑
k=1

ak,jβk

)

=
m∑
k=1

ak,jS(βk)

=
m∑
k=1

ak,j

(
p∑
i=1

bi,kγi

)

=

p∑
i=1

(
m∑
k=1

bi,kak,j

)
γi

Hence,

[ST (αj)]B′′ =


(
∑m

k=1 b1,kak,j)
(
∑m

k=1 b2,kak,j)
...

(
∑m

k=1 bp,kak,j)


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By definition, this means

ci,j =
m∑
k=1

bi,kak,j

Hence, we get

Theorem 4.5. Let T : V → W and S : W → Z as above. Then

[ST ]BB′′ = [S]B
′

B′′ [T ]BB′

Remark 4.6.

(i) This above calculation gives us a simple proof that matrix multiplication is asso-
ciative (because composition of functions is clearly associative).

(ii) If T, U ∈ L(V, V ), then the above theorem implies that

[UT ]B = [U ]B[T ]B

(iii) Hence, if T ∈ L(V, V ) is invertible, with inverse U , then

[U ]B[T ]B = [T ]B[U ]B = I

where I denotes the n×n identity matrix (Here, n = dim(V )). So if T is invertible
as a linear transformation, then [T ]B is an invertible matrix. Furthermore,

[T−1]B = [T ]−1B

Conversely, if [T ]B is an invertible matrix with inverse B, then by Theorem 4.2,
there is a linear map U ∈ L(V, V ) such that

[S]B = B

Hence, it follows that
[ST ]B = [TS]B = [I]B

where I denotes the identity linear map on V . Since the map T 7→ [T ]B is injective
(again by Theorem 4.2), it follows that

ST = TS = I

so T is invertible.

Let T ∈ L(V, V ) be a linear operator and suppose we have two ordered bases

B = {α1, α2, . . . , αn} and B′ = {β1, β2, . . . , βn}

of V . We would like to know how the matrices

[T ]B and [T ]B′
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are related.

By Theorem II.4.5, there is an invertible n× n matrix P such that, for any α ∈ V ,

[α]B = P [α]B′

Hence, if α ∈ V , then
[T (α)]B = P [T (α)]B′ = P [T ]B′ [α]B′

But
[T (α)]B = [T ]B[α]B = [T ]BP [α]B′

Equating these two, we get
[T ]BP = P [T ]B′

(since the above equations hold for all α ∈ V ). Since P is invertible, we conclude that

[T ]B′ = P−1[T ]BP

Remark 4.7. Let U ∈ L(V, V ) be the unique linear operator such that

U(αj) = βj

for lal 1 ≤ j ≤ n, then U is invertible since it maps one basis of V to another (by
Theorem 2.15). Furthermore, if P is the change of basis matrix as above, then

βj =
n∑
i=1

Pi,jαi

Since U(αj) = βj, we conclude that

P = [U ]B

Hence, we get the following theorem.

Theorem 4.8. Let V be a finite dimensional vector space over a field F , and let

B = {α1, α2, . . . , αn} and B′ = {β1, β2, . . . , βn}

be two ordered bases of V . If T ∈ L(V, V ) and P is the change of basis matrix (as in
Theorem II.4.5) whose jth column is

Pj = [βj]B

Then
[T ]B′ = P−1[T ]BP

Equivalently, if U ∈ L(V, V ) is the invertible operator defined by U(αj) = βj for all
1 ≤ j ≤ n, then

[T ]B′ = [U−1]B[T ]B[U ]B
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Example 4.9.

(i) Let V = R2, B = {ε1, ε2} and B′ = {β1, β2}, where

β1 = ε1 + ε2 and β2 = 2ε1 + ε2

Then the change of basis matrix as above is

P =

(
1 2
1 1

)
Hence,

P−1 =

(
−1 2
1 −1

)
Hence, if T ∈ L(V, V ) is the linear operator given by T (x, y) := (x, 0), then observe
that

(i) T (β1) = T (1, 1) = (1, 0) = −β2 + β1, while T (β2) = (2, 0) = −2β1 + 2β2, so
that

[T ]B′ =

(
−1 −2
1 2

)
(ii) Now note that

[T ]B =

(
1 0
0 0

)
so that

P−1[T ]BP =

(
−1 2
1 −1

)(
1 0
0 0

)(
1 2
1 1

)
=

(
−1 2
1 −1

)(
1 2
0 0

)
=

(
−1 −2
1 2

)
which agrees with Theorem 4.8.

(ii) Let V be the space of all real polynomials of degree≤ 3, and let B = {α0, α1, α2, α3}
be the basis given by

α0(x) := xi

Define a new basis {β0, β1, β2, β3} by

βi(x) := (x+ 2)i

Then

β0 = α0

β1 = 2α0 + α1

β2 = 4α0 + 2α1 + α2

β3 = 8α0 + 12α1 + 6α3 + α4
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Hence, the change of basis matrix is

P =


1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1


Hence,

P−1 =


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1


Now let D : V → V be the derivative operator. Then,

(i)

D(β0) = 0

D(β1) = β0

D(β2) = 2β1

D(β3) = 3β2

Hence,

[D]B′ =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


(ii) Now we saw in Example 4.4 that

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


So note that

P−1[D]BP =


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1



=


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1




0 1 4 12
0 0 2 12
0 0 0 3
0 0 0 0



=


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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which agrees with Theorem 4.8.

This leads to the following definition for matrices.

Definition 4.10. Let A and B be two n× n matrices over a field F . We say that A is
similar to B if there exists an invertible n× n matrix P such that

B = P−1AP

Remark 4.11. Note that the notion of similarity is an equivalence relation on the set
of all n × n matrices (Check!). Furthermore, if A is similar to the zero matrix, then A
must be the zero matrix, and if A is similar to the identity matrix, then A = I.

Finally, we have the following corollaries, the first of which follows directly from Theo-
rem 4.8.

Corollary 4.12. Let V be a finite dimensional vector space with two ordered bases B
and B′. Let T ∈ L(V, V ), then the matrices [T ]B and [T ]B′ are similar.

Corollary 4.13. Let V = F n and A and B be two n× n matrices. Define T : V → V
be the linear operator

T (X) = AX

Then, B is similar to A if and only if there is a basis B′ of V such that

[T ]B′ = B

Proof. By Example 4.4, if B denotes the standard basis of V , then

[T ]B = A

Hence if B′ is another basis such that [T ]B′ = B, then A and B are similar by Theo-
rem 4.8.

Conversely, if A and B are similar, then there exists an invertible matrix P such that

B = P−1AP

Let B′ = {β1, β2, . . . , βn} be given by the formula

βj =
n∑
i=1

Pi,jεi

Then, since P is invertible, it follows from Theorem 2.15, that B′ is a basis of V . Now
one can verify (please check!) that

[T ]B′ = B
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5. Linear Functionals

Definition 5.1. Let V be a vector space over a field F . A linear functional on V is a
linear transformation L : V → F .

Example 5.2.

(i) Let V = F n and fix an n tuple (a1, a2, . . . , an) ∈ F n. We define L : V → F by

L(x1, x2, . . . , xn) :=
n∑
i=1

aixi

Then L is a linear functional.

(ii) Conversely, if L : F n → F is a linear functional, and we set aj := L(εj), then, for
any α = (x1, x2, . . . , xn) ∈ V , we have

L(α) = L

(
n∑
i=1

xiεi

)
=

n∑
i=1

xiL(εi) =
n∑
i=1

xiai

Hence, L is associated to the tuple (a1, a2, . . . , an). In fact, if B = {ε1, ε2, . . . , εn}
is the standard basis for F n and B′ := {1} is taken as a basis for F , then

[L]BB′ = (a1, a2, . . . , an)

in the notation of the previous section.

(iii) Let V = F n×n be the vector space of n × n matrices over a field F . Define
L : V → F by

L(A) = trace(A) =
n∑
i=1

Ai,i

Then, L is a linear functional (Check!)

(iv) Let V be the space of all polynomials over a field F , and let t ∈ F . Define
Lt : V → F by

Lt(f) := f(t)

obtained by ‘evaluating a polynomial at t’. This is a linear functional (Check!)

(v) Let V = C([a, b]) denote the vector space of all continuous functions f : [a, b]→ F ,
and define L : V → F by

L(f) :=

∫ b

a

f(t)dt

Then L is a linear functional.

Definition 5.3. Let V be a vector space over a field F . The dual space of V is the
space

V ∗ := L(V, F )
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Remark 5.4. Let V be a finite dimensional vector space and B = {α1, α2, . . . , αn} be
a basis for V . By Theorem 2.4, we have

dim(V ∗) = dim(V ) = n

Note that B′ = {1} is a basis for F . Hence, by Theorem 1.4, for each 1 ≤ i ≤ n, there
is a unique linear functional fi such that

fi(αj) = δi,j

Now observe that the set B∗ := {f1, f2, . . . , fn} is a linearly independent set, because if
ci ∈ F are scalars such that

n∑
i=1

cifi = 0

Then for a fixed 1 ≤ j ≤ n, we get(
n∑
i=1

cifi

)
(αj) = 0⇒ cj = 0

Hence, it follows that B∗ is a basis for V ∗.

Theorem 5.5. Let V be a finite dimensional vector space over a field F and B =
{α1, α2, . . . , αn} be a basis for V . Then there is a basis B∗ = {f1, f2, . . . , fn} of V ∗

which satisfies
fi(αj) = δi,j

for all 1 ≤ i, j ≤ n. Furthermore, for each f ∈ V ∗, we have

f =
n∑
i=1

f(αi)fi

and for each α ∈ V , we have

α =
n∑
i=1

fi(α)αi

Proof. (i) We have just proved above that such a basis exists.

(ii) Now suppose f ∈ V ∗, then consider the linear functional given by

g =
n∑
i=1

f(αi)fi

Evaluating at αj, we see that

g(αj) =

(
n∑
i=1

f(αifi

)
(αj) = f(αj)

By the uniqueness of Theorem 1.4, we have that f = g as required.
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(iii) Finally, if α ∈ V , then we write

α =
n∑
i=1

ciαi

Applying fj to both sides, we see that

cj = fj(α)

as required.

Definition 5.6. The basis constructed above is called the dual basis of B.

Remark 5.7. If V is a finite dimensional vector space and B = {α1, α2, . . . , αn} is an
ordered basis for V , then the dual basis B∗ = {f1, f2, . . . , fn} allows us to recover the
coordinates of a vector in the basis B. In other words, if α ∈ V , then

[α]B =


f1(α)
f2(α)

...
fn(α)


Example 5.8. Let V be the space of polynomials over R of degree ≤ 2. Fix three
distinct real numbers t1, t2, t3 ∈ R and define Li ∈ V ∗ by

Li(p) := p(ti)

We claim that the set S := {L1, L2, L3} is a basis for V ∗. Since dim(V ∗) = dim(V ) = 3,
it suffices to show that S is linearly independent. To see this, fix scalars ci ∈ R such
that

3∑
i=1

ciLi = 0

Evaluating at the ‘standard basis’ B = {α0, α1, α2} of V (where αi(x) = xi), we get
three equations

c1 + c2 + c3 = 0

t1c1 + t2c2 + t3c3 = 0

t21c1 + t22c2 + t23c3 = 0

But the matrix 1 1 1
t1 t2 t3
t21 t22 t23


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is an invertible matrix when t1, t2, t3 are three distinct numbers. Hence, we conclude
that

c1 = c2 = c3 = 0

Hence, S forms a basis for V ∗. We wish to find a basis B′ = {p1, p2, p3} of V such that
S is the dual basis of B′. In other words, we wish to find polynomials p1, p2, and p3 such
that

pj(ti) = δi,j

One can do this by hand, by taking

p1(x) =
(x− t2)(x− t3)
(t1 − t2)(t1 − t3)

p2(x) =
(x− t1)(x− t3)
(t2 − t1)(t2 − t3)

p3(x) =
(x− t2)(x− t1)
(t3 − t2)(t3 − t1)

Remark 5.9. Let V be a n-dimensional vector space and f ∈ V ∗ be a non-zero linear
functional. Then the rank of f is 1 (Why?). So by the rank-nullity theorem,

dim(Nf ) = n− 1

where Nf denotes the null space of f .

Definition 5.10. If V is a vector space of dimension n, then a subspace of dimension
(n− 1) is called a hyperspace.

We wish to know if every hyperspace is the kernel of a non-zero linear functional. To do
that, we need a definition.

Definition 5.11. Let V be a vector space and S ⊂ V be a subset of V . The set

S0 := {f ∈ V ∗ : f(α) = 0 ∀α ∈ S}

is called the annihilator of S.

Now the following facts are easy to prove (Check!)

Example 5.12. Let V be a finite dimensional vector space.

(i) For any set S ⊂ V , S0 is a subspace of V ∗.

(ii) If S = {0}, then S0 = V ∗.

(iii) If S = V , then S0 = {0}.
(iv) If S1 ⊂ S2, then S0

2 ⊂ S0
1 .

(v) For any subset S ⊂ V , if W = span(S), then

S0 = W 0

70



Theorem 5.13. Let V be a finite dimensional vector space over a field F , and let W
be a subspace of V . Then

dim(W ) + dim(W 0) = dim(V )

Proof. Suppose dim(W ) = k and S = {α1, α2, . . . , αk} be a basis for W . Choose vectors
{αk+1, αk+2, . . . , αn} ⊂ V such that B = {α1, α2, . . . , αn} is a basis for V . Let B∗ =
{f1, f2, . . . , fn} be the dual basis of B, so that, for any 1 ≤ i, j ≤ n, we have

fi(αj) = δi,j

So if k + 1 ≤ i ≤ n, then, for any 1 ≤ j ≤ k, we have

fi(αj) = 0

Since S is a basis for W , it follows (Why?) that

fi ∈ W 0

Hence, T := {fk+1, fk+2, . . . , fn} ⊂ W 0. Since B∗ is a linearly independent set, so is
T . We claim that T is a basis for W 0. To see this, fix f ∈ W 0, then f ∈ V ∗, so by
Theorem 5.5, we have

f =
n∑
i=1

f(αi)fi

But f(αi) = 0 for all 1 ≤ i ≤ k, so

f =
n∑

i=k+1

f(αi)fi

Hence, T spans W 0 as required.

We now conclude that

dim(V ) = n = k + (n− k) = dim(W ) + dim(W 0)

Corollary 5.14. If W is a k-dimensional subspace of an n-dimensional vector space V ,
then there exist (n− k) hyperspaces W1,W2, . . . ,Wn−k such that

W =
n−k⋂
i=1

Wi

Proof. Consider the proof of Theorem 5.13. We constructed a basis T := {fk+1, fk+2, . . . , fn}
of W 0. Set

Vi := ker(fi)

and set

X :=
n⋂

i=k+1

Vi

We claim that W = X proving the result.
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(i) If α ∈ W , then, since T ⊂ W 0, we have

α ∈ ker(fi)

for all k + 1 ≤ i ≤ n. Hence, α ∈ X.

(ii) Conversely, if α ∈ X, then α ∈ V , so we write

α =
n∑
i=1

fi(α)αi

by Theorem 5.5. But α ∈ ker(fi) for all k + 1 ≤ i ≤ n, so

α =
k∑
i=1

fi(α)αi

But S = {α1, α2, . . . , αk} ⊂ W , so α ∈ W .

Corollary 5.15. Let W1 and W2 be two subspaces of a finite dimensional vector space
V . Then W1 = W2 if and only if W 0

1 = W 0
2 .

Proof. Clearly, if W1 = W2, then W 0
1 = W 0

2 .

Conversely, suppose W1 6= W2, then we may assume without loss of generality, that
there is a vector α ∈ W2 \W1. Let S = {α1, α2, . . . , αn} be a basis for W1, then the set
S∪{α} is also linearly independent. So by Theorem II.3.13, there is a basis B containing
S ∪ {α}. Hence, by the proof of Theorem 5.13, there is a linear functional f ∈ B∗ such
that

f(αi) = 0

for all 1 ≤ i ≤ k, but
f(α) = 1

Hence, f ∈ W 0
1 , but f /∈ W 0

2 . Thus, W 0
1 6= W 0

2 as required.

(End of Week 4)

6. The Double Dual

Definition 6.1. Let V be a vector space over a field F and let α ∈ V . Define Lα :
V ∗ → F by

Lα(f) := f(α)

The proof of the next lemma is an easy exercise.

Lemma 6.2. For each α ∈ V, Lα is a linear functional on V ∗
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Definition 6.3. The double dual of V is the vector space V ∗∗ := (V ∗)∗

Theorem 6.4. Let V be a finite dimensional vector space. The map Θ : V → V ∗∗ given
by

Θ(α) := Lα

is a linear isomorphism.

Proof.

(i) Θ is well-defined because Lα ∈ V ∗∗ for each α ∈ V by the previous lemma.

(ii) Θ is linear: If α, β ∈ V , then, for any f ∈ V ∗

Lα+β(f) = f(α + β) = f(α) + f(β) = Lα(f) + Lβ(f) = (Lα + Lβ)(f)

Hence,
Lα+β = Lα + Lβ

Hence, Θ is additive. Similarly, Lcα = cLα for any c ∈ F , so Θ is linear.

(iii) Θ is injective: If α ∈ V is a non-zero vector, then consider W1 := span(α) and
W2 = {0}. Since W1 6= W2,

W 0
1 6= W 0

2

by Corollary 5.15. Since W 0
2 = V ∗, it follows that there is a linear functional

f ∈ V ∗ such that
f(α) 6= 0

Hence, Lα 6= 0. Thus, (Why?)

Θ(α) = 0⇒ α = 0

so Θ is injective.

(iv) Now note that
dim(V ) = dim(V ∗) = dim(V ∗∗)

so Θ is surjective as well.

Corollary 6.5. If L ∈ V ∗∗, then there exists α ∈ V such that

L(f) = f(α) ∀f ∈ V ∗

Corollary 6.6. If B is a basis of V ∗, then there exists a basis B′ of V such that B is
the dual basis of B′.
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Proof. Write B = {f1, f2, . . . , fn}. By Theorem 5.5, there is a basis S = {L1, L2, . . . , Ln}
of V ∗∗ such that

Li(fj) = δi,j

For each 1 ≤ i ≤ n, there exists αi ∈ V such that Li = Lαi
. In other words,

fj(αi) = δi,j

for all 1 ≤ i, j ≤ n. Now set S = {α1, α2, . . . , αn}. Then

(i) S is linearly independent: If ci ∈ F such that

ciαi = 0

Applying fj to this expression, we have

cj = 0

This is true for each 1 ≤ j ≤ n, so S is linearly independent.

(ii) Since dim(V ) = n, it follows that S is a basis for V .

Recall that, if S ⊂ V , we write

S0 = {f ∈ V ∗ : f(α) = 0 ∀α ∈ S}

Definition 6.7. If S ⊂ V ∗, we write

S0 = {α ∈ V : f(α) = 0 ∀f ∈ S}

Note that the two definitions agree if we identify V with V ∗∗ via Θ.

Theorem 6.8. If S is any subset of a finite dimensional vector space V , then

(S0)0 = span(S)

Proof. Let W := span(S), then, by Example 5.12,

S0 = W 0

Therefore, we wish to show that W 0 = (W 0)0.

(i) Observe that, if α ∈ W and f ∈ W 0, then f(α) = 0. Hence, α ∈ (W 0)0. Thus,

W ⊂ (W 0)0
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(ii) Now note that W an (W 0)0 are both subspaces over V . By Theorem 5.13, we have

dim(W ) + dim(W 0) = dim(V )

and
dim(W 0) + dim((W 0)0) = dim(V ∗) = dim(V )

Hence, dim(W ) = dim((W 0)0). By Corollary II.3.14, we conclude that

W = (W 0)0

We now wish to prove Corollary 5.14 for vector spaces that are not finite dimensional.

Definition 6.9. Let V be a vector space. A subspace W ⊂ V is called a hyperspace if

(i) W 6= V (ie. W is a proper subspace)

(ii) For any subspace N of V such that

W ⊂ N ⊂ V

we must have W = N or N = V .

In other words, a hyperspace is a maximal proper subspace.

Theorem 6.10. Let V be a vector space over a field F .

(i) If f ∈ V ∗ is non-zero, then ker(f) is a hyperspace.

(ii) If W ⊂ V is a hyperspace, then there exists f ∈ V ∗ such that W = ker(f)

Proof.

(i) If f ∈ V ∗ is non-zero, then W := ker(f) is a subspace of V . Furthermore, since
f 6= 0, it follows that ker(f) 6= V . Now suppose N is a subspace of V such that

W ⊂ N ⊂ V

We wish to conclude that W = N or N = V . Suppose W 6= N , then we will show
that N = V .

Since W 6= N and W ⊂ N , there is a vector α ∈ N such that α /∈ W . Hence,

f(α) 6= 0

Fix β ∈ V , then we wish to show that β ∈ N .

� If f(β) = 0, then β ∈ W ⊂ N
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� If f(β) 6= 0, then set

γ := β − f(β)

f(α)
α

Then
f(γ) = f(β)− f(β) = 0

Hence, γ ∈ W ⊂ N , so

β = γ +
f(β)

f(α)
α ∈ N

Either way, we conclude that β ∈ N . This is true for any β ∈ V , so V = N as
required.

(ii) Now let W ⊂ V be a hyperspace. Since W 6= V , choose α /∈ W , so that

W + span(α)

is a subspace of V by Remark II.2.11. Since α /∈ W , this subspace is not W . Since
W is a hyperspace, it follows that

V = W + span(α)

Hence, for each β ∈ V , there exists γ ∈ W and c ∈ F such that

β = γ + cα

We claim that this expression is unique: If

β = γ′ + c′α

Then
(γ − γ′) = (c′ − c)α

But (γ − γ′) ∈ W and α /∈ W . So we conclude (Why?) that

c = c′

Hence, γ = γ′ as well. Thus, we define g : V → F by

g(β) = c

Then, (Check!) that g is a linear functional. It is now clear that

ker(g) = W

as required.
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Lemma 6.11. Let f, g ∈ V ∗ be two linear functionals. Then

ker(f) ⊂ ker(g)

if and only if there is a scalar c ∈ F such that g = cf

Proof. Clearly, if g = cf for some c ∈ F , then ker(f) ⊂ ker(g).

Conversely, suppose ker(f) ⊂ ker(g). If g ≡ 0, then take c = 0. Otherwise, f must also
be non-zero, so that ker(f) is a hyperspace. Since ker(g) 6= V , we conclude that

ker(f) = ker(g)

Now choose a vector α ∈ V such that f(α) 6= 0. Consider

c :=
g(α)

f(α)
∈ F

Then we claim that g = cf . So set

h := g − cf

and we wish to show that h ≡ 0. Note that, if α ∈ ker(f) = ker(g), then h(α) = 0, so

ker(f) ⊂ ker(h)

Furthermore, by construction,
h(α) = 0

Since α /∈ ker(f), it follows that ker(h) is a subspace of V that is strictly larger than
ker(f). But ker(f) is a hyperspace, so

ker(h) = V

whence h ≡ 0 as required.

We now extend this lemma to a finite family of linear functionals.

Theorem 6.12. Let f1, f2, . . . , fn, g ∈ V ∗. Then, g is a linear combination of {f1, f2, . . . , fn}
if and only if

n⋂
i=1

ker(fi) ⊂ ker(g)

Proof.

(i) If there are scalars ci ∈ F such that

g =
n∑
i=1

cifi

Then if α ∈ ker(fi) for all 1 ≤ i ≤ n, then g(α) = 0. So

n⋂
i=1

ker(fi) ⊂ ker(g)
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(ii) Conversely, suppose
n⋂
i=1

ker(fi) ⊂ ker(g)

holds, then we proceed by induction on n.

� If n = 1, then this is Lemma 6.11.

� Suppose the theorem is true for n = k − 1, and suppose n = k. So set
W := ker(fk), and restrict g, f1, f2, . . . , fk−1 to W to obtain linear functionals
g′, f ′1, f

′
2, . . . , f

′
k−1. Now, if α ∈ W such that

f ′i(α) = 0 ∀1 ≤ i ≤ k − 1

Then, by definition,

α ∈
k⋂
i=1

ker(fi)

Therefore, g(α) = 0. Hence, g′(α) = 0, so, by induction hypothesis,

g′ =
k−1∑
i=1

cif
′
i

for some scalars ci ∈ F . Now consider h ∈ V ∗ given by

h = g −
k−1∑
i=1

cifi

Then, h ≡ 0 on W = ker(fk). Hence,

ker(fk) ⊂ ker(h)

By Lemma 6.11, there is a scalar c ∈ F such that h = cfk, whence

g = c1f1 + c2f2 + . . .+ ck−1fk−1 + cfk

as required.

7. The Transpose of a Linear Transformation

Let T : V → W be a linear transformation. Given g ∈ W ∗, we define f ∈ V ∗ by the
formula

f(α) := g(T (α)) (III.1)

Note that f is, indeed, a linear functional. Thus, we get an association

W ∗ → V ∗

which sends g → f .
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Theorem 7.1. Given a linear transformation T : V → W , there is a unique linear
transformation

T t : W ∗ → V ∗

given by the formula
T t(g)(α) = g(T (α))

for each g ∈ W ∗ and α ∈ V . The map T t is called the transpose of T .

Proof.

(i) We have just explained that T t is well-defined. ie. if g ∈ W ∗, then T t(g) ∈ V ∗.
(ii) Now suppose g1, g2 ∈ W ∗, and set f1 := T t(g1), f2 = T ∗(g2) and f3 = T t(g1 + g2).

Then, for any α ∈ V , we have

f3(α) = (g1 + g2)(T (α)) = g1(T (α)) + g2(T (α)) = f1(α) + f2(α)

Hence,
T t(g1 + g2) = T t(g1) + T t(g2)

Similarly, T t(cg) = cT t(g) for c ∈ F, g ∈ W ∗. Hence, T t is linear.

Theorem 7.2. Let T : V → W be a linear transformation between finite dimensional
vector spaces. Then

(i) ker(T t) = Range(T )0

(ii) rank(T t) = rank(T )

(iii) Range(T t) = ker(T )0

Proof.

(i) For any g ∈ W ∗,
T t(g)(α) = g(T (α))

So if g ∈ ker(T t), then g(T (α)) = 0 for all α ∈ V , whence g(β) = 0 for all
β ∈ Range(T ), so

g ∈ Range(T )0

Hence, ker(T t) ⊂ Range(T )0. Conversely, if g ∈ Range(T )0, then

g(T (α)) = 0 ∀α ∈ V

whence, T t(g) = 0. So the reverse containment also holds.
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(ii) Let r := rank(T ) and m = dim(W ), then by Theorem 5.13, we have

r + dim(Range(T )0) = m⇒ dim(Range(T )0) = m− r

But T t : W ∗ → V ∗ is a linear transformation with m = dim(W ∗). So by Rank-
Nullity, we have

nullity(T t) + rank(T t) = m

But by the first part, we have

nullity(T t) = dim(Range(T )0) = m− r

so that rank(T t) = r = rank(T ).

(iii) Now if α ∈ ker(T ), then, for any g ∈ W ∗,

T t(g)(α) = g(T (α)) = g(0) = 0

Hence, T t(g) ∈ ker(T )0 for all g ∈ W ∗, so that

Range(T t) ⊂ ker(T )0

But if n = dim(V ), then by Rank-Nullity,

rank(T t) = rank(T ) = n− nullity(T )

and by Theorem 5.13, we have

dim(ker(T )0) + nullity(T ) = n

Hence,
dim(Range(T t)) = dim(ker(T )0)

so by Corollary II.3.14, we have

Range(T t) = ker(T )0

Theorem 7.3. Let T : V → W be a linear transformation between two finite dimensional
vector spaces, and fix two ordered bases B and B′ of V and W respectively. Then, we
consider the matrix

A = [T ]BB′

Now consider T t : W ∗ → V ∗, and the ordered bases (B′)∗ of W ∗ and B∗ of V ∗. We again
have a matrix

B = [T t]
(B′)∗
B∗

Then,
Bi,j = Aj,i
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Proof. Write

B = {α1, α2, . . . , αn}
B′ = {β1, β2, . . . , βm}
B∗ = {f1, f2, . . . , fn}

(B′)∗ = {g1, g2, . . . , gm} so that

fi(αj) = δi,j, ∀1 ≤ i, j ≤ n, and

gi(βj) = δi,j ∀1 ≤ i, j ≤ m

Furthermore, we have the expressions

T (αi) =
m∑
k=1

Ak,iβk, ∀1 ≤ i ≤ n

T t(gj) =
m∑
i=1

Bi,jfi, ∀1 ≤ j ≤ m

But by definition,

T t(gj)(αi) = gj(T (αi))

= gj

(
m∑
k=1

Ak,iβk

)

=
m∑
k=1

Ak,igj(βk)

= Aj,i

But for the linear functional f = T t(gj), we have the formula

f =
m∑
i=1

f(αi)fi

by Theorem 5.5. Hence,

T t(gj) =
m∑
i=1

T t(g)(αi)fi =
m∑
i=1

Aj,ifi

By the uniqueness of the expression

T t(gj) =
m∑
i=1

Bi,jfi

we conclude that Bi,j = Aj,i as required.
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Definition 7.4. Let A be an m × n matrix over a field F , then the transpose of A is
the n×m matrix B whose (i, j)th entry is given by

Bi,j = Aj,i

Therefore, the above theorem says that, once we fix (coherent, ordered) bases for
V,W, V ∗, and W ∗, then the matrix of T t is the transpose of the matrix of T .

Definition 7.5. Let A be an m× n matrix over a field F .

(i) The column space of A is the subspace of Fm spanned by the n columns of A.

(ii) The column rank of A is the dimension of the column space of A.

Theorem 7.6. Let A be an m× n matrix over a field F , then

row rank(A) = column rank(A)

Proof. Define T : F n → Fm by
T (X) := AX

Let B and B′ denote the standard bases of F n and Fm respectively, so that

[T ]BB′ = A

by Example 4.4. Then, by Theorem 7.3,

[T t]
(B′)∗
B∗ = At

Now note that the columns of T are the images of T under B. Hence,

column rank(A) = rank(T )

Similarly,
row rank(A) = rank(T t)

The result now follows from Theorem 7.2.
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IV. Polynomials

1. Algebras

Definition 1.1. A linear algebra over a field F is a vector space A together with a
multiplication map

× : A×A → A

denoted by
(α, β) 7→ αβ

which satisfies the following axioms:

(i) Multiplication is associative:
α(βγ) = (αβ)γ

(ii) Multiplication distributes over addition

α(β + γ) = αβ + αγ and (α + β)γ = αγ + βγ

(iii) For each scalar c ∈ F ,
c(αβ) = (cα)β = α(cβ)

If there is an element 1A ∈ A such that

1Aα = α = α1A

for all α ∈ A, then 1A is called the identity of A, and A is said to be a linear algebra
with identity. Furthermore, A is said to be commutative if

αβ = βα

for all α, β ∈ A.

Example 1.2.

(i) Any field is an algebra over itself, which has an identity, and is commutative.

(ii) Let A = Mn(F ) be the space of all n × n matrices over the field F . With multi-
plication given by matrix multiplication, A is a linear algebra. Furthermore, the
identity matrix In is the identity of A. If n ≥ 2, then A is not commutative.
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(iii) Let V be any vector space and A = L(V, V ) be the space of all linear operators on
V . With multiplication given by composition of operators, A is a linear algebra.
Furthermore, the identity operator is the identity of A. Once again, A is not
commutative unless dim(V ) = 1.

(iv) Let A = C[0, 1] be the space of continuous F -valued functions on [0, 1]. With
multiplication defined pointwise,

(f · g)(x) := f(x)g(x)

Then A is a linear algebra. The constant function 1 is the identity of A, and it is
commutative.

(v) Let A = Cc(R) be the space of real-valued continuous functions on R which have
compact support (A function f : R→ R is said to have compact support if the set
{x ∈ R : f(x) 6= 0} has compact closure). This is a linear algebra over R which
is commutative, but does not have an identity (This requires a proof, which I will
leave as an exercise).

We will now construct an important example. Fix a field F . Define

F∞ := {(f0, f1, f2, . . . , fn, . . .) : fi ∈ F}

be the set of all sequences from F . We now define operations on F∞ as follows:

(i) Addition: Given two sequences f = (fi), g = (gi), we write

f + g := (fi + gi)

(ii) Scalar multiplication: Given f = (fi) ∈ F∞ and c ∈ F , define

c · f := (cfi)

(iii) Vector multiplication: This is the Cauchy product. Given f = (fi), g = (gi) ∈ F∞,
we define the sequence f · g = (xi) ∈ F∞ by

xn :=
n∑
i=0

fign−i (IV.1)

Thus,
fg = (f0g0, f0g1 + g0f1, f0g2 + f1g1 + g0f2, . . .)

Now, one has to verify that F∞ is, indeed, an algebra over F (See [Hoffman-Kunze, Page
118]). Furthermore, it is clear that,

fg = gf
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so F∞ is a commutative algebra. Furthermore, the element

1 = (1, 0, 0, . . .)

plays the role of the identity of F∞. Now define

x := (0, 1, 0, 0, . . .)

Then note that
x2 = (0, 0, 1, 0, 0, . . .), x3 = (0, 0, 0, 1, 0, . . .), . . .

In other words, if we set x0 = 1, then for each integer k ≥ 0, we have

(xk)i = δi,k

Now, one can check that the set

{1, x, x2, x3, . . .}

is an infinite linearly independent set in F∞.

Definition 1.3. The algebra F∞ is called the algebra of formal power series over F .
An element f = (f0, f1, f2, . . .) ∈ F∞ is written as a formal expression

f =
∞∑
n=0

fnx
n

Note that the above expression is only a formal expression - there is no series convergence
involved, as there is no metric.

2. Algebra of Polynomials

Definition 2.1. Let F [x] be the subspace of F∞ spanned by the vectors {1, x, x2, . . .}.
An element of F [x] is called a polynomial over F

Remark 2.2.

(i) Any f ∈ F [x] is of the form

f = f0 + f1x+ f2x
2 + . . .+ fnx

n

(ii) If fn 6= 0 and fk = 0 for all k ≥ n, then we say that f has degree n, denoted by
deg(f).

(iii) If f = 0 is the zero polynomial, then we simply define deg(0) = 0.

(iv) The scalars f0, f1, . . . , fn are called the coefficients of f .

(v) If f = cx0, then f is called a scalar polynomial.
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(vi) If fn = 1, then f is called a monic polynomial.

Theorem 2.3. Let f, g ∈ F [x] be non-zero polynomials. Then

(i) fg is a non-zero polynomial.

(ii) deg(fg) = deg(f) + deg(g)

(iii) If both f and g are monic, then fg is monic.

(iv) fg is a scalar polynomial if and only if both f and g are scalar polynomials.

(v) If f + g 6= 0, then
deg(f + g) ≤ max{deg(f), deg(g)}

Proof. Write

f =
n∑
i=0

fix
i and g =

m∑
j=0

gjx
j

with fn 6= 0 and gm 6= 0. Then, by Equation IV.1, we have

(fg)k =
n∑
i=0

figk−i

Now note that, if 0 ≤ i ≤ n, and k − i > m, then gk−i = 0. Hence, In particular,

(fg)k = 0 if k − n > m

Hence, deg(fg) ≤ n+m. But

(fg)n+m = fngm 6= 0

so deg(fg) = n+m. Thus proves (i), (ii), (iii) and (iv). We leave (v) as an exercise.

Corollary 2.4. For any field F , F [x] is a commutative linear algebra with identity over
F .

Corollary 2.5. Let f, g, h ∈ F [x] such that fg = fh. If f 6= 0, then g = h.

Proof. Note that f(g − h) = 0. Since f 6= 0, by part (i) of Theorem 2.3, we conclude
that (g − h) = 0.

Remark 2.6. If f, g ∈ F [x] are expressed as

f =
m∑
i=0

fix
i and g =

n∑
j=0

gjx
j

Then

fg =
m+n∑
s=0

(
s∑
r=0

frgs−r

)
xs
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In the case f = cxm and g = dxn, we have

(cxm)(dxn) = (cd)xm+n

Hence, by distributivity of addition in F [x], we get

fg =
m∑
i=0

n∑
j=0

figjx
i+j

Definition 2.7. Let A be a linear algebra with identity over a field F . We write 1 = 1A,
and for each α ∈ A, we write α0 = 1. Then, given a polynomial

f =
n∑
i=0

fix
i

in F [x], and α ∈ A, we define f(α) ∈ A by

f(α) =
n∑
i=0

fiα
i

Example 2.8. Let f ∈ C[x] be the polynomial f = 2 + x2.

(i) If A = C and α = 2 ∈ C, then

f(α) = 22 + 2 = 6

(ii) If A = C and α = 1+i
1−i ∈ A, then

f(α) = 1

(iii) If A = M2(C) is the algebra of 2× 2 matrices over C, and

B =

(
1 0
−1 2

)
Then

f(B) = 2

(
1 0
0 1

)
+

(
1 0
−1 2

)2

=

(
3 0
−3 6

)
(iv) If A = L(V, V ) where V = C3, and T ∈ A is the linear operator given by

T (x1, x2, x3) = (i
√

2x1, x2, i
√

2x3)

Then f(T ) ∈ A is the operator

f(T )(x1, x2, x3) = (0, 3x2, 0)
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(v) If A = C[x] and g = x4 + 3i, then

f(g) = −7 + 6ix4 + x8

Theorem 2.9. Let A be a linear algebra with identity over F , let f, g ∈ F [x] be two
fixed polynomials, let α ∈ A, and c ∈ F be a scalar. Then

(i) (cf + g)(α) = cf(α) + g(α)

(ii) (fg)(α) = f(α)g(α)

Proof. We prove (ii) since (i) is easy. Write

f =
n∑
i=0

fix
i and g =

m∑
j=0

gjx
j

So that

fg =
n∑
i=0

m∑
j=0

figjx
i+j

Hence,

(fg)(α) =
n∑
i=0

m∑
j=0

figjα
i+j =

(
n∑
i=0

fiα
i

)(
m∑
j=0

gjα
j

)
= f(α)g(α)

(End of Week 5)

3. Lagrange Interpolation

Theorem 3.1. Let F be a field and t0, t2, . . . , tn be (n+ 1) distint elements of F . Let V
be the subspace of F [x] consisting of polynomials of degree ≤ n. Define Li : V → F by

Li(f) := f(ti)

Then S := {L0, L2, . . . , Ln} is a basis for V ∗.

Proof. It suffices to show that S is the dual basis to a basis B of V . For 0 ≤ i ≤ n,
define Pi ∈ V by

Pi =
∏
j 6=i

(x− ti)
ti − tj

=
(x− t0)(x− t1) . . . (x− ti−1)(x− ti+1) . . . (x− tn)

(ti − t0)(ti − t1) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn)

Then we claim that B = {P0, P1, . . . , Pn} is a basis for V . Note that {1, x, x2, . . . , xn} is a
basis for V , so dim(V ) = n+1. Hence, it suffices to show that B is linearly independent.
So suppose ci ∈ F are such that

n∑
i=0

ciPi = 0
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where the right hand side denotes the zero polynomial. Now applying Lj to this expres-
sion, and note that

Lj(Pi) = δi,j

Hence,

cj = Lj

(
n∑
i=0

ciPi

)
= 0

This is true for all 0 ≤ j ≤ n, so B is a basis for V , and so S is a basis for V ∗.

Remark 3.2.

(i) By Theorem III.5.5, any f ∈ V may be expressed in the form

f =
n∑
i=0

f(ti)Pi

This is called the Lagrange Interpolation formula

(ii) If f = xj, then we obtain

f =
n∑
i=0

tjiPi

Since the collection {1, x, x2, . . . , xn} forms a basis for V , it follows that the matrix
1 t0 t20 . . . tn0
1 t1 t21 . . . tn1
...

...
...

...
...

1 tn t2n . . . tnn


is invertible by Theorem II.4.5. This is called a Vandermonde matrix.

Definition 3.3. Let V be as above and let W be the space of all polynomial functions
on F of degree ≤ n. For each f ∈ V , define f̃ ∈ W by

f̃(t) := f(t)

In other words, we send each formal polynomial to the corresponding polynomial func-
tion.

Theorem 3.4. The map V → W given by f 7→ f̃ defined above is an isomorphism of
vector spaces.

Proof. Let T (f) := f̃ , then T is linear by Theorem 2.9. Since dim(V ) = dim(W ) = n+1,
it suffices to show that T is injective. If f̃ = 0, then f(t) = 0 for all t ∈ F . In particular,
if we choose (n+ 1) distinct elements {t0, t1, . . . , tn} ⊂ F , then

f(ti) = 0 ∀0 ≤ i ≤ n

By Theorem 3.1, it follows that f = 0. Hence, ker(T ) = {0} so T is injective.
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Definition 3.5. Let F be a field and A and Ã be two linear algebras over F . A map
T : A → Ã is said to be an isomorphism if

(i) T is bijective.

(ii) T is linear.

(iii) T (αβ) = T (α)T (β) for all α, β ∈ A

If such an isomorphism exists, then we say that A and Ã are isomorphic.

Theorem 3.6. Let A = F [x] and Ã denote the algebra of all polynomial functions on
F , then the map

f 7→ f̃

induces an isomorphism A → Ã of algebras.

Proof. Once again, by Theorem 2.9, T is a morphism of algebras. Also, T is injective as
in Theorem 3.4. Since T is clearly surjective, T is an isomorphism.

Example 3.7. Let V be an n-dimensional vector space over F and B be an ordered
basis for V . By Theorem III.4.2, we have a linear isomorphism

Θ : L(V, V )→ F n×n given by T 7→ [T ]B

Furthermore, by Theorem III.4.5, Θ is multiplicative, and hence an isomorphism of
algebras. Now if

f =
n∑
i=0

cix
i

is a polynomial in F [x], and T ∈ L(V, V ), then we may associate two polynomials to it:

f(T ) =
n∑
i=0

ciT
i and f([T ]B) =

n∑
i=0

ci[T ]iB

where f(T ) ∈ L(V, V ) and f([T ]B) ∈ F n×n. Since Θ is linear and multiplicative, it
follows that

[f(T )]B = f([T ]B)

4. Polynomial Ideals

Lemma 4.1. Let f, d ∈ F [x] such that deg(d) ≤ deg(f). Then there exists g ∈ F [x]
such that either

f = dg or deg(f − dg) < deg(f)
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Proof. Write

f = amx
m +

m−1∑
i=0

aix
i

d = bnx
n +

n−1∑
j=0

bjx
j

with am 6= 0 and bn 6= 0. Since m ≥ n, take

g =
am
bn
xm−n

Then this g works.

Theorem 4.2 (Euclidean Division). Let f, d ∈ F [x] with d 6= 0. Then there exist
polynomials q, r ∈ F [x] such that

(i) f = dq + r

(ii) Either r = 0 or deg(r) < deg(d)

The polynomials q, r satisfying (i) and (ii) are unique.

Proof.

(i) Uniqueness: Suppose q1, r1 are another pair of polynomials satisfying (i) and (ii)
in addition to q, r. Then

d(q1 − q) = r − r1
Furthermore, if r − r1 6= 0, then by Theorem 2.3,

deg(r − r1) ≤ max{deg(r), deg(r1)} < deg(d)

But
deg(d(q1 − q)) = deg(d) + deg(q − q1) ≥ deg(d)

This is impossible, so r = r1, and so q = q1 as well.

(ii) Existence:

(i) If deg(f) < deg(d), we may take q = 0 and r = f .

(ii) If f = 0, then we take q = 0 = r.

(iii) So suppose f 6= 0 and
deg(d) ≤ deg(f)

We now induct on deg(f).

� If deg(f) = 0, then f = c is a constant, so that d is also a constant. Since
d 6= 0, we take

q =
c

d
∈ F

and r = 0.
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� Now suppose deg(f) > 0 and that the theorem is true for any polynomail
h such that deg(h) < deg(f). Since deg(d) ≤ deg(f), by the previous
lemma, we may choose g ∈ F [x] such that either

f = dg or deg(f − dg) < deg(f)

If f = dg, then we take q = g and r = 0 and we are done. If not, then
take

h := f − dg

By induction hypothesis, there exists q2, r2 ∈ F [x] such that

h = dq2 + r2

with either r2 = 0 or deg(r2) < deg(h). Hence,

f = d(g + q2) + r2

with the required conditions satisfied.

Definition 4.3. Let d ∈ F [x] be non-zero, and f ∈ F [x] be any polynomial. Write

f = dq + r with r = 0 or deg(r) < deg(d)

(i) The element q is called the quotient and r is called the remainder.

(ii) If r = 0, then we say that d divides f , or that f is divisible by d. In symbols, we
write d | f . If this happens, we also write q = f/d.

(iii) If r 6= 0, then we say that d does not divide f and we write d - f .

Corollary 4.4. Let f ∈ F [x] and c ∈ F . Then (x− c) | f if and only if f(c) = 0.

If this happens, we say that c is a root of f (or a zero of f).

Proof. Take d := (x − c), then deg(d) = 1, so if f = qd + r, then either r = 0 or
deg(r) = 0. So write r ∈ F , then

f = q(x− c) + r

Evaluating at c by Theorem 2.9, we see that

f(c) = 0 + r

Hence,
f = q(x− c) + f(c)

Thus, (x− c) | f if and only if f(c) = 0.
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Corollary 4.5. Let f ∈ F [x] is non-zero, then f has atmost deg(f) roots in F .

Proof. We induct on deg(f).

� If deg(f) = 0, then f ∈ F is non-zero, so f has no roots.

� Suppose deg(f) > 0, and assume that the theorem is true for any polynomial g
with deg(g) < deg(f). If f has no roots in F , then we are done. Suppose f has a
root at c ∈ F , then by Corollary 4.4, write

f = q(x− c)

Note that deg(f) = deg(q) + deg(x− c), so

deg(q) < deg(f)

By induction hypothesis, q has atmost deg(q) roots. Furthermore, for any b ∈ F ,

f(b) = q(b)(b− c)

So if b ∈ F is a root of f and b 6= c, then it must follow that b is a root of f .
Hence,

{Roots of f} = {c} ∪ {Roots of q}

Thus,

|{Roots of f}| ≤ 1 + |{Roots of q}| ≤ 1 + deg(q) ≤ 1 + deg(f)− 1 = deg(f)

Definition 4.6. Let f ∈ F [x] be the polynomial

f =
n∑
i=0

cix
i

Then the derivative of f is the polynomial

Df =
n∑
i=1

icix
i−1

This defines a linear operator D : F [x]→ F [x]. The higher derivatives of f are denoted
by D2f,D3f, . . ..

Theorem 4.7 (Taylor’s Formula). Let f ∈ F [x] be a polynomial with deg(f) ≤ n, then

f =
n∑
k=0

(Dkf)(c)

k!
(x− c)k
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Proof. By the binomial theorem, we have

xm = [c+ (x− c)]m

=
m∑
k=0

(
m

k

)
cm−k(x− c)k

Hence, Taylor’s formula holds when f = xm. Now by linearity, if

f =
n∑

m=0

amx
m

then by linearity of Dk and the evaluation map (Theorem 2.9), we have

Dkf(c) =
n∑

m=0

am(Dkxm)(c)

Hence,

n∑
k=0

Dkf(c)

k!
(x− c)k =

n∑
k=0

n∑
m=0

am
(Dkxm)(c)

k!
(x− c)k

=
n∑

m=0

am

(
m∑
k=0

Dkf(c)

k!
(x− c)k

)

=
n∑

m=0

amx
m

= f

Definition 4.8. Let f ∈ F [x] and c ∈ F , then we say that c is a root of f of multiplicity
r if

(i) (x− c)r | f
(ii) (x− c)r+1 - f

Lemma 4.9. Let S = {f1, f2, . . . , fn} ⊂ F [x] be a set of non-zero polynomials such that
no two elements of S have the same degree. Then S is a linearly independent set.

Proof. We may enumerate S so that, if ki := deg(fi), then

k1 < k2 < . . . < kn

We proceed by induction on n := |S|. If n = 1, then the theorem is true because f1 6= 0.
So suppose the theorem is true for any set T as above such that |T | ≤ n − 1. Now
suppose ci ∈ F such that

n∑
i=1

cifi = 0
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Let m := kn − 1, then observe that

Dmfi = 0 ∀1 ≤ i ≤ n− 1

and that Dmfn 6= 0. Applying Dm to the above equation, we see that

cnD
mfn = 0

Since Dmfn 6= 0, it follows that cn = 0 (by Corollary 2.5). Hence,

n−1∑
i=1

cifi = 0

By induction, it follows that ci = 0 for all 1 ≤ i ≤ n.

Proposition 4.10. Let V be the vector subspace of F [x] of all polynomials of degree
≤ n. For any c ∈ F , the set

{1, (x− c), (x− c)2, . . . , (x− c)n}

forms a basis for V .

Proof. The set is linearly independent by Lemma 4.9 and spans V by Theorem 4.7.

Theorem 4.11. Let f ∈ F [x] be a polynomial with deg(f) ≤ n, and c ∈ F . Then c is
a root of f of multiplicity r ∈ N if and only if

(i) Dkf(c) = 0 for all 0 ≤ k ≤ r − 1

(ii) Drf(c) 6= 0.

Proof.

(i) Suppose c is a root of f of multiplicity r, then we may write

f = (x− c)rg

since (x − c)r | f . Furthermore, if g(c) = 0, then (x − c) | g by Corollary 4.4, so
that would imply that

(x− c)r+1 | f

This is not possible, so g(c) 6= 0. Since deg(g) ≤ n − r, by applying Taylor’s
formula to g, we see that

f = (x− c)r
[
n−r∑
m=0

Dmg(c)

m!
(x− c)m

]

=
n−r∑
m=0

Dmg(c)

m!
(x− c)m+r
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By Taylor’s formula,

f =
n∑
k=0

Dkf(c)

k!
(x− c)k

The set {1, (x−c), (x−c)2, . . . , (x−c)n} forms a basis for the space of polynomials
of degree ≤ n by Proposition 4.10, so there is only one way to express f as a linear
combination of these polynomials. Hence,

Dkf(c)

k!
=

{
0 : 0 ≤ k ≤ r − 1
Dk−rg(c)
(k−r)! : r ≤ k ≤ n

Hence, Dkf(c) = 0 for all 0 ≤ k ≤ r − 1 and

Drf(c) = g(c)r! 6= 0

since g(c) 6= 0

(ii) Conversely, suppose conditions (i) and (ii) are satisfied, then Taylor’s formula gives

f =
n∑
k=r

Dkf(c)

k!
(x− c)k = (x− c)rg

where

g =
n−r∑
m=0

Dm+rf(c)

(m+ r)!
(x− c)m

Thus, (x− c)r | f . Furthermore,

g(c) =
Drf(c)

r!
6= 0

so that (x− c)r+1 - f , so that c is a root of f of multiplicity r.

Definition 4.12. A subset M ⊂ F [x] is called an ideal of F [x] if M is a subspace of
F [x] such that, for any f ∈M and g ∈ F [x], the product fg lies in M .

Example 4.13.

(i) If d ∈ F [x] is a polynomial, set

M := {dg : g ∈ F [x]}

Then M is an ideal of F [x]. This is called the principal ideal of F [x] generated by
d. We denote this ideal by

M = dF [x]

Note that the generator d may not be unique (See below)
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(ii) If d1, d2, . . . , dn ∈ F [x], the define

M = {d1g1 + d2g2 + . . .+ dngn : gi ∈ F [x]}

Then M is an ideal of F [x], called the ideal generated by d1, d2, . . . , dn.

Theorem 4.14. If M ⊂ F [x] is a non-zero ideal of F [x], then there is a unique monic
polynomial d ∈ F [x] such that M is the principal ideal generated by d.

Proof.

(i) Existence: Since M is non-zero, we may define

S = {deg(g) : g ∈M, g 6= 0}

Then S is a non-empty subset of N∪{0}, so it contains a minimal element. Hence,
there exists d ∈M such that

deg(d) ≤ deg(g) ∀g ∈M

Since M is a subspace, we may multiply d by a scalar (if necessary) to ensure that
d is monic. Set

M ′ := dF [x]

Since M is an ideal, M ′ ⊂ M . To show the reverse containment, let f ∈ M . By
Euclidean division Theorem 4.2, we may write

f = dq + r

where r = 0 or deg(r) < deg(d). Since r = f − dq, we conclude that r ∈M . Since

deg(d) ≤ deg(g) ∀g ∈M

it must happen that r = 0. Hence, f = dq ∈M ′. Thus, M = M ′ as required.

(ii) Uniqueness: If d1, d2 ∈M are two monic polynomials such that

M = d1F [x] = d2F [x]

Then d1 ∈M , so there exists g ∈ F [x] such that d1 = d2g. Thus,

deg(d1) ≥ deg(d2)

By symmetry, it follows that deg(d2) = deg(d1), so that g ∈ F . Since both d1 and
d2 are monic, we conclude that

g = 1

so that d1 = d2 as required.
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Corollary 4.15. Let p1, p2, . . . , pn ∈ F [x] where not all the pi are zero. Then, there
exists a unique monic polynomial d ∈ F [x] such that

(i) d | pi for all 1 ≤ i ≤ n.

(ii) If f ∈ F [x] is any polynomial such that f | pi for all 1 ≤ i ≤ n, then f | d.

Proof.

(i) Existence: Let M be the ideal generated by p1, p2, . . . , pn, and let d be its unique
monic generator (by Theorem 4.14). Then, for each 1 ≤ i ≤ n, we have pi ∈M =
dF [x], so

d | pi
Furthermore, if f | pi for all 1 ≤ i ≤ n, then there exist gi ∈ F [x] such that

pi = fgi

Since d is in the ideal M , there exist fi ∈ F [x] such that

d =
n∑
i=1

fipi =
n∑
i=1

fifgi =

(
n∑
i=1

figi

)
f

So that d | f .

(ii) Uniqueness: If d1, d2 ∈ F [x] are two polynomials satisfying both (i) and (ii), then
d1 | pi for all 1 ≤ i ≤ n implies that d1 | d2. By symmetry, we have d2 | d1. This
implies (Why?) that

d1 = cd2

for some constant c ∈ F . Since both d1 and d2 are monic, we conclude that d1 = d2.

Definition 4.16. Let p1, p2, . . . , pn ∈ F [x] be polynomials (not all zero).

(i) The monic polynomial d ∈ F [x] satisfying the conditions of Corollary 4.15 is called
the greatest common divisor (gcd) of p1, p2, . . . , pn. If this happens, we write

d = (p1, p2, . . . , pn)

(ii) We say that p1, p2, . . . , pn are relatively prime if (p1, p2, . . . , pn) = 1

Example 4.17.

(i) Let p1 = (x+ 2) and p2 = (x2 + 8x+ 16) ∈ R[x], and let M be the ideal generated
by {p1, p2}. Then

(x2 + 8x+ 16) = (x+ 6)(x+ 2) + 4

Hence, 4 ∈M , so M contains scalar polynomials. Therefore, 1 ∈M , whence

(p1, p2) = 1

(ii) If p1, p2, . . . , pn ∈ F [x] are relatively prime, then the ideal M generated by them
is all of F [x]. Hence, there exist f1, f2, . . . , fn ∈ F [x] such that

n∑
i=1

fipi = 1
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5. Prime Factorization of a Polynomial

Definition 5.1. Let F be a field and f ∈ F [x]. f is said to be

(i) reducible if there exist two polynomials g, h ∈ F [x] such that deg(g), deg(h) ≥ 1
and

f = gh

(ii) irreducible or prime if f is not a scalar, and it is not reducible.

Example 5.2.

(i) If f ∈ F [x] has degree 1, then f is prime because deg(gh) = deg(g) + deg(h).

(ii) f = x2 + 1 is reducible in C[x] because f = (x+ i)(x− i)
(iii) f = x2 + 1 is irreducible in R[x] because if f = gh with deg(g), deg(h) ≥ 1, then

since
deg(g) + deg(h) = deg(gh) = deg(f) = 2

it follows that deg(g) = deg(h) = 1, so we may write

g = ax+ b, h = cx+ d

Multiplying, we get equations

ac = 1

ad+ bc = 0

bd = 1

This implies (Check!) that a2 + b2 = 0 which is not possible for a, b ∈ R unless
a = b = 0. Thus, f is irreducible.

Remark 5.3.

(i) If p ∈ F [x] is prime and d | p, then either d = cp for some constant c ∈ F or d ∈ F .

(ii) If p, q ∈ F [x] are both primes and p | q, then p = cq (because a prime polynomial
cannot be a scalar).

Theorem 5.4 (Euclid’s Lemma). Let p, f, g ∈ F [x] where p is prime. If p | (fg), then
either p | f or p | g

Proof. Assume without loss of generality that p is monic. Let d = (f, p). Since d | p is
monic, and p is irreducible, we must have that either

d = p or d = 1

If d = p, then p | f , and we are done.
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If not, then d = 1, so by Example 4.17, there exist f0, p0 ∈ F [x] such that

f0f + p0p = 1

So that
g = f0fg + p0pg

Now observe that p | fg and p | p, so
p | g

The proof of the next corollary follows by induction (Check!).

Corollary 5.5. Let p, f1, f2, . . . , fn ∈ F [x] where p is prime. If

p | (f1f2 . . . fn)

Then there exists 1 ≤ i ≤ n such that p | fi

Theorem 5.6 (Prime Factorization). Let F be a field and f ∈ F [x] be a non-scalar
monic polynomial. Then, f can be expressed as a product of finitely many monic prime
polynomials. Furthermore, this expression is unique (upto rearrangement).

Proof.

(i) Existence: We induct on deg(f). Note that by assumption, deg(f) ≥ 1.

� If deg(f) = 1, then f is prime by Example 5.2.

� Now assume deg(f) ≥ 2 and that every polynomial h with deg(h) < deg(f)
has a prime factorization. Then, if f is itself prime, there is nothing to prove.
So suppose f is not prime. Then, by definition, there exist g, h ∈ F [x] of
degree ≥ 1 such that

f = gh

Since f is monic, we may arrange it so that g and h are both monic as well.
But then deg(g), deg(h) < deg(f), so by induction hypothesis, both g and h
can be expressed a product of primes. Thus, f can also be expressed as a
product of primes.

(ii) Uniqueness: Suppose that

f = p1p2 . . . pn = q1q2 . . . qm

where pi, qj ∈ F [x] are monic primes. We wish to show that n = m and that (upto
reordering), pi = qi for all 1 ≤ i ≤ n. We induct on n.
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� If n = 1, then
f = p1 = q1q2 . . . qm

Since p1 is prime, there exists 1 ≤ j ≤ m such that p1 | qj. But both p1 and
qj are monic primes, so p1 = qj by Remark 5.3. Assume WLOG that j = 1,
so by Corollary 2.5, it follows that

q2q3 . . . qm = 1

Since each qj is prime (and so has degree ≥ 2), this cannot happen. Hence,
m = 1 must hold.

� Now suppose n ≥ 2, and we assume that the uniqueness of prime factorization
holds for any monic polynomial h that is expressed as a product of (n − 1)
primes. Then, we have

p1 | q1q2 . . . qm
So by Corollary 5.5, there exists 1 ≤ j ≤ m such that p1 | qj. Assume WLOG
that j = 1, then (as before),

p1 = q1

must hold. Hence, by Corollary 2.5, we have

p2p3 . . . pn = q2q3 . . . qm

By induction hypothesis, we have (n − 1) = (m − 1) and pj = qj for all
2 ≤ j ≤ m (upto rearrangement). Thus,

n = m and pi = qi ∀1 ≤ i ≤ n

as required.

Definition 5.7. Let f ∈ F [x] be a non-scalar monic polynomial, and write

f − q1q2 . . . qm

where each qi is prime. Combining like terms, we get

f = pn1
1 p

n2
2 . . . pnr

r

where the pi are distinct primes. This is called the primary decomposition of f (and it
is also unique).

Remark 5.8. Suppose that f, g ∈ F [x] are monic polynomials with primary decompo-
sition

f = pn1
1 p

n2
2 . . . pnr

r and g = pm1
1 pm2

2 . . . pmr
r

(where some of the ni,mj may also be zero). Then (Check!) that the g.c.d. of f and g
is given by

(f, g) = p
min{n1,m1}
1 p

min{n2,m2}
2 . . . pmin{nr,mr}

r
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The proof of the next theorem is now an easy corollary of this remark.

Theorem 5.9. Let f ∈ F [x] be a non-scalar polynomial with primary decomposition

f = pn1
1 p

n2
2 . . . pnr

r

Write
fj := f/p

nj

j =
∏
i 6=j

pni
i

then the polynomials f1, f2, . . . , fr are relatively prime

Theorem 5.10. A polynomial f ∈ F [x] is a product of distinct irreducible polynomials
over F if and only if (f,Df) = 1

Proof.

(i) Suppose that f is a product of distinct irreducible polynomials. So the prime
decomposition of f has the form

f = p1p2 . . . pr

where the pj are mutually distinct primes, and let d = (f,Df). If d 6= 1, then
there is a monic prime q such that

q | d

Hence, q | f , so by Corollary 5.5, there exists 1 ≤ i ≤ m such that q | pi. Since q
and pi are both monic primes, it follows that

q = pi

Hence, we assume WLOG that i = 1 so that p1 | Df . Now we write

fj = f/pj

so by Leibnitz’ rule, we have

Df = D(p1)f1 +D(p2)f2 + . . .+D(pr)fr

Now observe that p1 | fj for all j ≥ 2. Since p1 | Df , it follows that

p1 | D(p1)f1

Now D(p1) is a polynomial whose degree is < deg(p1). So p1 - D(p1). So by
Euclid’s Lemma Theorem 5.4, it follows that

p1 | f1

But f1 = p2p3 . . . pn, so by Corollary 5.5, it follows that there exists 2 ≤ j ≤ n
such that

p1 | pj
Since both p1 and pj are monic primes, it follows that p1 = pj. This contradicts
the fact that the pj are all mutually distinct.
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(ii) Conversely, suppose f has a prime decomposition with at least one prime occuring
multiple times. Then, we may write

f = p2g

for some prime p ∈ F [x] and some other g ∈ F [x]. Then, by Leibnitz’ rule,

Df = 2pD(p)g + p2D(g)

Hence, p | D(f), so (f,Df) 6= 1.

Recall that, if p ∈ F [x] has degree 1, then p is irreducible.

Definition 5.11. A field F is said to be algebraically closed if every irreducible poly-
nomial over F has degree 1.

Example 5.12.

(i) If F = R, then x2 + 1 ∈ F [x] is irreducible by Example 5.2. Hence, R is not
algebraically closed.

(ii) By the Fundamental Theorem of Algebra, C is algebraically closed.

Remark 5.13. If F is algebraically closed, then any non-zero f ∈ F [x] can be expressed
in form

f = c(x− a1)(x− a2) . . . (x− an)

for some scalars c, a1, a2, . . . , an ∈ F .

(End of Week 6)

103



V. Determinants

1. Commutative Rings

Definition 1.1. A ring is a set K together with two operations × : K ×K → K and
+ : K ×K → K satisfying the following conditions:

(i) (K,+) is a commutative group.

(ii) (xy)z = x(yz) for all x, y, z ∈ K
(iii) x(y + z) = xy + xz and (y + z)x = yx+ zx for all x, y, z ∈ K

Furthermore, we say that K is commutative if xy = yx for all x, y ∈ K. An element
1 ∈ K is said to be a unit if 1x = x = x1 for all x ∈ K. If such an element exists, then
K is said to be a ring with identity.

Example 1.2.

(i) Every field is a commutative ring with identity.

(ii) Z is a ring that is not a field.

Note: The important distinction between a commutative ring with identity and
a field is that, if F is a field and x ∈ F is non-zero, then there exists y ∈ F such
that xy = yx = 1. In a ring, it is not necessary that every non-zero element has a
multiplicative inverse.

(iii) If F is a field, then F [x] is a ring.

Definition 1.3. Let K be a commutative ring with identity. An m× n matrix over K
is a function A from the set {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} to K. We write Km×n for
the set of all m× n matrices over K.

As usual, we represent such a function the same way we do for matrices over fields.
Given two matrices A,B ∈ Km×n, we define addition and mutliplication in the usual
way. The basic algebraic identities still hold. For instance,

A(B + C) = AB + AC, (AB)C = A(BC), . . .

Many of our earlier results about matrices over a field also hold for matrices over a ring,
except those that may involve ‘dividing by elements of K’.
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2. Determinant Functions

Standing Assumption: Throughout the remainder of the chapter, K will denote a
commutative ring with identity.
Given an n× n matrix A over a ring K, we think of A as a tuple of rows

A↔ (α1, α2, . . . , αn)

We wish to define the determinant of A axiomatically so that the final formula we arrive
at will not be mysterious. One of the advantages of this approach is that it is more
conceptual and less computational.

Definition 2.1. Given a function D : Kn×n → K, we say that D is n-linear if, given any
matrix A = (α1, α2, . . . , αn) as above, and each 1 ≤ j ≤ n, the function Dj : Kn → K
defined by

Dj(·) := D(α1, α2, . . . , αj−1, ·, αj+1, . . . , αn)

is linear. (ie. If β1, β2 ∈ Kn and c ∈ K, then Dj(cβ1 + β2) = cD(β1) +D(β2))

Example 2.2.

(i) Fix integers k1, k2, . . . , kn such that 1 ≤ ki ≤ n and fix a ∈ K. Define D : Kn×n →
K by

D(A) = aA(1, k1)A(2, k2) . . . A(n, kn)

Then, for any fixed 1 ≤ j ≤ n, the map Dj : Kn → K has the form

Dj(β) = cA(j, kj) = cβ

Hence, each Dj is linear, so D is n-linear.

(ii) As a special case of the previous example, the map D : Kn×n → K by

D(A) = A(1, 1)A(2, 2) . . . A(n, n)

is n-linear. (ie. D maps a matrix to the product of its diagonal entries).

(iii) Let n = 2 and D : K2×2 → K be any n-linear function. Write {ε1, ε2} denote the
rows of the 2× 2 identity matrix. For A ∈ K2×2, we have

D(A) = D(A1,1ε1 + A1,2ε2, A2,1ε1 + A2,2ε2)

= A1,1D(ε1, A2,1ε1 + A2,2ε2) + A1,2D(ε2, A2,1ε1 + A2,2ε2)

= A1,1A2,1D(ε1, ε1) + A1,2A2,1D(ε2, ε1) + A1,1A2,2D(ε1, ε2) + A1,2A2,2D(ε2, ε2)

Hence, D is completely determined by four scalars

a := D(ε1, ε1), b := D(ε1, ε2)

c := D(ε2, ε1), d := D(ε2, ε2)

Conversely, given any four scalars a, b, c, d, if we define D : K2×2 → K by

D(A) = A1,1A2,1a+ A1,2A2,1b+ A1,1A2,2c+ A1,2A2,2d

Then D defines a 2-linear map on K2×2.
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(iv) For instance, we may define D : K2×2 → K by

D(A) = A1,1A2,2 − A1,2A2,1

This is 2-linear and is the family ‘determinant’ of a 2× 2 matrix.

Lemma 2.3. A linear combination of n-linear functions is n-linear.

Proof. Let D1 and D2 be two n-linear functions and c ∈ K be a scalar, then we wish to
show that

D3 := cD1 +D2

is n-linear. So fix A = (α1, α2, . . . , αn) ∈ Kn×n and 1 ≤ j ≤ n, and consider the map

Dj
3 : Kn → K

defined by
Dj

3(β) := D3(α1, α2, . . . , αj−1, β, αj+1, . . . , αn)

It is clear that
Dj

3 = cDj
1 +Dj

2

and each of Dj
1 and Dj

2 are linear. Hence, Dj
3 is linear, so D is n-linear as required.

We now wish to isolate the kind of function that will eventually lead to the definition of
a ‘determinant’.

Definition 2.4. An n-linear function D is said to be alternating (or alternate) if both
the following conditions are satisfied:

(i) D(A) = 0 whenever two rows of A are equal.

(ii) If A′ is obtained from A by exchanging two rows of A, then D(A′) = −D(A).

Remark 2.5.

(i) We will show that the condition (i) implies the condition (ii) above.

(ii) It is not, in general, true that condition (ii) implies condition (i). It is true,
however, if 1 + 1 6= 0 in K (Check!)

Definition 2.6. An n-linear function D is said to be a determinant function if D is
alternating, and satisfies

D(I) = 1

Example 2.7.
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(i) Let D be a 2-linear determinant function. As mentioned above, D has the form

D(A) = A1,1A2,1a+ A1,2A2,1b+ A1,1A2,2c+ A1,2A2,2d

where

a := D(ε1, ε1), b := D(ε1, ε2)

c := D(ε2, ε1), d := D(ε2, ε2)

Since D is alternating,
D(ε1, ε1) = D(ε2, ε2) = 0

Furthermore,
D(ε1, ε2) = −D(ε2, ε1)

Hence,
D(A) = c(A1,1A2,2 − A1,2A2,1)

But since D(I) = 1, we conclude that c = 1, so that

D(A) = A1,1A2,2 − A1,2A2,1

Hence, there is only one 2-linear determinant function.

(ii) Let F be a field and K = F [x] be the polynomial ring over F . Let D be any
3-linear determinant function on K, and let

A =

x 0 −x2
0 1 0
1 0 x3


Then

D(A) = D(xε1 − x2ε3, ε2, ε1 + x3ε3)

= xD(ε1, ε2, ε1 + x2ε3)− x2D(ε3, ε2, ε1 + x3ε3)

= xD(ε1, ε2, ε1) + x4D(ε1, ε2, ε3)− x2D(ε3, ε2, ε1)− x5D(ε3, ε2, ε3)

Since D is alternating,

D(ε1, ε2, ε1) = D(ε3, ε2, ε3) = 0

and
D(ε3, ε2, ε1) = −D(ε1, ε2, ε3)

Hence,
D(A) = (x4 + x2)D(ε1, ε2, ε3) = x4 + x2

where the last equality holds because D(I) = 1.

Lemma 2.8. Let D be a 2-linear function with the property that D(A) = 0 for any 2×2
matrix A over K having equal rows. Then D is alternating.
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Proof. Let A be a fixed 2 × 2 matrix and A′ be obtained from A by interchanging two
rows. We wish to prove that

D(A′) = −D(A)

So write A = (α, β) as before, then we wish to show that

D(β, α) = −D(α, β)

But consider

D(α + β, α + β) = D(α, α) +D(β, α) +D(α, β) +D(β, β)

and note that, by hypothesis,

D(α + β, α + β) = D(α, α) = D(β, β) = 0

Hence,
D(α, β) +D(β, α) = 0

as required.

Lemma 2.9. Let D be an n-linear function on Kn×n with the property that D(A) = 0
whenever two adjacent rows of A are equal. Then, D is alternating.

Proof. We have to verify both conditions of Definition 2.4. Namely,

� D(A) = 0 whenever two rows of A are equal.

� If A′ is obtained from A by exchanging two rows of A, then D(A′) = −D(A).

We first verify condition (ii) and then verify (i).

(i) Suppose first that A′ is obtained from A by interchanging two adjacent rows of
A. Then, we assume without loss of generality that the rows α1 and α2 are inter-
changed. In other words,

A = (α1, α2, . . . , αn) and A′ = (α2, α1, . . . , αn)

But the same logic as in the previous lemma shows that

D(A′) = −D(A)

(ii) Now suppose that A′ is obtained from A by interchanging row i with row j where
i < j. Then consider the matrix B1 obtained from A by successively interchanging
rows

i↔ (i+ 1)

(i+ 1)↔ (i+ 2)

...

(j − 1)↔ j
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This requires k := (j − i) interchanges of adjacent rows, so that

D(B1) = (−1)kD(A)

Now A′ is obtained from B1 by successively interchangning rows

(j − 1)↔ (j − 2)

(j − 2)↔ (j − 3)

...

(i+ 1)i

This requires (k − 1) interchanges of adjacent rows, so that

D(A′) = (−1)k−1D(B1) = (−1)2k−1D(A) = −D(A)

(iii) Finally, suppose A is any matrix in which two rows are equal, say αi = αj. If
j = i+1, then A has two adjacent rows that are equal, so D(A) = 0 by hypothesis.
If j > i+ 1, then we interchange rows (i+ 1)↔ j, to obtain a matrix B which has
two adjacent rows equal. Therefore, by hypothesis, D(B) = 0. But by step (ii),
we have

D(A) = −D(B)

so that D(A) = 0 as well.

Definition 2.10.

(i) Let A ∈ Kn×n be a matrix and 1 ≤ i, j ≤ n. Then A(i | j) is the (n− 1)× (n− 1)
matrix obtained by deleting the ith row and the jth column of A.

(ii) If D is an (n− 1)-linear function and A is an n× n matrix, then we define Di,j as

Di,j(A) := D(A(i | j))

Theorem 2.11. LeT n > 1 and D be an (n − 1)-linear function. For each 1 ≤ j ≤ n,
define a function Ej : Kn×n → K by

Ej(A) :=
n∑
i=1

(−1)i+jAi,jDi,j(A)

Then Ej is an alternating function on Kn×n. Furthermore, if D is a determinant func-
tion, then so is Ej.

Proof.
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(i) If A is an n × n matrix, then the scalar Di,j(A) is independent of the ith row of
A. Furthermore, since D is (n− 1)-linear, it follows that Di,j is linear in all rows
except the ith row. Hence,

A 7→ Ai,jDi,j(A)

is n-linear. By Lemma 2.3, it follows that Ej is n-linear.

(ii) To prove that Ej is alternating, it suffices to show (by Lemma 2.9) that Ej(A) = 0
whenever any two adjacent rows of A are equal. So suppose A = (α1, α2, . . . , αn)
and αk = αk+1. If i /∈ {k, k + 1}, then the matrix A(i | j) has row equal rows, so
that Di,j(A) = 0. Therefore,

Ej(A) = (−1)k+jAk,jDk,j(A) + (−1)k+1+jAk+1,jDk+1,j(A)

Since αk = αk+1,

Ak,j = Ak+1,j and A(k | j) = A(k + 1 | j)

Hence, Ej(A) = 0. Thus E is alternating.

(iii) Now suppose D is a determinant function and I(n) denotes the n × n identity
matrix, then I(n)(j | j) is the (n − 1) × (n − 1) identity matrix I(n−1). Since

I
(n)
i,j = δi,j, we have

Ej(I
(n)) = Dj,j(I

(n)) = D(I(n−1)) = 1

so that Ej is a determinant function.

Corollary 2.12. Let K be a commutative ring with identity and let n ∈ N. Then, there
exists at least one determinant function on Kn×n.

Proof. For n = 1, we simply define D([a]) = a.

For n > 1, we assume by induction that we have constructed a determinant function on
K(n−1)×(n−1). By Theorem 2.11, we may construct a determinant function on Kn×n.

Example 2.13. We have already seen that any determinant function D : K2×2 → K
must be of the form

D(B) = B1,1B2,2 −B1,2B2,2 =: |B|
Let A ∈ K3×3, then we define Ej as in Theorem 2.11. Then

E1(A) =
3∑
i=1

(−1)i+1Ai,1Di,1(A)

= A1,1D1,1(A)− A2,1D2,1(A) + A3,1D3,1(A)

= A1,1

∣∣∣∣(A2,2 A2,3

A3,2 A3,3

)∣∣∣∣− A2,1

∣∣∣∣(A1,2 A1,3

A3,2 A3,3

)∣∣∣∣+ A3,1

∣∣∣∣(A1,2 A1,3

A2,2 A2,3

)∣∣∣∣
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Similarly, we may calculate that

E2(A) = −A1,2

∣∣∣∣(A2,1 A2,3

A3,1 A3,3

)∣∣∣∣+ A2,2

∣∣∣∣(A1,1 A1,3

A3,1 A3,3

)∣∣∣∣− A3,2

∣∣∣∣(A1,1 A1,3

A2,1 A2,3

)∣∣∣∣ , and

E3(A) = A1,3

∣∣∣∣(A2,1 A2,2

A3,1 A3,2

)∣∣∣∣− A2,3

∣∣∣∣(A1,1 A1,2

A3,1 A3,2

)∣∣∣∣+ A3,3

∣∣∣∣(A1,1 A1,2

A2,1 A2,2

)∣∣∣∣
It follows from Theorem 2.11 that E1, E2, and E3 are all determinant functions. In fact,
we will soon prove (and you can verify if you like) that

E1 = E2 = E3

We take one example to describe this phenomenon: Let K = R[x] and

A =

(x− 1) x2 x3

0 x− 2 1
0 0 x− 3


Then

E1(A) = (x− 1)

∣∣∣∣(x− 2 1
0 x− 3

)∣∣∣∣− x2 ∣∣∣∣(0 1
0 x− 3

)∣∣∣∣+ x3
∣∣∣∣(0 x− 2

0 0

)∣∣∣∣
= (x− 1)(x− 2)(x− 3)

E2(A) = −x2
∣∣∣∣(0 1

0 x− 3

)∣∣∣∣+ (x− 2)

∣∣∣∣(x− 1 x3

0 x− 3

)∣∣∣∣− 1

∣∣∣∣(x− 1 x2

0 0

)∣∣∣∣
= (x− 1)(x− 2)(x− 3)

Similarly, one can check that

E3(A) = (x− 1)(x− 2)(x− 3)

as well.

3. Permutations and Uniqueness of Determinants

Remark 3.1. (i) Let D be an n-linear function, and A ∈ Kn×n be a matrix with
rows α1, α2, . . . , αn. Then,

αi =
n∑
j=1

A(i, j)εj
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where {ε1, ε2, . . . , εn} denote the rows of the identity matrix I. Since D is n-linear,
we see that

D(A) =
∑
j

A(1, j)D(εj, α2, . . . , αn)

=
∑
j

∑
k

A(1, j)A(2, k)D(εj, εk, α3, . . . αn)

= . . .

=
∑

k1,k2,...,kn

A(1, k1)A(2, k2) . . . A(n, kn)D(εk1 , εk2 , . . . , εkn)

(ii) Now suppose that D is also alternating. Then,

D(εk1 , εk2 , . . . , εkn) = 0

for any tuple (k1, k2, . . . , kn) such that any two ki coincide. Hence, we conclude
that

D(A) =
∑

k1,k2,...,kn

A(1, k1)A(2, k2) . . . A(n, kn)D(εk1 , εk2 , . . . , εkn)

where the sum is taken over all tuples (k1, k2, . . . , kn) such that the {ki} are mu-
tually distinct integers with 1 ≤ ki ≤ n.

Definition 3.2.

(i) Let X be a set. A permutation of X is a bijective function σ : X → X.

(ii) If X = {1, 2, . . . , n}, then a permutation of X is called a permutation of degree n.

(iii) We write Sn for the set of all permutations of degree n. Note that, since X :=
{1, 2, . . . , n} is a finite set, a function σ : X → X is bijective if and only if it is
either injective or surjective.

Now, in the earlier remark, a tuple (k1, k2, . . . , kn) is equivalent to a function

σ : X → X given by σ(i) = ki

To say that the {ki} are mutually distinct is equivalent to saying that σ is injective (and
hence bijective). We now conclude the following fact.

Lemma 3.3. Let D be an n-linear alternating function. Then, for any A ∈ Kn×n, we
have

D(A) =
∑
σ∈Sn

A(1, σ(1))A(2, σ(2)) . . . A(n, σ(n))D(εσ(1), εσ(2), . . . , εσ(n))

Remark 3.4. If σ1, σ2 ∈ Sn, then the composition σ1 ◦ σ2 is also a bijection of X, and
hence we get a binary operation

◦ : Sn × Sn → Sn

Observe that
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(i) Composition is associative:

σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3

(ii) If τ = idX , then
σ ◦ τ = τ ◦ σ

holds for all σ ∈ Sn.

(iii) If σ ∈ Sn, there is an inverse function σ−1 : X → X, which is also bijective, and
satisfies

σ ◦ σ−1 = τ = σ−1 ◦ σ

Hence, the pair (Sn, ◦) is a group, and is called the symmetric group of degree n.

Definition 3.5. A transposition is an element σ ∈ Sn such that, there exist 1 ≤ i, j ≤ n
with i 6= j such that

σ(k) =


k : k /∈ {i, j}
j : k = i

i : k = j

We will need the following fact, which we will not prove (it will hopefully be proved in
MTH301 - if not, you can look up [Conrad]).

Theorem 3.6. Every σ ∈ Sn can be expressed in the form

σ = τ1τ2 . . . τk

where each τi is a transposition. This expression is not necessarily unique, but if

σ = η1η2 . . . ηk′

is another such expression where each ηj is a transposition, then

k = k′ mod (2)

Definition 3.7. Let σ ∈ Sn

(i) We say that σ is an even permutation if it can be expressed as an even number of
transpositions. If it can be expressed as an odd number of transpositions, then we
say that σ is odd. Note that this definition makes sense (ie. an odd permutation
cannot also be even) because of the previous theorem.

(ii) The sign function is the map sgn : Sn → {±1} given by

sgn(σ) =

{
1 : σ is even

−1 : σ is odd
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Example 3.8.

(i) If τ is a transposition, then sgn(τ) = −1.

(ii) If σ ∈ S4 is the permutation given by

σ =

(
1 2 3 4
2 1 4 3

)
Then, σ can be expressed as a product of two transpositions (Check!), so

sgn(σ) = +1

Lemma 3.9. Let D be an n-linear alternating function, and σ ∈ Sn. Then

D(εσ(1), εσ(2), . . . , εσ(n)) = sgn(σ)D(I)

Proof.

(i) Suppose first that σ is a transposition

σ(k) =


l : k /∈ {i, j}
j : k = i

i : k = j

Then the matrix
A = (εσ(1), εσ(2), . . . , εσ(n))

is obtained from the identity matrix by interchanging the ith row with the jth row
(and keeping all other rows fixed). Hence,

D(A) = (−1)D(I) = sgn(σ)D(I)

(ii) Now suppose σ is any other permutation, then write σ as a product of transposi-
tions

σ = τ1τ2 . . . τk

Thus, if we pass from

(1, 2, . . . , n)→ (σ(1), σ(2), . . . , σ(n))

there are exactly k interchanges if pairs. Since D is alternating, each such inter-
change results in a multiplication by (−1). Hence,

D(εσ(1), εσ(2), . . . , εσ(n)) = (−1)kD(I) = sgn(σ)D(I)

The next theorem is thus a consequence of Lemma 3.3 and Lemma 3.9.
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Theorem 3.10. Let D be an n-linear alternating function and A ∈ Kn×n. Then

D(A) =

[∑
σ∈Sn

A(1, σ(1))A(2, σ(2)) . . . A(n, σ(n))sgn(σ)

]
D(I)

Recall that a determinant function is one that is n-linear, alternating, and satisfies
D(I) = 1. From the above theorem, we thus conclude

Corollary 3.11. There is exactly one determinant function

det : Kn×n → K

Furthermore, if A ∈ Kn×n, then

det(A) =
∑
σ∈Sn

sgn(σ)A(1, σ(1))A(2, σ(2)) . . . A(n, σ(n))

Furthermore, if D : Kn×n → K is any n-linear alternating function, then

D(A) = det(A)D(I)

for any A ∈ Kn×n

Theorem 3.12. Let K be a commutative ring with identity, and A,B ∈ Kn×n. Then

det(AB) = det(A) det(B)

Proof. Fix B, and define D : Kn×n → K by

D(A) := det(AB)

Then

(i) D is n-linear: If C = (α1, α2, . . . , αn), we write

D(C) = D(α1, α2, . . . , αn)

Then observe that

D(α1, α2, . . . , αn) = det(α1B,α2B, . . . , αn)

where αjB denotes the 1× n matrix obtained by multiplying the 1× n matrix αj
by the n× n matrix B. Now note that

(αi + cα′i)B = αiB + cα′iB

Since det is n-linear, it now follows that

D(α1, α2, . . . , αi−1, αi + cα′i, αi+1, . . . , αn)

= det(α1B,α2B, . . . , αi−1B, (αi + cα′i)B,αi+1B, . . . , αnB)

= det(α1B,α2B, . . . , αi−1B,αiB,αi+1B, . . . , αnB)

+ c det(α1B,α2B, . . . , αi−1B,α
′
iB,αi+1B, . . . , αnB)

= D(α1, α2, . . . , αi−1, αi, αi+1, . . . , αn) + cD(α1, α2, . . . , αi−1, α
′
i, αi+1, . . . , αn)

This is true for each 1 ≤ i ≤ n. Hence, D is n-linear.
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(ii) D is alternating: If αi = αj for some i 6= j, then

αiB = αjB

Since det is alternating,

det(α1B,α2B, . . . , αnB) = 0

and so D(α1, α2, . . . , αn) = 0. Thus, D is alternating by Lemma 2.9.

Thus, by Corollary 3.11, it follows that

D(A) = det(A)D(I)

Now observe that D(I) = det(IB) = det(B). This completes the proof.

(End of Week 7)

4. Additional Properties of Determinants

Theorem 4.1. Let K be a commutative ring with identity, and let A ∈ Kn×n be an
n× n matrix over K. Then

det(At) = det(A)

Proof. Let σ ∈ Sn be a permutation of degree n, then

At(i, σ(i)) = A(σ(i), i)

Hence, by Corollary 3.11, we have

det(At) =
∑
σ∈Sn

sgn(σ)A(σ(1), 1)A(σ(2), 2) . . . A(σ(n), n)

But if σ(i) = j, then σ−1(j) = i, so A(σ(i), i) = A(j, σ−1(j)). Multiplying, we get

A(σ(1), 1)A(σ(2), 2) . . . A(σ(n), n) = A(1, σ−1(1))A(2, σ−1(2)) . . . A(n, σ−1(n))

Furthermore,

σσ−1 = 1⇒ sgn(σ)sgn(σ−1) = sgn(1) = 1⇒ sgn(σ) = sgn(σ−1)

The map σ 7→ σ−1 is a permutation of Sn, so we get

det(At) =
∑
σ∈Sn

sgn(σ)A(σ(1), 1)A(σ(2), 2) . . . A(σ(n), n)

=
∑
σ∈Sn

sgn(σ−1)A(1, σ−1(1))A(2, σ−1(2)) . . . A(n, σ−1(n))

=
∑
τ∈Sn

sgn(τ)A(1, τ(1))A(2, τ(2)) . . . A(n, τ(n))

= det(A)
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Lemma 4.2. Let A,B ∈ Kn×n. Suppose that B is obtained from A by adding a multiple
of one row of A to another (or a multiple of one column of A to another), then det(A) =
det(B).

Proof.

(i) Suppose the rows of A are α1, α2, . . . , αn, and assume that the rows of B are
α1, α2 + cα1, α3, . . . αn. Then, using the fact that det is n-linear, we have

det(B) = det(α1, α2 + cα1, α3, . . . , αn)

= det(α1, α2, α3, . . . , αn) + c det(α1, α1, α3, . . . , αn)

= det(A) + c(0) = det(A)

(ii) Now suppose B is obtained by replacing a column of A by a multiple of another,
then Bt is obtained from At by replacing a row by a multiple of another row.
Hence, by the first part

det(Bt) = det(At)

The result now follows from Theorem 4.1.

Theorem 4.3. Let A ∈ Kr×r, B ∈ Kr×s, and C ∈ Ks×s, then

det

(
A B
0 C

)
= det(A) det(C)

where 0 denotes the s× r zero matrix over K.

Similarly, if D ∈ Ks×r, then

det

(
A 0
D C

)
= det(A) det(C)

where 0 denotes the r × s zero matrix over K.

Proof. Note that the second formula follows from the first by taking adjoints, so we only
prove the first one.

(i) Define a function D : Ks×s → K by

D(C) := det

(
A B
0 C

)
Then, it is clear that D is s-linear and alternating. So by Corollary 3.11, we
conclude that

D(C) = det(C)D(I)
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(ii) Now consider

D(I) = det

(
A B
0 I

)
Fix an entry Bi,j of B, and consider the matrix U obtained by subtracting Bi,j

times the (s+ j)th row of the given matrix

(
A B
0 I

)
from itself. Then, U is of the

form (
A B′

0 I

)
where B′i,j = 0. Furthermore, by Lemma 4.2, we have

det

(
A B
0 I

)
= det

(
A B′

0 I

)
Repeating this process finitely many times, we conclude that

D(I) = det

(
A B
0 I

)
= det

(
A 0
0 I

)
(iii) Finally, consider the function D̃ : Kr×r → K by

D̃(A) = det

(
A 0
0 I

)
Then D̃ is an n-linear and alternating function, so by Corollary 3.11, we have

D̃(A) = det(A)D̃(I)

However, D̃(I) = 1, so by part (i), we have

det

(
A B
0 C

)
= det(C) det(A)

Example 4.4. Consider K = Q and

A =


1 −1 2 3
2 2 0 2
4 1 −1 −1
1 2 3 0


Label the rows of A as α1, α2, α3, and α4. Replacing α2 by α2−2α1, we get a new matrix

1 −1 2 3
0 4 −4 −4
4 1 −1 −1
1 2 3 0


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Note that this new matrix has the same determinant as that of A by Lemma 4.2. Doing
the same for α3 and α4, we get 

1 −1 2 3
0 4 −4 −4
0 5 −9 −13
0 3 1 −3


Now label these rows β1, β2, β3, and β4, we may replace β3 by β3 − 5

4
β2 to get

1 −1 2 3
0 4 −4 −4
0 0 −4 −8
0 3 1 −3


Also replacing β4 by β4 − 3

4
β2, we get

B :=


1 −1 2 3
0 4 −4 −4
0 0 −4 −8
0 0 4 0


Now note that det(B) = det(A), and by Theorem 4.3, we have

det(A) = det

(
1 −1
0 4

)
det

(
−4 −8
4 0

)
= (4)(32) = 128

Recall that, in Theorem 2.11, we had defined, for each 1 ≤ j ≤ n,

Ej(A) =
n∑
i=1

(−1)i+jAi,j det(A(i|j))

and shown that this function is also a determinant function. By Corollary 3.11, we have
that

det(A) =
n∑
i=1

(−1)i+jAi,j det(A(i|j)) (V.1)

Definition 4.5. Let A ∈ Kn×n

(i) For 1 ≤ i, j ≤ n, the (i, j) cofactor of A is

Ci,j := (−1)i+j det(A(i|j))

(ii) The (classical) adjoint of A is the matrix adj(A) whose (i, j)th entry is Cj,i.

Theorem 4.6. For any A ∈ Kn×n, then

adj(A)A = Aadj(A) = det(A)I
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Proof. Fix A ∈ Kn×n and write adj(A) = (Cj,i) as above.

(i) Observe that, by our formula (Equation V.1), we have

det(A) =
n∑
i=1

Ai,jCi,j

(ii) Now fix 1 ≤ k ≤ n, and supopse B is the matrix obtained by replacing the jth

column of A by the kth column, then two columns of B are the same, so

det(B) = 0

Furthermore, B(i|j) = A(i|j), so by Equation V.1,

0 =
n∑
i=1

(−1)i+jBi,j det(B(i|j))

=
n∑
i=1

(−1)i+jAi,k det(A(i|j))

=
n∑
i=1

Ai,kCi,j

Hence, we conclude that

n∑
i=1

Ai,kCi,j = δj,k det(A)

Since adj(A)i,j = Cj,i, we conclude that

adj(A)A = det(A)I

(iii) Now consider the matrix At, and observe that At(i|j) = A(j|i)t. Hence, we have

(−1)i+j det(At(i|j)) = (−1)j+i det(A(j|i))

Thus, the (i, j)th cofactor of A is the (j, i)th cofactor of At. Hence,

adj(At) = adj(A)t

(iv) Now applying part (ii) to At, we have

adj(At)At = det(At)I

Transposing this equation, we get

Aadj(A) = Aadj(At)t = det(At)I = det(A)I

by Theorem 4.1.
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Note that, throughout this discussion, we have only used the fact that K is a commuta-
tive ring with identity, and we have not needed K to be a field. We can thus conclude
the following theorem.

Theorem 4.7. Lert K be a commutative ring with identity, and A ∈ Kn×n. Then, A
is invertible over K if and only if det(A) is invertible in K. If this happens, then A has
a unique inverse given by

A−1 = det(A)−1adj(A)

In particular, if K is a field, then A is invertible if and only if det(A) 6= 0.

Example 4.8.

(i) Let K = Z denote the ring of integers, and

A :=

(
1 2
3 4

)
Then det(A) = −2 which is not invertible in K, so A is not invertible over K.

(ii) However, if you think of A as a 2× 2 matrix over Q, then A is invertible. Since

adj(A) =

(
4 −2
−3 1

)
we have

A−1 =
−1

2

(
4 −2
−3 1

)
(iii) Let K := R[x], then the invertible elements of K are precisely the non-zero scalar

polynomials (Why?). Consider

A :=

(
x2 + x x+ 1
x− 1 1

)
and B :=

(
x2 − 1 x+ 2

x2 − 2x+ 3 x

)
Then,

det(A) = x+ 1 and det(B) = −6

Hence, B is invertible, but A is not. Furthermore,

adj(B) =

(
x −x− 2

−x2 + 2x− 3 x2 − 1

)
Hence,

B−1 =
−1

6

(
x −x− 2

−x2 + 2x− 3 x2 − 1

)
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Remark 4.9. Let T ∈ L(V ) be a linear operator on a finite dimensional vector space
V , and let B and B′ be two ordered bases of V . Then, there is an invertible matrix P
such that

[T ]B = P−1[T ]B′P

Since det is multiplicative, we see that

det([T ]B) = det([T ]B′)

We may thus define this common number to be the determinant of T , since it does not
depend on the choice of ordered basis.

Theorem 4.10 (Cramer’s Rule). Let A be an invertible matrix over a field F , and
suppose Y ∈ F n is given. Then, the unique solution to the system of linear equations

AX = Y

is given by X = (xj) where

xj =
det(Bj)

det(A)

where Bj is the matrix obtained by replacing the jth column of A by Y .

Proof. Note that if AX = Y , then

adj(A)AX = adj(A)Y

⇒ det(A)X = adj(A)Y

⇒ det(A)xj =
n∑
i=1

adj(A)j,iyi

=
n∑
i=1

(−1)i+j det(A(i|j))yi

= det(Bj)

(Check the last line!). This completes the proof.
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VI. Elementary Canonical Forms

1. Introduction

Our goal in this section is to study a fixed linear operator T on a finite dimensional
vector space V . We know that, given an ordered basis B, we may represent T as a
matrix

[T ]B

Depending on the basis B, we may get different matrices. We would like to know

(i) What is the ‘simplest’ such matrix A that represents T .

(ii) Can we find the ordered basis B such that [T ]B = A.

The meaning of the term ‘simplest’ will change as we encounter more difficulties. For
now, we will understand ‘simple’ to mean a diagonal matrix, ie. one in the form

D =


c1 0 0 . . . 0
0 c2 0 . . . 0
0 0 c3 . . . 0
...

...
...

...
...

0 0 0 . . . cn


Now, if B = {α1, α2, . . . , αn} is an ordered basis such that [T ]B = D, then, for each
1 ≤ i ≤ n, we have

T (αi) = ciαi

This leads to the next section.

2. Characteristic Values

Definition 2.1. Let T be a linear operator on a vector space V .

(i) A scalar c ∈ F is called a characteristic value (or eigen value) of T if, there exists
a non-zero vector α ∈ V such that

T (α) = cα

(ii) If this happens, then α is called a characteristic vector (or eigen vector).
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(iii) Given c ∈ F , the space
{α ∈ V : T (α) = cα}

is called the characteristic space (or eigen space) of T associated with c. (Note
that this is a subspace of V )

Note that, if T ∈ L(V ), we may write (T − cI) for the linear operator α 7→ T (α)− cα.
Now c is a characteristic value if and only if this operator has a non-zero kernel. Hence,

Theorem 2.2. Let T ∈ L(V ) where V is a finite dimensional vector space, and c ∈ F .
Then, TFAE:

(i) c is a characteristic value of T

(ii) (T − cI) is non-singular (ie. not invertible)

(iii) det(T − cI) = 0

Recall that det(T−cI) is defined in terms of matrices, so we make the following definition.

Definition 2.3. Let A be an n× n matrix over a field F .

(i) A characteristic value of A is a scalar c ∈ F such that

det(A− cI) = 0

(ii) The characteristic polynomial of A is f ∈ F [x] defined by

f(x) = det(xI − A)

Note that deg(f) = n, and that f is monic.

Lemma 2.4. Similar matrices have the same characteristic polynomial.

Proof. If B = P−1AP , then

det(xI −B) = det(P−1(xI − A)P ) = det(xI − A)

Remark 2.5.

(i) The previous lemma allows us to make sense of the characteristic polynomial of a
linear operator: Let T ∈ L(V ), then the characteristic polynomial of T is simply

f(x) = det(xI − A)

where A is any matrix that represents the operator (as in Theorem III.4.2).

Hence, deg(f) = dim(V ) =: n, so T has atmost n characteristic values by Corol-
lary IV.4.5.
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Example 2.6.

(i) Let T ∈ L(R2) be the linear operator given by

T (x1, x2) = (−x2, x1)

If B denotes the standard basis, then

A := [T ]B =

(
0 −1
1 0

)
Hence, the characteristic polynomial of T is given by

f(x) = det(xI − A) = det

(
x 1
−1 x

)
= x2 + 1

Hence, T has no characteristic values.

(ii) However, if we think of the same operator in L(C2), then T has two characteristic
values {i,−i}. Now we wish to find the corresponding characteristic vectors.

(i) If c = i, then consider the matrix

(A− iI) =

(
−i −1
1 −i

)
It is clear that, if α1 = (1,−i), then α1 ∈ ker(A − iI). Furthermore, by row
reducing this matrix, we arrive at

B =

(
−i −1
0 0

)
so the rank of (A− iI) is 1, and so it has nullity 1 as well. Thus,

ker(T − iI) = span{α1}

(ii) If c = −i, then consider the matrix

(A+ iI) =

(
i −1
1 i

)
Now, α2 = (1, i) is a characteristic vector. Once again, row reducing this
matrix yields

C =

(
i −1
0 0

)
so by the same argument, dim(ker(A+ iI)) = 1. Hence,

ker(T + iI) = span{α2}

125



(iii) Let A be the 3× 3 real matrix given by

A =

3 1 −1
2 2 −1
2 2 0


Then the characteristic polynomial of A is

f(x) = det

x− 3 −1 1
−2 x− 2 1
−2 −2 x

 = x3 − 5x2 + 8x− 4 = (x− 1)(x− 2)2

So A has two characteristic values, 1 and 2.

(iv) Let T ∈ L(R3) be the linear operator which is represented in the standard basis
by A. We wish to find characteristic vectors associated to these two characteristic
values:

(i) Consider c = 1 and the matrix

A− I =

2 1 −1
2 1 −1
2 2 −1


Row reducing this matrix results in

B =

2 1 −1
0 0 0
0 1 0


From this, it is clear that (A− I) has rank 2, and so has nullity 1 (by Rank-
Nullity). It is also clear that α1 = (1, 0, 2) ∈ ker(A − I). Hence, α1 is a
characteristic vector, and the characteristic space is given by

ker(A− I) = span{α1}

(ii) Consider c = 2 and the matrix

A− 2I =

1 1 −1
2 0 −1
2 2 −2


Row reducing this matrix results in

C =

1 1 −1
0 −2 1
0 0 0


Hence, (A− 2I) has rank 2, so has nullity 1, once again. Also, it is clear that
α2 = (1, 1, 2) ∈ ker(A − 2I). Hence, α2 is a characteristic vector, and the
characteristic space is given by

ker(A− 2I) = span{α2}

126



Definition 2.7. An operator T ∈ L(V ) is said to be diagonalizable if there is a basis
for V each vector of which is a characteristic vector of T .

Remark 2.8.

(i) If B is a basis satisfying the requirement of this definition, then

[T ]B

is a diagonal matrix.

(ii) Note that there is no requirement that the diagonal entries be distinct. They may
all be equal too!

(iii) We may as well require (in this definition) that V has a spanning set consisting of
characteristic vectors. This is because any spanning set will contain a basis.

Example 2.9.

(i) In Example 2.6 (i), T is not diagonalizable because it has no characteristic values.

(ii) In Example 2.6 (ii), T is diagonalizable, because we have found two characteristic
vectors B := {α1, α2} where α1 = (1,−i) and α2 = (1, i) which are characteristic
vectors. Since these vectors are not scalar multiples of each other, they are linearly
independent. Since dim(C2) = 2, they form a basis. In this basis B, we may
represent T as

[T ]B =

(
−i 0
0 i

)
(iii) In Example 2.6 (iv), we have found that T has two linearly independent charac-

teristic vectors {α1, α2} where α1 = (1, 0, 2) and α2 = (1, 1, 2). However, there
are no other characteristic vectors (other than scalar multiples of these). Since
dim(R3) = 3, this operator does not have a basis consisting of characteristic vec-
tors. Hence, T is not diagonalizable.

Lemma 2.10. Suppose T ∈ L(V ) is a diagonalizable operator, with distinct character-
istic values c1, c2, . . . , ck. Then the characteristic polynomial of T has the form

f(x) = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

Furthermore, the multiplicity di is the dimension of the characteristict space ker(T−ciI).

Proof. Since T is diagonalizable, there is a ordered basis B = {α1, α2, . . . , αn} such that

A := [T ]B =


c1I1 0 0 . . . 0

0 c2I2 0 . . . 0
...

...
...

...
...

0 0 0 . . . ckIk


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where I1, I2, . . . Ik are the identity matrices of dimension ei = dim(ker(A−ciI)). Now the
characteristic polynomial of T is the same as that of A, whose characteristic polynomial
has the form

f(x) = det(xI − A) = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

Furthermore,

A− c1I =


0I1 0 0 . . . 0
0 (c2 − c1)I2 0 . . . 0
...

...
...

...
...

0 0 0 . . . (ck − c1)Ik


Since ci 6= c1 for all i ≥ 2, we have

d1 = dim(ker(A− c1I))

and similarly, di = dim(ker(A− ciI)) as required. Hence the result.

Lemma 2.11. Let T ∈ L(V ), c ∈ f and α ∈ V such that Tα = cα. Then, for any
polynomial f ∈ F [x], we have

f(T )α = f(c)α

Proof. Exercise.

Lemma 2.12. Let T ∈ L(V ) and c1, c2, . . . , ck be the distinct characteristic values of T ,
and let Wi := ker(T − ciI) denote the corresponding characteristic spaces. If

W := W1 +W2 + . . .+Wk

Then
dim(W ) = dim(W1) + dim(W2) + . . .+ dim(Wk)

In fact, if Bi, 1 ≤ i ≤ k are bases for the Wi, then B = tni=1Bi is a basis for W .

Proof.

(i) If i 6= j and suppose α ∈ Wi ∩Wj, then Tα = ciα = cjα. Since ci 6= cj, it follows
that α = 0. Hence,

Wi ∩Wj = ∅

In particular,
B = ∪ni=1Bi = tni=1Bi

(ii) Now suppose βi ∈ Wi are vectors such that

β1 + β2 + . . .+ βk = 0
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We claim that βi = 0 for all 1 ≤ i ≤ k. To see this, note that Tβi = ciβi. Hence,
if f ∈ F [x], then by Lemma 2.11,

0 = f(T )(β1 + β2 + . . .+ βk) =
k∑
i=1

f(ci)βi

Since {c1, c2, . . . , ck} are distinct scalars, there exist polynomials {f1, f2, . . . , fk}
such that

fj(ci) = δi,j

(by Lagrange interpolation - Theorem IV.3.1). Applying fj in the above equation,
we conclude that

0 =
k∑
i=1

fj(ci)βi = βj

This is true for every 1 ≤ j ≤ k. Hence the claim.

(iii) Now we claim that B is a basis for W . Since B clearly spans W , it suffices to
show that it is linearly independent. So suppose there exist scalars di and vectors
γj ∈ B such that ∑̀

j=1

djγj = 0

Then, by separating out the terms from each Bi, we obtain an expression of the
form

β1 + β2 + . . .+ βk = 0

where βi ∈ Wi for each 1 ≤ i ≤ k. By the previous step, we conclude that βi = 0.
However, βi is itself a linear combination of the vectors in Bi, which is linearly
independent. Hence, each γj must be zero.

Thus, B is linearly independent, and hence a basis for W . This proves the result.

Theorem 2.13. Let T ∈ L(V ), and c1, c2, . . . , ck ∈ F be the distinct characteristic
values of T , and let Wi := ker(T − ciI). Then, TFAE:

(i) T is diagonalizable.

(ii) The characteristic polynomial of T is

f = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

where di = dim(Wi) for all 1 ≤ i ≤ k.

(iii) dim(W1) + dim(W2) + . . .+ dim(Wk) = dim(V ).

Proof.

(i)⇒ (ii): This is the content of Lemma 2.10.
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(ii)⇒ (iii): If (ii) holds, then
deg(f) = d1 + d2 + . . .+ dk

But deg(f) = dim(V ) because f is the characteristic polynomial of T . Hence, (iii)
holds.

(iii)⇒ (i): By Lemma 2.12, it follows that

V = W1 +W2 + . . .+Wk

Hence, the basis B from Lemma 2.12 is a basis for V consisting of characteristic
vectors T . Thus, T is diagonalizable.

Remark 2.14. Let A ∈ F n×n be a square matrix and c1, c2, . . . , ck be the distinct
characteristic values of A. Let Wi ⊂ F n be the subspace

Wi = {X ∈ F n : (A− ciI)X = 0}

and let Bi = {αi,1, αi,2, . . . , αi,ni
} be an ordered basis for Wi. Placing these basis vectors

in columns, we get a matrix

P = [α1,1α1,2 . . . α1,n1α2,1α2,2 . . . α2,n2 . . . αk,1αk,2 . . . αk,nk
]

Then, the set B = tki=1Bi is a basis for F n if and only if P is a square matrix. In that
case, P is a invertible matrix, and P−1AP is diagonal.

Example 2.15. Let T ∈ L(R3) be the linear operator represented in the standard basis
by the matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4


(i) We first compute the characteristic polynomial of A: f = det(xI = A)

det

(x− 5) 6 6
1 x− 4 −2
−3 6 x+ 4


Subtracting column 3 from column 2 gives us a new matrix with the same deter-
minant by Lemma V.4.2. Hence,

f = det

x− 5 0 6
1 x− 2 −2
−3 2− x x+ 4

 = (x− 2) det

x− 5 0 6
1 1 −2
−3 −1 x+ 4


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Now adding row 2 to row 3 does not change the determinant, so

f = (x− 2) det

x− 5 0 6
1 1 −2
−2 0 x+ 2


Expanding along column 2 now gives

f = (x− 2) det

(
x− 5 6
−2 x+ 2

)
= (x− 2)(x2 − 3x+ 2) = (x− 2)2(x− 1)

(ii) Hence, the characteristic values of T are 1 and 2.

(iii) We wish to determine the dimensions of the characteristic spaces, W1 and W2.

(i) Consider the case c = 1, and the matrix

(A− I) =

 4 −6 −6
−1 3 2
3 −6 −5


Row reducing this matrix gives4 −6 −6

0 3
2

1
2

0 −3
2

−1
2

 7→
4 −6 −6

0 3
2

1
2

0 0 0

 =: B

Hence, rank(A− I) = 2

(ii) Consider the case c = 2: We know that

rank(A− 2I) ≤ 2

since (A− 2I) is a singular matrix. Furthermore, we know that

rank(A− I) + rank(A− 2I) ≤ dim(R3) = 3

So it follows that rank(A−2I) = 1 and equality holds in the previous equation.

Hence, we conclude by Theorem 2.13 that T is diagonalizable.

(iv) We now determine a basis consisting of characteristic vectors:

(i) Consider the case c = 1: Using the matrix B above, we solve the system of
linear equations BX = 0. This gives a solution

α1 = (3,−1, 3)

(ii) Consider the case c = 2, and the matrix

(A− 2I) =

 3 −6 −6
−1 2 2
3 −6 −6


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Row reducing gives

C =

3 −6 −6
0 0 0
0 0 0


So solving the system CX = 0 gives two solutions

α2 = (2, 1, 0) and α3 = (2, 0, 1)

(v) Thus, we get an ordered basis

B = {(3,−1, 3), (2, 1, 0), (2, 0, 1)}

consisting of characteristic vectors of T . Furthermore,

[T ]B =

1 0 0
0 2 0
0 0 2

 := D

(vi) Furthermore, if P is the matrix

P =

 3 2 2
−1 1 0
3 0 1


Then

P−1AP = D

(End of Week 8)

3. Annihilating Polynomials

Recall that: If V is a vector space, then L(V ) is a (non-commutative) linear algebra with
unit. Hence, if f ∈ F [x] is a polynomial and T ∈ L(V ), then f(T ) ∈ L(V ) makes sense
(See Definition IV.2.7). Furthermore, the map f 7→ f(T ) is an algebra homomorphism
(Theorem IV.2.9). In other words, if f, g ∈ F [x] and c ∈ F , then

(f + cg)(T ) = f(T ) + cg(T ) and (fg)(T ) = f(T )g(T ) (VI.1)

Definition 3.1. Let T ∈ L(V ) be a linear operator on a finite dimensional vector space
V . Define the annihilator of T to be

Ann(T ) := {f ∈ F [x] : f(T ) = 0}
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Lemma 3.2. If V is a finite dimensional vector space and T ∈ L(V ), then Ann(T ) is a
non-zero ideal of F [x].

Proof.

(i) If f, g ∈ Ann(T ), then f(T ) = g(T ) = 0. Hence, if c ∈ F , then

(f + cg)(T ) = 0

by Equation VI.1, so (f + cg) ∈ Ann(T ). Thus, Ann(T ) is a vector subspace of
F [x].

(ii) If f ∈ Ann(T ) and g ∈ F [x], then f(T ) = 0, so by Equation VI.1, we have

(fg)(T ) = f(T )g(T ) = 0

so fg ∈ Ann(T ). Thus, Ann(T ) is an ideal of F [x].

(iii) Suppose n := dim(V ), then dim(L(V )) = n2 by Theorem III.2.4. By Corol-
lary II.3.10, the set

{I, T, T 2, . . . , T n
2}

is linearly dependent. Hence, there exist scalars ai ∈ F, 0 ≤ i ≤ n2 (not all zero)
such that

n2∑
i=0

aiT
i = 0

Hence, if f ∈ F [x] is the (non-zero) polynomial

f =
n2∑
i=0

aix
i

Then f ∈ Ann(T ). Thus, Ann(T ) 6= {0}.

Definition 3.3. Let T ∈ L(V ) be a linear operator on a finite dimensional vector space
V . The minimal polynomial of T is the unique monic generator of Ann(T ).

Remark 3.4. Note that the minimal polynomial p ∈ F [x] of T has the following prop-
erties:

(i) p is a monic, non-zero polynomial.

(ii) p(T ) = 0

(iii) If f ∈ F [x] is another polynomial such that f(T ) = 0, then p | f .

(iv) In particular, if f ∈ F [x] is any other polynomial such that f(T ) = 0, then

deg(f) ≥ deg(p)
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The same argument that we had above also applies to the algebra F n×n.

Definition 3.5. If A ∈ F n×n is a square matrix, then we define the annihilator of A to
be the set

Ann(A) = {f ∈ F [x] : f(A) = 0}

Once again, this is a non-zero ideal of F [x]. So we may define the minimal polynomial
of A the same way as above.

Remark 3.6.

(i) If T ∈ L(V ) is a linear operator and B is an ordered basis of V . We write

A := [T ]B

Then, by Example IV.3.7, for any f ∈ F [x], we have

[f(T )]B = f(A)

Since the map S 7→ [S]B is an isomorphism from L(V ) to F n×n (by Theorem III.4.2),
it follows that

f(A) = 0 in F n×n ⇔ f(T ) = 0 in L(V )

Hence,
Ann(T ) = Ann([T ]B)

In particular, T and [T ]B have the same minimal polynomial. Hence, in what
follows, whatever we say for linear operators also holds for matrices.

(ii) Now we consider the following situation: Consider R ⊂ C as a subfield, and let
A ∈ Mn(R) be an n × n square matrix with entries in R. Let p1 ∈ R[x] be
the minimal polynomial of T with respect to R. In other words, p1 is the monic
generator of the ideal

AnnR(T ) = {f ∈ R[x] : f(T ) = 0}

Similarly, let p ∈ C[x] be the minimal polynomial of T with respect to F . In other
words, p is the monic generator of the ideal

AnnC(T ) = {g ∈ C[x] : g(T ) = 0}

Note that, since R ⊂ C, we have

AnnR(T ) ⊂ AnnC(T )

In particular, p1 ∈ AnnC(T ), so that

p | p1 in C[x]
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Conversely, p ∈ C[x] can be expressed in the form p = h+ ig for some h, g ∈ R[x],
so that

0 = p(A) = h(A) + ig(A)

so that h(A) = g(A) = 0. Hence, p1 | h and p1 | g in R[x]. Thus,

p1 | p in C[x]

We conclude that p1 = p (because they are both monic). Thus, if A ∈ Mn(R),
then the minimal polynomial of A with respect to R is the same as the minimal
polynomial of A with respect to C.

Theorem 3.7. Let T ∈ L(V ) where V is a finite dimensional vector space. Then, the
characteristic polynomial of T and the minimal polynomial of T have the same roots
(except for multiplicities).

Proof. Let p ∈ F [x] denote the minimal polynomial of T and let f ∈ F [x] denote the
characteristic polynomial of T , given by

f = det(xI − T )

(i) If c ∈ F is a root of p, then by Corollary IV.4.4, (x−c) | p, so there exists q ∈ F [x]
such that

p = (x− c)q

Since deg(q) < deg(p) it follows that q(T ) 6= 0 by Remark 3.4. Hence, there exists
β ∈ V such that

α := q(T )(β) 6= 0

Then, since p(T ) = 0, we have

0 = p(T )β = (T − cI)q(T )β = (T − cI)(α)

Hence, c is a characteristic value of T , so f(c) = 0.

(ii) Conversely, suppose c ∈ F is such that f(c) = 0, then c is a characteristic value of
T , so there exists α ∈ V non-zero such that

Tα = cα

By Lemma 2.11, we have
p(T )α = p(c)α

But p(T ) = 0, so
p(c)α = 0

Since α 6= 0, it follows that p(c) = 0 by Lemma II.1.3.
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Remark 3.8. Suppose T is a diagonalizable operator with distinct characteristic values
c1, c2, . . . , ck. Then, by Lemma 2.10, the characteristic polynomial of T has the form

f = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

where di is the dimension of the characteristic subspace associated to ci. Let q ∈ F [x]
be the polynomial

q = (x− c1)(x− c2) . . . (x− ck)
If α ∈ V is a characteristic vector of T associated to the characteristic value ci, then

q(T )α = (T − c1I)(T − c2I) . . . (T − ckI)α = 0

since (T − ciI) and (T − cjI commute for all 1 ≤ i, j ≤ k. Since V has a basis consisting
of characteristic vectors of T , it follows that

q(T ) = 0

Let p ∈ F [x] denote the minimal polynomial of T , then p and f share the same roots
by Theorem 3.7. Thus, by Corollary IV.4.4, it follows that

(x− ci) | p

for all 1 ≤ i ≤ k. Hence, q | p. But q(T ) = 0, so p | q by Remark 3.4. Since both p and
q are monic, we conclude that

p = q = (x− c1)(x− c2) . . . (x− ck)

Thus, if T is diagonalizable, then the minimal polynomial of T is the product of distinct
linear factors.

We now consider the following examples, the first two of which are from Example 2.6.

Example 3.9.

(i) Let T ∈ L(R2) be the linear operator given by

T (x1, x2) = (−x2, x1)

In the standard basis B, the associated matrix of T is given by

A =

(
0 −1
1 0

)
So, the characteristic polynomial of T is

f = x2 + 1

Considering T ∈ L(C2), the characteristic polynomial of T is

f = (x− i)(x+ i)
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By Theorem 3.7, the minimal polynomial of T in C[x] is

p = (x− i)(x+ i) = x2 + 1

By Remark 3.6, the minimal polynomial of T in R[x] is also

p = x2 + 1

(ii) Let A be the 3× 3 real matrix given by

A =

3 1 −1
2 2 −1
2 2 0


Then the characteristic polynomial of A is

f = (x− 1)(x− 2)2

By Theorem 3.7, the minimal polynomial of A has the form

p = (x− 1)i(x− 2)j

Observe that

(A− I)(A− 2I) =

2 1 −1
2 1 −1
2 2 −1

1 1 −1
2 0 −1
2 2 −2

 =

2 0 −1
2 0 −1
4 0 −2


Therefore, p 6= (x− 1)(x− 2). One can then verify that

(A− I)(A− 2I)2 = 0

Thus, the minimal polynomial of A is

p = (x− 1)(x− 2)2 = f

(iii) Let T ∈ L(R3) be the linear operator (from Example 2.15) represented in the
standard basis by the matrix

A =

 5 −6 −6
−1 4 2
3 −6 −4


Then the characteristic polynomial of T is

f = (x− 1)(x− 2)2

Hence, by Theorem 3.7, the minimal polynomial of T has the form

p = (x− 1)i(x− 2)j

But by Remark 3.8, the minimal polynomial is a product of distinct linear factors.
Hence,

p = (x− 1)(x− 2)
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Theorem 3.10. [Cayley-Hamilton] Let T be a linear operator on a finite dimensional
vector space and f ∈ F [x] be the characteristic polynomial of T . Then

f(T ) = 0

In particular, the minimal polynomial of T divides the characteristic polynomial of T .

Proof.

(i) Set
K := {g(T ) : g ∈ F [x]}

Since the map g 7→ g(T ) is a homomorphism of rings, it follows that K is a
commutative ring with identity.

(ii) Let B = {α1, α2, . . . , αn} be an ordered basis for V , and set A := [T ]B. Then, for
each 1 ≤ i ≤ n, we have

Tαi =
n∑
j=1

Aj,iαj =
n∑
j=1

δi,jTαj

Hence, if B ∈ Kn×n is the matrix whose (i, j)th entry is given by

Bi,j = δi,jT − Aj,iI

then we have
Bαj = 0

for all 1 ≤ j ≤ n.

(iii) Observe that, for n = 2,

B =

(
T − A1,1I −A2,1I
−A1,2I T − A2,2I

)
Hence,

det(B) = (T − A1,1I)(T − A2,2I)− A1,2A2,1I = f(T )

More generally, f is the polynomial given by f = det(xI −A) = det(xI −At) (by
Theorem V.4.1), and

(xI − At)i,j = δi,jx− Aj,i
Hence,

f(T ) = det(B)

Hence, to prove that f(T ) is the zero operator, it suffices to prove that

det(B)αj = 0

for all 1 ≤ j ≤ n.
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(iv) Let B̃ := adj(B) be the adjoint of B. By Theorem V.4.6, we have

B̃B = det(B)I

Since Bαj = 0, it follows that

det(B)αj = 0

This completes the proof.

The advantage of the Cayley-Hamilton theorem is that it is easier to determine the
minimal polynomial now.

Example 3.11. Let A ∈M4(Q) be the 4× 4 rational matrix given by

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


One can compute (do it!) that

A2 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 , and

A3 =


0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0


Thus,

A3 = 4A

Hence, if f ∈ Q[x] is the polynomial

f = x3 − 4x = x(x+ 2)(x− 2)

Then, the minimal polynomial p ∈ Q[x] of A must divide f .

(i) Note that, since A is not a scalar polynomial,

deg(p) ≥ 2

Hence, there are four possible candidates for p

x(x+ 2), x(x− 2), (x+ 2)(x− 2), or f
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(ii) It is clear from the above calculation that

A2 6= −2A

Hence, p 6= x(x+ 2).

(iii) Similarly,
A2 6= 2A

Hence, p 6= x(x+ 2)

(iv) Similarly,
A2 6= 4I

Hence, p 6= (x− 2)(x+ 2)

Hence, the minimal polynomial of A is

p = f = x(x+ 2)(x− 2)

Now, the characteristic polynomial g ∈ Q[x] is a polynomial of degree 4, p | g and g has
the same roots as p. Thus, there are three options for g, namely

x2(x+ 2)(x− 2), x(x+ 2)2(x− 2), or x(x+ 2)(x− 2)2

We now row reduce A to get

A 7→


1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1



7→


1 0 1 0
0 0 0 0
0 1 0 1
0 1 0 1



7→


1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0


Hence,

rank(A) = 2

Thus, nullity(A) = 2. Thus, the characteristic value 0 has a 2-dimensional characteristic
space. Thus, it must occur with multiplicity 2 in the characteristic polynomial of T (by
Lemma 2.10). Hence,

g = x2(x− 2)(x+ 2)
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4. Invariant Subspaces

Definition 4.1. Let T ∈ L(V ) be a linear operator on a vector space V , and let W ⊂ V
be a subspace. We say that W is an invariant subspace for T if, for all α ∈ W , then
T (α) ∈ W . In other words, T (W ) ⊂ W .

Example 4.2.

(i) For any T , the subspaces V and {0} are invariant. These are called the trivial
invariant subspaces.

(ii) The null space of T is invariant under T , and so is the range of T .

(iii) Let F be a field and D : F [x] → F [x] be the derivative operator (See Exam-
ple III.1.2). Let W be the subspace of all polynomials of degree ≤ 3, then W is
invariant under D because D lowers the degree of a polynomial.

(iv) Let T ∈ L(V ) and U ∈ L(V ) be an operator such that

TU = UT

Then W := U(V ), the range of U is invariant under T : If β = U(α) for some
α ∈ V , then

Uβ = TU(α) = U(T (α)) ∈ U(V ) = W

Similarly, if N := ker(U), then N is invariant undeer T : If β ∈ N , then U(β) = 0,
so

U(T (β)) = TU(β) = T (0) = 0

so T (β) ∈ N as well.

(v) A special case of the above example: Let g ∈ F [x] be any polynomial, and U :=
g(T ), then

UT = TU

(vi) An even more special case: Let g = x− c, then U = g(T ) = (T − cI). If c ∈ F is
a characteristic value of T , then

N := ker(U)

is the characteristic subspace associated to c. This is an invariant subspace for T .

(vii) Let T ∈ L(R2) be the linear operator given in the standard basis by the matrix

A =

(
0 −1
1 0

)
We claim that T has no non-trivial invariant subspace. Suppose W ⊂ R2 is a
non-trivial invariant subspace, then

dim(W ) = 1

So if α ∈ W is non-zero, then T (α) = cα for some scalar c ∈ F . Thus, α is a char-
acteristic vector of T . However, T has no characteristic values (See Example 2.6).
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Definition 4.3. Let T ∈ L(V ) and W ⊂ V be a T -invariant subspace. Then TW ∈
L(W ) denotes the restriction of T to W . ie. For α ∈ W,TW (α) = T (α).

Note that this is well-defined precisely because W is T -invariant.

Remark 4.4. Suppose W ⊂ V is a T -invariant subspace, and let B′ = {α1, α2, . . . , αr}
be an ordered basis for W . Let B = {α1, α2, . . . , αn} be an ordered basis for V extending
B′ (See Theorem II.3.13). Let A = [T ]B, so that, for each 1 ≤ j ≤ n, we have

Tαj =
n∑
i=1

Ai,jαi

Now, since W is T -invariant, it follows that, for each 1 ≤ j ≤ r, we have

Tαj ∈ W

can be expressed a linear combination of the elements of B′. By the uniqueness of this
expansion, we have

Tαj =
r∑
i=1

Ai,jαi

Hence, if j ≤ r and i > r, we have
Ai,j = 0

Thus, A can be written in block form

A =

(
B C
0 D

)
where B is an r × r matrix, D is an (n − r) × (n − r) matrix, and C is an r × (n − r)
matrix. Note that

[TW ]B′ = B

in this expression as well.

Lemma 4.5. Let T ∈ L(V ) and W ⊂ V be a T -invariant subspace, and TW denote the
restriction of T to W . Then,

(i) The characteristic polynomial of TW divides the characteristic polynomial of T .

(ii) The minimal polynomial of TW divides the minimal polynomial of T .

Proof.

(i) Consider the characteristic polynomial of T , denoted by f , and the characteristic
polynomial of TW , denoted by g. Let B′ be an ordered basis for W , and B be an
ordered basis for V containing B′. Write

A := [T ]B′ and B := [TW ]B′
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So that A has a block form (as above) given by

A =

(
B C
0 D

)
Then, by Remark 2.5, we have

f = det(xI − A) and g = det(xI −B)

However, by Theorem V.4.3, we have

det(xI − A) = det(xI −B) det(xI −D)

Hence, g | f
(ii) Consider the minimal polynomial of T , denoted by p, and the minimal polynomial

of TW , denoted by q. Then, by Example IV.3.7, we have

p(A) = 0

However, for any k ∈ N, Ak has the form

Ak =

(
Bk Ck
0 Dk

)
for some r × (n− r) matrix Ck. Hence, for any polynomial h ∈ F [x],

h(A) = 0⇒ h(B) = 0

In particular, p(B) = 0. But q is the minimal polynomial for B, so q | p by
definition.

Remark 4.6. Let T ∈ L(V ), and let c1, c2, . . . , ck denote the distinct characteristic
values of T . Let Wi := ker(T − ciI) denote the corresponding characteristic spaces, and
let Bi denote an ordered basis for Wi.

(i) Set
W := W1 +W2 + . . .+Wk and B := tki=1Bi

By Lemma 2.12, B is an ordered basis for W and

dim(W ) = dim(W1) + dim(W2) + . . .+ dim(Wk)

Now, we write
Bi = {αi,1, αi,2, . . . , αi,ni

}
and

B = {α1,1, α1,2, . . . , α1,n1 , α2,1, α2,2, . . . , α2,n2 , . . . , αk,1, αk,2, . . . , αk,nk
}
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Then, we have
Tαi,j = ciαi,j

for all 1 ≤ i ≤ k, 1 ≤ j ≤ ni. Hence, W is a T -invariant subspace, and if
B := [TW ]B, we have

B =


t1 0 0 . . . 0
0 t2 0 . . . 0
...

...
...

...
...

0 0 0 . . . tk


where each ti denotes a ni × ni block matrix tiIni

.

(ii) Thus, the characteristic polynomial of TW is

g = (x− c1)n1(x− c2)n2 . . . (x− ck)nk

Let f denote the characteristic polynomial of T , then by Lemma 4.5, we have that
g | f . Hence, the multiplicity of ci as a root of f is at least ni = dim(Wi).

(iii) Furthermore, it is now clear (as we proved in Theorem 2.13) that T is diagonalizable
if and only if

n = dim(W ) = n1 + n2 + . . .+ nk

Definition 4.7. An operator T ∈ L(V ) is said to be triangulable if there exists an
ordered basis B of V such that [T ]B is an upper triangular matrix. ie.

[T ]B =


a1,1 a1,2 a1,3 . . . a1,n
0 a2,2 a2,3 . . . a2,n
0 0 a3,3 . . . a3,n
...

...
...

...
...

0 0 0 . . . an,n


Remark 4.8.

(i) Observe that, if B = {α1, α2, . . . , αn} is an ordered basis, then the matrix [T ]B is
upper triangular if and only if, for each 1 ≤ i ≤ n,

Tαi ∈ span{α1, α2, . . . , αi}

(ii) If T is a triangulable matrix, and A := [T ]B is an upper triangular matrix as above,
then the characteristic polynomial of T is

f = det(xI − A)

By expanding along the first column, we get

f = (x− a1,1) det

a2,2 a2,3 . . . a2,n
0 a3,3 . . . a3,n
0 0 . . . an,n


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By induction, we may prove that

f = (x− a1,1)(x− a2,2) . . . (x− an,n)

Hence, by combining the like terms, we see that the characteristic polynomial has
the form

f = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

where the c1, c2, . . . , ck are the distinct characteristic values of T . In particular, if
T is triangulable, then the characteristic polynomial can be factored as a product
of linear terms.

(iii) Since the minimal polynomial divides the characteristic polynomial (by Cayley-
Hamilton - Theorem 3.10), it follows that, if T is triangulable, then the minimal
polynomial can be factored as a product of linear terms.

We will now show that this last condition is also sufficient to prove that T is triangulable.
For this, we need a definition.

Definition 4.9. Let T ∈ L(V ),W ⊂ V be a T -invariant subspace, and let α ∈ V be a
fixed vector.

(i) The T -conductor of α into W is the set

S(α,W ) := ST (α,W ) = {g ∈ F [x] : g(T )α ∈ W}

(ii) If W = {0}, then the T -conductor of α into W is called the T -annihilator of α.

Example 4.10.

(i) If W is any T -invariant subspace and α ∈ W , then

S(α,W ) = F [x]

Conversely, if α /∈ W , then S(α,W ) 6= F [x].

(ii) If W1 ⊂ W2, then
S(α,W1) ⊂ S(α,W2)

(iii) For any T -invariant subspace W and any α ∈ V , we have

Ann(T ) ⊂ S(α,W )

In particular, if p ∈ F [x] is the minimal polynomial of T , then p ∈ S(α,W ).

Lemma 4.11. Let T ∈ L(V ) and W ⊂ V be an invariant subspace of T . Then,

(i) W is invariant under f(T ) for any polynomial f ∈ F [x].

(ii) For each α ∈ V , the T -conductor of α into W , S(α,W ) is an ideal in F [x]
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Proof.

(i) If β ∈ W , then Tβ ∈ W . Since W is T -invariant, we have

T 2β = T (Tβ) ∈ W

Thus proceeding, we conclude that

T nβ ∈ W

for all n ≥ 0. By linearity, we conclude that

f(T )β ∈ W

for all f ∈ F [x]

(ii) We prove both conditions of Definition IV.4.12.

� S(α,W ) is a subspace of F [x]: If f, g ∈ S(α,W ) and c ∈ F , then, by definition

f(T )α ∈ W and g(T )α ∈ W

Since W is a subspace,

(f + cg)(T )α = f(T )α + cg(T )α ∈ W

� If g ∈ S(α,W ) and f ∈ F [x], then by definition

β := g(T )α ∈ W

By part (i), we conclude that

(fg)(T )α = f(T )g(T )α = f(T )β ∈ W

Remark 4.12. We conclude that there is a unique monic polynomial pα,W ∈ F [x] such
that, for any f ∈ F [x],

f ∈ S(α,W )⇔ pα,W | f
We will often conflate the ideal and the polynomial, and simply say that pα,W is the
T -conductor of α ∈ W .

By Example 4.10 (iii), every T -conductor divides the minimal polynomial of T .

Example 4.13.

(i) If α ∈ V is a characteristic vector of T with characteristic value c, and W ⊂ V is
any T -invariant subspace of V , then

S(α,W ) =

{
1 : α ∈ W
(x− c) : α /∈ W
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(ii) Let T ∈ L(R3) be the operator which is expressed in the standard basis B =
{ε1, ε2, ε3} by the matrix

A =

2 1 0
0 3 0
0 0 4


and let W = span{ε1}.

� If α = ε1, then S(α,W ) = F [x]

� If α = ε2: Observe that the minimal polynomial of A is (Check!)

p = (x− 2)(x− 3)(x− 4)

Since α /∈ W and pα,W | p, we have many options for pα,W , namely

(x− 2), (x− 3), (x− 4), (x− 2)(x− 3), (x− 3)(x− 4), (x− 2)(x− 4), and p

Note that

(A− 3I)ε2 =

(
−1 1
0 0

)(
0
1

)
=

(
1
0

)
Hence, S(ε2,W ) = (x− 3)

� If α = ε3: Since ε3 is a characteristic vector with characteristic value 4, it
follows from part (i) that

S(α,W ) = (x− 4)

(End of Week 9)

Lemma 4.14. Let T ∈ L(V ) be an operator on a finite dimensional vector space V such
that the minimal polynomial of T is a product of linear factors

p = (x− c1)r1(x− c2)r2 . . . (x− crkk

Let W 6= V be a proper T -invariant subspace of V . Then, there exists α ∈ V such that

(i) α /∈ W
(ii) (T − cI)α ∈ W for some characteristic value c ∈ F .

In other words, the T -conductor of α into W is of the form (x−c) for some characteristic
value c ∈ F .

Proof. Let β ∈ V be any vector such that β /∈ W . Let g = pβ,W be the T -conductor of
β in W . Then, since β /∈ W ,

g 6= 1

Furthermore, by Remark 4.12, we have that

g | p
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Hence, there exist 0 ≤ ei ≤ ri such that

g = (x− c1)e1(x− c2)e2 . . . (x− ck)ek

In other words, g is a product of linear terms. Since g 6= 1, it follows that there exists
1 ≤ i ≤ k such that ei > 0. Hence,

(x− ci) | g

So combining the other terms, we write

g = (x− ci)h

for some polynomial h ∈ F [x] with deg(h) < deg(g). Since g is the monic generator of
S(β,W ) we have that

α := h(T )β /∈ W

However,
(T − ci)α = g(T )β ∈ W

as required.

Theorem 4.15. Let V be a finite dimensional vector space and T ∈ L(V ). Then T is
triangulable if and only if the minimal polynomial of T is a product of linear polynomials
over F .

Proof. If T is triangulable, then the minimal polynomial is a product of linear factors
by Remark 4.8 (iii).

Conversely, suppose the minimal polynomial p ∈ F [x] has the form

p = (x− c1)r1(x− c2)r2 . . . (x− ck)rk

We now construct a basis B = {α1, α2, . . . , αn} such that, for each 1 ≤ i ≤ n,

{α1, α2, . . . , αi} is linearly independent, and Tαi ∈ {α1, α2, . . . , αi} (VI.2)

Observe that the ci are precisely the characteristic values of T . We proceed by induction:

� Set W0 = {0}. By Lemma 4.14, there exists α1 ∈ V such that α1 6= 0 and, there
exists 1 ≤ i ≤ k such that

(T − c1I)α1 = 0

� Suppose that we have construction α1, α2, . . . , αi such that Equation VI.2. We
now construct αi+1. Let

Wi := span{α1, α2, . . . , αi}
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If Wi = n, then we are done, so suppose Wi 6= n. Applying Lemma 4.14, there
exists αi+1 /∈ Wi, and a characteristic value c ∈ F such that

(T − cI)αi+1 ∈ Wi

Hence, {α1, α2, . . . , αi+1} is linearly independent, and

Tαi+1 = span{α1, α2, . . . , αi+1}

as required.

Recall that a field F is said to be algebraically closed if any polynomial over F can be
factored as a product of linear terms (See Definition IV.5.11).

Corollary 4.16. Let F be an algebraically closed field, and A ∈ F n×n be an n×n matrix
over F . Then, A is similar to an upper triangular matrix over F .

The next theorem gives us an easy (verifiable) way to determine if a linear operator is
diagonalizable or not.

Theorem 4.17. Let V be a finite dimensional vector space over a field F and T ∈ L(V ).
Then T is diagonalizable if and only if the minimal polynomial of T is a product of
distinct linear terms.

Proof.

(i) Suppose T is diagonalizable, there is an ordered basis B such that the matrix
A = [T ]B is diagonal.

A =


c1I1 0 0 . . . 0

0 c2I2 0 . . . 0
0 0 c3I3 . . . 0
...

...
...

...
...

0 0 0 . . . ckIk


where the ci are all distinct. The minimal polynomial of A is clearly

p = (x− c1)(x− c2) . . . (x− ck)

(See also Remark 3.8).

(ii) Conversely, suppose the minimal polynomial of T has this form, we let

Wi := ker(T − ciI)

denote the characteristic space associated to the characteristic value ci, and let

W = W1 +W2 + . . .+Wk

To show that T is diagonalizable, it suffices to show that W = V (See Theo-
rem 2.13).
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� Note that, if β ∈ W , then

β = β1 + β2 + . . .+ βk

for some βi ∈ Wi. Hence,

Tβ = c1β1 + c2β2 + . . .+ ckβk ∈ W1 +W2 + . . .+Wk = W

So that W is T -invariant.

� Furthermore, if h ∈ F [x] is a polynomial, then the above calculation shows
that

h(T )β = h(c1)β1 + h(c2)β2 + . . .+ h(ck)βk

� Now, if W 6= V , then by Lemma 4.14, there exists α ∈ V such that αnotinW ,
but there exists 1 ≤ i ≤ k such that

β := (T − ciI)α ∈ W

If we set
q =

∏
j 6=i

(x− cj)

Then, p = (x− ci)q, and q(ci) 6= 0.

� Now observe that the polynomial q − q(ci) has a root at ci. So by Corol-
lary IV.4.4, there is a polynomial h ∈ F [x] such that

q − q(ci) = (x− ci)h

Hence,

q(T )α− q(ci)α = (T − ci)h(T )α = h(T )(T − ci)α = h(T )β

Furthermore,
0 = p(T )α = (T − ciI)q(T )α

Hence, q(T )α is a characteristic vector with characteristic value ci. In partic-
ular,

q(T )α ∈ W

Thus,
q(ci)α = q(T )α− h(T )β ∈ W

Since q(ci) 6= 0, we conclude that α ∈ W .

This is a contradiction, which proves the W = V must hold. Hence, T must be
diagonalizable.
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5. Direct-Sum Decomposition

Given an operator T on a finite dimensional vector space V , our goal in this chapter was
to find an ordered basis B of V such that the matrix representation

[T ]B

is of a particularly ‘simple’ form (diagonal, triangular, etc.). Now, we will phrase the
question in a slightly more sophisticated manner. We wish to decompose the underlying
space V as a sum of invariant subspaces, such that the restriction of T to each such
invariant subspace has a simple form.

We will also see how this relates to the results of the earlier sections.

Definition 5.1. Let W1,W2, . . . ,Wk be subspaces of a vector space V . We say that
W1,W2, . . . ,Wk are independent if, for any vectors α1, α2, . . . , αk with αi ∈ Wi for all
1 ≤ i ≤ k, if

α1 + α2 + . . .+ αk = 0

then αi = 0 for all 1 ≤ i ≤ k.

Remark 5.2.

If k = 2, then two subspaces W1 and W2 are independent if and only if W1 ∩W2 = {0}
(Check!)

For an example of this phenomenon, look at Lemma 2.12.

If W1,W2, . . . ,Wk are independent, then any vector

α ∈ W := W1 +W2 + . . .+Wk

can be expressed uniquely as a sum of elements αi ∈ Wi

α = α1 + α2 + . . .+ αk

Lemma 5.3. Let V be a finite dimensional vector space and W1,W2, . . . ,Wk be subspaces
of V , and let W := W1 +W2 + . . .+Wk. Then, TFAE:

(i) W1,W2, . . . ,Wk are independent.

(ii) For each 2 ≤ j ≤ k, we have

Wj ∩ (W1 +W2 + . . .+Wj−1) = {0}

(iii) If Bi is an ordered basis for Wi, then B := tni=1Bi is a basis for W .

Proof.
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(i)⇒ (ii): Suppose
α ∈ Wj ∩ (W1 +W2 + . . .+Wj−1)

Then write α = α1 + α2 + . . .+ αj−1 for αi ∈ Wi, 1 ≤ i ≤ j − 1. Then,

α1 + α2 + . . .+ αj−1 + (−α) = 0

Since the Wi are independent, it follows that αi = 0 for all 1 ≤ i ≤ j − 1 and
α = 0, as required.

(ii)⇒ (iii): Let Bi be a basis for Wi, then, for any i 6= j, we claim that

Bi ∩ Bj = ∅

If not, then suppose α ∈ Bi ∩ Bj for some pair with i 6= j, we may assume that
i > j, then

α ∈ Wi ∩ (W1 +W2 + . . .+Wj +Wj+1 + . . .+Wi−1)

This implies α = 0, but 0 cannot belong to any linearly independent set. Now,
B = tki=1Bi is clearly a spanning set for W , so it suffices to show that it is linearly
independent. So suppose Bi = {βi,1, βi,2, . . . , βi,ni

} and ci,j are scalars such that

k∑
i=1

ni∑
j=1

ci,jβi,j = 0

Write αi :=
∑ni

j=1 ci,jβi,j, then αi ∈ Wi and

α1 + α2 + . . .+ αk = 0

Since W1,W2, . . . ,Wk are independent, we conclude that αi = 0 for all 1 ≤ i ≤ k.
But then, since Bi is linearly independent, it must happen that ci,j = 0 for all
1 ≤ j ≤ ni as well.

(iii)⇒ (i): Suppose Bi := {βi,1, βi,2, . . . , βi,ni
} is a basis for Wi and B := tki=1Bi is a basis for

W . Now suppose αi ∈ Wi such that

α1 + α2 + . . .+ αk = 0

Express each αi as a linear combinations of vectors from Bi by

αi =

ni∑
j=1

ci,jβi,j

Adding these up, we get
k∑
i=1

ni∑
j=1

ci,jβi,j = 0

Since the collection B is linearly independent, we conclude that ci,j = 0 for all
1 ≤ i ≤ k, 1 ≤ j ≤ ni. Hence,

αi = 0

for all 1 ≤ i ≤ k as required.
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Definition 5.4. If any (and hence all) of the above conditions hold, then we say that
W is an (internal) direct sum of the Wi, and we write

W = W1 ⊕W2 ⊕ . . .⊕Wk

Example 5.5.

(i) If V is a vector space and B = {α1, α2, . . . , αn} is any basis for V , let Wi :=
span{αi}. Then

V = W1 ⊕W2 ⊕ . . .⊕Wn

(ii) Let V = F n×n be the space of n × n matrices over F . Let W1 denote the set
of all symmetric matrices (a matrix A ∈ V is symmetric if A = At), and let W2

denote the set of all skew-symmetric matrices (a matrix A ∈ V is skew-symmetric
if A = −At). Then, (Check!) that

V = W1 ⊕W2

(iii) Let T ∈ L(V ) be a linear operator and let c1, c2, . . . , ck denote the distinct charac-
teristic values of T , and let Wi := ker(T − ciI) denote the corresponding charac-
teristic subspaces. Then, W1,W2, . . . ,Wk are independent by Lemma 2.12. Hence,
if T is diagonalizable, then

V = W1 ⊕W2 ⊕+ . . .⊕Wk

Definition 5.6. Let V be a vector space. An operator E ∈ L(V ) is called a projection
if E2 = E.

Remark 5.7. Let E ∈ L(V ) be a projection.

(i) If we set R := E(V ) to be the range of E and N := ker(E), then note that β ∈ R
if and only if Eβ = β

Proof. If β = Eβ, then β ∈ R. Conversely, if β ∈ R, then β = E(α) for some
α ∈ V , so that Eβ = E2(α) = E(α) = β

(ii) Hence, V = R⊕N

Proof. If α ∈ V , then write α = Eα+ (α−E(α)) and observe that E(α) ∈ R and
(α − E(α)) ∈ N . Furthermore, if β ∈ R ∩N , then E(β) = 0. But by part (i), we
have β = E(β) = 0. Hence, R ∩N = {0}. Thus, R and N are independent.

(iii) Now, suppose W1 and W2 are two subspaces of V such that V = W1 ⊕W2 then
any vector α ∈ V can be expressed uniquely in the form α = α1 +α2 with αi ∈ Wi

for i = 1, 2. Now, the map E : V → V given by α 7→ α1 is a linear map (Check!)
and is a projection (Check!) with range W1 and kernel W2 (Check all of this!).
This is called the projection onto W1 (along W2).
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(iv) Note that any projection is diagonalizable. If R and N as above, choose ordered
bases B1 for R and B2 for N . Then, by Lemma 5.3, B = (B1,B2) is an ordered
basis for V . Now, note that, for each β ∈ B1, we have E(β) = β and for each
β ∈ B2, we have E(β) = 0. Hence, the matrix

[E]B =

(
I 0
0 0

)
where I denotes the k × k identity matrix, where k = dim(R).

Projections may be used to describe direct-sum decompositions: Suppose

V = W1 ⊕W2 ⊕ . . .⊕Wk

then any vector α ∈ V can be expressed uniquely as

α = α1 + α2 + . . .+ αk

with αi ∈ Wi for all 1 ≤ i ≤ k. Then, the map Ej : V → V defined by α 7→ αj is a
projection onto Wj, and

ker(Ej) = W1 +W2 + . . .+Wj−1 +Wj+1 + . . .+Wk

Hence, in operator theoretic terms, this means that the identity operator decomposes as
a sum of projections

I = E1 + E2 + . . .+ Ek

This leads to the next theorem.

Theorem 5.8. If V = W1⊕W2⊕. . .⊕Wk, then there exist k linear operators E1, E2, . . . , Ek
in L(V ) such that

(i) Each Ej is a projection (ie. E2
j = Ej)

(ii) EiEj = 0 if i 6= j (ie. they are mutually orthogonal)

(iii) I = E1 + E2 + . . .+ Ek

(iv) The range of Ej is Wj for all 1 ≤ j ≤ k.

Conversely, if E1, E2, . . . , Ek ∈ L(V ) are linear operators satisfying the conditions (i)-
(iv), then

V = W1 ⊕W2 ⊕ . . .⊕Wk

where Wi is the range of Ei.

Proof. We only prove the converse direction as one direction is described above. So
suppose E1, E2, . . . , Ek ∈ L(V ) are operators satisfying (i)-(iv), then we wish to show
that

V = W1 ⊕W2 ⊕ . . .⊕Wk

where Wi is the range of Ei.
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(i) Since I = E1 + E2 + . . . Ek, for any α ∈ V , we have

α = E1(α) + E2(α) + . . .+ Ek(α)

and Ei(α) ∈ Wi for all 1 ≤ i ≤ k. Hence,

V = W1 +W2 + . . .+Wk

(ii) To show that the Wi are independent, suppose αi ∈ Wi are such that

α1 + α2 + . . .+ αk = 0

Note that, for each 1 ≤ i ≤ k, we have αi = Ei(αi). So fix 1 ≤ j ≤ k, and consider

0 = Ej(α1 + α2 + . . .+ αk) = Ej(E1(α1) + E2(α2) + . . .+ Ek(αk))

But EiEj = 0 if i 6= j, so we have

Ej(Ej(αj)) = 0

But Ej(Ej(αj)) = αj so that αj = 0 for all 1 ≤ j ≤ k. Hence, the W1,W2, . . . ,Wk

are independent as required.

6. Invariant Direct Sums

Given an operator T ∈ L(V ) on a vector space, we wish to find a decomposition

V = W1 ⊕W2 ⊕ . . .⊕Wk

where each Wi is invariant under T . Write Ti := T |Wi
∈ L(Wi), then, for any vector

α ∈ V , write α uniquely as a sum

α = α1 + α2 + . . .+ αk

with αi ∈ Wi, then
T (α) = T1(α1) + T2(α2) + . . .+ Tk(αk)

If this happens, we say that T is a direct sum of the Ti’s.

In terms of matrices, this is what this means: Given an ordered basis Bi of Wi, the basis
B = (B1,B2, . . . ,Bk) is an ordered basis for V . Since Wi is T invariant, we see that

[T ]B =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Ak


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where
Ai = [Ti]Bi

Hence, [T ]B is a block diagonal matrix, and we say that [T ]B is a direct sum of the Ai’s.

What we need to begin this discussion is an understanding of such a decomposition in
terms of projections.

Theorem 6.1. Let V be a vector space and W1,W2, . . .Wk be subspaces such that

V = W1 ⊕W2 ⊕ . . .⊕Wk

and let Ei be the projection onto Wi (as in Theorem 5.8). Let T ∈ L(V ), then each Wi

is T -invariant if and only if
TEi = EiT

for all 1 ≤ i ≤ k.

Proof.

(i) If TEi = EiT for each 1 ≤ i ≤ k, then for any α ∈ Wi, we have Ei(α) = α, so

T (α) = TEi(α) = EiT (α) ∈ Wi

Hence, Wi is T -invariant.

(ii) Conversely, if Wi is T -invariant, then for any α ∈ V , we have Ei(α) ∈ Wi, so

TEi(α) ∈ Wi

Hence,
EiTEi(α) = TEi(α) and EjTEi(α) = 0 if j 6= i

Now recall that we have

α = E1(α) + E2(α) + . . .+ Ek(α)

Hence,

EiT (α) = Ei (TE1(α) + TE2(α) + . . .+ TEk(α)) = EiTEi(α)

But TEi(α) ∈ Wi so EiTEi(α) = TEi(α). Hence,

EiT (α) = TEi(α)

This is true for any α ∈ V , so we are done.

The next theorem may be thought of as an ‘operator theoretic’ characterization of di-
agonalizability (See Theorem 2.13).
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Theorem 6.2. Let V be a vector space and T ∈ L(V ) be an operator with c1, c2, . . . , ck
its distinct characteristic values. Suppose T is diagonalizable, then there exist operators
E1, E2, . . . , Ek ∈ L(V ) such that

(i) T = c1E1 + c2E2 + . . .+ ckEk

(ii) I = E1 + E2 + . . .+ Ek

(iii) EiEj = 0 if i 6= j.

(iv) Each Ei is a projection.

(v) Ei is the projection onto ker(T − ciI).

Conversely, suppose there are non-zero operators E1, E2, . . . , Ek ∈ L(V ) and distinct
scalars c1, c2, . . . , ck satisfying conditions (i),(ii) and (iii), then

� T is diagonalizable.

� The constants c1, c2, . . . , ck are the distinct characteristic values of T .

� Conditions (iv) and (v) are satisfied.

Proof.

(i) Suppose T is diagonalizable with distinct characteristic values c1, c2, . . . , ck. Let
Wi := ker(T − ciI), then by Theorem 2.13,

V = W1 ⊕W2 ⊕ . . .⊕Wk

Let Ei be the projection onto Wi, then by Theorem 5.8, conditions (ii), (iii), (iv)
and (v) are satisfied. Furthermore, if α ∈ V , then write

α = E1(α) + E2(α) + . . .+ Ek(α)

so that
T (α) = TE1(α) + TE2(α) + . . .+ TEk(α)

But E1(α) ∈ W1 = ker(T − c1I), so TE1(α) = c1E1(α). Similarly, we get

T (α) = c1E1(α) + c2E2(α) + . . .+ ckEk(α)

This is true for any α ∈ V , so condition (i) holds.

(ii) Now suppose there are non-zero operators E1, E2, . . . Ek ∈ L(V ) and distinct
scalars c1, c2, . . . , ck satisfying conditions (i), (ii) and (ii), then

� Since I = E1 + E2 + . . .+ Ek and EiEj = 0 if i 6= j, we have

Ei = EiI = Ei(E1 + E2 + . . .+ Ek) = E2
i

Hence, Ei is a projection.
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� Once again, since T = c1E1 + c2E2 + . . . + ckEk and EiEj = 0 if i 6= j, we
have

TEi = (c1E1 + c2E2 + . . .+ ckEk)Ei = ciE
2
i = ciEi

Since Ei is non-zero consider Wi to be the range of Ei, then for any β ∈ Wi,
we have Ei(β) = β, so

T (β) = TEi(β) = ciEi(β) = ciβ

Since Wi 6= {0}, it follows that each ci is a characteristic value of T . Further-
more, we have that

Wi ⊂ ker(T − ciI)

� To show equality, suppose α ∈ ker(T − ciI), then

0 = (T − ci)α =
n∑
j=1

(cj − ci)Ei(α)

For all j 6= i, it follows that Ej(α) = 0 (Why?). Hence,

α = Ei(α) ∈ Wi

Thus, Wi = ker(T − ci)
� It remains to show that T does not have any other characteristic values other

than the ci: For any scalar c ∈ F with c 6= ci for all 1 ≤ i ≤ k, we have

(T − cI) = (c1 − c)E1 + (c2 − c)E2 + . . .+ (ck − c)Ek

so if α ∈ V such that (T − cI)α = 0, then

(ci − c)Ei(α) = 0(Why?)

Since ci 6= c, it follows that Ei(α) = 0. This is true for all 1 ≤ i ≤ k, so

α = E1(α) + E2(α) + . . .+ Ek(α) = 0

Thus, c1, c2, . . . , ck are all the characteristic values of T .

� Finally, we wish to show that T is diagonalizable, but since the ci are all
distinct, the subspaces W1,W2, . . . ,Wk are independent (see the proof of
Lemma 2.12). Since

I = E1 + E2 + . . .+ Ek

we have
V = W1 +W2 + . . .+Wk

so by Theorem 2.13, T is diagonalizable.
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Theorem 6.3. Let T be a diagonalizable operator, and express T as

T = c1E1 + c2E2 + . . .+ ckEk

as in Theorem 6.2. Then, for any polynomial g ∈ F [x], we have

g(T ) = g(c1)E1 + g(c2)E2 + . . .+ g(ck)Ek

Proof. By linearity of both sides, it suffices to verify the theorem if g = xm. Suppose
g = x2, then

g(T ) = T 2 =

(
n∑
i=1

ciEi

)(
n∑
j=1

cjEj

)

=
n∑

i,j=1

cicjEiEj

=
n∑
i=1

c2iE
2
i

=
n∑
i=1

c2iEi

=
n∑
i=1

g(ci)Ei

Now proceed by induction on m (Do it!).

Example 6.4.

(i) Express a diagonalizable operator T as

T = c1E1 + c2E2 + . . .+ ckEk

as in Theorem 6.2, and for 1 ≤ j ≤ k, let pj denote the Lagrange polynomials

pj =
∏
i 6=j

(x− ci)
(cj − ci)

Then, we have pj(ci) = δi,j. Hence, by Theorem 6.3,

pj(T ) = Ej

Thus, the Ej not only commute with T , they may be expressed as polynomials in
T .
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(ii) As a consequence of Theorem 6.3, for any polynomial g ∈ F [x], we have

g(T ) = 0⇔ g(ci) = 0 ∀1 ≤ i ≤ k

In particular, if p is the minimal polynomial of T

p = (x− c1)(x− c2) . . . (x− ck)

(See Remark 3.8). Then p(T ) = 0

This observation leads us to another proof of Theorem 4.17.

Theorem 6.5. Let T ∈ L(V ) be a linear operator whose minimal polynomial is a product
of distinct linear terms. Then, T is diagonalizable.

Proof. Write the minimal polynomial of T as

p = (x− c1)(x− c2) . . . (x− ck)

Let pj ∈ F [x] be the Lagrange polynomial as above

pj =
∏
i 6=j

(x− ci)
(cj − ci)

Then, pj(ci) = δi,j. If g ∈ F [x] is any polynomial of degree ≤ (k − 1), then

g =
n∑
i=1

g(ci)pi

by the Lagrange interpolation formula (Remark IV.3.2). In particular, taking g = 1, the
scalar polynomial, and taking g = x, we have

1 = p1 + p2 + . . .+ pk

x = c1p1 + c2p2 + . . .+ ckpk

(Note that we are implicitly assuming that k ≥ 2 - check what happens when k = 1).
So if we set

Ej = pj(T )

Then, we have

I = E1 + E2 + . . .+ Ek, and

T = c1E1 + c2E2 + . . .+ ckEk

Now, for any pair i 6= j, consider the polynomial pipj. Note that,

(x− cr) | pipj
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for all 1 ≤ r ≤ k. Hence, the minimal polynomial divides pipj,

p | pipj

But by the earlier observation, p(T ) = 0. Hence,

EiEj = pi(T )pj(T ) = 0

Finally, we note that Ei = pi(T ) 6= 0 because deg(pi) < deg(p) and p is the minimal
polynomial of T . Since the c1, c2, . . . , ck are all distinct, we may apply Theorem 6.2 to
conclude that T is diagonalizable.

(End of Week 10)

7. Simultaneous Triangulation; Simultaneous
Diagonalization

Let V be a finite dimensional vector space, and let F ⊂ L(V ) be a collection of linear
operators on V . We wish to know when we can find an ordered basis B of V such that
[T ]B is triangular (or diagonal) for all T ∈ F . We will assume that F is a commuting
family of operators, ie.

TS = ST

for all S, T ∈ F .

Definition 7.1. For a subspace W ⊂ V , we say that W is F -invariant if T (W ) ⊂ W
for all T ∈ F .

Compare the next lemma to Lemma 4.14.

Lemma 7.2. Let F be a commuting family of triangulable operators on V , and let W
be a proper F-invariant subspace of V . Then, there exists α ∈ V such that

(i) α /∈ W
(ii) For each T ∈ F , Tα is in the subspace spanned by W and α.

Proof. We first assume that F is finite, and write it as F = {T1, T2, . . . , Tn}.

(i) Since T1 ∈ F is triangulable, the minimal polynomial of T1 is a product of linear
terms (by Theorem 4.15). By Lemma 4.14, there exists β1 ∈ V and a scalar c1 ∈ F
such that

� β1 /∈ W
� (T1 − c1I)β1 ∈ W

So, we set
V1 := {β ∈ V : (T1 − c1I)β ∈ W}

Then, V1 is a subspace of V (Check!) and W ⊂ V1, V1 6= W .
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(ii) We claim that V1 is F -invariant: Let S ∈ F , then for any β ∈ V1, we have

(T1 − c1I)β ∈ W

Since W is F -invariant, we have

S(T1 − c1I)β ∈ W

But S and T1 commute, so

(T1 − c1I)S(β) ∈ W

By construction, this implies S(β) ∈ V1. Hence, S(V1) ⊂ V1 for all S ∈ F , proving
the claim.

(iii) Let U2 = T2|V1 be the restriction of T2 to V1. Since T2 is diagonalizable, the
minimal polynomial of T2 is also a product of linear terms by Theorem 4.15. Since
U2 is a restriction of T2, the minimal polynomial of U2 is a divisor of the minimal
polynomial of T2 by Lemma 4.5. Hence, the minimal polynomial of U2 is also a
product of linear terms. Applying Lemma 4.14 to U2 (the ambient vector space is
now V1, and W is the still the proper invariant subspace), there exists β2 ∈ V1 and
a scalar c2 ∈ F such that

� β2 /∈ W
� (T2 − c2I) ∈ W

Note that, since β2 ∈ V1, we also have

� (T1 − c1I)β2 ∈ W
Once again, set

V2 := {β ∈ V1 : (T2 − c2I)β ∈ W}
Then, V2 is a subspace of V1, and properly contains W . Applying the same logic
again, we see that V2 is also F -invariant. Therefore, we may set U3 := T3|V2 and
proceed as before.

(iv) Proceeding this way, after finitely many steps, we arrive at a vector βn ∈ V such
that

� βn /∈ W
� For each 1 ≤ i ≤ n, there exist scalars ci ∈ F such that

(Ti − ciI)βn ∈ W

Thus, α := βn works.

Now suppose F is not finite, choose a maximal linearly independent set F0 ⊂ F (ie.
F0 is a basis for the subspace of L(V ) spanned by F). Since L(V ) is finite dimensional
(see Theorem III.2.4), F0 is finite. Therefore, by the first part of the proof, there exists
α ∈ V such that
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� α /∈ W

� Tα ∈ span(W ∪ {α}) for all T ∈ F0

Now if T ∈ F , then T is a linear combination of elements from F0. Thus,

Tα ∈ span(W ∪ {α})

as well (since span(W ∪ {α}) is a subspace). Thus, α works for all of F .

The proof of the next theorem is identical to that of Theorem 4.15, except we replace a
single operator by the set F and apply Lemma 7.2 instead of Lemma 4.14.

Theorem 7.3. Let V be a finite dimensional vector space over a field F , and let F be
a commuting family of triangulable operators on V . Then, there exists an ordered basis
B of V such that [T ]B is upper triangular for each T ∈ F .

Corollary 7.4. Let F be a commuting family of n × n matrices over a field F . Then,
there exists an invertible matrix P such that P−1AP is triangular for all A ∈ F .

Theorem 7.5. Let F be a commuting family of diagonalizable operators on a finite
dimensional vector space V . Then, there exists an ordered basis B such that [T ]B is
diagonal for all T ∈ F .

Proof. We induct on n := dim(V ). If n = 1, there is nothing to prove, so assume that
n ≥ 2 and that the theorem is true over any vector space W with dim(W ) < n.

Now, if every operator in F is a scalar multiple of the identity, there is nothing to prove,
so assume that this is not the case, and choose an operator T ∈ F that is not a scalar
multiple of the identity. Let {c1, c2, . . . , ck} be the characteristic values of T . Since T is
diagonalizable and not a scalar multiple of I, it follows that k > 1. Set

Wi := ker(T − ciI), 1 ≤ i ≤ k

Then, dim(Wi) < n for all 1 ≤ i ≤ k.

So fix 1 ≤ i ≤ k, then, each Wi is F -invariant (Check!). Let Fi := {Si := S|Wi
: S ∈ F},

then Fi ⊂ L(W ) is a commuting family of linear operators on Wi. Now, let S ∈ F
be fixed, then S is diagonalizable, so its minimal polynomial is a product of distinct
linear terms by Theorem 4.17. But the minimal polynomial of Si divides the minimal
polynomial of S (by Lemma 4.5). Hence, Si is diagonalizable by Theorem 4.17 as well.
Thus, the induction hypothesis applies, and there is an ordered basis Bi of Wi such that
[Si]Bi is diagonal for all Si ∈ Fi.

Doing this for each 1 ≤ i ≤ k, we obtain ordered bases B1,B2, . . . ,Bk for W1,W2, . . . ,Wk

respectively. Now, by Theorem 2.13

B = (B1,B2, . . . ,Bk)

is an ordered basis for V and each S ∈ F is diagonal in this basis.
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8. The Primary Decomposition Theorem

In the previous few sections, we have looked for a way to decompose an operator into
simpler pieces. Specifically, given an operator T ∈ L(V ) on a finite dimensional vector
space V , one looks for a decomposition of V into a direct sum of T -invariant subspaces

V = W1 ⊕W2 ⊕ . . .⊕Wk

such that Ti := T |Wi
is, in some sense, elementary. In the two theorems we proved (see

Theorem 4.17 and Theorem 4.15), we found that we could do so provided the minimal
polynomial of T factored as a product of linear terms.

However, this poses two possible problems: The minimal polynomial may not have
enough roots (for instance, if the field is not algebraically closed), or if the characteristic
subspaces do not span the entire vector space (this prevents diagonalizability). Now, we
wish to find a general theorem that holds for any operator over any field.

This theorem is general, and therefore quite flexible, as it relies on only one fact, that
holds over any field; namely, that any polynomial can be expressed uniquely as a product
of irreducible polynomials (See Theorem IV.5.6). [It does, however, have the drawback
of not being as powerful as Theorem 4.17 or Theorem 4.15.]

Theorem 8.1. (Primary Decomposition Theorem) Let T ∈ L(V ) be a linear operator
over a finite dimensional vector space over a field F . Let p ∈ F [x] be the minimal
polynomial of T , and express p as

p = pr11 p
r2
2 . . . p

rk
k

where the pi are distinct irreducible polynomials in F [x] and the ri are positive integers.
Set

Wi := ker(pi(T )ri), 1 ≤ i ≤ k

Then

(i) V = W1 ⊕W2 ⊕ . . .⊕Wk

(ii) Each Wi is invariant under T .

(iii) If Ti := T |Wi
, then the minimal polynomial of Ti is prii .

Proof.

(i) For 1 ≤ i ≤ k, set

fi :=
∏
j 6=i

p
rj
j =

p

prii

Then, the polynomials f1, f2, . . . , fk are relatively prime. Hence, by Example IV.4.17,
there exist polynomials g1, g2, . . . , gk ∈ F [x] such that

1 = f1g1 + f2g2 + . . .+ fkgk

Set hi := figi, and set Ei := hi(T ). We now use these operators Ei to construct a
direct sum decomposition as in Theorem 5.8.
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(ii) First note that
E1 + E2 + . . .+ Ek = I (VI.3)

Now, if i 6= j, then prss | fifj for all 1 ≤ s ≤ k. Hence, p | fifj. Thus,

fi(T )fj(T ) = 0

Hence, EiEj = 0 if i 6= j.

(iii) Now, we claim that Wi is the range of Ei

� Suppose α is in the range of Ei, then Ei(α) = α. Then

pi(T )riα = pi(T )rihi(T )α

= pi(T )rifi(T )gi(T )α

= p(T )gi(T )α

= gi(T )p(T )α = 0

because p(T ) = 0. Hence, α ∈ ker(pi(T )ri) = Wi

� Conversely, if α ∈ Wi, then pi(T )riα = 0. But, for any j 6= i, we have

prii | fj

Therefore, Ejα = fj(T )gj(T )α = gj(T )fj(T )α = 0. But by Equation VI.3,
we have

α = E1(α) + E2(α) + . . .+ Ek(α) = Ei(α)

and so α is in the range of Ei as required.

(iv) By construction, each Wi is invariant under T , since it is the kernel of an operator
that commutes with T (See Example 4.2).

(v) We consider Ti := T |Wi
, and we wish to show that the minimal polynomial of Ti

is prii .

� Since pi(T )ri is zero on Wi, by definition, we have pi(Ti)
ri = 0

� Now suppose g is any polynomial such that g(Ti) = 0. We wish to show that

prii | g

If α is in the range of Ei, then g(T )α = 0. Thus, for all α ∈ V ,

g(T )Eiα = 0⇒ g(T )fi(T )gi(T )α = 0

This is true for all α ∈ V , so g(T )fi(T )gi(T ) = 0. Thus,

p | gfigi ⇒ prii | gfigi (VI.4)

Now consider the expression

f1g1 + f2g2 + . . .+ fkgk = 1
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By construction,
pi | fj, if i 6= j

So if pi | figi, then it would follow that

pi | 1

This contradicts the assumption that pi is irreducible. Hence, pi - figi. Thus,

(prii , figi) = 1

By Equation VI.4, and Euclid’s Lemma (See the proof of Theorem IV.5.4),
it follows that

prii | g
Hence, the minimal polynomial of Ti must be prii .

Corollary 8.2. Let T ∈ L(V ) and let E1, E2, . . . , Ek be the projections occurring in the
primary decomposition of T . Then,

(i) Each Ei is a polynomial in T .

(ii) If U ∈ L(V ) is a linear operator that commutes with T , then U commutes with
each Ei. Hence, each Wi is invariant under U .

Remark 8.3. Suppose that T ∈ L(V ) is such that the minimal polynomial is a product
of (not necessarily distinct) linear terms

p = (x− c1)r1(x− c2)r2 . . . (x− ck)rk

Let E1, E2, . . . , Ek be the projections occurring in the primary decomposition of T . Then
the range of Ei is the null space of (T − ci)ri and is denoted by Wi. We set

D := c1E1 + c2E2 + . . . ckEk

Then, by Theorem 6.2, D is diagonalizable, and is called the diagonalizable part of T .
Note that, since each Ei is a polynomial in T , D is also a polynomial in T . Now, since
E1 + E2 + . . .+ Ek = I, we have equations

T = TE1 + TE2 + . . .+ TEk

D = c1E1 + c2E2 + . . .+ ckEk, and we set

N := T −D = (T − c1)E1 + (T − c2)E2 + . . .+ (T − ck)Ek
Then, N is also a polynomial in T . Hence,

ND = DN

Also, since the Ej are mutually orthogonal projections, we have

N2 = (T − c1)2E1 + (T − c2)2E2 + . . .+ (T − ck)2Ek
Thus proceeding, if r ≥ max{ri}, we have

N r = (T − c1)rE1 + (T − c2)rE2 + . . .+ (T − ck)rEk = 0
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Definition 8.4. An operator N ∈ L(V ) is said to be nilpotent if there exists r ∈ N such
that N r = 0.

We leave the proof of the next lemma as an exercise.

Lemma 8.5. If T ∈ L(V ) is both diagonalizable and nilpotent, then T = 0.

Theorem 8.6. Let T ∈ L(V ) be a linear operator whose minimal polynomial is a product
of linear terms. Then, there exists a diagonalizable operator D and a nilpotent operator
N such that

(i) T = D +N

(ii) ND = DN

Furthermore, the operators D,N satisfying conditions (i) and (ii) are unique.

Proof. We have just proved the existence of these operators above. As for uniqueness,
suppose

T = D′ +N ′

where D′ is diagonalizable, N ′ is nilpotent, and D′N ′ = N ′D′. Then, D′T = TD′ and
N ′T = TN ′, and therefore, D′ and N ′ both commute with any polynomial in T . In
particular, we conclude that D′ and N ′ commute with both D and N . Now, consider
the equation

D +N = D′ +N ′

We conclude that
D −D′ = N ′ −N

Now, the left hand side of this equation is the difference of two diagonalizable operators
that commute with each other. Therefore, by Theorem 7.5, D and D′ are simultaneously
diagonalizable. This forces (D −D′) to be diagonalizable.

Now, consider the right hand side. N ′ and N are both commuting nilpotent operators.
Suppose that N r1 = N ′r2 = 0, consider

(N ′ −N)r =
r∑
j=0

(
r

j

)
N ′jN r−j

which holds because they commute. So if we take r := max{r1, r2}, then we conclude
that

(N ′ −N)r = 0

Hence, we have that (D − D′) = (N ′ − N) is both diagonalizable and nilpotent. By
Lemma 8.5, we conclude that

D = D′ and N = N ′

as required.
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Corollary 8.7. Let V be a finite dimensional vector space over C and T ∈ L(V ) be an
operator. Then, there exists a unique pair of operators (D,N) such that D is diagonal-
izable, N is nilpotent, DN = ND, and

T = D +N

Furthermore, these operators are both polynomials in T .

Let us understand what the matrix equivalent of this theorem looks like. The next
lemma states that an upper triangular matrix is nilpotent if all its diagonal entries are
zero.

Lemma 8.8. Let A = (Ai,j) be an n× n matrix such that Ai,j = 0 if i ≤ j. Then, A is
nilpotent.

Proof. Consider

A2(i, j) =
n∑
k=1

Ai,kAk,j =
n∑

k=j+1

Ai,kAk,j

Hence,
A2(i, j) = 0 if i ≤ j + 1

Thus proceeding, we see that

Ar(i, j) = 0 if i ≤ j + r − 1

It follows that An = 0.

Remark 8.9. Let T ∈ L(V ) be linear operator whose minimal polynomial is a product
of distinct linear terms. Then, by Theorem 4.15, there is a basis B of V such that

A := [T ]B

is upper triangular. Write
A = B + C

where B is diagonal, and C = (Ci,j) has the property that Ci,j = 0 for all i ≤ j. By
Lemma 8.8, C is nilpotent. Let D,N ∈ L(V ) be the unique linear operators such that

[D]B = B and [N ]B = C

Then, T = D +N is the decomposition of T guaranteed by Theorem 8.6.

The next example is a continuation of Example 2.6.

Example 8.10. For instance, T ∈ L(R3) is represented in the standard basis by the
matrix

A =

3 1 −1
2 2 −1
2 2 0


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(i) By our earlier calculations, the characteristic polynomial of A is

f = (x− 2)2(x− 1)

For c = 1, we have ker(A− I) = span{α1} where α1 = (1, 0, 2), and for c = 2, we
have ker(A− 2I) = span{α2} where α2 = (1, 1, 2).

(ii) Now consider

(A− 2I)2 =

1 1 −1
2 0 −1
2 2 −2

1 1 −1
2 0 −1
2 2 −2

 =

1 −1 0
0 0 0
2 −2 0


This is row-equivalent to the matrix

C =

1 −1 0
0 0 0
0 0 0


which has nullity 2. Apart from α2, if we set α3 = (1, 1, 0), then

Cα3 = 0

Since α3 is not a scalar multiple of α2, we conclude that

ker((A− 2I)2) = span{α2, α3}

(iii) Observe that

Aα3 =

4
4
4

 = 2α2 + 2α3

(iv) Hence, B = {α1, α3, α2} is an ordered basis for R3, and

[T ]B =

1 0 0
0 2 2
0 0 2

 =

1 0 0
0 2 0
0 0 2


︸ ︷︷ ︸

D̂

+

0 0 0
0 0 2
0 0 0


︸ ︷︷ ︸

N̂

Observe that

D̂N̂ =

0 0 0
0 0 4
0 0 0

 = N̂D̂

The first matrix on the right hand side is diagonal, and the second is nilpotent (by
Lemma 8.8). Hence, if D,N ∈ L(R3) are the unique linear operators such that

[D]B = D̂, and [N ]B = N̂

Then, D is diagonalizable, N is nilpotent, DN = ND, and

T = D +N
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VII. The Rational and Jordan Forms

1. Cyclic Subspaces and Annihilators

Definition 1.1. Let T ∈ L(V ) be a linear operator on a finite dimensional vector space
V and let α ∈ V . The cyclic subspace generated by α is

Z(α;T ) := {g(T )α : g ∈ F [x]} = span{α, Tα, T 2α, . . .}

Lemma 1.2. Z(α;T ) is the smallest subspace of V that contains α and is invariant
under T .

Proof. Clearly, Z(α;T ) is a subspace, it contains α and is invariant under T . So suppose
M is any other subspace which contains α and is T=invariant, then α ∈M implies that
Tα ∈M , and so T 2(α) ∈M and so on. Hence,

T kα ∈M

for all k ≥ 0, whence Z(α;T ) ⊂M .

Definition 1.3. A vector α ∈ V is said to be a cyclic vector for T if Z(α;T ) = V .

Example 1.4.

(i) If α = 0, then Z(α;T ) = {0} for any operator T .

(ii) Z(α;T ) is one dimensional if and only if α is a characteristic vector of T .

Proof. If α is a characteristic vector, then there exists c ∈ F such that Tα = cα.
Hence, for any polynomial g ∈ F [x], we have

g(T )α = g(c)α ∈ span{α}

Thus, Z(α;T ) = span{α} and is therefore one dimensional. Conversely, if Z(α;T )
is one-dimensional, then α 6= 0 by part (i). Hence,

Z(α;T ) = span{α}

In particular, since Tα ∈ Z(α;T ), there exists c ∈ F such that Tα = cα as
required.

(iii) If T = I is the identity operator, then Z(α;T ) = span{α} for any vector α ∈ V .
In particular, if dim(V ) > 1, I does not have a cyclic vector.
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(iv) Let T ∈ L(R2) be the operator given in the standard basis by the matrix

A =

(
0 0
1 0

)
� If α = ε2, then T (α) = 0, and so α is a characteristic vector of T . Hence,

Z(α;T ) = span{α}

� If α = ε1, then T (α) = ε2. Hence, Z(α;T ) contains both ε1 and ε2, whence

Z(α;T ) = R2

Definition 1.5. Given an operator T ∈ L(V ) and a vector α ∈ V , the T -annihilator of
α is the set

M(α;T ) := {g ∈ F [x] : g(T )α = 0}

Lemma 1.6. For any non-zero T ∈ L(V ), M(α;T ) is a non-zero ideal of F [x].

Proof. That M(α;T ) is an ideal is easy to check (Do it!). Also, the minimal polynomial
of T is non-zero and is contained in M(α;T ). Hence, M(α;T ) 6= {0}.

The next definition is a slight abuse of notation.

Definition 1.7. The T -annihilator of α is the unique monic generator pα of M(α;T )

Remark 1.8. Since the minimal polynomial of T is contained in M(α;T ), it follows
that pα divides the minimal polynomial. Furthermore, note that

deg(pα) > 0

if α 6= 0. (Why?)

Theorem 1.9. Let α ∈ V be a non-zero vector and pα be the T -annihilator of α.

(i) deg(pα) = dim(Z(α;T )).

(ii) If dim(pα) = k, then the set {α, Tα, T 2α, . . . , T k−1α} forms a basis for Z(α;T ).

(iii) If U is the linear operator on Z(α;T ) induced by T , then the minimal polynomial
of U is pα.

Proof.

(i) We prove (i) and (ii) simultaneously.

� Let S := {α, Tα, . . . , T k−1α} ⊂ Z(α;T ). If S is linearly dependent, then
there would be a non-zero polynomial q ∈ F [x] such that

q(T )α = 0

and deg(q) < k. This is impossible because pα is the polynomial of least
degree with this property. Hence, S is linearly independent.
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� We claim that S spans Z(α;T ): Suppose g ∈ F [x], then by Euclidean division
Theorem IV.4.2, there exists polynomials q, r ∈ F [x] such that

g = qpα + r

and either r = 0 or deg(r) < k. Then, since pα(T )α = 0, it follows that

g(T )α = r(T )α

But, r(T )α ∈ span(S). Thus, S spans Z(α;T ).

(ii) Now consider part (iii).

(i) Since pα(T )α = 0, it follows that

pα(U)g(T )α = pα(T )g(T )α = g(T )pα(T )α = 0

This is true for any g ∈ F [x]. Hence,

pα(U) = 0

(ii) Now suppose h ∈ F [x] is a non-zero polynomial of degree < k such that
h(U) = 0, then

0 = h(U)α = h(T )α

This is impossible because pα is the polynomial of least degree with this
property. Hence, h(U) 6= 0.

Thus, pα is the minimal polynomial of U .

Corollary 1.10. If α ∈ V is a cyclic vector for T , then the minimal polynomial of T ,
the characteristic polynomial of T , and pα all coincide.

Proof. Let f and p denote the characteristic and minimal polynomials of T respectively.
Then, by Cayley-Hamilton,

p | f
Furthermore, p(T ) = 0 implies that p(T )α = 0. Hence,

pα | p

Since all three polynomials are monic, it now suffices to prove that

pα = f

But pα | f and by Theorem 1.9,

deg(pα) = dim(Z(α;T )) = dim(V ) = deg(f)

Hence, pα = f and we are done.
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Remark 1.11. Let U ∈ L(W ) is a linear operator on a finite dimensional vector space
W with cyclic vector α. Then, write the minimal polynomial of U as

p = pα = c0 + c1x+ . . .+ ckx
k

Then, by Theorem 1.9, the set

B = {α, Uα, U2α, . . . , Uk−1α} =: {α1, α2, . . . , αk}

forms an ordered basis for W . Now, if 0 ≤ i ≤ k − 1, then

U(αi) = αi+1

And, since pα(U) = 0, we have

c0α + c1U(α) + c2U
2(α) + . . .+ ck−1U

k−1(α) + Uk(α) = 0

Hence,
U(αk) = −c0α1 − c1α2 − . . .− ck−1αk

Thus, the matrix of U in this basis is given by

[U ]B =


0 0 0 . . . 0 −c0
1 0 0 . . . 0 −c1
0 1 0 . . . 0 −c2
...

...
...

...
...

...
0 0 0 . . . 1 −ck−1


Definition 1.12. Let f ∈ F [x] be a monic polynomial written as

f = c0 + c1x+ c2x
2 + . . .+ ckx

k

Then, the companion matrix of f is the matrix

A =


0 0 0 . . . 0 −c0
1 0 0 . . . 0 −c1
0 1 0 . . . 0 −c2
...

...
...

...
...

...
0 0 0 . . . 1 −ck−1


Theorem 1.13. Let U be an operator on a finite dimensional vector space W . Then,
U has a cyclic vector if and only if there is some ordered basis B of W such that the
matrix [U ]B is the companion matrix of the minimal polynomial of U .

Proof. We have just proved one direction: If U has a cyclic vector, then there is an
ordered basis B such that [U ]B is the companion matrix to the minimal polynomial.
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Conversely, suppose there is a basis B such that [U ]B is the companion matrix to the
minimal polynomial p, then write B = {α1, α2, . . . , αk}. Observe that, by construction,

αi = U i−1(α1)

for all i ≥ 1. Thus, Z(α1;U) = V because it contains B. Thus, α1 is a cyclic vector for
U .

Corollary 1.14. If A is the companion matrix of a monic polynomial p ∈ F [x], then p
is both the minimal polynomial and characteristic polynomial of A.

Proof. Let T ∈ L(F n) be the linear operator whose matrix in the standard basis is
A. Then, T has a cyclic vector by Theorem 1.13. By Corollary 1.10, the minimal
and characteristic polynomials of T coincide. Therefore, it suffices to show that the
characteristic polynomial of A is p. We prove this by induction on k := deg(p).

(i) If deg(p) = 1, then write p = c0 + x, then

A =
(
−c0

)
so the characteristic polynomial of A is clearly f = x+ c0 = p.

(ii) Suppose that the theorem is true for any polynomial q with deg(q) < k, and write

A =


0 0 0 . . . 0 −c0
1 0 0 . . . 0 −c1
0 1 0 . . . 0 −c2
...

...
...

...
...

...
0 0 0 . . . 1 −ck−1


Hence, the characteristic polynomial of A is given by

f = det


x 0 0 . . . 0 c0
−1 x 0 . . . 0 c1
0 −1 x . . . 0 c2
...

...
...

...
...

...
0 0 0 . . . −1 x+ ck−1



= x det


x 0 . . . 0 c1
−1 x . . . 0 c2
...

...
...

...
...

0 0 . . . −1 x+ ck−1

+ det


0 0 . . . 0 c0
−1 x . . . 0 c2
...

...
...

...
...

0 0 . . . −1 x+ ck−1


Now, the first matrix that appears on the right hand side is the companion matrix
to the polynomial

q = c1 + c2x+ . . .+ ck−1x
k−2 + xk−1
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So by induction, the first term is

x(c1 + c2x+ . . .+ ck−1x
k−2 + xk−1)

Now by expanding along the first row of the second term, we get

(−1)k−1c0 det

−1 x . . . 0
...

...
...

...
0 0 . . . −1


This matrix is an upper triangular matrix with −1’s along the diagonal. Hence,
this term becomes

(−1)k−1c0(−1)k−1 = c0

Thus, we get

f = x(c1 + c2x+ . . .+ ck−1x
k−2 + xk−1) + c0 = p

as required.

(End of Week 11)

2. Cyclic Decompositions and the Rational Form

The goal of this section is to show that, for a given operator T ∈ L(V ), there exist
vectors α1, α2, . . . , αr ∈ V such that

V = Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

In other words, V is the direct sum of T -invariant subspaces such that each subspace
has a T -cyclic vector. This is a hard theorem, and we break it into many smaller pieces,
so it is easier to digest.

Definition 2.1. Let W ⊂ V be a subspace of V . A subspace W ′ ⊂ V is said to be
complementary to W if V = W ⊕W ′.

Remark 2.2. Let T ∈ L(V ) and W ⊂ V be a T -invariant subspace, and suppose there
is a complementary subspace W ′ ⊂ V which is also T -invariant. Then, for any β ∈ V ,
there exist γ ∈ W and γ′ ∈ W ′ such that

β = γ + γ′

Since W and W ′ are both T -invariant, for any polynomial f ∈ F [x], we have

f(T )β = f(T )γ + f(T )γ′

where f(T )γ ∈ W and f(T )γ′ ∈ W ′. Hence, if f(T )β ∈ W , then it must happen that
f(T )γ′ = 0, and in that case,

f(T )β = f(T )γ
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This leads to the next definition.

Definition 2.3. Let T ∈ L(V ) and W ⊂ V a subspace. We say that W is T -admissible
if

(i) W is T -invariant.

(ii) For any β ∈ V and f ∈ F [x], if f(T )β ∈ W , then there exists γ ∈ W such that

f(T )β = f(T )γ

We now make some comments about T -conductors.

Remark 2.4. Fix T ∈ L(V ), and a T -invariant subspace W ⊂ V .

(i) Given a vector α ∈ V , we had defined (See Definition VI.4.9) the T -conductor of
α into W as the ideal

S(α;W ) := {f ∈ F [x] : f(T )α ∈ W}

We saw in Lemma VI.4.11 that S(α;W ) is an ideal of F [x], and its unique monic
generator is also termed the T -conductor of α into W . We denote this polynomial
by

s(α;W )

(ii) Now, different vectors have different T -conductors. Furthermore, for any α ∈ W ,
we have

deg(s(α;W )) ≤ dim(V )

because the minimal polynomial has degree ≤ dim(W ) (by Cayley-Hamilton), and
every T -conductor must divide the minimal polynomial. We say that a vector
β ∈ V is maximal with respect to W if

deg(s(β;W )) = max
α∈V

deg(s(α;W ))

In other words, the degree of the T -conductor of β is the highest among all T -
conductors into W . Note that such a vector always exists.

The next few lemmas are all part of a larger theorem - the cyclic decomposition theorem.
The textbook states it as one theorem, but we have broken into smaller parts for ease
of reading.

Lemma 2.5. Let T ∈ L(V ) be a linear operator and W0 ( V be a proper T -invariant
subspace. Then, there exist non-zero vectors β1, β2, . . . , βr in V such that

(i) V = W0 + Z(β1;T ) + Z(β2;T ) + . . .+ Z(βr;T )

(ii) For 1 ≤ k ≤ r, if we set

Wk := W0 + Z(β1;T ) + Z(β2;T ) + . . .+ Z(βk;T )

Then each βk is maximal with respect to Wk−1.
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Proof. Since W0 is T -invariant, there exists β1 ∈ V which is maximal with respect to
W0. Note that, by Example VI.4.10, for any α ∈ W0, s(α;W ) = 1 if and only if α ∈ W0.
Since W 6= V , there exists some β ∈ V such that β /∈ W . Hence,

deg(s(β;W )) > 0

Therefore, β1 /∈ W and
deg(s(β1;W )) > 0

Hence, if we set
W1 := W0 + Z(β1;T )

Then W0 ( W1. If W1 = V , then there is nothing more to do. If not, we observe that
W1 is also T -invariant, and repeat the process. Each time, we increase the dimension by
at least one, so since V is finite dimensional, this process must terminate after finitely
many steps.

Remark 2.6. In the decomposition above, note that

Wk = W0 + Z(β1;T ) + Z(β2;T ) + . . .+ Z(βk;T )

Hence, if α ∈ Wk, then one can express α as a sum

α = β0 + g1(T )β1 + g2(T )β2 + . . .+ gk(T )βk

for some polynomials gi ∈ F [x], and β0 ∈ W0. Note, however, that this expression may
not be unique.

Lemma 2.7. Let T ∈ L(V ) and W0 ( V be a T -admissible subspace. Let β1, β2, . . . , βr ∈
V be vectors satisfying the conditions of Lemma 2.5. Fix a vector β ∈ V and 1 ≤ k ≤ r,
and set

f := s(β;Wk−1)

to be the T -conductor of β into Wk−1. Suppose further that f(T )β ∈ Wk−1 has the form

f(T )β = β0 +
k−1∑
i=1

gi(T )βi (VII.1)

where β0 ∈ W0. Then

(i) f | gi for all 1 ≤ i ≤ k − 1

(ii) β0 = f(T )γ0 for some γ0 ∈ W0.

Proof. If k = 1, then f = s(β;W0) so that

f(T )β = β0 ∈ W0

Hence, part (i) of the conclusion is vacuously true, and part (ii) is precisely the require-
ment that W0 is T -admissible.

Now suppose k ≥ 2.
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(i) For each 1 ≤ i ≤ k − 1, apply Euclidean division (Theorem IV.4.2) to write

gi = fhi + ri, such that ri = 0 or deg(ri) < deg(f)

We wish to show that ri = 0 for all 1 ≤ i ≤ k − 1. Suppose not, then there is a
largest value 1 ≤ j ≤ k − 1 such that rj 6= 0.

(ii) To that end, set

γ := β −
k−1∑
i=1

hi(T )βi ∈ Wk−1

Then, γ − β ∈ Wk−1, so (Why?)

s(γ;Wk−1) = s(β;Wk−1) = f

Furthermore,

f(T )γ = β0 +
k−1∑
i=1

ri(T )βi

With j as above, we get

f(T )γ = β0 +

j∑
i=1

ri(T )βi and rj 6= 0, deg(rj) < deg(f) (VII.2)

(iii) Now set p := s(γ,Wj−1). Since Wj−1 ⊂ Wk−1, we have

f = s(γ;Wk−1) | p

So choose g ∈ F [x] such that p = fg. Applying g(T ) to Equation VII.2, we get

p(T )γ = g(T )β0 +

j−1∑
i=1

g(T )ri(T )βi + g(T )rj(T )βj

By definition, p(T )γ ∈ Wj−1, and the first two terms on the right-hand-side are
also in Wj−1. Hence,

g(T )rj(T )βj ∈ Wj−1

Hence, s(βj;Wj−1) | grj. By condition (ii) of Lemma 2.5, we have

deg(grj) ≥ deg(s(βj;Wj−1))

≥ deg(s(γ;Wj−1))

= deg(p) = deg(fg)

Hence, it follows that
deg(rj) ≥ deg(f)

which is a contradiction. Thus, it follows that ri = 0 for all 1 ≤ i ≤ k − 1. Hence,

f | gi

for all 1 ≤ i ≤ k − 1.
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(iv) Finally, back in Equation VII.1, we have

f(T )β = β0 +
k−1∑
i=1

f(T )hi(T )βi

Hence, we conclude that
β0 = f(T )γ

with γ defined as above. This completes the proof.

Recall that (Definition VI.4.9), for an operator T ∈ L(V ) and a vector α ∈ V , the
T -annihilator of α is the unique monic generator of the ideal

S(α; {0}) := {f ∈ F [x] : f(T )α = 0}

Theorem 2.8 (Cyclic Decomposition Theorem - Existence). Let T ∈ L(V ) be a linear
operator on a finite dimensional vector space V , and let W0 be a proper T -admissible
subspace of V . Then, there exist non-zero vectors α1, α2, . . . , αr in V with respective
T -annihilators p1, p2, . . . , pr such that

(i) V = W0 ⊕ Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

(ii) pk | pk−1 for all k = 2, 3, . . . , r.

Note that the above theorem is typically applied with W0 = {0}.

Proof.

(i) Start with vectors β1, β2, . . . , βr ∈ V satisfying the conditions of Lemma 2.5. To
each vector β = βk and the T -conductor f = pk, we apply Lemma 2.7 to obtain

pk(T )βk = pk(T )γ0 +
k−1∑
i=1

pk(T )hi(T )βi

where γ0 ∈ W0 and h1, h2, . . . , hr are polynomials. Now set

αk := βk − γ0 −
k−1∑
i=1

hi(T )βi (VII.3)

Then, βk − αk ∈ Wk−1, so (Why?)

s(αk;Wk−1) = s(βk;Wk−1) = pk

(ii) Note that
pk(T )αk = 0

But, pk = s(αk;Wk−1). Hence, it follows that, for any polynomial f ∈ F [x], if
f(T )α ∈ Wk−1, then pk | f . But this implies that f(T )α = 0. Hence,

Wk−1 ∩ Z(αk;T ) = {0}
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(iii) Now if α ∈ Wk, then since Wk = Wk−1 + Z(βk;T ), we write

α = β + g(T )βk

for some g ∈ F [x] and β ∈ Wk−1. Using Equation VII.3, we have

g(T )βk = g(T )αk + g(T )γ0 +
k−1∑
i=1

g(T )hi(T )βi

Hence, if β′ := β + g(T )γ0 +
∑k−1

i=1 g(T )hi(T )βi, we have β′ ∈ Wk−1 and

α = β′ + g(T )αk

Thus,
Wk = Wk−1 + Z(αk;T )

(iv) By the previous step, we conclude that

Wk = Wk−1 ⊕ Z(αk;T )

By induction, we have

Wk = W0 ⊕ Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αk;T )

In particular, we have

V = W0 ⊕ Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

(v) To verify condition (ii), observe that pi(T )αi = 0 for all 1 ≤ i ≤ r, so

pk(T )αk = 0 = 0 + p1(T )α1 + p2(T )α2 + . . .+ pk−1(T )αk−1

Taking β = αk and f = pk in Lemma 2.7, we conclude that

pk | pi

for all 1 ≤ i ≤ k − 1.

Definition 2.9. Let T ∈ L(V ) be a fixed operator, f ∈ F [x] a polynomial, and W ⊂ V
a subspace. We write

fW := {f(T )α : α ∈ W}

Note that this is also a subspace of V .

Lemma 2.10. Let T ∈ L(V ) and f ∈ F [x].

(i) If α ∈ V , then fZ(α;T ) = Z(f(T )α;T ).
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(ii) If V = V1 ⊕ V2 ⊕ . . .⊕ Vk where each Vi is T -invariant, then

fV = fV1 ⊕ fV2 ⊕ . . .⊕ fVk

(iii) If α, γ ∈ V both have the same T -annihilator, then f(T )α and f(T )γ have the
same T -annihilator. Therefore,

dim(Z(f(T )α;T )) = dim(Z(f(T )γ;T ))

Proof.

(i) We prove containment both ways: If β ∈ Z(α;T ), then write β = g(T )α, so that

f(T )β = f(T )g(T )α = g(T )f(T )α ∈ Z(f(T )α;T )

Hence, fZ(α;T ) ⊂ Z(f(T )α;T ). The reverse containment is similar.

(ii) If β ∈ V , then write
β = β1 + β2 + . . .+ βk

where βi ∈ Vi. Then, since each Vi is T -invariant, we have

f(T )β = f(T )β1 + f(T )β2 + . . .+ f(T )βk ∈ fV1 + fV2 + . . .+ fVk

Now, suppose γ ∈ fVj ∩ (fV1 + fV2 + . . .+ fVj−1), then write

γ = f(T )βj = f(T )β1 + f(T )β2 + . . .+ f(T )βj−1

where βi ∈ Vi for all 1 ≤ i ≤ j. But each Vi is T -invariant, so

f(T )βi ∈ Vi
for all 1 ≤ i ≤ j. By Lemma VI.5.3,

Vj ∩ (V1 + V2 + . . .+ Vj−1) = {0}

Hence, γ = f(T )βj = 0. Thus,

fVj ∩ (fV1 + fV2 + . . .+ fVj−1) = {0}

So by Lemma VI.5.3, we get part (ii).

(iii) Suppose p denotes the common annihilator of α and γ, and let g and h denote the
annihilators of f(T )α and f(T )γ respectively. Then

g(T )f(T )α = 0

Hence, p | gf , so that
g(T )f(T )γ = 0

Hence, h | g. Similarly, g | h. Since both are monic, we conclude that g = h.
Finally, the fact that

dim(Z(f(T )α;T )) = dim(Z(f(T )γ;T ))

follows from Theorem 1.9.
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Definition 2.11. Let T ∈ L(V ) be a linear operator and W ⊂ V be a T -invariant
subspace. Define

S(V ;W ) := {f ∈ F [x] : f(T )α ∈ W ∀α ∈ V }

Then, it is clear (as in Lemma VI.4.11) that S(V ;W ) is a non-zero ideal of F [x]. We
denote its unique monic generator by pW .

Theorem 2.12 (Cyclic Decomposition Theorem - Uniqueness). Let T ∈ L(V ) be a linear
operator on a finite dimensional vector space V and let W0 be a proper T -admissible
subspace of V . Then, suppose we are given non-zero vectors α1, α2, . . . , αr in V with
respective T -annihilators p1, p2, . . . , pr such that

(i) V = W0 ⊕ Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

(ii) pk | pk−1 for all k = 2, 3, . . . , r.

And suppose we are given non-zero vectors γ1, γ2, . . . , γs ∈ V with T -annihilators g1, g2, . . . , gs
such that

(i) V = W0 ⊕ Z(γ1;T )⊕ Z(γ2;T )⊕ . . .⊕ Z(γs;T )

(ii) gk | gk−1 for all k = 2, 3, . . . , s.

Then, r = s and γi = αi for all 1 ≤ i ≤ r.

Proof. (i) We begin by showing that p1 = g1. In fact, we show that

p1 = g1 = pW0

For β ∈ V , we write

β = β0 + f1(T )γ1 + f2(T )γ2 + . . .+ fs(T )γs

for some β0 ∈ W0 and polynomials fi ∈ F [x]. Then

g1(T )β = g1(T )β0 +
s∑
i=1

g1(T )fi(T )γi

By hypothesis, gi | g1 for all i ≥ 1. Since gi(T )γi = 0, we conclude that

g1(T )β = g1(T )β0 ∈ W0

Hence, g1 ∈ S(V ;W0).
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(ii) Now suppose f ∈ S(V ;W0), then, in particular, f(T )γ1 ∈ W0. But, f(T )γ1 ∈
Z(γ1;T ) as well. Since this is a direct sum decomposition,

f(T )γ1 = 0

But g1 is the T -annihilator of γ1, so it follows that g1 | f . Hence, we conclude that

g1 = pW0

By symmetry, p1 = pW0 as well. Hence, g1 = p1.

(iii) Now suppose r ≥ 2, then

dim(W0) + dim(Z(α1;T )) < dim(V )

Since p1 = g1, by Lemma 2.10, we have

dim(Z(α1;T )) = dim(Z(γ1;T ))

Hence,
dim(W0) + dim(Z(γ1;T )) < dim(V )

Thus, we must have that s ≥ 2 as well.

(iv) We now show that p2 = g2. Observe that, by Lemma 2.10, we have

p2V = p2W0 ⊕ Z(p2(T )α1;T )⊕ Z(p2(T )α2;T )⊕ . . .⊕ Z(p2(T )αr;T )

Similarly, we have

p2V = p2W0 ⊕ Z(p2(T )γ1;T )⊕ Z(p2(T )γ2;T )⊕ . . .⊕ Z(p2(T )γs;T ) (VII.4)

However, since pi | p2 for all i ≥ 2, we have p2(T )αi = 0 for all i ≥ 2. Thus, the
first sum reduces to

p2V = p2W0 ⊕ Z(p2(T )α1;T ) (VII.5)

Now note that p1 = g1. Therefore, by Lemma 2.10, we conclude that

dim(Z(p2(T )α1;T )) = dim(Z(p2(T )γ1;T ))

By comparing Equation VII.4 and Equation VII.5, we conclude that

dim(Z(p2(T )γi;T )) = 0

for all i ≥ 2. Hence,
p2(T )γi = 0

for all i ≥ 2. In particular, we must have g2 | p2.
(v) By symmetry, we have p2 | g2 as well. Therefore, p2 = g2.
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(vi) By proceeding in this way, we conclude that r = s and pi = gi for all 1 ≤ i ≤ r.

Remark 2.13. Let T ∈ L(V ) be a linear operator. Applying Theorem 2.8 with W0 =
{0} gives a decomposition of V into a direct sum of cyclic subspaces

V = Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

and let p1, p2, . . . , pr be the T -annihilators of αi so that pk | pk−1 for all k ≥ 2.

Now, consider the restriction Ti of T to Z(αi;T ), and let Bi be the ordered basis of
Z(αi;T ) from Theorem 1.9

Bi = {αi, T (αi), T
2(αi), . . . , T

ki−1(αi)}

where ki = deg(pi). Then the matrix

Ai = [Ti]Bi

is the companion matrix of pi (See Remark 1.11). Furthermore, if we take B :=
(B1,B2, . . . ,Br), then B is an ordered basis of V (by Lemma VI.5.3), and the matrix of
T in this basis has the form

[T ]B =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Ar


Furthermore, by Theorem 2.12, the polynomials occurring in this decomposition are
unique, and therefore, the companion matrices are also unique.

Definition 2.14. An n× n matrix over a field F is said to be in rational form if A can
be expressed as a direct sum of matrices A1, A2, . . . , Ar, where each Ai is the companion
matrix of a monic polynomial pi ∈ F [x], and, furthermore, pi | pi−1 for all i = 2, 3, . . . , r.

Therefore, a consequence of the existence and uniqueness of the cyclic decomposition
gives us the following result.

Corollary 2.15. Let B denote an n × n matrix over a field F . Then, B is similar to
one and only one matrix A over F which is in rational form.

Proof. Let T ∈ L(F n) be the linear operator given by T (X) = BX. Then, by Re-
mark 2.13, there is an ordered basis B of F n such that

A := [T ]B

is in rational form. Now, B is similar to A by Theorem III.4.8. Let pi, 1 ≤ i ≤ r denote
the polynomials associated to this matrix A.
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Now suppose C is another matrix in rational form, expressed as a direct sum of matrices
Ci, 1 ≤ i ≤ s, where each Ci is the companion matrix of a monic polynomial gi ∈ F [x]
satisfying gi | gi−1 for all i ≥ 2. Let Bi ⊂ B be the basis for the subspace Wi of F n

corresponding to the summand Ci. Then,

[Ci]Bi

is the companion matrix of gi. By Corollary 1.14, the minimal and characteristic poly-
nomials of Ci are both gi. By Theorem 1.13, Ci has a cyclic vector βi. Thus,

Wi = Z(βi;T )

so that
F n = Z(β1;T )⊕ Z(β2;T )⊕ . . .⊕ Z(βs;T )

By the uniqueness in Theorem 2.12, it follows that r = s and gi = pi for all 1 ≤ i ≤ r.
Hence,

C = A

as required.

Definition 2.16. Let T ∈ L(V ), and consider the (unique) polynomials p1, p2, . . . , pr
occurring in the cyclic decomposition of T . These are called the invariant factors of T .

These invariant factors are uniquely determined by T . Furthermore, we have the follow-
ing fact.

Lemma 2.17. Let T ∈ L(V ) be a linear operator with invariant factors p1, p2, . . . , pr
satisfying pi | pi−1 for all i = 2, 3, . . . , r. Then,

(i) The minimal polynomial of T is p1

(ii) The characteristic polynomial of T is p1p2 . . . pr.

Proof.

(i) Assume without loss of generality that V 6= {0}. Apply Theorem 2.8 and write

V = Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

where the T -annihilators p1, p2, . . . , pr of α1, α2, . . . , αr are such that pk | pk−1 for
all k = 2, 3, . . . , r. If α ∈ V , then write

α = f1(T )α1 + f2(T )α2 + . . .+ fr(T )αr

for some polynomials fi ∈ F [x]. For each 1 ≤ i ≤ r, pi | p1, so it follows that

p1(T )α =
r∑
i=1

p1(T )fi(T )αi =
r∑
i=1

fi(T )p1(T )αi = 0

Hence, p1(T ) = 0. Furthermore, since p1 is the T -annihilator of α1, it follows that,
for any polynomial q ∈ F [x], if deg(q) < deg(p1), then q(T )α1 6= 0. Hence, p1 is
the minimal polynomial of T .
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(ii) As for the characteristic polynomial of T , consider the basis B in Remark 2.13
such that

A := [T ]B

is in rational form. Write

A =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Ar


where each Ai is the companion matrix of pi. Then, the characteristic polynomial
of T is the characteristic polynomial of A. However, A is a block-diagonal matrix,
so the characteristic polynomial of A is given by the product of all the characteristic
polynomials of the Ai (This follows from Theorem V.4.3). But, by Corollary 1.14,
the characteristic polynomial of Ai is pi. Hence, the characteristic polynomial of
T is p1p2 . . . pr.

Recall that (Corollary 1.10) if T ∈ L(V ) has a cyclic vector, then its characteristic and
minimal polynomials both coincide. The next corollary is a converse of this fact.

Corollary 2.18. Let T ∈ L(V ) be a linear operator on a finite dimensional vector space.

(i) There exists α ∈ V such that the T -annihilator of α is the minimal polynomial of
T .

(ii) T has a cyclic vector if and only if the characteristic and minimal polynomials of
T coincide.

Proof.

(i) Take α = α1, then p1 is the T -annihilator of α, which is also the minimal polyno-
mial of T by Lemma 2.17.

(ii) If T has a cyclic vector, then the characteristic and minimal polynomial coincide
by Corollary 1.10. So suppose the characteristic and minimal polynomial coincide,
and label it p ∈ F [x]. Then, deg(p) = dim(V ). So if we choose α ∈ V from part
(i), then, by Theorem 1.9,

dim(Z(α;T )) = deg(p) = dim(V )

So V = Z(α;T ), and thus, T has a cyclic vector.

Example 2.19.
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(i) Suppose T ∈ L(V ) where dim(V ) = 2, and consider two possible cases:

(i) The minimal polynomial of T has degree 2: Then the minimal polynomial
and characteristic polynomial must coincided, so T has a cyclic vector by
Corollary 2.18. Hence, there is a basis B of V such that the matrix of T is

[T ]B =

(
0 −c0
1 −c1

)
is the companion matrix of its minimal polynomial.

(ii) The minimal polynomial of T has degree 1, then T is a scalar multiple of the
identity. Thus, there is a scalar c ∈ F such that, for any basis B of V , one
has

[T ]B =

(
c 0
0 c

)
(ii) LeT T ∈ L(R3) be the linear operator represented in the standard ordered basis

by

A =

 5 −6 −6
−1 4 2
3 −6 −4


In Example VI.2.15, we calculated the characteristic polynomial of T to be

f = (x− 1)(x− 2)2

Furthermore, we showed that T is diagonalizable. Since the minimal and character-
istic polynomials must share the same roots (by Theorem VI.3.7) and the minimal
polynomial must be a product of distinct linear factors (by Theorem VI.4.17), it
follows that the minimal polynomial of T is

p = (x− 1)(x− 2)

So consider the cyclic decomposition of T , given by

R3 = Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

By Theorem 1.9, dim(Z(α1;T )) is the degree of its T -annihilator. However, by
Lemma 2.17, this T -annihilator is the minimal polynomial of T . Thus,

dim(Z(α1;T )) = deg(p) = 2

Since dim(R3) = 3, there can be atmost one more summand, so r = 2. Hence

R3 = Z(α1;T )⊕ Z(α2;T )

And furthermore, dim(Z(α2;T )) = 1. Hence, α2 must be a characteristic vector
of T by Example 1.4. Furthermore, the T -annihilator of α2, denoted by p2 must
satisfy

pp2 = f
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by Lemma 2.17. Hence,
p2 = (x− 2)

so the characteristic value associated to α2 is 2. Thus, the rational form of T is

B =

0 −2 0
1 3 0
0 0 2


where the upper left-hand block is the companion matrix of the polynomial

p = (x− 1)(x− 2) = x2 − 3x+ 2

We had seen in Remark 2.2 that if W0 ⊂ V is a T -invariant subspace which has a
complementary subspace that is also T -invariant, then W0 is T -admissible. The next
corollary is the converse of this fact.

Corollary 2.20. Let T ∈ L(V ) be a linear operator on a finite dimensional vector
space and W0 be T -admissible subspace of V . Then there is a subspace W ′

0 that is
complementary to W0 that is also T -invariant.

Proof. Let W0 be a T -admissible subspace. If W0 = V , then take W ′
0 = {0}. If not,

then apply Theorem 2.8 to write

V = W0 ⊕ Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

and take
W ′

0 := Z(α1;T )⊕ Z(α2;T )⊕ . . .⊕ Z(αr;T )

Theorem 2.21 (Generalized Cayley-Hamilton Theorem). Let T ∈ L(V ) be a linear op-
erator on a finite dimensional vector space with minimal polynomial p and characteristic
polynomial f . Then,

(i) p | f
(ii) p and f have the same prime factors, except for multiplicities.

(iii) If the prime factorization of p is given by

p = f r11 f
r2
2 . . . f rkk

then the prime factorization of f is

f = fd11 f
d2
2 . . . fdkk

where

di =
dim(ker(fi(T )ri))

deg(fi)
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Proof. Consider invariant factors p1, p2, . . . , pr of T such that pi | pi−1 for all i ≥ 2.
Then, by Lemma 2.17, we have

p1 = p and f = p1p2 . . . pr

Therefore, part (i) follows. Furthermore, if q ∈ F [x] is an irreducible polynomial such
that

q | f
then by Theorem IV.5.4, there exists 1 ≤ i ≤ r such that q | pi. However, pi | p1 = p, so

q | p

Thusm part (ii) follows as well.

Finally, consider the primary decomposition of T Theorem VI.8.1. Here, we get

V = W1 ⊕W2 ⊕ . . .⊕Wk

where each Wi = ker(fi(T )ri) and the minimal polynomial of Ti = T |Wi
is f rii . Now,

apply part (ii) of this result to the operator Ti. The minimal polynomial of Ti is f rii , so
the characteristic polynomial of Ti must be of the form

fdii

for some di ≥ ri. Furthermore, it is clear that di deg(fi) is the degree of this characteristic
polynomial, so

di deg(fi) = dim(Wi)

Hence,

di =
dim(Wi)

deg(fi)
=

dim(ker(fi(T )ri)

deg(fi)

But, as discussed in Lemma 2.17, the characteristic polynomial of T is the product of
the characteristic polynomials of the Ti. Hence,

f = fd11 f
d2
2 . . . fdkk

as required.

(End of Week 12)

3. The Jordan Form

In this section, we wish to give another description of a linear operator T ∈ L(V ) in terms
of a ‘simple’ matrix. This time, we start with the observation from Theorem VI.8.6, that
T can be expressed as a sum

T = D +N

where D is diagonal, N is nilpotent, and DN = ND. We begin with the following
observation about the cyclic decomposition of a nilpotent operator.
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Definition 3.1. A k × k elementary nilpotent matrix is a matrix of the form

A =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0


Note that such a matrix A (being a lower triangular matrix with zeroes along the diag-
onal), is a nilpotent matrix by an analogue of Lemma VI.8.8.

Lemma 3.2. Let N be a nilpotent operator on a finite dimensional vector space V .
Then, there is an ordered basis B of V such that

A := [N ]B =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Ar


where each Ai is a ki × ki elementary nilpotent matrix. Here, k1, k2, . . . , kr are positive
integers such that

k1 + k2 + . . .+ kr = n and r = nullity(N)

Furthermore, we may arrange that

k1 ≥ k2 ≥ . . . ≥ kr

Proof.

(i) Consider the cyclic decomposition of N obtained from Theorem 2.8

V = Z(α1;N)⊕ Z(α2;N)⊕ . . . Z(αr;N) (VII.6)

where α1, α2, . . . , αr ∈ V are non-zero vectors with T -annihilators p1, p2, . . . , pr
such that pi+1 | pi for all i = 1, 2, . . . , r − 1. Since N is nilpotent, the minimal
polynomial of N is

p = xk

for some k ≤ n. Since each T -annihilator divides the minimal polynomial (See
Remark 1.8), each pi is of the form xki , and the divisibility condition implies that

k1 ≥ k2 ≥ . . . ≥ kr

Furthermore, by Lemma 2.17, we know that p1 = p, so that k1 = k.
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(ii) Now, the companion matrix for xki is precisely the ki × ki elementary nilpotent
matrix. Thus, one obtains an ordered basis B such that

A := [T ]B

has the required form.

(iii) We now verify that r = nullity(N). To do this, we show that the set

S := {Nk1−1α1, N
k2−1α2, . . . , N

kr−1αr}

forms a basis for ker(N).

� Note that Nki−1αi ∈ Z(αi;N). Since these subspaces as independent, it
follows that S is linearly independent.

� To show that S spans ker(N), fix α ∈ ker(N). By the decomposition of
Equation VII.6, we write

α = f1(N)α1 + f2(N)α2 + . . .+ fr(N)αr

for some polynomials fi ∈ F [x]. Furthermore, by Theorem 1.9, we may
assume that

deg(fi) < deg(pi) = ki

for all 1 ≤ i ≤ r. Now observe that

0 = N(α) =
r∑
i=1

Nfi(N)αi

Once again, since the decomposition of Equation VII.6 is a direct sum de-
composition, it follows that

Nfi(N)αi = 0

Hence, pi | xfi. But since deg(fi) < ki. it follows that

fi = cix
ki−1

for some constant ci ∈ F . Thus,

α =
r∑
i=1

ciN
ki−1αi

Thus, S spans ker(N) as required.
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Definition 3.3. A k×k elementary Jordan matrix with characteristic value c is a matrix
of the form

A =


c 0 0 . . . 0 0
1 c 0 . . . 0 0
0 1 c . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 c


Theorem 3.4. Let T ∈ L(V ) be a linear operator over a finite dimensional vector space
V whose characteristic polynomial factors as a product of linear terms. Then, there is
an ordered basis B of V such that the matrix

A := [T ]B =


A1 0 0 . . . 0
0 A2 0 . . . 0
0 0 A3 . . . 0
...

...
...

...
...

0 0 0 . . . Ak


where, for each 1 ≤ i ≤ k, there are distinct scalars ci such that Ai is of the form

Ai =


J
(i)
1 0 0 . . . 0

0 J
(i)
2 0 . . . 0

0 0 J
(i)
3 . . . 0

...
...

...
...

...

0 0 0 . . . J
(i)
ni


where each J

(i)
j is an elementary Jordan matrix with characteristic value ci. Furthermore,

the sizes of matrices J
(i)
j decreases as j increases. Furtheremore, this form is uniquely

associated to T .

Proof.

(i) Existence: We may assume that the characteristic polynomial of T is of the form

f = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

where c1, c2, . . . , ck are distinct scalars and di ≥ 1. By Theorem 2.21, the minimal
polynomial is of the form

p = (x− c1)r1(x− c2)r2 . . . (x− ck)rk

for some integers 0 < rk ≤ dk. If Wi := ker(T − ciI)ri , then the primary decompo-
sition theorem (Theorem VI.8.1) says that

V = W1 ⊕W2 ⊕ . . .⊕Wk
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Let Ti denote the operator on Wi induced by T . Then, the minimal polynomial of
Ti is

pi = (x− ci)ri

Let Ni := (Ti − ciI) ∈ L(Wi), then Ni is nilpotent, and has minimal polynomial

qi := xri

Furthermore,
Ti = Ni + ciI

Now, choose an ordered basis Bi of Wi from Lemma 3.2 so that

Bi := [Ni]Bi

is a direct sum of elementary nilpotent matrices. Then,

Ai := [Ti]Bi

is a direct sum of elementary Jordan matrices with characteristic value ci. Fur-
thermore, by the constrution of Lemma 3.2, the Jordan matrices appearing in each
Ai increase in size as we go down the diagonal.

(ii) Uniqueness:

� If Ai is a di × di matrix, then the characteristic polynomial of Ai is

(x− ci)di

Hence, by Theorem V.4.3, the characteristic polynomial of A (and hence of
T ) is

f = (x− c1)d1(x− c2)d2 . . . (x− ck)dk

Thus, it follows that, upto ordering, c1, c2, . . . , ck and d1, d2, . . . , dk are uniquely
determined.

� Now, the direct sum decomposition of A into the Ai gives a direct sum de-
composition

V = W1 ⊕W2 ⊕ . . .⊕Wk

We claim that Wi = ker((T − ciI)n) where n = dim(V ). Clearly,

(A− ciI)n ≡ 0 on Wi

Furthermore, det(Aj − ciI) 6= 0, so

Wi = ker(T − ci)n

Hence, the subspaces Wi are uniquely determined.
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� Finally, if Ti denotes the restriction of T to Wi, then the matrix Ai is the
rational form of Ti. Hence, Ai is uniquely determined by the uniqueness of
the rational form (Theorem 2.12).

Definition 3.5. An n × n matrix A that is in the form described in Theorem 3.4 is
called a Jordan matrix, and is called the Jordan form of the associated linear operator.

Remark 3.6. We make some observations about a Jordan matrix A.

(i) Every entry of A not on or immediately below the principal diagonal is zero.

(ii) One the diagonal of A occur the k distinct characteristic values of T . Also, each
characteristic value ci is repeated di times, where di is the multiplicity of the ci as
a root of the characteristic polynomial.

(iii) For each i, the matrix Ai is the direct sum of ni elementary Jordan matrices J
(i)
j

with characteristic value ci. Furthermore,

ni = dim ker(T − ciI)

Hence, T is diagonalizable if and only if ni = di for all 1 ≤ i ≤ k.

(iv) For each 1 ≤ i ≤ k, the first block J
(i)
1 in the matrix Ai is an ri× ri matrix, where

ri is the multiplicity of ci as a root of the minimal polynomial of T . This is because
the minimal polynomial of the nilpotent operator (Ti − ciI) is xri .

Corollary 3.7. If B is an n×n matrix over a field F and if the characteristic polynomial
of B factors completely over F , then B is similar over F to an n×n matrix A in Jordan
form, and A is unique upto rearrangement of the order of its characteristic values.

This matrix A is called the Jordan form of B. Note that the above corollary automati-
cally applies to matrices over algebraically closed fields such as C.

Example 3.8.

(i) Suppose T ∈ L(V ) with dim(V ) = 2 where V is a complex vector space. Then,
the characteristic polynomial of T is either of the form

f = (x− c1)(x− c2) for c1 6= c2 or (x− c)2

In the first case, T is diagonalizable and is Jordan form is

A =

(
c1 0
0 c2

)
In the second case, the minimal polynomial of T may be either (x− c) or (x− c)2.
If the minimal polynomial is (x− c), then

T = cI

If the minimal polynomial is (x− c)2, then the Jordan form of T is

A =

(
c 0
1 c

)
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(ii) Let A be the 3× 3 complex matrix given by

A =

2 0 0
a 2 0
b c −1


The characteristic polynomial of T is

f = (x− 2)2(x+ 1)

� If the minimal polynomial of T is f , then A is similar to the matrix

B =

2 0 0
1 2 0
0 0 −1


� If the minimal polynomial of T is (x − 2)(x + 1), then A is similar to the

matrix

B =

2 0 0
0 2 0
0 0 −1


Now,

(A− 2I)(A+ I) =

 0 0 0
3a 0 0
ac 0 0


Thus, A is similar to a diagonal matrix if and only if a = 0.
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VIII. Inner Product Spaces

1. Inner Products

Given two vector α = (x1, x2, x3), β = (y1, y2, y3) ∈ R3, the ‘dot product’ of these vectors
is given by

(α|β) = x1y1 + x2y2 + x3y3

The dot product simultaneously allows us to define two geometric concepts: The length
of a vector is defined as

‖α‖ := (α|α)1/2

and the angle between two vectors can be measured by

θ := cos−1
(

(α|β)

‖a‖‖β‖

)
While we will not usually care about the ‘angle’ between two vectors in an arbitary
vector space, we will care about when two vectors are orthogonal, ie. (α|β) = 0. The
abstract notion of an inner product allows us to introduce this kind of geometry into
the study of vector spaces.

Note that, throughout the rest of this course, all fields will necessarily have to be either
R or C.

Definition 1.1. An inner product on a vector space V over a field F (= R or C) is a
function

V × V → F given by (α, β) 7→ (α|β)

such that, for all vectors α, β, γ ∈ V and c ∈ F , we have

(i) (α + β|γ) = (α|γ) + (β|γ)

(ii) (cα|β) = c(α|β)

(iii) (β|α) = (α|β), where · denotes complex conjugation.

(iv) (α|α) ≥ 0 and (α|α) = 0 if and only if α = 0.

Note that, from (ii) and (iii), it follows that

(α|cβ) = c(α|β)

Example 1.2.
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(i) Let V = F n with the standard inner product : If α = (x1, x2, . . . , xn), β = (y1, y2, . . . , yn) ∈
V , we define

(α|β) =
n∑
i=1

xiyi

If F = R, this is

(α|β) =
n∑
i=1

xiyi

(ii) If F = R and V = R2, we may define another inner product by

(α|β) = x1y1 − x2y1 − x1y2 + 4x2y2

where α = (x1, x2) and β = (y1, y2). Note that

(α|α) = (x1 − x2)2 + 3x22

so it safisfies condition (iv) of Definition 1.1. The other axioms can also be verified
(Check!).

(iii) Let V = F n×n, then the standard inner product on F n2
may be borrowed to V to

give

(A|B) =
∑
i,j

Ai,jBi,j

We define the conjugate transpose of a matrix B (denoted by B∗) by

(B∗)i,j = Bj,i

Then, it follows that

(A|B) =
∑
i,j

Ai,jB
∗
j,i = trace(AB∗) = trace(B∗A)

(iv) Let V = F n×1 be the space of n× 1 (column) matrices over F and let Q be a fixed
n× n invertible matrix. For X, Y ∈ V , define

(X|Y ) := Y ∗Q∗QX

This is an inner product on V . When Q = I, then this can be identified with the
standard inner product from Example (i).

(v) Let V = C[0, 1] be the space of all continuous, complex-valued functions defined
on the interval [0, 1]. For f, g ∈ V , we define

(f |g) :=

∫ 1

0

f(t)g(t)dt

Then, this is an inner product on C[0, 1].
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(vi) Let W be a vector space and (·|·) be a fixed inner product on W . We may construct
new inner products as follows. Let T : V → W be a fixed injective (non-singular)
linear transformation, and define pT : V × V → F by

pT (α, β) := (Tα|Tβ)

Then this defines an inner product pT on V . We give some special cases of this
example.

� Let V be a finite dimensional vector space with a fixed ordered basis B =
{α1, α2, . . . , αn}. Let W = F n with the standard ordered basis {ε1, ε2, . . . , εn}
and let T : V → W be an isomorphism such that

T (αj) = εj

for all 1 ≤ j ≤ n (See Theorem III.3.2). Then, we may use T to inherit the
standard inner product from Example (i) by

pT (
n∑
j=1

xjαj,
n∑
i=1

yiαi) =
n∑
k=1

xkyk

In particular, for any basis B = {α1, α2, . . . , αn} of V , there is a inner product
(·|·) on V such that

(αi, αj) = δi,j

for all 1 ≤ i, j ≤ n.

� Now take V = W = C[0, 1] and T : V → W be the operator

T (f)(t) := tf(t)

Then, T is non-singular (Check!), and the new inner product on V inherited
from the inner product from Example (v) is

pT (f, g) :=

∫ 1

0

f(t)g(t)t2dt

Remark 1.3. Let (·|·) be a fixed inner product on a vector space V . Then,

(α|β) = Re(α|β) + iIm(α|β)

But, for any z ∈ C, one has Im(z) = Re(−iz), so

Im(α|β) = Re[−i(α|β)] = Re(α|iβ)

Hence,
(α|β) = Re(α|β) + Re(α|iβ)

Thus, the inner product is completely determined by its ‘real part’.
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Definition 1.4. Let V be an inner product space. For a vector α ∈ V , the norm of α
is the scalar

‖α‖ := (α|α)1/2

Note that this is well-defined because (α|α) ≥ 0 for all α ∈ V . Furthermore, axiom (iv)
implies that ‖α‖ = 0 if and only if α = 0. Thus, the norm of a vector may profitably be
thought of as the ‘length’ of the vector.

Remark 1.5. The norm and inner product are intimately related to each other. For
instance, one has (Check!)

‖α± β‖2 = ‖a‖2 ± 2Re(α|β) + ‖b‖2

for all α, β ∈ V . Hence, if F = R, one has

(α|β) =
1

4
‖α + β‖2 − 1

4
‖α− β‖2

and if F = C, one has

(α|β) =
1

4
‖α + β‖2 − 1

4
‖α− β‖2 +

i

4
‖α + iβ‖2 − i

4
‖α− iβ‖2

(Please verify this statement!). These equations show that the inner product may be
recovered from the norm, and are called the polarization identities. They may be written
(in the complex case) as

(α|β) =
1

4

4∑
n=1

in‖α + inβ‖2

Note that this identity holds regardless of whether V is finite dimensional or not.

Definition 1.6. Let V be a finite dimensional inner product space and B = {α1, α2, . . . , αn}
be a fixed ordered basis of V . Define G ∈ F n×n by

Gi,j = (αi, αj)

This matrix G is called the matrix of the inner product in the ordered basis B.

Note that, for any α, β ∈ V , we may write

α =
n∑
i=1

xiαi and β =
n∑
i=1

yiαi
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Then

(α|β) = (
n∑
i=1

αi|β)

=
n∑
i=1

xi(αi|β)

=
n∑
i=1

xi(αi|
n∑
j=1

yjαj)

=
n∑
i=1

n∑
j=1

xiyi(αi|αj)

= Y ∗GX

where X and Y are the coordinate matrices of α and β in the ordered basis B.

Remark 1.7. Let G be a matrix of the inner product in a fixed ordered basis B, then

(i) G is hermitian: G = G∗ because

G∗i,j = Gi,j = (αj|αi) = (αi|αj) = Gi,j

(ii) Furthermore, for any X ∈ F n×1 we have

X∗GX > 0

if X 6= 0. Hence, G is invertible (because if GX = 0, then X 6= 0 would violate
this condition). Furthermore, for any scalars x1, x2, . . . , xn ∈ F , we have∑

i,j

xiGi,jxj > 0

This implies, in particular, that Gi,i > 0 for all 1 ≤ i ≤ n. However, this condition
alone is not suffices to ensure that the matrix G is a matrix of an inner product.

(iii) However, if G is an n× n matrix such that∑
i,j

xiGi,jxj > 0

for any scalars x1, x2, . . . , xn ∈ F not all zero, then G defines an inner product on
V by

(α|β) = Y ∗GX

where X and Y are the coordinate matrices of α and β in the ordered basis B.
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2. Inner Product Spaces

Definition 2.1. An inner product space is a (real or complex) vector space V together
with a fixed inner product on it.

Recall that, for a vector α ∈ V , we write ‖α‖ := (α|α)1/2

Theorem 2.2. Le V be an inner product space. Then, for any α, β ∈ V and scalar
c ∈ F , we have

(i) ‖cα‖ = |c|‖α‖
(ii) ‖a‖ ≥ 0 and ‖α‖ = 0 if and only if α = 0

(iii) |(α|β)| ≤ ‖a‖‖β‖
(iv) ‖α + β‖ ≤ ‖α‖+ ‖β‖

Proof.

(i) We have ‖cα‖2 = (cα|cα) = c(α|cα) = cc(α|α) = |c|2‖α‖2

(ii) This is also obvious from the axioms.

(iii) If α = 0, there is nothing to prove since both sides are zero, so assume α 6= 0.
Then set

γ := β − (β|α)

‖α‖2
α

Then, (γ|α) = 0. Furthermore

0 ≤ ‖γ‖2 = (γ|γ)

=

(
β − (β|α)

‖α‖2
α|β − (β|α)

‖α‖2
α

)
= (β|β)− (β|α)(α|β)

‖α‖2

= ‖β‖2 − |(α|β)|
‖α‖2

Hence,
|(α|β)| ≤ ‖α‖‖β‖

(iv) Now observe that

‖α + β‖2 = (α + β|α + β) = (α|α) + (β|β) + 2Re(α|β)

Using part (iii), we have

2Re(α|β) ≤ 2|(α|β)| ≤ 2‖α‖‖β‖

Hence,
‖α + β‖2 ≤ (‖α‖+ ‖β‖)2

and so ‖α + β‖ ≤ ‖α‖+ ‖β‖.
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Remark 2.3. The inequality in part (iii) is an important fact, called the Cauchy-
Schwartz inequality. In fact, the proof shows more: If α, β ∈ V are two vectors such
that equality holds in the Cauchy-Schwartz inequality, then

γ := β − (β|α)

‖α‖2
α = 0

Hence, it follows that
β = cα

for some scalar c ∈ F . Conversely, if β = cα, then equality holds as well (Check!).
Therefore, if {α, β} is a linearly independent set, then the inequality is strict.

Example 2.4.

(i) Applying the Cauchy-Schwartz inequality to the standard inner product on Cn

gives

|
n∑
i=1

xiyi| ≤

(
n∑
k=1

|xk|2
)1/2( n∑

k=1

|yk|2
)1/2

(ii) For matrices A,B ∈ F n×n, one has

|trace(B∗A)| ≤ trace(A∗A)1/2trace(B∗B)1/2

(iii) For continuous functions f, g ∈ C[0, 1], one has∣∣∣∣∫ 1

0

f(t)g(t)dt

∣∣∣∣ ≤ (∫ 1

0

|f(t)|2dt
)1/2(∫ 1

0

|g(t)|2dt
)1/2

Definition 2.5. Let V be an inner product space.

(i) Two vectors α, β ∈ V are said to be orthogonal if (α|β) = 0.

(ii) A set S ⊂ V is said to be orthogonal if any two distinct vectors in S are orthogonal.

(iii) A set S ⊂ V is said to be orthonormal if it is orthogonal, and ‖α‖ = 1 for all
α ∈ S.

Example 2.6.

(i) The zero vector is orthogonal to any other vector.

(ii) If F n is endowed with the standard inner product, then the standard basis {ε1, ε2, . . . , εn}
is an orthonormal set.

(iii) The vectors (x, y) and (x,−y) ∈ R2 are orthogonal (R2 is equipped with the
standard inner product).
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(iv) Let V = Cn×n, the space of complex n× n matrices, and let Ep,q be the matrix

Ep,q
i,j = δp,iδq,j

If V is given the inner product of Example 1.2 (iii), then

(Ep,q|Er,s) = trace(Ep,qEs,r) = δq,sδp,r

Thus, S = {Ep,q : 1 ≤ p, q ≤ n} is an orthonormal set.

(v) Let V = C[0, 1]. For n ∈ N, set

fn(x) := cos(2πnx), and gn(x) = sin(2πnx)

Then, the set S = {1, f1, g1, f2, g2, . . .} is an infinite orthogonal set. If we consider
complex-valued functions, we may take

hn(x) := fn(x) + ign(x) = e2πinx

Then, the set {hn : n = ±1,±2, . . .} is an infinite orthogonal set.

Theorem 2.7. An orthogonal set of non-zero vectors is linearly independent.

Proof. Let S ⊂ V be an orthogonal set, and let α1, α2, . . . , αn ∈ S and ci ∈ F be scalars
such that

c1α1 + c2α2 + . . .+ cnαn = 0

For 1 ≤ j ≤ n, we take an inner product with αj to get

0 = cj(αj|αj)

Since αj 6= 0, this forces cj = 0 for all 1 ≤ j ≤ n. Thus, every finite subset of S is
linearly independent. So S is linearly independent (See Remark II.3.2 (vi)).

Corollary 2.8. Let S = {α1, α2, . . . , αn} is an orthogonal set of non-zero vectors, and
β ∈ span(S), then

β =
n∑
i=1

(β|αi)
‖αi‖2

αi

Proof. Write

β =
n∑
i=1

ciαi

and take an inner product with αj to see that

(β|αj) = cj(αj|αj) = cj‖αj‖2

Solving for cj gives the required expression.
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Theorem 2.9 (Gram-Schmidt Orthogonalization). Let V be an inner product space
and {β1, β2, . . . , βn} ⊂ V be a set of linearly independent vectors. Then, there exists
orthogonal vectors {α1, α2, . . . , αn} such that

span{α1, α2, . . . , αn} = span{β1, β2, . . . , βn}

Proof. We proceed by induction on n. If n = 1, we set α1 = β1.

If n > 1: Assume, by induction, that we have constructed orthogonal vectors {α1, α2, . . . , αn−1}
such that

span{α1, α2, . . . , αn−1} = span{β1, β2, . . . , βn−1}

We now define

αn := βn −
n−1∑
k=1

(βn|αk)
‖αk‖2

αk

If αn = 0, then βn ∈ span{α1, α2, . . . , αn−1} = span{β1, β2, . . . , βn−1}. This contradicts
the assumption that the set {β1, β2, . . . , βn} is linearly independent. Hence,

αn 6= 0

Furthermore, if 1 ≤ j ≤ n− 1,

(αn|αj) = (βn|αj)−
n−1∑
k=1

(βn|αk)
‖αk‖2

(αk|αj)

= (βn|αj)−
(βn|αj)
‖αj‖2

(αj|αj)

= 0

Since {α1, α2, . . . , αn−1} is orthogonal, this shows that the set {α1, α2, . . . , αn} is orthog-
onal. Now, it is clear that

αn ∈ span{βn, α1, α2, . . . , αn−1} = span{βn, β1, β2, . . . , βn−1}

and so
span{α1, α2, . . . , αn} ⊂ span{β1, β2, . . . , βn}

However, span{β1, β2, . . . , βn} has dimension n, and {α1, α2, . . . , αn} has n elements and
is linearly independent by Theorem 2.7. Thus,

span{α1, α2, . . . , αn} = span{β1, β2, . . . , βn}

This completes the proof.

Corollary 2.10. Every finite dimensional inner product space has an orthonormal basis.
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Proof. We start with any basis B = {β1, β2, . . . , βn} of V . By Gram-Schmidt orthogo-
nalization (Theorem 2.9), there is an orthogonal set {α1, α2, . . . , αn} such that

span{α1, α2, . . . , αn} = V

Now simply take {α′1, α′2, . . . , α′n} where

α′j :=
αj
‖αj‖2

Example 2.11.

(i) Consider the vectors

β1 := (3, 0, 4)

β2 := (−1, 0, 7)

β3 := (2, 9, 11)

in R3 equipped with the standard inner product. Applying the Gram-Schmidt
process, we obtain the following vectors

α1 = (3, 0, 4)

α2 = (−1, 0, 7)− ((−1, 0, 7)|(3, 0, 4))

‖(3, 0, 4)‖
(3, 0, 4)

= (−1, 0, 7)− 25

25
(3, 0, 4)

= (−1, 0, 7)− (3, 0, 4)

= (−4, 0, 3)

α3 = (2, 9, 11)− ((2, 9, 11)|(3, 0, 4))

‖(3, 0, 4)‖
(3, 0, 4)− ((2, 9, 11)|(−4, 0, 3))

‖(−4, 0, 3)‖
(−4, 0, 3)

= (2, 9, 11)− 2(3, 0, 4)− (−4, 0, 3)

= (0, 9, 0)

The vectors {α1, α2, α3} are mutually orthogonal and non-zero, so they form a
basis for R3. To express a vector β ∈ R3 as a linear combination of these vectors,
we may use Corollary 2.8 and write

β =
n∑
i=1

(β|αi)
‖αi‖2

αi

If β = (x1, x2, x3), this reduces to

(x1, x2, x3) =
3x1 + 4x3

25
α1 +

−4x1 + 3x3
25

α2 +
x2
9
α3
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For instance,

(1, 2, 3) =
3

5
(3, 0, 4) +

1

5
(−4, 0, 3) +

2

9
(0, 9, 0)

Equivalently, the dual basis {f1, f2, f3} to the basis {α1, α2, α3} is given by

f1(x1, x2, x3) =
3x1 + 4x3

25

f2(x1, x2, x3) =
−4x1 + 3x3

25

f3(x2, x2, x3) =
x2
9

Finally, observe that the orthonormal basis one obtains from this process is

α′1 =
1

5
(3, 0, 4)

α′2 =
1

5
(−4, 0, 3)

α′3 = (0, 1, 0)

The Gram-Schmidt process is itself obtained as a special case of an interesting geomet-
rical notion; that of a projection onto a subspace. Given a subspace W of an inner
product space V and a vector α ∈ W , one is often interested in a vector α ∈ W that is
closest to β. If β ∈ W , this vector would be β of course, but in general, we would like a
way of computing this vector α from β.

Definition 2.12. Given a subspace W of an inner product space V and a vector β ∈ V ,
a best approximation to β by vectors in W is a vector α ∈ W such that

‖β − α‖ ≤ ‖β − γ‖

for all γ ∈ W .

Note that we do not know, as yet, if such a vector exists. However, if one thinks about
the problem geometrically in R2 or R3, one observes that is one is looking for a vector
α ∈ W such that (β − α) is perpendicular to W .

Theorem 2.13. Let W be a subspace of an inner product space V and let β ∈ V .

(i) The vector α ∈ W is a best approximation to β by vectors in W if and only if

(β − α|γ)

for all γ ∈ W .

(ii) If a best approximation to β by vectors in W exists, then it is unique.
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(iii) If W is finite dimensional and {α1, α2, . . . , αn} is any orthonormal basis for W ,
then the vector

α :=
n∑
k=1

(β|αk)αk

is the (unique) best approximation to β by vectors in W .

Proof.

(i)

� Suppose α ∈ W is a best approximation to β by vectors in W and γ ∈ W ,
then

‖β − γ‖2 = ‖(β − α) + (α− γ)‖2

= ‖β − α‖2 + 2Re(β − α|α− γ) + ‖α− γ‖2

≥ ‖β − α‖2

Hence,
2Re(β − α|α− γ) + ‖α− γ‖2 ≥ 0

for all γ ∈ W . Replacing γ by τ := α + γ ∈ W , we conclude that

2Re(β − α|τ) + ‖τ‖2 ≥ 0

for all τ ∈ W . In particular, if γ ∈ W is such that γ 6= α, then we may set

τ := −(β − α|α− γ)

‖α− γ‖2
(α− γ)

Then the inequality reduces to the statement

−2
|(β − α|α− γ)|2

‖α− γ‖2
+
|(β − α|α− γ)|2

α− γ‖2
≥ 0

But this last inequality holds if and only if

(β − α|α− γ) = 0

This must hold for all γ ∈ W with γ 6= α, so we conclude t hat

(β − α|γ) = 0

for all γ ∈ W .

� Conversely, suppose that (β − α|γ) = 0 for all γ ∈ W , then we have (as
above)

‖β − γ‖2 = ‖(β − α) + (α− γ)‖2

= ‖β − α‖2 + 2Re(β − α|α− γ) + ‖α− γ‖2
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However, α ∈ W so α− γ ∈ W , so that

(β − α|α− γ) = 0

Thus,
‖β − γ‖2 = ‖β − α‖2 + ‖α− γ‖2 ≥ ‖β − α‖2

This is true for any γ ∈ W , so α is a best approximation to β by vectors in
W .

(ii) Now we show uniqueness: If α and α′ are two best approximations to β by vectors
in W , then α, α′ ∈ W and by part (i), we have

(β − α|γ) = (β − α′|γ) = 0

for all α ∈ W . In particular,

‖α− α′‖2 = (α− α′|α− α′) = (α− β|α− α′) + (β − α′|α− α′) = 0 + 0 = 0

Hence, α = α′.

(iii) Now suppose W is finite dimensional and {α1, α2, . . . , αn} is an orthonormal basis
for W . Then, for any γ ∈ W , one has

γ =
n∑
k=1

(γ|αk)αk

by Corollary 2.8. If α ∈ W is such that (β − α|γ) = 0 for all γ ∈ W , then one has

(β|αk)− (α|αk) = (β − α|αk) = 0

Hence,
(α|αk) = (β|αk)

for all 1 ≤ k ≤ n. Hence,

α =
n∑
k=1

(α|αk)αk =
n∑
k=1

(β|αk)αk

Definition 2.14. Let S be a subset of an inner product space V . The orthogonal
complement of S is the set

S⊥ := {β ∈ V : (β|α) = 0 ∀α ∈ S}

Note that (Check!) S⊥ is a subspace of V regardless of whether S is a subspace or not.
Furthermore, if 0 ∈ S, then

S ∩ S⊥ = {0}
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Definition 2.15. Let W be a subspace of an inner product space V .

(i) If β ∈ V , the best approximation α ∈ W to β by vectors in W is called the
orthogonal projection of β on W .

(ii) If W is finite dimensional, define a map E : V → W which sends β to α. This is
exists and is well-defined by Theorem 2.13.

Corollary 2.16. Let W be a finite dimensional subspace of an inner product space V ,
and let E denote the orthogonal projection of V on W . Then, the map

β 7→ β − E(β)

is the orthogonal projection of V onto W⊥.

Proof.

(i) Fix β ∈ V and set γ := β − E(β). If η ∈ W , then

(β − E(β)|η) = 0

by Theorem 2.13. Hence,
γ ∈ W⊥

(ii) Furthermore, if τ ∈ W⊥, then

‖β−τ‖2 = ‖E(β)+β−E(β)−τ‖2 = ‖E(β)‖2+‖β−E(β)−τ‖2+2Re(E(β)|β−E(β)−τ)

However, E(β) ∈ W , and β − E(β) ∈ W⊥ so

β − E(β)− τ ∈ W⊥

whence (E(β)|β − E(β)− τ) = 0. Thus,

‖β − τ‖2 = ‖E(β)‖2 + ‖β − E(β)− τ‖2 ≥ ‖E(β)‖2 = ‖β − (β − E(β))‖2

Hence, β − E(β) is a best approximation to β by vectors in W⊥.

Theorem 2.17. Let W be a finite dimensional subspace of an inner product space V ,
and let E : V → W denote the orthogonal projection of V on W . Then,

(i) E is a linear transformtion

(ii) E is idempotent (ie. E2 = E)

(iii) ker(E) = W⊥

(iv) Furthermore,
V = W ⊕W⊥
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Proof.

(i) If α, β ∈ V and c ∈ F , then set

γ := cE(α) + E(β)

Now, since E(α), E(β) ∈ W , we have that γ ∈ W . Furthermore, we know that

α− E(α) ∈ W⊥ and β − E(β) ∈ W⊥

by Theorem 2.13. Hence,
(cα + β)− γ ∈ W⊥

since W⊥ is a subspace of V . Therefore, it follows from Theorem 2.13 that

E(cα + β) = γ

Hence, E is linear.

(ii) If γ ∈ W , then clear E(γ) = γ since γ is the best approximation to itself. Hence,
if β ∈ V , one has

E(E(β)) = E(β)

Thus, E2 = E.

(iii) Let β ∈ V , then E(β) ∈ W is the unique vector such that β−E(β) ∈ W⊥. Hence,
if β ∈ W⊥, then

E(β) = 0

Conversely, if β ∈ V is such that E(β) = 0, then β = β − E(β) ∈ W⊥. Thus,

ker(E) = W⊥

(iv) Finally, if β ∈ V , then we may write

β = E(β) + (β − E(β))

By Corollary 2.16, we have

E(β) ∈ W and (β − E(β)) ∈ W⊥

Thus, V = W + W⊥. Since W ∩W⊥ = {0}, it follows that this is a direct sum
decomposition.

Corollary 2.18. Let W be a finite dimensional space of an inner product space V and
let E denote the orthogonal projection of V on W . Then, (I − E) is the orthogonal
projection of V on W⊥. It is an idempotent linear transformtion with range W⊥ and
kernel W .
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Proof. We know that (I − E) maps V to W⊥ by Corollary 2.16. Since E is a linear
transformation by Theorem 2.17, it follows that (I − E) is also linear. Furthermore,

(I − E)2 = (I − E)(I − E) = I + E2 − E − E = I + E − E − E = I − E

Finally, observe that, for any β ∈ V , one has (I−E)β = 0 if and only if β = E(β). This
happens (Check!) if and only if β ∈ W .

Remark 2.19. The Gram-Schmidt orthogonalization process (Theorem 2.9) may now
be described geometrically as follows: Given a linearly independent set {β1, β2, . . . , βn}
in an inner product space V , define operators P1, P2, . . . , Pn as follows:

P1 = I

and, for k > 1, set Pk to be the orthogonal projection of V on the orthogonal complement
of

Wk := span{β1, β2, . . . , βk−1}

Such a map exists by Corollary 2.18. The Gram-Schmidt orthogonalization now yields
vectors

αk := Pk(βk), 1 ≤ k ≤ n

Corollary 2.20 (Bessel’s Inequality). Let {α1, α2, . . . , αn} be an orthogonal set of non-
zero vectors in an inner product space V . If β ∈ V , then

n∑
k=1

|(β|αk)|2

‖αk‖2
≤ ‖β‖2

and equality holds if and only if

β ∈ span{α1, α2, . . . , αn}

Proof. Set

γ :=
n∑
k=1

(β|αk)
‖αk‖2

αk

and
δ := β − γ

Then, (γ|δ) = 0. Hence,
‖β‖2 = ‖γ‖2 + ‖δ‖2 ≥ ‖γ‖2

Finally, observe that

‖γ‖2 =

(
n∑
k=1

(β|αk)
‖αk‖2

αk|
n∑
k=1

(β|αk)
‖αk‖2

αk

)
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Since (αi|αj) = 0 if i 6= j, we conclude that

‖γ‖2 =
n∑
k=1

|(β|αk)|2

‖αk‖2

This proves the inequality.

Now, equality holds if and only if δ = 0; or, equivalently,

β = γ =
n∑
k=1

(β|αk)
‖αk‖2

αk

This clearly implies that β ∈ span{α1, α2, . . . , αn}. Conversely, if β ∈ span{α1, α2, . . . , αn},
then β = γ by Corollary 2.8.

Example 2.21. Let V = C[0, 1], the space of continuous, complex-valued functions on
[0, 1]. Then, for any f ∈ C[0, 1], one has

n∑
k=−n

∣∣∣∣∫ 1

0

f(t)e−2πiktdt

∣∣∣∣2 ≤ ∫ 1

0

|f(t)|2dt

(End of Week 13)

3. Linear Functionals and Adjoints

Remark 3.1.

(i) Let V be a vector space over a field F . Recall (Definition III.5.1) that a linear
functional is a linear transformation L : V → F . Furthermore, we write V ∗ :=
L(V, F ) for the set of all linear functionals on V (See Definition III.5.3).

(ii) Consider the case V = F n. For a fixed n-tuple β := (a1, a2, . . . , an) ∈ V , there is
an associated linear functional Lβ : V → F given by

Lβ(x1, x2, . . . , xn) :=
n∑
i=1

aixi

Furthermore, every linear functional on F n is of this form (See Example III.5.2).

(iii) Now suppose V is an arbitrary inner product space with inner product (·|·). For
a fixed vector β ∈ V , there is an associated linear functional Lβ : V → F given by

Lβ(α) := (α|β)

Note that this map is linear by the axioms of the inner product (Definition 1.1).
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We now show, just as in the case of F n, that every linear functional on V is of this form,
provided V is finite dimensional.

Theorem 3.2. Let V be a finite dimensional inner product space and L : V → F be a
linear functional on V . Then, there exists a unique vector β ∈ V such that

L(α) = (α|β)

for all α ∈ V .

Proof.

(i) Existence: Fix an orthonormal basis {α1, α2, . . . , αn} of V (guaranteed by Corol-
lary 2.10). Set

β :=
n∑
j=1

L(αj)αj

Then, for each 1 ≤ i ≤ n, we have

Lβ(αi) = (αi|β) =
n∑
j=1

L(αj)(αi|αj) = L(αi)

Since Lβ and L are both linear functionals that agree on a basis, it follows by
Theorem III.1.4 that

L = Lβ

as required.

(ii) Uniqueness: Suppose β, β′ ∈ V are such that Lβ = Lβ′ , then

(α|β) = (α|β′)

for all α ∈ V . In particular, for α = β − β′, we have

0 = (α|β − β′) = ‖β − β′‖2

Hence, β = β′.

Theorem 3.3. Let V be a finite dimensional inner product space and T ∈ L(V ) be a
linear operator. Then, there exists a unique linear operator S ∈ L(V ) such that

(Tα|β) = (α|Sβ)

for all α, β ∈ V .

This operator is called the adjoint of T and is denoted by T ∗.

Proof.
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(i) Existence: Fix β ∈ V and consider L : V → F by

L(α) := (Tα|β)

Then L is a linear functional on V . Hence, by Theorem 3.2, there exists a unique
vector β′ ∈ V such that

(α|β′) = (Tα|β)

for all α ∈ V . Define S : V → V by

S(β) = β′

so that
(α|Sβ) = (Tα|β)

for all α ∈ V .

(i) S is well-defined: If β ∈ V , then β′ ∈ V is uniquely determined by the
equation

(α|β′) = (Tα|β)

by Theorem 3.2. Hence, S is well-defined.

(ii) S is additive: Suppose β1, β2 ∈ V are chosen and β′1, β
′
2 ∈ V are such that

(α|β′1) = (Tα|β1) and (α|β′2) = (Tα|β2)

for all α ∈ V . Then, let β := β1 + β2, then for any α ∈ V we have

(Tα|β) = (Tα|β1) + (Tα|β2) = (α|β′1) + (α|β′2) = (α|β′1 + β′2)

Hence, by definition
S(β) = β′1 + β′2

as desired.

(iii) S respects scalar multiplication: Exercise (Similar to part (ii)).

Hence, we have constructed S ∈ L(V ) such that

(α|S(β)) = (Tα|β)

for all α, β ∈ V .

(ii) Uniqueness: Suppose S1, S2 ∈ L(V ) such that

(α|S1(β)) = (Tα|β) = (α|S2β)

for all α, β ∈ V . Then, for any β ∈ V fixed,

(α|S1(β)) = (α|S2(β))

for all α ∈ V . As in the uniqueness of Theorem 3.2, we conclude that

S1β = S2β

This is true for all β ∈ V . Hence, S1 = S2.
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Theorem 3.4. Let V be a finite dimensional inner product space and let B := {α1, α2, . . . , αn}
be an ordered orthonormal basis for V . Let T ∈ L(V ) be a linear operator and

A = [T ]B

Then, Ak,j = (Tαj|αk).

Proof. Since B is an orthonormal basis, we have

α =
n∑
k=1

(α|αk)αk

for any fixed α ∈ V (See Corollary 2.8). By definition of A, we have

Tαj =
n∑
k=1

Ak,jαk

Hence,
Ak,j = (Tαj|αk)

as required.

The next corollary identifies the adjoint of an operator in terms of the matrix of the
operator in a fixed ordered orthonormal basis.

Corollary 3.5. Let V be a finite dimensional inner product space and T ∈ L(V ) be a
linear operator. If B is an ordered orthonormal basis for V , then the matrix

[T ∗]B

is the conjugate transpose of the matrix [T ]B.

Proof. Set
A := [T ]B and B := [T ∗]B

Then, by Theorem 3.4, we have

Ak,j = (Tαj|αk) and Bk,j = (T ∗αj|αk)

But,
Bk,j = (T ∗αj|αk) = (αj|Tαk) = (Tαk|αj) = Aj,k

as required.

Remark 3.6.

(i) The adjoint of an operator T depends on the inner product.
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(ii) In an arbitrary ordered basis B that is not necessarily orthonormal, the relationship
between [T ]B and [T ∗]B is more complicated than the one in Corollary 3.5.

Example 3.7.

(i) Let V = Cn×1, the space of complex n× 1 matrix with the inner product

(X|Y ) = Y ∗X

Let A ∈ Cn×n be an n× n matrix and define T : V → V by

TX := AX

Then, for any Y ∈ V , we have

(TX|Y ) = Y ∗AX = (A∗Y )∗X = (X,A∗Y )

Hence, T ∗ is the linear operator Y 7→ A∗Y . This is, of course, just a special case
of Corollary 3.5.

(ii) Let V = Cn×n with the inner product

(A|B) = trace(B∗A)

Let M be a fixed n× n matrix and T : V → V be the map

T (A) := MA

Then, for any B ∈ V , one has

(TA|B) = trace(B∗MA)

= trace(MAB∗)

= trace(AB∗M)

= trace(A(M∗B))∗)

= (A|M∗B)

Hence, T ∗ is the linear operator B 7→M∗B.

(iii) If E is an orthogonal projection on a subspace W of an inner product space V ,
then, for any vectors α, β ∈ V , we have

(Eα|β) = (Eα|Eβ + (I − E)β)

= (Eα|Eβ) + (Eα|(I − E)β))

But Eα ∈ W and (I − E)β ∈ W⊥ by Corollary 2.16. Hence,

(Eα|β) = (Eα|Eβ)

Similarly,
(α|Eβ) = (Eα|Eβ)

Hence,
(α|Eβ) = (Eα|β)

By uniqueness of the adjoint, it follows that E = E∗.
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In what follows, we will frequently use the following fact: If S1, S2 ∈ L(V ) are two linear
operators on a finite dimensional inner product space V and

(S1(α)|β) = (S2(α)|β)

for all α, β ∈ V . Then S1 = S2. The same thing holds if

(α|S1β) = (α|S2β)

for all α, β ∈ V . Now we prove some algebraic properties of the adjoint.

Theorem 3.8. Let V be a finite dimensional inner product space. Let T, U ∈ L(V ) and
c ∈ F . Then

(i) (T + U)∗ = T ∗ + U∗

(ii) (cT )∗ = cT ∗

(iii) (TU)∗ = U∗T ∗

(iv) (T ∗)∗ = T

Proof.

(i) For α, β ∈ V , we have

((T + U)α|β) = (Tα + Uα|β)

= (Tα|β) + (Uα|β)

= (α|T ∗β) + (α|U∗β)

⇒ (α|(T + U)∗β) = (α|(T ∗ + U∗)β)

This is true for all α, β ∈ V , so (by the uniqueness of the adjoint), we have

(T + U)∗ = T ∗ + U∗

(ii) Exercise.

(iii) For α, β ∈ V fixed, we have

((TU)α|β) = (T (U(α))|β)

= (U(α)|T ∗β)

= (α|U∗(T ∗(β))

⇒ (α|(TU)∗β) = (α|(U∗T ∗)β)

Hence,
(TU)∗ = U∗T ∗

(iv) For α, β ∈ V , we have

(α|(T ∗)∗β) = (T ∗α, β) = (α|Tβ)

Hence, T = (T ∗)∗.
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Definition 3.9. A linear operator T ∈ L(V ) is said to be self-adjoint or hermitian if
T = T ∗.

Note that T is hermitian if and only if there is an ordered orthonormal basis B of V
such that

[T ]B

is a self-adjoint matrix.

Definition 3.10. Let T ∈ L(V ) be a linear operator on a finite dimensional inner
product space V . Define

U1 :=
1

2
(T + T ∗) and U2 :=

1

2i
(T − T ∗)

Then, U1 and U2 are called the real and imaginary parts of T respectively.

Note that, if T ∈ L(V ) and U1 and U2 are as in Definition 3.10, then U1 and U2 are both
self-adjoint and

T = U1 + iU2 (VIII.1)

Furthermore, suppose S1, S2 are two self-adjoint operators such that

T = S1 + iS2

Then, we have (by Theorem 3.8) that

T ∗ = S1 − iS2

Hence,

S1 =
T + T ∗

2
= U1 and S2 = U2

Hence, the expression in Equation VIII.1 is unique.

4. Unitary Operators

Recall that an isomorphism between vector spaces is a bijective linear map.

Definition 4.1. Let V and W be inner product spaecs over the same field F , and let
T : V → W be a linear transformation. We say that T

(i) preserves inner products if (Tα|Tβ) = (α|β) for all α, β ∈ V .

(ii) is an isomorphism if T is bijective and preserves inner products.
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Note that, if T is a linear transformation of inner product spaces that preserves inner
products, then for any α ∈ V , one has

‖Tα‖ = ‖α‖

Hence, T is necessarily injective. Furthermore, if T preserves inner products and is
bijective, then T−1 is not only a linear map, but also preserves inner products. Hence,
this notion of isomorphism of inner product spaces is an equivalence relation (Compare
this with section 3). Hence, if such an isomorphism exists, we say that V and W are
isomorphic. Compare the next theorem to Theorem III.2.15.

Theorem 4.2. Let V and W be finite dimensional inner product spaces over the same
field F , having the same dimension, and let T : V → W be a linear transformation.
Then, TFAE:

(i) T preserves inner products.

(ii) T is an isomorphism of inner product spaces.

(iii) T carries every orthonormal basis for V onto an orthonormal basis for W

(iv) T carries some orthonormal basis for V to an orthonormal basis for W .

Proof.

(i)⇒ (ii): If T preserves inner products, then T is injective (as mentioned above). Since
dim(V ) = dim(W ), it must happen that T is surjective (by Theorem III.2.15).
Thus, T is a vector space isomorphism.

(ii)⇒ (iii): Suppose T is an isomorphism and B = {α1, α2, . . . , αn} is an orthonormal basis.
Then

(αi, αj) = δi,j

Since T preserves inner products, it follows that

(Tαi, Tαj) = δi,j

Hence, the set {T (α1), T (α2), . . . , T (αn)} is an orthonormal subset of W . Since
dim(W ) = dim(V ), it must form an orthonormal basis for W as well.

(iii)⇒ (iv): Obvious.

(iv)⇒ (i): Let B = {α1, α2, . . . , αn} be an orthonormal basis for V such that B′ = {T (α1), T (α2), . . . , T (αn)}
is an orthonormal basis for W . Then,

(Tαk, Tαj) = δk,j

Now, for α, β ∈ V fixed, we may express them as

α =
n∑
k=1

(α|αk)αk and β =
n∑
k=1

(β|αk)αk
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by Corollary 2.8. Hence

(Tα|Tβ) =

(
n∑
k=1

(α|αk)Tαk|Tβ

)

=
n∑
k=1

(α|αk)(Tαk|Tβ)

=
n∑
k=1

(α|αk)

(
Tαk|

n∑
j=1

(β|αj)Tαj

)

=
n∑
k=1

n∑
j=1

(α|αk)(β|αj)(Tαk, Tαj)

=
n∑
k=1

(α|αk)(β|αk)

=
n∑
k=1

n∑
j=1

(α|αk)(β|αj)(αk|αj)

= (α|β)

Hence, T preserves inner products.

Corollary 4.3. Let V and W be two finite dimensional inner product spaces over the
same field F . Then, V and W are isomorphic (as inner product spaces) if and only if
dim(V ) = dim(W ).

Proof. Clearly, if V ∼= W , then dim(V ) = dim(W ). Conversely, if dim(V ) = dim(W ),
then one may fix orthonormal bases B = {α1, α2, . . . , αn} and B′ = {β1, β2, . . . , βn} of
V and W respectively (which exist by Corollary 2.10). Then, by Theorem III.1.4, there
is a linear map T : V → W such that

Tαj = βj

for all 1 ≤ j ≤ n. This map is an isomorphism by Theorem 4.2.

Example 4.4.

(i) Let V be an n-dimensional inner product space. Then, for any orthonormal basis
B = {α1, α2, . . . , αn} of V , one can define an isomorphism

T : V → F n

given by
Tαj = εj

where {ε1, ε2, . . . , εn} is the standard orthonormal basis for F n.

220



(ii) Let V = Cn×1, the vector space of all complex n × 1 matrices, and let P ∈ Cn×n

be a fixed invertible matrix. Then, if G = P ∗P , then one can define two inner
products on V by

(X|Y ) := Y ∗X and [X|Y ] := Y ∗GX

(See Example 1.2 (iii)). We write W for the vector space with the second inner
product, and define T : W → V by

TX := PX

Then, T is clearly bijective. Furthermore,

(TX|TY ) = (PY )∗PX = Y ∗P ∗PX = Y ∗GX = [X|Y ]

Hence, T preserves inner products, and is thus an isomorphism of inner product
spaces.

Lemma 4.5. Let V and W be inner product spaces over the same field F and let T :
V → W be a linear transformation. Then, T preserves inner products if and only if

‖Tα‖ = ‖α‖

for all α ∈ V .

Proof. Clearly, if T preserves inner products, then ‖Tα‖ = ‖α‖ for all α ∈ V must hold.

Conversely, suppose T satisfies this condition, then we use the polarization identities
(See Remark 1.5). For instance, if F = C, then this takes the form

(α|β) =
1

4

4∑
n=1

in‖α + inβ‖2

for all α, β ∈ V . Hence, it follows that

(Tα|Tβ) =
1

4

4∑
n=1

in‖Tα+ inTβ‖2 =
1

4

4∑
n=1

in‖T (α+ inβ)‖2 =
1

4

4∑
n=1

in‖α+ inβ‖2 = (α|β)

Thus, T preserves inner products (The case when F = R is entirely similar).

Definition 4.6. A unitary operator is an operator on an inner product space that is an
isomorphism onto itself.

Equivalently, it is an operator U : V → V that is surjective and preserves inner products,
or equivalently, satisfies

‖Uα‖ = ‖α‖

for all α ∈ V . Note that, if U1 and U2 are both unitaries, then U1U2 is a unitary, and so
is U−11 . Hence, the set of all unitary operators in L(V ) is a group.
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Theorem 4.7. Let U ∈ L(V ) be a linear operator on a finite dimensional inner product
space. Then, U is a unitary operator if and only if

UU∗ = U∗U = I

Proof. Suppose U is a unitary operator, then for any α, β ∈ V , one has

(U∗Uα|β) = (Uα|(U∗)∗β) = (Uα|Uβ) = (α|β)

Hence, U∗U = I. Similarly, UU∗ = I holds as well.

Conversely, suppose U∗U = UU∗ = I, then for any α, β ∈ V , one has

(Uα|Uβ) = (U∗Uα|β) = (α|β)

Hence, U preserves the inner product. Furthermore, if Uα = 0, then

α = Iα = U∗Uα = 0

Thus, U is injective. By Theorem III.2.15, it follows that U is bijective, and thus a
unitary.

Definition 4.8. An n× n matrix A is said to be a unitary if A∗ = AA∗ = I.

Note that, if A∗A = I, then AA∗ = I holds automatically by Corollary I.4.9. Hence, A
is a unitary matrix if and only if, for all 1 ≤ i, j ≤ n, one has

n∑
r=1

Ar,jAr,i = δi,j

Thus, A is a unitary matrix if and only if the rows of A form an orthonormal collection of
vectors in F n (with the standard inner product). Similarly, using the fact that AA∗ = I,
one sees that the columns of A must also form an orthonormal collection of vectors in
F n (and hence an orthonormal basis).

Thus, a matrix A is unitary if and only if its rows (or its columns) form an orthonormal
basis for F n with the standard inner product.

Now, if B is an orthonormal basis for V and T is any linear operator, then, if A := [T ]B,
one has

[T ∗T ]B = [T ∗]B[T ]B = A∗A

by Corollary 3.5. The next theorem is a simple corollary of this fact.

Theorem 4.9. Let U ∈ L(V ) be a linear operator on a finite dimensional inner product
space V . Then, U is a unitary operator if and only if there is an orthonormal basis B
of V such that A := [U ]B is a unitary matrix.
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Definition 4.10. A real or complex n × n matrix A is said to be orthogonal if AtA =
AAt = I.

Once again, if AtA = I, then one concludes that AAt = I automatically.

Now, observe that a real orthogonal matrix (ie. an orthogonal matrix with real entries)
is automatically unitary. Furthermore, a unitary matrix is orthogonal if and only if its
entries are all real.

Example 4.11.

(i) If A = [c] is a 1 × 1 matrix, then A is orthogonal if and only if c = ±1 and A is
unitary if and only if cc = 1 (equivalently, c = eiθ for some θ ∈ R).

(ii) Let

A =

(
a b
c d

)
be a 2× 2 matrix , then A is orthogonal if and only if

At = A−1 =
1

ad− bc

(
d −b
−c a

)
Since A is orthogonal,

1 = det(AtA) = det(A)2

so det(A) = ±1. Hence, A is orthogonal if and only if

A =

(
a b
−b a

)
or A =

(
a b
b −a

)
where a, b ∈ R are such that a2 + b2 = 1.

(iii) For instance, if θ ∈ R, then the matrix

Aθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
is an orthogonal matrix. As an operator on R2, this represents a rotation by θ
degrees.

(iv) Let

A =

(
a b
c d

)
Then A is unitary if and only if(

a c

b d

)
=

1

ad− bc

(
d −b
−c a

)
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If A is unitary, then

1 = det(A∗A) = det(A∗) det(A) = det(A) det(A)

Hence, | det(A)| = 1, so det(A) = eiθ for some θ ∈ R. Hence, A is unitary if and
only if

A =

(
a b

−eiθb eiθa

)
where θ ∈ R and a, b ∈ C are such that |a|2 + |b|2 = 1.

Recall that the set U(n) of n× n unitary matrices forms a group under multiplication.
Set T+(n) to be the set of all lower-triangular matrices whose entries on the principal
diagonal are all positive. Note that every such matrix is necessarily invertible (since its
determinant would be non-zero). The next lemma is a short exercise. It can be proved
‘by hand’; or by a proof described in the textbook (See [Hoffman-Kunze, Page 306])

Lemma 4.12. T+(n) is a group under matrix multiplication.

Theorem 4.13. Let B ∈ Cn×n be an n × n invertible matrix. Then, there exists a
unique lower-triangular matrix M with positive entries on the principal diagonal such
that U := MB is unitary.

Proof.

(i) Existence: The rows β1, β2, . . . , βn form a basis for Cn. Let α1, α2, . . . , αn be the
vectors obtained by the Gram-Schmidt process (Theorem 2.9). For each 1 ≤ i ≤ k,
the set {α1, α2, . . . , αk} is an orthogonal basis for span{β1, β2, . . . , βk}, and

αk = βk −
k−1∑
i=1

(βk|αi)
‖αi‖2

αi

Set

Ck,j :=
(βk|αi)
‖αi‖2

Let U be the unitary matrix whose rows are

α1

‖α1‖
,
α2

‖α2‖
, . . . ,

αn
‖αn‖

and M be the matrix defined by

Mk,j =


− Ck,j

‖αk‖
: if j < k

1
‖αk‖

: j = k

0 : j > k
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Then, M is lower-triangular and the entries on its principal diagonal are all posi-
tive. Furthermore, by construction, we have

αk
‖αk‖

=
n∑
j=1

Mk,jβj

This implies that U = MB as required.

(ii) Uniqueness: Suppose M1,M2 ∈ T+(n) are such that M1B and M2B are both in
U(n). Since U(n) is a group, it follows that

M1M
−1
2 = (M1B)(M2B)−1 ∈ U(n)

But, by Lemma 4.12,
M1M

−1
2 ∈ T+(n)

But, for any matrix U ∈ U(n), one has

U∗ = U−1

Thus,
(M1M

−1
2 )∗ = (M1M

−1
2 )−1 ∈ T+(n)

But (M1M
−1
2 )∗ is the conjugate-transpose of a lower-triangular matrix, and is thus

upper-triangular. Thus, (M1M
−1
2 )∗ is both lower and upper-triangular, and is thus

a diagonal matrix.

However, if a diagonal matrix is unitary, then each of its diagonal entries must have
modulus 1. Since the diagonal entries of M1M

−1
2 are all positive real numbers, we

thus conclude that
M1M

−1
2 = I

whence M1 = M2, as required.

We set GL(n) to be the set of all n× n invertible matrices. Observe that GL(n) is also
a group under matrix multiplication. We conclude that

Corollary 4.14. For any B ∈ GL(n), there exist unique matrices M ∈ T+(n) and
U ∈ U(n) such that

B = MU

Recall that two matrices A,B ∈ F n×n are similar if there exists an invertible matrix P
such that B = P−1AP .

Definition 4.15. Let A,B ∈ F n×n be two matrices. We say that they are

(i) unitarily equivalent if there exists a unitary matrix U ∈ U(n) such that B =
U−1AU

(ii) orthogonally equivalent if there exists an orthogonal matrix P such that B =
P−1AP .
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5. Normal Operators

The goal of this section is to answer the following question: Given a linear operator
T on a finite dimensional inner product space, under what conditions does V have an
orthonormal basis consisting of characteristic vectors of T? In other words, does there
exist an orthonormal basis B of V such that [T ]B is diagonal?

Clearly, T must be diagonalizable in the sense of Definition VI.2.7. To see if we need
something more, we begin with a necessary condition. Suppose B = {α1, α2, . . . , αn} is
an orthonormal basis with the property that

Tαj = cjαj, j = 1, 2, . . . , n

Then, [T ]B is a diagonal matrix, so by Theorem V.4.6, the matrix [T ∗]B is also diagonal,
with diagonal entries cj. In other words,

T ∗αk = ckαk, k = 1, 2, . . . , n

If V is a real inner product space, then ck = ck, so it must happen that T = T ∗.

If V is a complex inner product space, then it must happen that

TT ∗ = T ∗T

because any two diagonal matrices commute with each other. It turns out, this condition
is enough to ensure that such a basis exists.

Definition 5.1. We say that an operator T ∈ L(V ) defined on an inner product space
is normal if

TT ∗ = T ∗T

Clearly, every self-adjoint operator is normal, every unitary operator is normal; however
sums and products of normal operators need not be normal. We begin our study with
self-adjoint operators.

Theorem 5.2. Let V be an inner product space and T ∈ L(V ) be self-adjoint. Then,

(i) Each characteristic value of T is real.

(ii) Characteristic vectors associated to different characteristic values are orthogonal.

Proof.

(i) Suppose c ∈ F is a characteristic value of T with characteristic vector α, then
α 6= 0, and

c(α|α) = (cα|α) = (Tα|α)

= (α|T ∗α) = (α|Tα)

= (α|cα) = c(α|α)

Since (α|α) 6= 0, it follows that c = c, so that c ∈ R.
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(ii) Suppose Tβ = dβ and d 6= c and β 6= 0, then

c(α|β) = (cα|β) = (Tα|β)

= (α|T ∗β) = (α|Tβ)

= (α|dβ) = d(α|β)

= d(α|β)

Where the last equality follows from part (i). Since c 6= d, it follows that (α|β) =
0.0

Theorem 5.3. Let V 6= {0} be a finite dimensional inner product space and 0 6= T ∈
L(V ) be self-adjoint. Then, T has a non-zero characteristic value.

Proof. Let n := dim(V ) > 0 and B be an orthonormal basis for V , and let

A := [T ]B

Then, A = A∗. Let W be the space of all n× 1 matrices over C with inner product

(X|Y ) := Y ∗X

Define U : W → W be given by UX := AX, then U is a self-adjoint linear operator on
W , and the characteristic polynomial of U is

f = det(xI − A)

By the fundamental theorem of algebra, f has a root c ∈ C. Thus, there exists X ∈ W
non-zero such that

AX = cX

Since U is self-adjoint, it follows by Theorem 5.2 that c ∈ R is real. Now consider two
cases:

(i) If V is a complex inner product space, then we immediately obtain α ∈ V such
that Tα = cα.

(ii) If V is a real inner product space, then A has real entries. Since (A− cI) has real
entries, it follows that we may choose X to have real entries. Thus, there exists
α ∈ V such that

Tα = cA

Theorem 5.4. Let V be a finite dimensional inner product space and T ∈ L(V ). If
W ⊂ V is a T -invariant subspace, then W⊥ is T ∗-invariant.
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Proof. Suppose W is T -invariant and α ∈ W⊥. We wish to show that T ∗(α) ∈ W⊥. For
this, fix β ∈ W , and note that

(T ∗(α)|β) = (α|Tβ) = 0

because Tβ ∈ W . This is true for all β ∈ W , so T ∗α ∈ W⊥ as required.

Theorem 5.5. Let V be a finite dimensional inner product space and T ∈ L(V ) be self-
adjoint. Then, there is an orthonormal basis of V , each vector of which is a characteristic
vector of T .

Proof. Assume dim(V ) > 0. By Theorem 5.3, there exists c ∈ F and α ∈ V such that
α 6= 0 and

Tα = cα

Set α1 := α/‖α‖, then {α1} is orthonormal. Hence, if dim(V ) = 1, then we are done.

Now suppose dim(V ) > 1 and assume that the theorem is true for any self-adjoint
operator S ∈ L(W ) on an inner product space V ′ with dim(V ′) < dim(V ). If α1 as
above, set

W := span({α1})

Then, W is T -invariant. So, by Theorem 5.4, V ′ := W⊥ is T ∗-invariant. But T = T ∗,
so we have a direct sum decomposition

V = W ⊕ V ′

of V into T -invariant subspaces. Now consider S := T |V ′∈ L(V ′). By induction hy-
pothesis, V ′ has an orthonormal basis B′ = {α2, α3, . . . , αn} each vector of which is a
characteristic vector of S. Thus,

B := {α1, α2, . . . , αn}

is an orthonormal basis for V , each vector of which is a characteristic vector of T .

The next corollary follows from Theorem 5.5 by applying it to the vector space V = Cn×1.
Check the details!

Corollary 5.6. Let A be an n × n Hermitian (self-adjoint) matrix. Then, there is a
unitary matrix P such that P−1AP is diagonal. If A is a real symmetric matrix, then
there is a real orthogonal matrix P such that P−1AP is diagonal.

We now look to understand normal operators.

Theorem 5.7. Let V be a finite dimensional inner product space and T ∈ L(V ) be
normal. If c ∈ F is a characteristic value of T with characteristic vector α, then c is a
characteristic value of T ∗ with characteristic vector α.
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Proof. Suppose S is normal and β ∈ V , then

‖Sβ‖2 = (Sβ|Sβ) = (β|S∗Sβ) = (β|SS∗β) = (S∗β|S∗β) = ‖S∗β‖2

Hence, taking S = (T − cI) (which is normal) and β = α, we see that

0 = ‖(T − cI)α‖ = ‖(T ∗ − cI)α‖

Thus, T ∗α = cα as required.

Theorem 5.8. Let V be a finite dimensional complex inner product space and T ∈ L(V )
be a normal operator. Then, there is an orthonormal basis of V , each vector of which is
a characteristic vector of T .

Proof. Once again, we proceed by induction on dim(V ). Note that, since V is assumed
to be a complex inner product space, every operator on V has at least one characteristic
value (since the characteristic polynomial has a root by the fundamental theorem of
algebra). Therefore, if dim(V ) = 1, there is nothing to prove.

Now suppose dim(V ) > 1 and that the theorem is true for any complex inner product
space V ′ with dim(V ′) < dim(V ). Then, let α ∈ V be a characteristic vector of T
associated to any fixed characteristic value c ∈ C. Furthermore, taking α1 := α/‖α‖,
we set

W := span({α1})
Then, W is T -invaraint. Hence, W⊥ is invaraint under T ∗ by Theorem 5.4.

However, by Theorem 5.7, W is also invariant under T ∗. Hence, W⊥ is invariant under
T = (T ∗)∗ as well. Thus, if

V ′ := W⊥

Then V ′ is invariant under T and T ∗. Thus, if S := T |V ′ , then S is normal because
S∗ = T ∗|V ′ and these two operators must commute. Hence, by induction hypothesis, V ′

has an orthonormal basis B′ = {α2, α3, . . . , αn} consisting of characteristic vectors of S.
Hence,

B = {α1, α2, . . . , αn}
is an orthonormal basis of V consisting of characteristic vectors of T .

Note that an n × n matrix A is said to be normal if AA∗ = A∗A. The next corollary
follows from Theorem 5.8 as before.

Corollary 5.9. For every normal matrix A, there is a unitary matrix U such that
U−1AU is diagonal.

Remark 5.10.

(i) Theorem 5.8 is an important theorem, called the Spectral Theorem. Its generaliza-
tion to the case of infinite dimensional inner product spaces is a deep result that
you may learn in your fifth year.
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(ii) The Spectral theorem does not hold for real inner product spaces. For instance,
a normal operator on such an inner product space may not even have one charac-
teristic value. For instance, we may consider the linear operator T ∈ L(R2) given
in the standard basis by the matrix

A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
You may check that for most values of θ ∈ R such an operator has no (real)
characteristic values. However, such an opertor is always normal.
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IX. Instructor Notes

(i) Given that the semester was entirely online, my expectations were low, but the
course was truly abysmal. I was simply recording videos and uploading them every
week with virtually no feedback from the students.

(ii) The assessment, hampered by poor administrative guidelines, was meaningless
as the students copied everything. Therefore, from my perspective, the entire
semester was a wash-out.

(iii) The material though, is fine, and can be used for future courses as is.
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