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Continuous Functions

1. First Definitions

Following [Crossley, Section 2.1,2.2]
Let S C R. A function in this section will be a real-valued function whose domain is S.

1.1.

1.2.

1.3.

1.4.

1.5.

Remark: Consider two graphs (one continuous and other discontinuous at x = 1).
Continuity means that we can draw the graph of f without lifting our pencil. ie.
If we approach a point on the z axis from either direction, the value of f(z) should
be ‘predicted’ by the values of f(y) where y is near x. Furthermore, Continuity is
a local property.

Definition: A function f :.S — R is said to be sequentially continuous at a € S if,
for any sequence (x,) C S such that z,, — a, we have f(z,) — f(a).

Example: f(z) = z/|z| for  # 0 and f(0) =1
(i) If we choose a = 0 and z, = 1/n, then f(a) = lim f(z,)
(ii) However, if we choose x,, = —1/n, then f(a) # lim f(x,).
So f is not sequentially continuous.

Definition: A function f : § — R is said to be continuous at a if, for every
€ > 0,30 > 0 such that

[r—al <0 =|f(z) = fla)l <e (%)
Example:

(i) f(z) = 2? is continuous at 2
(a) If a =0,e =1, we want 6 > 0 such that (%) holds. ie. We want

lz| < 6= |2*| <1
Since |z?| = |z|?, we may choose § = 1.
(b) If a =2,e =1, we want § > 0 such that () holds. ie. We want
lz -2 <= |2*-2% <1

Notice that § = 1 does not work, because if x+ = 2.9 then z?> ~ 9.

However,
2% — 22| = |z — 2|z + 2]

So 36 > 0 that works.



(i) f(z) =2*if z # 0 and f(0) = 0.5 is discontinuous at 1.
(a) If e =1, then § = 0.5 works because if

lz] < 0.5 = |2°] <0.25 < 1, and [f(0)] =05 < 1

(b) However, if € = 0.2, then no § > 0 works because if || < J, then we may
choose small enough z so that |z| < 0.5, so that |z?| < 0.25 and hence

|z* — 0.5] > 0.25
So f is discontinuous at 0.

1.6. Theorem: f is continuous at a if and only if it is sequentially continuous at a

Proof. (i) Suppose f is continuous at a and (x,) C S is a sequence such that
z, — a. WTS: f(z,) = f(a), so choose € > 0, then 3§ > 0 such that

[z —a| <d=|f(x) - fla)| <e
For this § > 0,3N € N such that |z, — a| < ¢ for all n > N. Hence,
|f(z,) — fla)|] <e Yn>N

This is true for any € > 0 so f(x,) — f(a)

(ii) Suppose f is sequentially continuous at a, but it is not continuous at a, then
Je > 0 for which no § works. Hence, § = 1/n does not work, so 3z,, € S such
that

|z — al <1/n, but [f(zn) — fa)| = €

Clearly, =, — a, but f(x,) does not converge to f(a). Hence, f is not
sequentially continuous - a contradiction.

[
(End of Day 1)

2. Open Sets

[Crossley, Section 2.3]

2.1. Remark: € — § definition says that f is continuous at a if and only if, for any
€ > 0,30 > 0 such that

rx€(a—0d,a+9)= f(x) € (f(a) —¢ fla)+e€)

2.2. Definition:
(i) Open interval



(ii) Open set: A set U C R is open if and only if it can be written as a union of
open intervals. (Note: We are not restricting ourselves to finite unions. ie.
We are referring to ‘arbitrary’ unions)

2.3. Theorem: A set U C Risopeniff for all z € U, 36, > 0 such that (z—0,, z+d,) C U

Note: The value of 9, depends on z.

Proof. (i) Suppose that, for any = € U, 35, > 0 such that (x — 0.,z + d,) C U,
then
U= U(x—éx,x—i—éx)

zeU

so U is open.

(ii) Conversely, if U is open, then write U = |J,.; I, where each I, is an open
interval. If x € U, then Ja € J such that x € I,. Write I, = (a,b), then
a<x<b, so

0, = min{|z — a|/2, |b — x|/2}

works.

2.4. Examples:
) (ab)
(ii) A closed interval (or even a half-open interval) is not open.
(iii) {0} is not open. A finite set is not open.
2.5. Proposition:
(i) An arbitrary union of open sets is open.

(ii) A finite intersection of open sets is open.

Proof. (i) is obvious, so we prove (ii): By induction, it suffices to consider the
case of two sets, U;,Us say. WTS: Uy N U, is open, so fix x € U; N Uy, then
361,69 > 0 such that (x — §;, 2 + ;) C Ui = 1,2. Then if 6 = min{dy,d2}, then
(x — 6,2 4+ &) C Uy N Uy, which verifies Theorem 2.3. O
2.6. Example: A countable intersection of open sets may not be open. U, = (—1/n,1/n)
2.7. Definition: A set F' C R is closed if F*° is open.
2.8. Examples:
(i) Closed interval
(i

(iii

[2,00) is closed.
Arbitrary intersection of closed sets is closed.

(iv) Finite union of closed sets is closed.

)
)
)
)

(v) [1,2) is neither open nor closed.



3. Continuity by Open Sets

[Crossley, Section 2.4]

3.1. Definition: Let f: X — Y be a function between two sets and A C Y, then
[ A) ={r e X: f(x) € A}

Note: This definition does not imply that f=! exists as a function. It is simply

notation.
3.2. Example: f(z) =2? —x =x(x — 1)

=R\ (0,1)

(v) f‘l({O}) ={0,1}

3.3. Proposition: Let f: X — Y and {A, : a € J} be a collection of subset of Y, then

1) f7H0) =0

(i) f7H(Y) =

(1) SN a) N/ (Aa)
(iv) f7H(UAs) = U (Aa)
[HW]

3.4. Theorem: Let f : R — R, then f is continuous if and only if f~!(U) is open

whenever U is open.

Proof. (i) Suppose f is continuous and U is open in R. WTS: f~1(U) is open,

so fix x € f~1(U). So that f(x) € U, so Je > 0 such that
(f(z) =€ flz)+€) CU
By definition of continuity, 30 > 0 such that

ly— x| <o =|f(y) — flz)] <e

Soify € (x — 0,2+ 9), then f(y) € (f(z) —¢, f(x) +¢€) C U. Hence,
(x— 0,2+ 6) C f1U)

This is true for any z € f~1(U). By Theorem 2.3, f~!(U) is open.



(ii) Suppose f~'(U) is open whenever U is open. Fix a € R,e > 0. Then
U= (f(a) = ¢ f(a) +¢)
is open in R so f~1(U) is open. Since a € f~1(U),3§ > 0 such that
(a—d,a+6) C f71(U)

Hence, if € R such that |z — a| < 9, then |f(x) — f(a)| <e.
[

(End of Day 2)



Topological Spaces

1. Definition and Examples

1.1.

1.2.

1.3.

Definition: Let X be a set. A collection 7 of subsets of X is called a topology on
X if

i) 0,Xer

(ii) If Uy, Uy € 7, then Uy NUy € 7

(iii) If {U, : « € J} is an arbitrary collection of sets in 7, then (J, ., Us € T

The pair (X, 7) is called a topological space, and members of 7 are called open
sets in X.

Examples:

(i) X = R and 7 = the collection of open sets in R (as defined in the previous
section) is a topological space. This is called the usual topology on R

(ii) Let X = R
(a) Fix @ := (a1,a2) € X,r > 0. An open disc in X centered at z of radius
r is the set

B(@,r) == {(z1,22) € R*: \/(x1 — a1)? + (z2 —ag)? < 1}

(b) A set U C R? is said to be open if it is a union of open discs. As in
Theorem 2.3, a set U C R? is open if and only if, for any @ € U,3r > 0
such that B(a,r) C U.

(¢) Asin Proposition 2.5, an arbitrary union of open sets is open, and a finite
intersection of open sets is open. Hence, this collection of open sets forms
a topology on R2. This is called the Euclidean topology on R2.

(iii) Let X be any set and 7 = {(), X}. This is called the indiscrete topology on
X.

(iv) Let X be any set and 7 = P(X). This is called the discrete topology on X.

Definition: Let (X, 7x) and (Y, 7y) be topological spaces. A function f: X — Y
is said to be continuous if f~!(U) € 7x whenever U € 7y. ie. The inverse image
of an open set is open.

Note: We think of continuity as a global property here, and don’t care if a function
is continuous at all but one point.



1.4. Example:

(i)
(i)
(iif)
(iv)

(vi)
(vii)

Let f: R — R be f(z) = 2? is continuous, but f(x) = x/|z| if z # 0 and
f(0) =1 is discontinuous.

Let (X, 74) be a discrete topological space, and (Y, 7y) any topological space.
If f: X — Y is any function, then f is continuous.

Similarly, if (X, 7x) is any topological space and (Y, 7;) is an indiscrete topo-
logical space, then any function f: X — Y is continuous.

Let f: X — Y be a constant function, then f is continuous.
Proof. Suppose f(x) = yo for all x € X. Let U be an open set in Y, then

-1 _ 0: ify g U
f(w_{x CifyyeU

In either case, f~1(U) is open. O
Let A:R? — R be the addition map A(x,y) = x +y. Then A is continuous.

Proof. Let U C R be open. We WTS: A~1(U) is open. As mentioned above,
it suffices to show that, for any point (a,b) € A™*(U),3r > 0 such that
B((a,b),r) ¢ A7Y(U). So fix (a,b) € A7Y(U). Then a+b € U, so Je > 0
such that (a +b—¢e,a+b+¢€) C U. Note that A~'((a +b—€,a+b+¢))
describes the region enclosed by (but not including) the two lines

r+y=a+b—candr+y=a+b+e

and (a,b) lies in this region. Now the distance of a point (zg,yo) from a line
of the form ax + Sy + v = 0 is given by

_ | + Byo + 7|

d

In this case, we get

_la+tb+(—a-b—¢)| €

d

V2 2

Hence, if (z,y) € B((a,b),¢/v/2), then (z,y) € AW ((a +b—e,a+ b+ ¢€)),
and hence B((a,b),e/v/2) ¢ A~Y(U), and so A~}(U) is open. Hence, A is
continuous. O

Similarly, the multiplication map M : R? — R given by (z,y) — xy is also
continuous [We will give a simpler proof later]

Let d : R — R? be the diagonal map d(z) = (z,x). Then d is continuous.



Proof. Once again, fix an open set U C R? and a point z € d~1(U). WTS:
36 > 0 such that (z — 6,z + ) C d"Y(U). Since (z,z) € U and U is open,
Jde > 0 such that B((z,x),e¢) C U. Consider the part of the line y = z inside
this disc, and project it onto the X-axis. Note that if § = e/\/§, then for any
y € (x — 9,z +0), we have

V(e =)+ (z—y? <e=(y,y) € B((,2).¢)
Hence, (x — 6,z +6) C dY(U) O
(End of Day 3)

1.5. Theorem: Let (X, 7x) be a topological space and Y C X. Define

v ={UNY:U € 1x}

Then 7y is a topology on Y, and is called the subspace topology on Y. [HW]

1.6. Examples:

(i)

(i)

(iii)

7 C R. We claim that every subset of Z is open in the subspace topology
(ie. Z with the subspace topology is discrete). It suffices to show that every
singleton is open. To do this, fix n € N, then (n — 1/2,n +1/2) is open in R
and

(n—1/2,n+1/2)NZ = {n}

Q C R. Here the subspace topology is not discrete because if U is an open
set in R, then U N Q contains infinitely many points. In particular, singelton
sets are not open in Q.

St c R%: An example of an open set is the intersection of any disc in R?
with S'. This will give arcs in S'. Hence, every arc in S! is an open set.
Furthermore, since every open set in R? is a union of discs, every open set in
St is a union of arcs.

[0,1] C R: Here, [0, 1] is itself an open set since
0,1 = RN10,1]

Furthermore, [0,1/2) is also an open set in [0, 1].

If Y =[0,1]U[2,3] C R, then [0, 1] is an open set in Y because
0,1] = (1/2,3/2)NY

Similarly, [2,3] is also an open set. Hence, [0, 1] is both open and closed in
Y.

10



2. Metric Spaces

2.1. Definition: Let X be a set. A function d : X x X — R is called a metric on X if
(i) d(x,y) >0 for all (z,y) € X x X
(ii) d(z,
(iii) d(z,
(iv) d(z,

The pair (X, d) is called a metric space.

= d(y, )

)

)=0if and only if x =y

)

) <d(z,z)+d(z,y) for all z,y,z € X (Triangle Inequality)

Y
Y
Y

2.2. Examples:
(i) R with d(z,y) = |z — y|
(ii) Similarly, C with d(z,w) = |z — w|
(i) R with

Proof. Clearly, the first three axoims are satisfied, so it suffices to prove the
triangle inequality. For this, note that

Ay =3 (i ~ )’

= Z((l}z — 21)2 + (Zi - yz)2 + 2(:(}1 - Zi)(’zi - yl)

i=1

But by Cauchy-Schwartz inequality,

D @i —z)(zi— i) < | D (@i —2)2, | D (2 — 4i)? = d(, 2)d(z,y)
Hence

d(z,y)* < d(z,2)* +d(y, 2)* + 2d(z, 2)d(z,y) = [d(z, 2) + d(y, 2)]"
which gives the triangle inequality. O

(iv) R™ with

d(7,7) = max |zi — yi|

This is called the uniform or supremum metric on R”, and the metric is
written as d.

11



2.3.

2.4.

2.5.

2.6.

(v) R™ with
d(@,y) = Z |z — yil
i=1

This is called the L' metric on R”, and is written as d;.
(vi) Let X be any set. Define d: X x X — R by

o ={}

This is called the discrete metric on X.
Definition: Let (X, d) be a metric space.
(i) An open ball of radius r > 0 centered at a point a € X is the set

B(a,r) :={x € X :d(z,a) <1}

(ii) A set U C R is said to be open if it is a union of open balls. Equivalently, if,
for each a € U,39, > 0 such that B(a,d,) C U

Theorem: Let (X, d) be a metric space, and 74 be the collection of open sets as
defined above. Then 7, is a topology on X. This is called the metric topology on
X induced by d.

Proof. (i) Clearly, §) € 74 and X € 74
(ii) 74 is closed under arbitrary union by definition.

(111) If Ul,UQ € T4, WTS: UynNUy € Td, SO fix a € U, NUy. Then 3(51 > 0
such that B(a,d0;) C U;. Let § = min{dy,d2}, then if x € B(a,d), then
d(z,a) <6 <6, = x € B(a,61) C Uy. Similarly, x € Us, so B(a,d) C UNUs.

]

Definition: Let (X,d) be a metric space. We say that a sequence (z,) C X
converges to a point a € X if, for each € > 0,3N € N such that d(z,,a) < € for
all n > N. If this happens, we write z,, — a.

(End of Day 4)

Theorem: Let (X, dx) and (Y,dy) be two metric space, f : X — Y a function.
Then TFAE:

(i) For any a € X and any sequence (z,) C X such that x, — a implies
f(xn) — f(a)
(ii) For any a € X and each € > 0,35 > 0 such that

dx(z,a) <0 = dy(f(z), f(a)) <e€

12



(i)

f~YU) is open in X whenever U is open in Y (with respect to the metric
topologies on each).

Proof.

(i) = (ii):

(i) = (iii):

(iii) = (i)

Suppose (i) holds and a € X is fixed and € > 0 given. Suppose no § > 0
works, then for each n € N, § = 1/n does not work. So 3z, € X such that

dx(x,,a) < 1/n, but dy(f(z,), f(a)) > €
So x, — a and f(z,) does not converge to f(a) contradicting (i).

Suppose U is open in X. WTS: f~}(U) is open in Y, so choose a € f~}(U).
Then f(a) € U and U is open, so Je > 0 such that

By(f(a),e) CU
Now by (ii), choose § > 0 such that
dx(z,a) <6 = dy(f(x), f(a)) <e
Then clearly Bx(a,d0) C f~*(U), so that f~'(U) is open.

Suppose a € X and z, — a. WTS: f(z,) — f(a). So fix ¢ > 0, then
U = By(f(a),¢) is open so f~}(U) is an open set containing a. Hence,
3§ > 0 such that Bx(a,d) C f~'(U). Since z,, — a,IN € N such that

dX(an,a) <d Vn>N
Hence, z,, € f71(U) so that f(x,) € U, whence
dy (f(z,), f(a)) <€ Vn>N

Hence, f(z,) — f(a).
[

2.7. Example:

(i)

Let M : R? — R be the multiplication map (z,y) > zy. Then M is continu-
ous.

Proof. Choose a sequence (z,,y,) — (a,b). Then
[ — al < V/lza — al? + [yn = b2 = d((z0, y). (a,0)) = 0

So z, — a in R. Similarly, y,, — b in R. Hence,

|xnyn - ab' < ’xnyn - ayn| + ’ayn - ab’ = |xn - aHyn’ + |a||yn - bl

Since y,, — b, (y,) is bounded, so IM > 0 such that |y,| < M for all n € N.
Hence,
|zpyn — abl < M|z, — a| + |a||y, — b] — 0

Hence, M is sequentially continuous, so it is continuous by the previous the-
orem. 0

13



2.8.

2.9.

2.10.

(ii) Let P:R™ — R be a polynomial function

P(zy,29,...,2,) = Z iy i i DT i

Then P is continuous.

Proof. Similar to HW 1.4. O
Theorem: Let (X, dx) be a metric space and Y C X. Define dy : Y x Y — R by
dy (y1,y2) = dx(y1,y2). Then

(i) dy is a metric on Y, and

(ii) the metric topology induced on Y by dy coincides with the subspace topology
induced on Y from (X, 74, )

Proof. Part (i) is trivial. To check part (ii), let n denote the subspace topology on
Y and 7 denote the metric topology on Y induced by dy .

(i) To show n C 7: So fix an open set V' € n, then 3U open in (X, dy) such that
V =UnNY. To show that V € 7, we fix a point a € V. WTS: 9§ > 0 such
that By (a,d) C V. Since U is open, 36 > 0 such that

BX(G,é) cU

Then note that By (a,d) = Bx(a,d)NY CcUNY =V.

(ii) To show 7 C n: It suffices to show that every open ball By (a,r) € . But
once again this follows from the fact that

BY<a7T) = BX(CL)T) ny

m
Examples: Any subset of R” inherits a metric topology from R", so is, in particular,
a metric space. For instance, this applies to
(i) (The circle) S* = {(x,y) e R? : a® + y* = 1}
(ii) (The n-sphere) S™ = {(x1, g, ..., Tny1) € R S04 22 = 1}
(iii) (The cylinder) C = {(z,y,2) e R* : 2 +¢y* =1,0< 2 < 1}
(iv) (The Torus) T = {(x,y,2) € R®: 2? + y* + 22 — 4\/22 + y2 + 3 = 0}

Theorem: Let f : X — Y be an injective function and dy is a metric on Y. Define
dx : X x X — R by

dx (z1,m2) = dy (f(21), f(22))
Then dx is a metric on X, called the metric pulled back (or induced) by f. [HW]

Note that f is automatically continuous in this situation.

14



2.11.

2.12.

2.13.

2.14.

Lemma: Let f : X — Y be a bijective function and dy be a metric on Y. Let
dx be the metric on X induced by f. Then a function g : X — Z (some other
topological space) is continuous if and only if go f~! : Y — Z is continuous.

Proof. Note that in the above situation, f~! is automatically continuous from
Y — X. Hence, if ¢ is continuous, so is go f 1. Conversely, if go f~! is continuous,
then

g=goflof
is also continuous. O

Example:

(i) Let M, (R) denote the set of all n x n matrices with real entries. There is a
map
2
f:M,(R) - R"
that expands a matrix into a tuple. This map is clearly injective. Thus,
M, (R) is a metric space with the metric induced by f. ie. we have

d((aiz), (bij)) = Z(@m —bij)?

(i) Consider the determinant map det : M, (R) — R. Note that detof~' : R" —
R is a polynomial map which is continuous. Hence, by the previous Lemma,
det is continuous.

(iii) Note that GL,(R), the set of invertible n x n matrices is the set
GL,(R) = det™ (R \ {0})

Hence, GL,(R) is an open subset of M, (R) and is a metric space in its own
right.
(End of Day 5)

Definition: Let X be a set and dy, ds be two metrics on X. We say that d; and ds
are equivalent (In symbols, d; ~ ds) if 3K, M > 0 such that

Kdl(l‘7y) SdZ(‘ray) SMdl(l',y) V%?JGX
Example: Let X = R"™ and d;,d> be the uniform and Euclidean metrics respec-
tively. Then dy ~ do

Proof.
di(Z,7) = max{|z; — yi|} < da(T,7)

n

> (@i — y:)? < Vndy (T,7)

=1

d2 (fv y)

15



2.15.

2.16.

Theorem: Let d; and ds be equivalent metrics on a set X, then 74, = 74,

Proof. By symmetry, it suffices to show that 7;, C 74,. So let K, M > 0 such that
Kdy(z,y) < ds(z,y) < Mdy(x,y) Vr,ye X

So fix U € 74, and @ € U. Then 3r > 0 such that By (a,7) C U. Now if
x € By,(a,rK), then
dy(x,a)
K
So Bgy,(a,rK) C Bg,(a,r) C U. Hence, U € 74, as required. O

di(z,a) < <r

Example: (The converse of the previous theorem is not true) Let d be the usual
metric on R and

p(l', y) = m1n{|a: - y|7 1}
Then
(i) 7 =14

Proof. Since p(z,y) < d(z,y), it follows as above that
Bd(a7 T) - BP<a7 7")

Hence, 7, C 74 [Check!]. Conversely, if U € 74 and a € U, then 3r > 0 such
that By(a,r) C U. We may assume that r < 1, but in that case,

B,(a,r) = By(a,r) C U
so that U € 7, as well. Hence, 74 C 7, as required. O

(ii) p is not equivalent to d

Proof. Note that p(z,y) <1 for all z,y € R. If M > 0 such that

d(z,y) < Mp(z,y)

Then this would imply that d(x,y) < M for all x,y € R. This is not true
because d(n,0) = n for all n € N. O

3. Basis for a topology

3.1.

Definition: Let (X, 7) be a topological space. A collection B C 7 of open sets is
called a basis for 7 if every member of 7 is a union of elements from B. Equivalently,
U € 7 if and only if, for each x € U,dB € B such that x+ € B and B C U.

3.2. Examples:

(i) Let X = R with the usual topology and B be the collection of open intervals.
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3.3.

3.4.

3.5.

(ii) Similarly, if (X, d) is any metric space with 7 the metric topology. Then B
may denote the set of all balls (of various centers and radii).

Proposition: Let f : X — Y be a function between two topological spaces, and
suppose B is a basis for 7y. Then f is continuous if and only if f~'(B) € 7x for
all Be B

Proof. One direction is clear, so suppose f~1(B) € 7x for all B € B. WTS: f is
continuous, so fix an open set U € 7y and we want to show f~1(U) € 7x. Fix
z € f~Y(U), then f(z) € U, so 3B, € B such that z € B,, and B, C U. Hence,

V,:=fY(B,) €x and V, C f1(U)
This is true for any z € f~}(U) so
o= U v
zef~H(U)
Hence, f~1(U) € 7x as required. O

Lemma: Let C be a collection of subset of X. Then there is a unique topology 7
on X such that

i)ccr

(i) If n is any other topology on X such that C C n, then 7 C 7.
ie. 7 is the smallest topology containing C. This is called the topology generated
by C.

Proof. Let F be the set set of all topologies n on X such that C C . Then F # ()
because P(X) € F. Now set
T = ﬂ n

neF
Then check that 7 is a topology that satisfies the required conditions. O
Theorem: Let X be a set and B be a collection of subsets of X such that
(a) For each x € X,3B € B such that x € B

(b) If B1,By € B and © € B; N By, then 3B3 € B such that x € B;s and
Bs C By N Bs.

Let 7 denote the topology generated by B. Then B is a basis for 7.

Proof. Let n be the collection of all subsets of X that are unions of members of
B. Claim: 7 is a topology on X. The first three axioms hold trivially, and the last
one follows from property (b) of B.

Now clearly, B C n, so that n € F of the previous proof. Hence, 7 C 1. Further-
more, if p is any topology that contains B, then n C p because p is closed under
arbitrary unions. Hence, n C 7 as required. O

(End of Day 6)
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4. The Product Topology on X x Y

4.1.

4.2.

Theorem: Let (X, 7x) and (Y,7y) be two topological spaces. Then there is a
unique topology on X X Y whose basis are sets of the form

UxV

where U € 7x and V' € 1. This is called the product topology on X x Y, denoted
by Txxy

Proof. Let B={UxV : U € 7x,V € 1v}. We check that B satisfies the conditions
of Theorem 3.5.

(i) Clearly, X xY € B
(i) If Uy,Uy € 7x and Vi, V, € 7y, then

(U1><V1)F‘I(U2><V2):(U1HU2)><(VlﬂV2)€B

]

Theorem: Suppose (X, dx) and (Y, dy) are metric spaces. Defined : (X xY)? — R
by
d((z1,41), (22, 92)) = max{dx (z1, z2), dy (y1,y2)}
Then
(i) d is a metricon X x Y

(ii) The metric topology induced by d coincides with the product topology on
XxY

Proof. Part (i) is trivial, so we prove (ii). Let 7; denote the metric topology and
Txxy denote the product topology.

o WTS: 7xxy C 74t If U = Bx(a,d,) and V' = By (b, ) are open balls in X
and Y respectively, consider

W=UxV
We claim that W € 7. To see this, fix (z,y) € W, then z € U,y € V, so
dx(z,a) < 6, and dy (y,b) < o
Let r = min{d; — dx(z,a),d2 — dy(y,b)} > 0. We claim that
Ba((z,y),r) C W
So choose (u,v) € By((z,y),r), then d((u,v), (z,y)) < r, so that

dx(u,z) <r, and dy(v,y) <r
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4.3.

4.4.

4.5.

4.6.

Hence,
dx(u,a) < dx(u,z)+dx(x,a) <r+dx(z,a) <0 —dx(zr,a) +dx(z,a) =&

Hence, v € U. Similarly, v € V, so that (u,v) € W, proving the claim.
Hence,
UxVery

for any open ball U € 74, and V' € 74,. But these open balls form a basis for

T4, and 74, respectively. Hence, by Lemma 4.2,

Txxy C Tq

e WTS: 74 C 7xxy: Let (a,b) € X x Y and r > 0. It suffices to show that
By((a,b),r) C Txxy
Note that (z,y) € Ba((a,b),r) iff
dx(x,a) <rand dy(y,b) <r

Hence,
By((a,b),r) = Bx(a,r) X By (b,1) € Txxy
This is true for any open d-ball in X x Y, so 74 C Txxy.
O

Remark: Let X7, X5, X3 be three topological spaces, then we may define the prod-
uct topology inductively as the product topology on (X7 x X5) x X3 where X; x X,
has the product topology. Thus, basic open sets in X; x X5 x X3 are of the form

U1><U2XU3

where U, are open in X;. The same can be done for finitely many spaces X, Xo, ..., X,,.

Corollary: The metric topology on R™ induced by the Euclidean metric is the same
as the product topology.

Proof. Theorem 4.4+2.15. O]

Definition: Let X,Y be sets. The maps 7y : X XY - X and 1y : X XY — Y
given by

Tx(z,y) =z and 1y (z,y) =y
are called the projection maps.

Lemma:

(i) The maps mx and 7y are continuous if X x Y is equipped with the product
topology.
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(ii) If n is a topology on X x Y such that mx and 7y are both continuous, then
Txxy C 1.

Proof. (i) If U C X is open, then
71')_(1((]) =UXY € mxxy

and similarly for 7y

(i) If n is a topology such that mx and 7y are continuous, then for any U, V' open
in X,Y respectively,

UxV=rU)Nm (V) €En
Hence, 7x«y C 7.
O

4.7. Theorem: Let f: Z — X x Y be a function. Then f is continuous if and only if
mx o f and my o f are continuous.

Proof. If f is continuous then 7wy o f and 7y o f are continuous by the previous
lemma and HW1. Conversely, suppose f; := mxof and f; := my o f are continuous,
and WTS: f is continuous. By Prop. 3.3, it suffices to show that f~(WW) is open
when W C X x Y is a basic open set. So write W = U x V where U and V are
open in X and Y respectively. Then

W) ={z€Z: f(x) eUxV}=f{(U)Nf; (V)
which is open by hypothesis. O]

5. The Product Topology on [] X,

Fix topological spaces (X4, 7o), @ € J, where J is a possibly infinite set.
5.1. Remark: The product topology on X x Y has two definitions:
(i) [Theorem 4.1]: The basis sets are of the form U x V where U € 7x,V € 1y
(ii) [Lemma 4.6]: It is the smallest topology that maps mx and 7y continuous.
(End of Day 7)

5.2. Theorem: Let (X,,7,) be a family of topological spaces, and let X =[] X,,. Let
o+ X — X, be the projection map. Let B be the collection of finite intersections
of the form

ﬁ o (U3)
=1

for some finite set {ay, a9,...,a,} C J and open sets U; € 7,,. Then there is
a unique topology 7, on X which has B as a basis. This is called the product
topology on X.
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5.3.

0.4.

5.5.

5.6.

Proof. We once again check the conditions of Theorem 3.5:
(i) If x € X then z € [[ X, = n, 1 (X,,)
(ii) If By := L, 7, (Us) and By = ()2, Wﬁ_jl(l/}-), then BN By € B
Lemma: Let {X,} and X as above, and let 7, denote the product topology.
(i) Each 7, : (X, 7,) = (X4, 7o) is continuous.

(i) If n is a topology on X such that each m, : (X,n) — (Xa,7.) is continuous,
then 7, C 7.

Proof. (i) If U, € 7,, then 7' (U,) € 7, by definition.

(ii) If n is a topology as above, then for any a € J, and U, € 7, 7, (U,) € .
By taking finite intersections, any basic open set in 7, is in 7. Hence, 7, C 7.

O

Theorem: Let f : Z — X be a function. Then f is continuous iff 7, o f is
continuous for each o € J

Proof. One direction is clear from HW1 and the previous Lemma. For the other,
suppose 7, o f is continuous for each o € J and WTS: f is continuous. Then by
3.3, it suffices to show that

fHU) €z
for any basic open set U C X. Hence, we write U = (._, 7, ' (U;), whence

=1 "oy

n

fHU) = [(\(Fas 0 /) (V) € 75

i=1
[l

Theorem: Let (X, ), T,) be a family of topological spaces, and let X =[] X,. Let
B be the collection of sets of the form

1w

where U, € 1, for each a € J. Then there is a unique topology 75 on X which
has B as a basis. This is called the box topology on X.

Proof. Identical to Theorem 5.2. O

Remark/Example:
(i) If J is finite, then the product and box topologies on X coincide.
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(ii) The basic open sets of 75 are of the form

1.

where U, € 7, are any open sets. However, the basic open sets in 7, are of

the form
.

where U, = X, for all but finitely many o € J
(iii) In general, 7, C 75.
(iv) If J is infinite, they may not coincide. Example: In R¥,

o

U:=]](-1/n,1/n)

n=1
is open in the box topology, but not in the product topology.

Proof. Consider 0 € U. If U € 7, then there must be a basic open set B such
that 0 € B and B C U. But if B is a basic open set, then dny,ns,...,ny € N
and open sets U; C R such that

B=(\m"(U) =Un, X Upy X ... Up, xRXR x ...

Let n = max{n; : 1 <i <k} +1,and y = (0,0,0,...,1,0,0,...), where 1
occurs in the n'™ stage, then y € B, but y ¢ U. Hence, B is not a subset of
U,soU ¢ T, O

6. Closed Sets

6.1. Definition: Let (X, 7) be a topological space. A subset A C X is said to be closed
if X\ A is open.

6.2. Examples:
(i) [a,b] is closed in R

(i) A = {(z,y) € R* : x > 0, and y > 0} is closed in R? because R* \ A =
R x (—00,0) U (—00,0) x R

(iii) If 7 is the discrete topology, then every subset of X is closed.

(iv) If 7 is the co-finite (or finite complement) topology on R, then the only closed
sets are finite sets and R.

6.3. Lemma: Let X be a topological space. Then
(i) @ and X are closed in X
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6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

(i) If {F,} are closed in X, then so is [ F,
(iii) If Fy, Fy are closed in X, then so is ] U Iy

Theorem: Let Y C X. A set A CY is closed in Y (wrt the subspace topology) if
and only if 3F C X closed in X such that A=FNY

Proof. HW [

Corollary: Let Y € X. If A C Y isclosed in Y, and Y is closed in X, then A is
closed in X.

(End of Day 8)
Definition: Let A C X
(i) The interior of A, int(A) is the union of all open sets contained in A.
(ii) The closure of A, A, is the intersection of all open sets containing A.
Remark:
(i) int(A) cAC A
(ii) A is open iff int(A) = A and A is closed iff A = A

(iii) int(A) is the largest open set contained in A. ie. If U C A is open in X, then
U C int(A).

(iv) Similarly, A is the smallest closed set containing A. If I C X is closed and
ACF,then AC F.

(v) If ACY C X, we write clx(A) and cly(A) to denote the closures of A with
respect to X and Y respectively.

Lemma: Let ACY C X. Then cly(A) =clx(4)NY
Proof. Note that

cly(A) = ({F CY : F closed, and A C F}
By Theorem 6.4,
cly(A) = ﬂ{G NY :G C X closed in X, and A C G}

which is clearly clx(A) NY. O

Theorem: Let A C X and z € X.
(i) = € Aiff, for every open set U containing z, U N A # .

(ii) If the topology on X has a basis B, then 2 € A iff, for every basic open set
BeB,BNA#(.

Note: An open set U containing a point z is called a neighbourhood of x.
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6.10.

6.11.

6.12.

Proof. We only prove (i): If z € A, let U be an open set containing x. If z € A,
then U N A # () so there is nothing to prove. If z ¢ A, suppose U N A = (). Then
F := X\ U is closed, and A C F. By Remark 6.7, A C F, so that ANU = 0§,
whence z ¢ A. This is a contradiction.

Conversely, suppose every open set U containing = has the property that UNA # 0.
WTS: x € A. By definition,

z:ﬂ{F:FCXclosed, and A C F'}

So choose F' C X closed such that A C F. WTS: x € F. Suppose x ¢ F, then
x € U := X\ F, which is open. Hence, U N A # (). However, A C F, so this is
impossible. Hence, x € F' as required. O

Corollary: Let (X,d) be a metric space and A C X. Then z € A if and only if
there is a sequence (x,) C A such that x, — .

Proof. (i) Suppose there is a sequence (z,,) C A such that z,, — x, then, for any
open set U containing x,Je > 0 such that B(z,e) C U. Then IN € N such
that z,, € B(x,¢) for all n > N. Hence, UN A # (), and so z € A

(i) Conversely, suppose z € A. Fixn € Nand U,, := B(z,1/n). Then U,NA # ()
so Jx,, € A such that d(x,z,) < 1/n. It follows that =, — .

[l
Definition: Let (X, 7) be a topological space and A C X. A point x € X is said to

be a limit point of A if, for every open set U containing x, U N A contains a point
of A other than x. Equivalently,

z e (A\{r})
Write A’ for the set of limit points of A.

Examples:

(i) If A C R is a finite set, then A has no limit points. Similarly, Z C R has no
limit points.

(ii) Let 7 be the co-finite topology on R, and A = Z, and let x € R be any point.
If U is an open neighbourhood of z, then UN(Z\ {x}) # () because U contains
all but finitely many points of R. Hence, every point of R is a limit point of
7

(iii) If A =10, 1], then every point of A is a limit point of A.
(iv) If A={1/n:n € N}, then 0 is the only limit point of A.
Proof. If x € A’, then

(a) If x < 0, then U := (x — |z|/2,z + |z|/2) is a neighbourhood of z, and
UNA=0. Hence, x ¢ A’
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(b) If z > 1, then a similar argument shows that = ¢ A’.
(¢c) If 1 >2>0,and « ¢ A, then 3N € N such that

So if § = min{1/N —z,z — 5}, then U := (x — /2,24 6/2) is an open
neighbourhood of x such that UN A = ()

(d) If 1 > 2 >0 and x € A, then x = 1/N ofr some N € N. Once again,

1
< <
N+1 " SN_1

so a similar argument shows that « ¢ A’

(e) If x = 0, and U is an open set containing 0, then 36 > 0 such that
(—0,40) C U. Choose N € N such that 1/N < 9, so that 1/N € U, so
that U N (A\ {0}) # 0. Hence, 0 € A'.

Il
6.13. Theorem: A = AU A’

Proof. (i) AC AUA" Let F:= AUA and U := X \ F. We claim that U is
open. To see this, fix x € X \ F. Then by definition, 3 a neighbourhood V'
of x such that V N (A \ {z}) = 0. Furthermore, x ¢ A, so that V N A = 0.
Hence, V' C U, so that U is open. Hence, F' is closed, and since A C F, it
follows that A C F.

(i) AUA' Cc A: If x € A, then v € A. Also, if # € A, then x € A by definition.
Hence, AU A’ C A.

[
(End of Day 9)

6.14. Corollary: A set A is closed iff it contains all its limit points.
6.15. Example: Let X = R“ with the box topology, and

A={(z,) e X :2,>0 VneN}

and let 0 = (0,0,...). Then
(i) 0 € A: If U is any basic open set containing 0, then

v=][v.

where U, C R is open and contains 0. Hence, dz,, € U,, such that x,, > 0, so
that x := (x,) € ANU. Hence, ANU # 0.
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(ii) Let 2™ = (2I') be a sequence in A. Then consider the diagonal a,, := 2] > 0,
and the open set U, = (—ay,a,) C R. Define U := [[U,, so that 0 € U.
However, ™ ¢ U for all m € N. Hence, there is no sequence in A that
converges to 0.

(iii) Hence, the box topology on R* is not induced by a metric.
6.16. Definition: Let A ¢ X

(i) A is said to be dense in X if A = X. Equivalently, U N A # () for any open
set U C X

(ii) X is said to be separable if it has a countable dense subset.
6.17. Examples:
(i) Q is dense in R, so R is separable.

Proof. If x € R,§ > 0, then (z—6,2+0)NQ # 0. By Theorem 6.9, Q =R [

(i) If X,Y are topological spaces and A, B are dense in X and Y respectively.
Then A x B is dense in X x Y

Proof. U € X and V C Y are open, then UN A # (), V N B # (. Hence,
(U x V)N (A x B) # 0 as required. O

(iii) Hence, R™ is separable because Q™ is dense in it.
(iv) R¥ is separable with respect to the product topology because
A ={(z,) € R”: 3N € N such that z, = 0Vn > N, z, € Q}
is dense in R¥

Proof. Let
Av ={(zn) 12, € Qz, =0 Vn > N}

Then Ay = QN1 so Ay is countable. Hence, A = |J Ay is also countable.
Now if U is a basic open set in R¥, then write U = [[ U, where U,, = R for
alln > N. Then U;NQ # 0 for all 1 < i < N, so choose z; € U; N Q. Then

x=(x1,29,...,2x5,0,0,...)
is in UNA. Hence, UNA#(), so A=R¥ O
(v) R¥ with the box topology is not separable.

Proof. Suppose A = {y"} is a countable subset of R, we show that A is not
dense. For each n € N, write

Y= (YY)

Now, y@ € R, so choose an open set U, C R such that y ¢ U,. Then
U :=[]U, is open in R¥ and has the property that y" ¢ U for all n € N.
Hence, ANU = ) as required. ]
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6.18. Theorem: Let f: X — Y be a function. Then TFAE:
(i) f is continuous.
(ii) For every A C X, f(A) C f(4)
(iii) f~!(B) is closed in X whenever B is closed in Y.
Proof. (i) (i) = (ii): Suppose f is continuous and y € f(A), then WTS: y €
f(A). Write y = f(x) for some x € A, and choose an open set U such that
y € U. Then f~1(U) is an open neighbourhood of z. Hence, f~H(U)N A # 0,

so choose z € f~H(U) N A. Then f(z) € UnN f(A). Hence U N f(A) # 0 so
that y € f(A).

(i) (ii) = (iii): Suppose B is closed, WTS: A := f~(B) is closed. We have
f(A) = f(f~YB)) C Bsoifxc A, then

f(z) € f(A) Cc f(A)cB=B

Hence, v € f~1(B) = A. Hence, A C A whence A = A is closed.
(iii) (iii) = (i): Take complements and apply the hypothesis.

]

(End of Day 10)

7. Continuous Functions

7.1. Definition: A function f: X — Y is called a
(i) open map if f(U) is open whenever U C X is open.
(i) homeomorphism if f is bijective, continuous, and f~' : Y — X is also con-
tinuous. Equivalently, f is bijective, continuous and an open map.
7.2. Examples:

(i) f : R — R given by f(z) = 2z + 3 is a homeomorphism because g(y) :=
5(y — 3) is the inverse.
(i) Let f: (—1,1) = R given by f(z) = 2/(1—2?). Then f is a homeomorphism
with inverse
2y
L+ (1 + 4y?)1/2

9(y) =

(iii) Let Q@ =[-1,1]* C R? and D = {(z,y) € R?: 22 +y* < 1} be the square and
the disc in R?. Define f : D — Q by f(0,0) = (0, ) and if (z,y) # (0,0),

then
a2+ y? (

T ) = st o

z,Yy)
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and g : Q@ — D by ¢(0,0) = (0,0) and if (x,y) # (0,0), then

_mas{lel yl}

g\T,y) =
() =S

(iv) Let f:[0,1) — S' be f(t) = (cos(t),sin(t)). Then f is bijective and contin-
uous, but not a homeomorphism, because if U = [0,1/4), then p := f(0) €
f(U) is not an interior point of f(U).

7.3. Theorem (Rules for constructing Continuous functions) Let X, Y, Z be topological
spaces.

(i) (Constant function): If f: X — Y maps X to a single point yo € Y, then f
1s continuous.

(ii) (Inclusion): If Y C X has the subspace topology, then the inclusion map
t:Y — X is continuous.

(iii) (Composites): If f: X — Y and g : Y — Z are continuous, then go f : X —
Z is continuous.

(iv) (Restricting the domain): If f : X — Y is continuous and A C X has the
subspace topology, then f|4: A — Y is continuous.

(v) (Restricting the range): Suppose f : X — Y is continuous, and A C Y has
the subspace topology. If f(X) C A, then the function g : X — A given by
f is continuous.

(vi) (Expanding the range): Suppose f : X — Y is continuous, and Y C Z has
the subspace topology, then f : X — Z is continuous.

Proof. (i) If U is an open set, then f~1(U) = X if yg € U and f~1(U) = 0 if
Yo ¢ Y. In either case, f~1(U) is open.

(ii) If U C X is open, then :~}(U) = U NY, which is open in Y by definition.

(iii) HWI.

(iv) fla= f ot where ¢ : A — X is the inclusion map. So apply (iii).

)

(v) If U € A is open, then U = V N A for some open set V. C X. Then
g M U)= (V)N fY(A) = fH(V)nX = f~4V), which is open in X.

(vi) If U C Z is open, then f~Y(U) = f~1(U NY), which is open in X.

7.4. Theorem (Pasting Lemma):

(i) Let X = U, Us where U, is open, and let f : X — Y such that f|y,: Uy —
Y is continuous for each o € J. Then f: X — Y is continuous.
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(ii)) Let X = AU B where A and B are closed. Let f: A —-Y andg: B =Y
be continuous functions such that f(z) = g(z) for all x € AN B. Then

h:X — Y given by
: A
glx) :z€B
is a well-defined continuous function from X to Y.

Proof. (i) If V. .C Y is open, then

o =Urtovnt. = flpkv)

acd aed

(ii) If C C Y is a closed set, then [Check!]

which is closed.

7.5. Example:
(i) Define h: R — R by

defines a continuous function.

(ii) Let f,g: X — R be continuous functions. Then

hi(x) := min{f(z), g(x)} and hy(z) := max{f(z), g(z)}

are continuous functions [HW]|

(iii) (Part (ii) of the Pasting Lemma fails for infinitely many closed sets). Let
X ={1l/n:n e N} U{0}, and Ay = {0}, A4; = {1/i} for i € N. Define

0 :2=0
fi=40
1 :i#0

Then each f; is continuous, and A;NA; = ) so they agree on the intersections.
However, the function f : X — R obtained by pasting them is not continuous.

(End of Day 11)

7.6. Example: (Stereographic Projection). Consider S* = {(x,y,2) € R® : 224+y*+2% =
1}, and fix the north pole N = (0,0, 1). We claim

S2\ {N} ~ R?
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Consider the plane passing through the equatorial circle. Fix P = (z,y,2) € 5%
Draw a line from N through P, and let it meet the plane at the point @ := (u, v, 0).
Now taking ratios, we get

SEES

Solving, we get

B 2u .
x_1+u2+v2’u_1—z
B 2v Y
y_1+u2+v2’v_1—z

1 —u?—?

Sl
This gives a function
F:S*\{N} - R*and G : R* = S?\ {N}
Note that the map
(u,v) = 1+ u? + v

is continuous from R? — R\ {0} and
t— 1/t

is continuous from R\ {0} to R. Hence, by composition (See Example 2.7), both
F and G are continuous, and inverses of each other. Hence, they are homeomor-
phisms.

7.7. Remark: The stereographic projection has the property that it preserves angles
(such a map is called a conformal map). This is the same property that the
mercator projection also has.

8. The Quotient Topology

8.1. Remark: Many spaces are constructed from other spaces by gluing, ie. by identi-
fying parts of the space to obtain another space.

(i) A cylinder is obtained from a rectangle by identifying one pair of opposite
edges.

(i) The torus is obtained from a rectangle in R? by identifying both pairs of
opposite edges.
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(iii) Consider X to be the union of two discs in R?. If we identify the boundary
of one with the bounday of the other, we obtain the sphere S2.

8.2. Definition: Let X be a set.

(i) An equivalence relation on X is a subset R C X x X such that, for all
x,y,2 € X,

(a) (Reflexive): (z,z) € R
(b) (Symmetric): (z,y) € R= (y,x) € R
(¢) (Transitive): {(z,y),(y,2)} C R= (z,2) € R
We write z ~ y iff (z,y) € R.
(ii) For z € X, write
2] ={ye X:y~uzx}

for the equivalence class of x. Note that [z] N [y] = 0 or [x] = [y]. Hence the
equivalence classes partition X.

(i) Write X/ ~= {[z] : * € X} to be the set of equivalence classes of (X, ~),
and let p: X — X* be the map x — [z].

8.3. Examples:

(i) If X = |],c;Aa is a partition of X. Write x ~ y iff Ja € J such that
{z,y} C A,. Then this is an equivalence relation whose equivalence classes
are precisely the A,.

(ii) Let A C X. Define x ~ y iff {x,y} C A. Then ~ is an equivalence relation
whose equivalence classes are either A or singleton sets. In this case, we write

X/A:=X/~
(iii) If X = [0, 1], then define 0 ~ 1 and x ~ y if {x,y} # {0,1}. Then X/ ~ can
be thought of as gluing the end-points of X.
(iv) f X =R, writez ~y iff z —y € Z.
(v) If X =[0,1]%, write
(,0) ~ (2,1), for 0 <z <1
(0,y) ~ (L,y), for 0 <y <1

This gives equivalence classes

[(, 0)]
[(0,9)] =
[(0,0)] = {(0,0), (1,0),

ie. Opposite edges of the square are identified, and the vertices collapse to a
single point.
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8.4. Lemma: Let X be a topological space, and Y any set. Suppose p: X — Y is a

function. Define
v :={UcCY:p'(U) € rx}

Then
(i) 7y is a topology on Y,
(ii) p: X — Y is a continuous function.
(iii) If n is any topology on Y such that p : X — (Y, n) is continuous, then  C 7y
ie. Ty is the largest topology that makes p continuous.
Proof. (i) To see that 7y is a topology.
(a) D=pt(0) and X =p~1(YV),s00,Y € 7v
(b) If {U,: a € J} C 7y, then

p71<U Us) = Upil(Ua) € Tx

so YU, € 1v.
(c) Similarly, 7y is closed under finite intersection.
(ii) Obvious.

(iii) Suppose 7 is as above, then for any U € n,p ' (U) € 7x, so U € 1y by
definition. Hence, n C 7y.

]

8.5. Definition: Let X be a set and ~ an equivalence relation of X. Let p: X — X/ ~
be the map x — [z]. The quotient topology on X/ ~ is the topology induced by
p as in the above lemma. ie. A set U C X/ ~ is open iff

is open in X.
8.6. Examples:
(i) If X =1[0,1] with 0 ~ 1. Then U = {[z] : 0 < & < 1/4} is not an open set

because
U 2] =[0,1/9)u {1}

[z]eU
whereas U = {[z] : 0 <2z < 1/4, or 3/4 < x <1} is an open set.
(End of Day 12)

(i) Similarly, if X = [0,1]? with the relation in Example 8.3, then (draw picture
of open set bounded by an edge, and not having a counterpart on the opposite
edge)
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8.7. (Universal Property of Quotient Spaces): Let X be a set with an equivalence
relation ~, let X/ ~ be given the quotient topology, and let p : X — X/ ~ be the
natural map. Let Y be a topological space, and f : X — Y be a function such

that

v = f() = (@)

Then 3 a unique function f : X/ ~— Y such that

f=Tfop

Furthermore, f is continuous iff f is continuous.

Proof. (i) Given f: X — Y as above, define f: X* — Y by

f([z]) = f(x)

This is well-defined and satisfies f o p = f. Furthermore, if g : X / ~—Y is
any other function such that gop = f. Then gop = fop. But p is surjective,
so g = f, so f is unique.
Suppose f is continuous, then f = f o p is continuous by 8.4. Conversely,
suppose f is continuous. WTS: f is continuous. So choose an open set U C Y,
then WTS: f_l(U ) C X/ ~ is open. By definition, this is equivalent to asking
if p‘l(?fl(U) = (fop)~(U) is open in X, which is true.

O

8.8. Example:

(i)

Let X =[0,1] with 0 ~ 1, then X* = 5!

Proof. Define f: X — S' by f(z) = €*™*, then f is continuous, and f(0) =
f(1). Hence, we get a continuous function f : X/ ~— S! as above. We want
to construct an inverse g : ST — X/ ~. Write

Ay ={z€ 8" Im(z) >0}, and Ay = {z € S : Im(2) < 0}

Then A; and A, are closed sets and A1 N Ay = {£1}. We now use the pasting
lemma. Given z € A;,3 unique ¢t € [0,1/2] such that 2 = €*™. Define
hy : Ay — [0,1] by hy(z) = t. Similarly, if z € Ay, 3 unique ¢’ € [1/2,1] such
that z = e*™ | so define hy(z) = t'. Note that h; and hy are continuous, but
do not agree on A; N Ay because

hn(1) = 0, but ho(1) = 1

Now define g; : A; — X/ ~ by g; = po h;. Then g; are continuous (because
the h; are continuous), and they agree on A; N Ay. Hence by pasting lemma,
they define a continuous function g : S* — X/ ~. Now note that

go f([t]) = g(f(1)) = g(e’™) = [t]
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and similarly,

(fog)(z) =2 Vze St

Hence, f is a homeomorphism. O
(i) f X =R and x ~ y iff # —y € Z, then define f : R — S! by f(z) = &*™@.
As above, we get a homeomorphism R/ ~2 S*.

(iii) Similarly, if X = [0, 1)> with the equivalence relation in 8.3(v), then X/ ~2
St x S1. This is the torus.

(End of Day 13)

(iv) Let D* = {(x,y) € R*: 2* + y*> < 1}. Then S' C D% We claim

D?/St = 52

Proof. (a) Write D? = int(D?) U S'. Now define f; : R? — int(D?) by

1
filz,y) = m(%y)

Then f; is a homeomorphism. Let fy : R? — S?\ {N} be the inverse of
the stereographic projection, so f = fyo fi : int(D?*) — S?\ {N} is a
homeomorphism.

Define f: D? — S? by

B flz) € int(D?)
fl2) = {N cx e St

We claim that f is continuous. It suffices to check continuity on S*,
so fix g € S' and an open set U C S? containing N = f(x). Then
3§ > 0 such that Bgs(N,d) N S? C U. By definition of the stereographic
projection, 3R > 0 such that

V2 +y2 > R= fo(x,y) €U

Hence, 30 < r < 1 such that
\/m>rif(x,y)€U
Hence, f~1(U) contains the set
V={(z,y) € D*: 2 +¢* > r?}

which is open in D? and contains
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(¢) Thus, f is continuous. Clearly, x ~ y if and only if f(x) = f(y), so by
8.7, f induces a map

IE D2/S1 — 52

This map is both continuous and bijective. We will show later this is
enough to conclude that f is a homeomorphism.

O
8.9. Definition:
(i) Consider
St = {(331,.172, cee axn—i-l) S Rn+1 . ZQZ’? = 1}

Define T ~ 7 iff ¥ = —% (antipodal points are identified). Then we define
RP™:= 85"/ ~

This is called the real projective space.

(i) Consider X = [0,1]?, and define ~ by (0,y) ~ (1,1 — y). The quotient space
X/ ~ is called the Mobius strip.

(iii) Let X = [0,1]? and define ~ by (0,y) ~ (1,1 —y) and (x,0) ~ (z,1). The
quotient space X/ ~ is called the Klein bottle.
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Il1l. Properties of Topological Spaces

1. The Hausdorff property

1.1. Definition: A topological space X is said to be Hausdorff (75)if, for each z,y € X
and distinct point, then 3 open sets U,V such that z € U,y € V and UNV = ().

1.2. Examples:

(i)

(v)
(vi)

Every metric space is Hausdorff.

Proof. If x,y € X such that x # y, then 0 := d(x,y) > 0,s0let U = B(x,§/2)
and V = B(y,0/2) O

If X is Hausdorff, and Y C X, then Y is Hausdorff.

Proof. If xz,y € Y are distinct, then JU,V C X open such that x € U,y € V
and UNV =0.Solet '=UNY and V' =V NY. O

If X and Y are Hausdorff, then so is X x Y.

Proof. 1f (x1,y1) # (22,y2), then assume WLOG that 21 # x9, s0 3U,V C X
open such that UNV = ( and z; € U, 25 € V. Now consider U' = U xY, V' =
V xY. Then UNV'=0 and (z1,11) € U, (x2,y2) € V. O

Similarly if each X, is Hausdorff, then so is [[ X, in either the product or
the box topology.

If X has the indiscrete topology, then it is not Hausdorff.
If R has the co-finite topology, then it is not Hausdorff.

Proof. Any two open sets must intersect non-trivially. O]

1.3. Definition: A topological space X is said to be T} is singleton sets are closed in X.
Equivalently, if © # y are distinct points, then 3 an open set U such that x € U
and y ¢ U.

1.4. Examples:

(i)

(i)

If X is Ts, then it is T}

Proof. If x € X, then WTS: X \ {z} is open. But if y € X \ {z}, then by
the Hausdorff property, 3V open such that y € V and V' C X \ {z}. Hence,
X \ {z} is open as required. O

R with the co-finite topology is T7 but not T5
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Proof. 1If x € R, then by definition, R\ {z} is an open set, so {x} is closed. [

(iii) If X has the indiscrete topology and |X| > 2, then X is not T}

1.5. Theorem: Let X be Hausdorff, and (z,,) C X. Then (z,) can converge to atmost
one point in X.

Proof. If x, — x, and = # y, then choose neighbourhoods U,V such that = €
UyeVand UNV = (. Then IN € N such that x, € U for all n > N. Hence,
at most finitely many x; may lie in V. Hence, (x,) does not converge to y. O]

1.6. Example: Recall that if R has the co-finite topology, and x,, = n, then for any
open set U C R,dN € N such that x,, € U for all n > N. Hence, x,, — a for all
a € R.

(End of Day 14)
1.7. Remark/Example:

(i) Let X be a topological space and X* be a quotient space of X. Then a set
A C X* is closed iff
U [

[z]eA
is closed in X. Hence, X* is T} if and only each [z] is closed in X.

(ii) For example, all the spaces constructed in the previous section are T;. How-
ever, if A = Q C R, then R/Q (the topological space) is not T} because Q
is not closed in R. Hence, it is not true that if X is Hausdorff, then X* is
Hausdorff.

2. Connectedness

2.1. Definition: Let X be a topological space.

(i) A separation of X is a pair {U, V'} of non-empty open sets such that X = UUV
and UNV =0.

(ii) A space X is said to be connected if it does not have a separation.
(iii) A set A C X is called cl-open if it is both closed an open.

2.2. Lemma: X is connected iff the only sets in X that are both open and closed are
() and X (ie. X has no non-trivial cl-open sets)

Proof. Tf X has a non-trivial cl-open set U, then V := X\ U is cl-open, and {U, V'}
is a separation of X. Conversely, if X is not connected, then it has a separation
{U, V'} of disjoint non-empty sets. Then U is a non-trivial cl-open set. O]

2.3. Example:
(i) If X has the indiscrete topology, then X is connected.
(ii) If X has the discrete topology and | X| > 2, then X is disconnected.
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2.4.

2.5.

2.6.

2.7.

(iii) R is connected.
(iv) Q C R is not connected.

Lemma: If A C X is connected, and A C B C A, then B is connected. In
particular, A is connected.

Proof. If A C B C A has a separation {U,V'}, then U’ := U NAV :==VNAare
disjoint open subsets of A. Furthermore, U’ # () because U C A is open (by I1.6.9).
Similarly, V' # (), so {U’,V'} is a separation of A. This is a contradiction. O]

Theorem: Any interval in R is connected. In particular, R is connected.

Proof. By the previous lemma, it suffices to consider closed intervals Y = [a, b].
Suppose {U, V'} is a separation of Y, then U =U'NY,V =V'NY for some open
sets U, V' C R. Assume WLOG that a € U. Since U is open in Y, 39 > 0 such
that [a,a 4+ 6) C U. Define

c:=sup A, where A :={x € [a,b] : [a,z] CU}

Note that ¢ > a by the above argument. Claim: ¢ € U.

Proof. For each € > 0, ¢ — € is not an upper bound for the set A, so 4z € A such
that
c—e<x<c

Now [a,z] C U, so Hence, (¢ —€,¢+¢€) NU # (). Hence, ¢ € clg(U) by 11.6.9. But
Y is closed in R, so ¢ € ¢ly(U) (11.6.8). But U is closed in Y, so ¢ € U. O

Claim: ¢ = b.

Proof. Suppose ¢ < b, then since ¢ € U and U is open in Y, 36 > 0 such that
c,c+9) Cc UNY. Hence, [a,c+ 0/2] C U, which contradicts the fact that
¢ =sup A. Hence, c = b. n

Thus, [a,b] C U, so that V is empty. ]
Theorem: The only connected subsets of R are intervals.

Proof. Suppose Y C R is connected is not an interval. Then da < ¢ < b such that
{a,b} C Y and ¢ ¢ Y. Hence, U := (—00,¢) NY and V := (¢,00) NY form a
separation of Y. O

(End of Day 15)

Theorem: Let X be a topological space and {4, : « € J} be a collection of
connected sets such that
() Aa #0

Then A :=|J A, is connected.
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2.8.

2.9.

Proof. Let {U,V'} be a separation of A, then for any 5 € J,{U N Az, V N Az} are
two disjoint cl-open sets in Ag. By 2.2, either UN Ag = Ag or VN Ag = Ap. ie.
either Ag C U or Az C V. Let

Ji={aeJ: A, CcU}land Job={ae J: A, CV}

Since {U,V'} is a separation of A, it follows that J;, J are both non-empty. How-
ever, if x € NA,, then z € U N'V. This contradicts the fact that UNV =0. [

Theorem: Let X,Y be connected, then X X Y is connected.

Proof. Fixa € X,b €Y, thenY, :={a} xY =Y is connected, and X, := X x {b}
is connected. Furthermore, X,NY, = {(a,b)} # 0. Hence, X, UY, is connected by
the previous lemma. Now consider A, := X, UY,,b € Y. Then A, is connected,
and

X XY =(Ay =Y, #0
So by the previous theorem, X x Y is connected. O

Example:

(i) Let X = R¥ with the product topology, then X is connected.
Proof. Write

X ={(z1,29,...,2,,0,0,...):x; e R} C X

Then X,, = R", so X, is connected by the previous theorems and induction.
Furthermore, () X,, = {0} # (). Hence,

A= QXn

is connected. We claim: X = A. Fix # = (z,) € X and an open set U
containing x. Then we may assume that

U:zlo_o[lUn

where U, = R for all n > N. Then for
y = (r1,%9,...,25,0,0,...)

we have y € Aand y € U, so UN A # (). Hence, A = X, so X is connected
by 2.4 O

(ii) Let X = R“ with the box topology, then X is disconnected.
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2.10.

2.11.

2.12.

Proof. Let
A:={(z,) € R”:3IM € N such that |z,| <M Vn e N}
be the set of all bounded sequences. Then A # () and A # X. We claim that

A is cl-open, which would prove that R“ is disconnected.

e To see that A is open, fix z = (z,) € A, and consider

V= H(q:n -1z, +1)
n=1

Then V is open, and if y = (y,) € V, then
|Ynl < |zl +1

so (y,) € A.
e To see that A is closed, fix x = (z,) ¢ A, and

V= H(xn —1,z,+1)
n=1

If y = (y,) € V is bounded, then |z,| < |y,| + 1 would imply that z € A.
This is a contradiction, so V' C X \ A. Hence, X \ A is open, so A is
closed.

]

Theorem: Let f: X — Y be a continuous function. If X is connected, then so is
f(X) (ie. the continuous image of a connected set is connected).

Proof. If f(X) has a separation {U,V}, then {f~}(U), f~*(V)} would be open
sets, and

X=f(fX)=fUuV)=fH(U)Uf (V)
and
A ON V)= UnV)=f10) =0
so {f7HU), f~1(V)} would be a separation of X. Since X is connected, this cannot
happen. ]

Corollary: If X is connected, and ~ and equivalence relation on X, then X/ ~ is
connected.

(Intermediate Value Theorem): Let f : [a,b] — R be a continuous function and
d € R such that f(a) < d < f(b). Then Jc € [a, b] such that f(c) = d.

Proof. By the previous theorems, f([a,b]) is a connected subset of R, and is hence
an interval. In particular, f(a), f(b) € f([a,b]), so d € f([a,b]). This implies the
result. O
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2.13.

Theorem: R*" = R iff n =1
(It is true that R™ = R™ implies that n = m, but that is much harder to prove.)

Proof. Assume n > 1 and f : R® — R is a homeomorphism. We will show that
R™\ {0} is connected, so f(R™\ {0}) = f(R") \ {f(0)} must be connected. But

SR \A{0}) = FRM)\{f(0)} =R\ {c} = (=00, ) |_|(c,0)
which is disconnected. This is a contradiction O

(End of Day 16)

3. Path Connectedness

3.1.

3.2.

3.3.

3.4.

3.5.
3.6.

3.7.

Definition: Let X be a topological space.

(i) A path between two points x,y € X is a continuous function f : [0,1] — X
such that f(0) =z, f(1) = y.

(ii) A space X is said to be path connected if any two points in X are connected
by a path.

Remark: Every interval [a, b] is homeomorphic to [0, 1] (via the map ¢ + at + (1 —
t)b), so we may as well write f : [a,b] — X is the above definition.

Theorem: A path connected space is connected.

Proof. 1f {U,V'} is a separation for X, then choose x € U,y € V. By hypothesis,
there is path f : [0,1] — X such that f(0) =z, f(1) = y. Consider U’ := f~}(U)
and V' := f~1(V). Then these are non-empty open sets and [0,1] = f~1(X) =
FHU)YU f71(V), so [0,1] must be disconnected. This contradicts 2.5. O

Theorem: If f : X — Y is continuous, and X is path connected, then f(X) is
path connected.

Proof. Given u,v € f(X), write v = f(x),v = f(y) for some z,y € X. Let
g :[0,1] — X be a path from z to y, then f o g is path from u to v. O

Corollary: If X is path connected, then any quotient space on X is path connected.

Definition: A set X C R" is said to be convex if, for any x,y € X and 0 <t < 1,
the point z :=tz + (1 —t)y € X.

Lemma: Any convex subset of R" is path connected. In particular, R", and every
(closed or open) ball in R™ is path connected.

Proof. Consider the straight line path f :[0,1] - X by f(t) :=tz + (1 —t)y and
check that this is continuous. O
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3.8.

3.9.

3.10.

Let X be a topological space and {4, : @ € J} be a collection of path connected
sets such that, for any two o, 5 € J, 3y € J such that

AuN A, #Dand Agn A, #10)

Then A :=J A, is path connected.

Proof. Fix z,y € A, then o, 8 € J such that z € A,,y € Ag. Let v € J asin
the hypothesis, and z; € A, N Ay, 2z, € AgN A,. Since A, is path connected, 3f; :
0,1] = A, continuous such that f;(0) =z, f1(1) = 2;. Similarly, 3f; : [1,2] — A,
such that fy(1) = 21, f2(2) = 29, and 3f5 : [2,3] — Ap such that f5(2) = 2o and
f5(3) = y. Define h : [0,3] — A by

h(z) =2 folx) :1<2<2

fole) 20 <3
Then h is continuous by pasting lemma and I11.7.3, and h(0) = z, h(3) = y. So by
3.2, A is path connected. [

Examples:
(i) If n > 1, then R™\ {0} is path connected.

Proof. For each 1 < i <n, let
A ={7e€eR":2; >0}, and B, ={T € R" : z;; < 0}

Then A; and B; are convex (check!) and satisfy the hypotheses of 3.8. Hence,

R"\ {0} = JAiuB;
is path connected. O
(i) 8™ C R™! is path connected.

Proof. The map g : R"™ \ {0} — S™ given by z + x/d(x,0) is a continuous
surjective map. So apply 3.4. O]

(iii) The following quotient spaces are all path connected: The Torus, The Mobius
strip, the Klein bottle, the real projective space.

Theorem: If each X, is path connected, then [[ X, is path connected with the
product topology.

Proof. Given = (2,),y = (Ya) € X := [[ X4, for each g € J, there is a path
fs : [0,1] — Xz such that f(0) = z3 and f(1) = yz. Define f : [0,1] — X by
f(t) = (fa(t)), then f is continuous because each component of f is continuous.
And clearly f(0) =z, f(1) =y, so X is path connected. ]
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3.11.

3.12.

3.13.

Remark: Note that the above result is not true with the box topology: R“ is not
connected with the box topology, so cannot be path connected. (See Example 2.9)

(End of Day 17)
Example (The Topologists’ Sine Curve): Define

S = {(z,sin(1/x)) : 0 <z < 1} C R?
and let X = S. Then note that
X =SuU{0} x[-1,1]
Then X is connected, but not path connected.

Proof. The map f : (0,1] — S given by x +— (x,sin(1/x)) is continuous, and (0, 1]
is connected. Hence, S is connected (Note: In fact, S is path connected). By
Lemma 2.4, X is connected. We claim there is no path from (0,0) to any point of
S. Suppose f:[0,1] — X is such a path, consider

A={tel0,1]: f(t) € {0} x [-1,1]}

and let a := sup(A). By hypothesis, a < 1. Consider f|q,: [a,1] — X and
write f(t) = (z(t),y(t)). Then x(0) = 0 and z(¢) > 0 for all £ > a, so that
y(t) = sin(1/x(t)) for all ¢ > a. We claim: 3(t,) C [a,1] such that ¢, — a and
y(tn) = (_1)71‘

(—1)™. By the

For n € N fixed, choose 0 < u < z(a + 1/n) such that sin(1/u) =
2) = (ta, (—1)"). This

intermediate value theorem, Ja < ¢, < a+1/n such that f(t
proves the claim.

Hence, t, — 0 and f(t,) = (tn, (—1)™) does not converge. Hence, f is not contin-
uous. [

Remark:

(i) The above example also shows that even if A is path connected, then A may
not be path connected (compare with 2.4)

(ii) There are two other examples similar to the topologists’ sine curve:

(a) The deleted infinite broom: For n € N, let L,, denote the line segment in
R? connecting (0,0) to (1,1/n). Let

S = G L,, and X := 5\ {(0,1)}

n=1

Then S is called the infinite broom, and X the deleted infinite broom.
Once again, X is connected, but not path connected.
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(b) The deleted comb space: Define

o

D :=([0,1] x {0}) U | J{1/n} x [0,1]) U [0,1]

n=1

and X := D\{(0,1)}. Then D is called the comb space, and X the deleted
comb space. Once again, X is connected, but not path connected.

(End of Day 18)

4. Local Connectedness

4.1.

4.2.

4.3.

4.4.

Definition: Let X be a topological space. Write x ~ y if there is a connected
subspace A C X such that {z,y} C A.

Lemma: The above relation is an equivalence relation, and the equivalence classes
are the maximal connected subsets of X (ie. if C' is an equivalence class, and B
is a connected set such that C' C B, then C' = B). These equivalence classes are
called the connected components of X.

Proof. That this is an equivalence class is easy to see. For any = € X,

2] ={ye X 2 ~y}
= {y € X : A, connected, such that {z,y} C 4,}

:UAy

y€[z]

Each A, is connected, and (A4, D {z} # 0, so by 2.7, [z] is connected. Further-
more, if B is a connected set such that [x] C B, and y € B, then {z,y} C B, so
by definition, y € [z]. Hence, [z] is maximal as well. O]

Definition: Let X be a topological space. Write x ~y, y if there is a path f :
[0,1] — X such that f(0) ==z, f(1) = v.

Lemma: The above relation is an equivalence relation, and the equivalence classes
are the maximal path connected subsets of X. These are called the path compo-
nents of X.

Proof. To show that ~, is an equivalence relation:
(i) @ ~ x: Consider the constant path

(i) 2 ~y =y ~ax If f:]0,1] - X is such that f(0) = =z, f(1) = y, take
g(s) := f(1 —s), then g is continuous, g(0) =y, g(1) = y.

(iii) If z ~ y,y ~ z: To show that x ~ z, simply use the pasting lemma as in 3.8
to join the two paths.

44



That the equivalence classes are path connected, and maximal is exactly as in
4.2. m

4.5. Examples:
(i) If X is connected, it has only one component.

(i) If X = @Q, then the connected components are singletons.

Proof. If A C X has at least two points, then Ja,b € A and z € R\ Q such
that @ < = < b. Hence, U := (—o0,2) N A and V := (z,00) N A forms a
separation of A, so A is disconnected. Hence, the only connected sets are
singletons. O]

4.6. Definition.

(i) A topological space X is said to be locally connected if, for each x € X and
each open set U 3 x,d an open neighbourhood V' C U of x that is connected.

(ii)) We define locally path connected similarly.
(End of Day 19)
4.7. Examples:

(i) Locally path connected implies locally connected.
(i) A=(0,1)L(2,3) is locally (path) connected, but not connected.

(iii) If A={0}uU{l/n:n € N} CR, then A is not locally connected because, for
any 1 > 6 > 0,B(0,0) N A is a finite set, and hence disconnected.

(iv) However, connected does not imply local connectedness: Consider the topol-
ogists’ sine curve X from 3.12, and z = (0,1) € X. Fix 0 < 1 and consider
U = B(xz,6)NX. Then U is a disjoint union of infinitely many line segments
U = UL,. Each such L, is a cl-open set in U, so U is disconnected.

(v) Similarly, path connectedness does not imply local path connectedness: De-
fine

X:f]{(%y)) verbU{00) e RU{(@.0) v e )

Then X is clearly path connected, but if z = (0,1) € X, and § < 1, then
U = B(x,0) N X is once again a disjoint union of line segments. Hence, U is
not path connected either.

4.8. Lemma:

(i) If X is locally connected, then components are open sets. Hence each com-
ponent is cl-open.

(ii) If X is locally path connected, then each path component is open in X.
Hence, each path component is cl-open.
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Proof. We prove (i), because (ii) is identical: If C'is a component of z and x € C,
then 3 a connected neighbourhood U of z. It follows that U C C, so C' is open.
Now if each component is open, and X is a disjoint union of components, then
each component must also be closed. O

4.9. Theorem: Let X be a topological space.
(i) Every path component is contained in a connected component of X.

(ii) If X is locally path connected, then the components and path components
coincide.

Proof. (i) is obvious, so we prove (ii): Let P be a path component, and x € P,
then P C C,, the connected component of z. Also, P is a cl-open set in X, so P
is cl-open in C}.. Since C, is connected, it follows that P = C,. O

4.10. Corollary: If X is connected and locally path connected, then it is path connected.
4.11. Examples:
(i) If X C R™ is open, then it is locally path connected.

Proof. Let x € X, then 3 a n-cell V := [[""_,(a;,b;) C X such that z € V.
But each (a;,b;) C R is path connected by 3.7, so V is path connected by
3.10. n

(ii) More generally, if X is locally connected, and ¥ C X is open, then Y is
locally connected.

(End of Day 20)

5. Compactness

5.1. Remark: Consider some nice properties of the interval [0, 1]:
(i) If f:]0,1] — R is continuous, then f is bounded.

(ii) If f : [0,1] — R is continuous, then it is uniformly continuous. ie. For all
€ > 0,30 > 0 such that |x — y| < ¢ implies |f(x) — f(y)| < e.

(iii) Every sequence in [0, 1] has a convergent subsequence.

Note that these properties are also shared by other sets, for instance, finite
sets. Compactness is a generalization of finiteness in the context of topological
spaces.

(iv) Example: If f: (0,1) — R is given by f(x) = 1/z, then f is not uniformly
continuous, and is not bounded. ie. [0, 1] should be compact, but (0, 1) should
not.

5.2. Definition: Let X be a topological space.
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5.3.

0.4.

2.5.

5.6.

(i) A collection U of subsets of X is called an open cover for X if every member
of U is open, and, for each x € X, 3U € U such that x € U.

(ii) Let U and V be open covers of X. We say V is a subcover of U if V C U.
Examples:

(i) {X} is an open cover for X. Similarly, the topology 7 (or any basis of 7) is
an open cover for X.

(ii) If U is an open cover for X, and W C 7 is any collection of open sets, then
U U W is an open cover, and U/ is a subcover of U U W.

(iii) If X is a metric space. For each x € X, choose 6, > 0. Then U := {B(z,d,) :
xr € X} is an open cover for X.

(iv) If U is an open cover for X, and V is an open cover for Y, then W := {U XV :
UelU,V €V} is an open cover for X x Y.

(v) If U is an open cover for X, and X* is any quotient space of X, then V :=
{m(U) : U € U} is an open cover for X* (where 7 : X — X* denotes the
quotient map).

Definition: A topological space X is said to be compact if, whenever U/ is an open
cover for X, 3 finitely many elements V := {U;,Us, ..., U,} C U such that V is an
open cover for X. ie. Every open cover of X has a finite subcover.

Examples:

(i) Any finite set is compact.

Proof. If U is an open cover for X, then & C P(X), which is itself finite.
Hence, U is finite. O]

(i) (0,1) is not compact.

Proof. Let U, := (1/n,1), then {U,} is an open cover without a finite sub-
cover. O

Theorem: [0, 1] C R is compact.

Proof. Let U be an open cover for [0, 1]. Since 0 € [0,1],3U € U such that 0 € U.
Hence, 36 > 0 such that [0,0) C U. Now define

A:={x €[0,1] : [0, 2] is contained in finitely many elements of U}
Then, by the above argument, §/2 € A. So define
c:=sup(A)

We claim that ¢ = 1. If ¢ < 1, then ¢ € [0, 1], so 3V € U such that ¢ € V. Hence,
36 > 0 such that (¢—d,c¢+9d) C V. Since ¢ = sup(A), ¢ — ¢ is not an upper bound
for A. Hence, 3z € A such that

c—o<z<c
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5.7.

0.8.

5.9.

Now, [a, z] is covered by finitely many members of U, say {Uy, Us, ..., Ux}. Also,
[z,c¢+6/2] C (¢—0d,c+0) C V. Hence, [a,c+3/2] is covered by {Uy, Us, ..., U, V}.
In particular,

c+d/2e€ A
contradicting the fact that ¢ = sup(A). Thus, ¢ = 1, and the proof is complete. [
Theorem: A closed subspace of a compact space is compact.

Proof. Let Y C X be a closed and X compact. Let U be an open cover for Y.
Then for each V € U,3V’ C X open such that V =V'NY. Consider

U = :veup| fx\v}
This is an open cover for X, so has a finite subcover ¥V C U’. Consider

(WNY:W eV

then this is a cover of Y that is finite, and a subcover of U [Check!] O

(The tube lemma): Let X,Y be topological spaces with Y compact. Let xy € X,
and suppose N C X X Y is open such that

.T()XYCN
Then 4W C X open such that xo € W and
W xY CN

Note: A set of the form W x Y is called a tube about zqg X Y

Proof. For each (z9,y) € zg X Y, choose a basic open set U, x V, such that
(xo,y) € U, x V, and
U, xV,CN

The collection {U, x V,, : y € Y} forms an open cover for zy x Y =Y. Hence, it
has a finite subcover

{lem,UQX‘/Q,...,UnXVn}

Consider W := U, NU;N...NU,, thenif z € W and y € Y, then 31 < i < n such
that (zo,y) € U; x V; C N. Hence, (z,y) € U; x Vj, so

(x,y) € N

SoW xY CN [
(End of Day 21)

Theorem: The finite product of compact spaces is compact.

48



5.10.

5.11.

Proof. By induction, we prove it for two spaces, so let X,Y be compact, and let
U = {U,} be an open cover for X x Y. Fix zq € X, then U is an open cover for
xo X Y. Since zp X Y =2 Y is compact, it has a finite subcover {Uy, Us, ..., U,}.
Let

NZ:U1UU2U...UUn

then IV is an open set containing xo x Y. Let W C X be an open set such that
WxY CN

as in the previous lemma. Then W x Y is covered by finitely many sets of U,
namely {Uy, Uy, ..., U,}.

Hence, for each x € X, there is an open neighbourhood W, of x such that W, x Y
is covered by finitely many elements of . Now the collection {W,, : x € X'} forms
an open cover for X, so has a finite subcover {Wy, W5, ... W, }. Now each W; x Y’
is covered by finitely many elements of U, so

CJVVZ-XY
=1

is covered by finitely many elements of U/. But

XXYCOWiXY

i=1
so this completes the proof. O

Definition: A collection C of subsets of X is said to have the finite intersection
property if, for each finite subcollection {Cy, Cs, ..., C,} C C, the intersection

cinCyn...NnC,

is non-empty.

Theorem: Let X be a topological space, then X is compact iff, for every collection
C of closed sets with the finite intersection property,

(N C#0
cec

Proof. Define U by
U={X\C:Cec}

Then

(i) U is a collection of open sets.
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5.12.

(ii) U is an open cover for X if and only if

(NCc=0

ceC

(iii) A finite subcollection {Uy, Us, ..., U,} of U covers X if and only if, the cor-
responding subcollection C; := X \ U; has the property that

c,NCyn...NC, =10

Now suppose X is compact: If C has the finite intersection property and

(c=0

ceC
then U is a cover for X. By compactness, it must have a finite subcover. By (iii),

this would violate the finite intersection property.

The converse is similar. O

Corollary: Let X be a compact topological space. Let {C;} be a sequence of
non-empty closed subsets of X such that

CiDCy;D...DC;DC;1 D ...

(Such a sequence is called a nested sequence of closed sets.) Then

() Cu#0

neN

6. Compact Subsets of R”

6.1.

Example: Fix real numbers a; < b; for 1 <17 < n, then

n

X = H[ai,bi]

is compact in R™. Such a set is called a n-cell.

Proof. Any set of the form [a,b] C R is homeomorphic to [0, 1] via the map
testh+(1—t)a

Hence, [a,b] is compact. Hence, X is compact by Theorem 5.9. O
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6.2.

6.3.

6.4.

6.5.

Definition: Let X be a metric space and ¥ C X. Y is said to be bounded if
dM > 0 such that
d(z,y) <M Vrz,yeY

By the triangle inequality, this is equivalent to: Jzo € X and M’ > 0 such that

d(zo,y) <M VyeVY

Lemma: Let X be a metric space and Y C X be a compact set, then Y is bounded.

Proof. Fix o € Y. Then consider
U :={B(zo,r)NY :7 >0}

If y € Y, then 3r > 0 such that d(zg,y) < r, so U is an open cover for Y. Hence
it has a finite subcover {B(zg, 1) NY, ..., B(xg,r,) NY}. Let

M :=max{r;:1<i<n} >0
Then for any y € Y,31 < i < n such that y € B(zg,r;) NY, so d(zo,y) <1r; < M.
Hence, Y is bounded. O

Recall: Let X be a set. Two metrics d; and dy on X are said to be equivalent if
JK, M > 0 such that

Kdl(x7y) SdQ(‘ray) SMdl(l',y) V%?JGX

Note: If a set Y C X is bounded with respect to di, then it is bounded with
respect to dy and vice versa.

Lemma: Let X be a Hausdorff space and Y C X compact, then Y is closed.

Proof. If # ¢ Y, then for each y € Y, 3 open sets U, and V,, such that z € U,y € V,
and U, NV, = 0. Now {V, : y € Y} is an open cover of Y, which must have a
finite subcover {V,,, V,,,...,V,, }. Set

Then U is open, z € U, and UNV,, =0 for all i. Hence, UNY =0, s0U C Y,
whence Y¢ is open. O

(Heine-Borel Theorem): Let X C R™, then X is compact if and only if X is both
closed and bounded (wrt the Euclidean metric).

Proof. 1f X is compact, X is closed and bounded by the previous two lemmas. If
X is closed and bounded, and is non-empty, fix zq € X, then

X—x9p:={a—2p:a€ X}
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6.6.

is homeomorphic to X and contains 0. To show that X is compact, it suffices to
show that X — zq is compact, so we may assume WLOG that 0 € X. Since X is
bounded with respect to the Euclidean metric, it is bounded with respect to the
sup-metric because they are equivalent (Example 11.2.14). Hence, 3M > 0 such
that

max{|y;| 1 1 <i<n}=d(0,y) <M VyeX

Hence, if y € X, then |y;| < M for all 1 <i <n. ie. X is contained in the set

n

Z = [I-M, M]

i=1

Now Z is compact because it is an n-cell. Since X C Z and X is closed in R", X
is closed in Z (Why?). Hence X is compact by 5.8. O

Example: Let X = Z with the discrete metric
1 tx#y
d(z,y) = {
0 :z=y

Then X is closed and bounded, but not compact. Hence, the above theorem does
not hold for all metric spaces.

(End of Day 22)

7. Continuous Functions on Compact Sets

7.1.

7.2.

7.3.

Theorem: Let f: X — Y be a continuous function, and X compact. Then f(X)
is compact.

Proof. If U is an open cover for f(X), then
V={fYU):UcUu}

is an open cover for X [Check!]. Let {f~'(U;), f~*(Us),..., f 1 (U,)} be a finite
subcover of V, then {U;,Us,...,U,} is a finite subcover of f(X) [Check!]. O

Theorem: If X is compact and X™* is a quotient space of X, then X* is compact.

Proof. The quotient map 7 : X — X* is surjective and continuous, so the previous
theorem applies. O

Definition: Let f: X — R be a function.
(i) We say that f is bounded below if I3m € R such that f(z) > m for all z € X.
(ii) Similarly, we define f to be bounded above.

(iii) If f is bounded below, we say that f attains its infimum at a point xy € X if

flzo) < f(x) VeeX
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7.4.

7.5.

7.6.

7.7.

7.8.

(iv) We say that f attains its supremum at z; if
f(z) < f(z) Vee X
The points xy and x; (if they exist, and they need not be unique) are called
extreme points of f.
Example:
(i) Let f:(0,1) = R be given by f(x) = 1/z, then f is not bounded above.

(ii) Let f : R — R by f(z) = e, then f is bounded below, but it does not
attain its infimum 0.

(Extreme Value Theorem): Let X be compact and f : X — R continuous, then
dxg, x; € X such that

f(xo) < f(z) < flz1) VeeX

Proof. Since f(X) is compact, by the Heine-Borel theorem, it is closed and bounded.
In particular,
m :=inf{f(z) 1z € X}

exists and is finite. m is a limit point of f(X) and f(X) is closed, so m €
f(X). Hence, x5 € X such that f(zg) = m. The proof for the upper bound is
analogous. O]

Theorem: Let f : X — Y be a continuous, bijective function. If X is compact,
and Y is Hausdorff, then f is a homeomorphism.

Proof. We want to show that f is an open map. It suffices to show that f is a
closed map. If F' C X is closed, then F'is compact. Hence, f(F) is compact in Y,
so f(F) is closed in Y. O

Example:

(i) This completes the proof from Example I1.8.8,
D2/Sl ~ 5«2
(ii) In the Mid-Sem Exam (Q. 5), we had

A={(z,y): 1 <22 +y?> <2}

and we had constructed a continuous bijective function f : S' x [1,2] — A.
Note that S* x [1, 2] is compact and A is Hausdorff, so f is a homeomorphism.

Definition: Let (X,d) be a metric space and A C X. Given x € X, define the
distance of z from A as

d(z,A) .= inf{d(z,y) : y € A}
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7.9. Lemma: The function p : X — R given by p(z) := d(z, A) is a continuous function.
Furthermore, p(z) = 0 if and only if x € A

Proof. (i) Ifx,20 € X,y€ A
d(x17A> S d(‘rl)y) S d(‘rlax2> + d(l’g,y)
This is true for all y € A, so
d([Eh A) S d(l’l, IL'Q) + d(l’g, A)
SO
d(l’l, A) — d(ZL'Q,A) S d(ﬂ?l, 1'2)
By symmetry, d(za, A) — d(z1, A) < d(x1,22) so

|d(x1, A) — d(z2, A)| < d(xq,22)

From this continuity follows [Why?|

(ii) Suppose x € A, then 3y, € A such that d(z,y,) — 0. Hence, d(z, A) = 0.
Conversely, if d(x, A) = 0, then for each n € N, 1/n is not a lower bound for
the set

{d(z,y):y € A}
So 3y, € A such that d(z,y,) < 1/n. Clearly, y, — z,s0x € A
]
7.10. Definition: Let (X, d) be a metric space and A C X. The diameter of A is defined

as
diam(A) := sup{d(x,y) : x,y € A}

7.11. (Lebesgue Number Lemma): Let U be an open cover of a metric space (X,d). If
X is compact, 3§ > 0 such that if A C X such that diam(A) < §, then U € U
such that A C U.

Any number § as above is called a Lebesgue number for the cover U. Note if ¢ is
a Lebesgue number for U and ¢’ < §, then ¢’ is also a Lebesgue number for U

Proof. Let {Uy,Us,...,U,} be a finite subcover of U and define A; := X \ U;.
Define f: X — R by

f@) = > (e, A

Then f is continuous by the previous lemma, so it must attain its minimum at
some point x € X. Now, 3U; such that = € U;, so © ¢ A; so by the previous
lemma, d(z, A;) > 0, whence f(z) > 0, so if § := f(z), then

flyy =6 VyeX
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7.12.

7.13.

7.14.

Now if A is a set of diameter less than ¢, then fix xy € A, then
AC B(.Io, (5)

Now, assume that d(x, A,,) is the maximum of {d(xo, A1), d(z¢, A2), . .., d(zo, An)}.
Then
6 < f(xo) < d(o, Crn)

Hence, for each y € C,,, d(xo,y) > §, whence
B(xg,0) c X\Cp, =U,, = ACUp,
[
(End of Day 23)

Definition: Let f : X — Y be a continuous function between two metric spaces.
We say that f is uniformly continuous if, for each € > 0,30 > 0 such that

dx(x1,29) < d = dy(f(x1), f(x2)) <€

Example: Let f : (0,1) — R given by f(z) = 1/z, then f is not uniformly
continuous.

Theorem: Let f : X — Y be a continuous function between metric spaces. If X
is compact, then f is uniformly continuous.

Proof. Consider ¢ > 0 and set
V:={B(y,¢/2) :y €Y}
Then V is an open cover for Y, so
U:={f"(Bly.c/2) yeY}

is an open cover for X. Let 6 > 0 be a Lebesgue number for /. Then if 1,25, € X
such that dx(z1,x2) < 6, then A := {1, 22} has diameter < §, so Jy € Y such
that

AC f7H(B(y,¢/2))
Hence, {f(z1), f(x2)} C B(y,€/2) so by the triangle inequality,

dy (f(z1), f(22)) <€
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8. Compactness in Metric Spaces

8.1.

8.2.

8.3.

8.4.

Definition: Let X be a topological space.

(i) X is said to be sequentially compact if, for any sequence (z,) C X, there is
a subsequence (x,, ) of (z,) that converges to a point in X.

(ii) Recall: If A C X. A point x € X is called a limit point of A if, for each open
set U containing z, U N (A \ {z}) # 0

(iii) X is said to be limit point compact if every infinite subset of X has a limit
point in X.

Lemma: If X is compact, then it is limit point compact.

Proof. Let A C X be an infinite set, and suppose A has no limit point. Then, for
each x € X, there is an open set U, containing x such that U, N (A \ {z}) = 0.
Then, U := {U, : * € X} is an open cover for X which has a finite subcover
{Us,,Usy,...,Us, }. Then each U,, contains atmost one point of A (possibly x;).
Hence A is finite. ]

Example: Let Y = {1,2} with the indiscrete topology 7y = {{}, Y}, and let

X =NxY
with the product topology, where N is given the usual discrete topology. Then X
is limit point compact but not compact.

Proof. If A C X is any non-empty set, and assume that (n,1) € A. If U is an open
set containing (n,2), then U contains a basic open neighbourhood W = {n} x Y,
SO

(n,1) e W (A\{(n,2)})
whence UN (A\ {(n,1)}) # 0.

However, the open cover {{n} x Y : n € N} does not have a finite subcover, so X
is not compact. O

Lemma: Let X be Hausdorff, A C X and x € X a limit point of A. Then for any
open neighbourhood U of z, U N (A \ {z}) is infinite.

Proof. Suppose UN(A\{z}) is finite, then write UNA = {ay, as, ..., a,}. For each
1, there are open sets V;, W; such that « € V; and a; € W; such that V; N W; = 0.

If .
V.= m Vi
i=1

Then V is an open set containing z and V N (A \ {z}) = (), so x cannot be a limit
point of A. n
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8.5.

8.6.

8.7.

8.8.

Definition: A metric space X is said to be totally bounded if, for each ¢ > 0, there
are finitely many points {z1,zs,...,2,} C X such that

{B(zj,€) : 1 <i<n}
covers X. Such a collection of open set is called an e-net of X.

Lemma: If X is sequentially compact, then it is totally bounded.

Proof. Suppose X is not totally bounded, then Je > 0 for which there is no finite
epsilon net. In particular, if z; € X, then X # B(x1,¢€), so dry € X such that

d(xi,m9) > €
Now, {B(x1,¢€), B(xs,€)} is not an open cover for X, so dxz € X such that
d(xs,x1)e and d(x3,z2) > €
Thus proceeding, we obtain a sequence (x,) C X such that if m > n, then
d(Xp, Ty) > €

Such a sequence cannot have a convergent subsequence [Why?| contradicting the
fact that X is sequentially compact. O

(Lebesgue Number Lemma - II): If X is a sequentially compact metric space and
U is an open cover for X, then 36 > 0 such that, for any y € X, 3U € U such that
B(y,e) C U.

Proof. Suppose U does not have a Lebesgue number, then 6 = 1/n does not work.
So dz,, € X such that B(z,,1/n) is not contained in any single member of U.
Then (z,) has a convergent subsequence z,, — x. Now x € X, so 3U € U such
that © € U. Choose § > 0 such that B(x,d) C U, then Iny € N such that

d(zp,,r) <6/2 and 1/ny < 6/2
Then by the triangle inequality
B(zy,,1/ng) C B(z,0) CU

This contradicts the assumption on the z,,. O
(End of Day 24)

Theorem: If X is a metric space, then TFAE:
(i) X is compact
(ii) X is limit point compact.

(iii) X is sequentially compact.
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8.9.

8.10.

Proof. (i) = (ii): Lemma 8.2.

(i) = (iii): If (z,,) C X isasequence, then let A := {z,}. If A is finite, then there
is a subsequence (n;) C N such that z,, is constant, and hence convergent.
Suppose A is infinite, then it has a limit point x. In particular,

B(a, 1) N (A\{z}) # 0
so choose ny € N such that z,, € B(z,1). Now,
B(x,1/2) N (A\{z}) # 0
By the previous lemma, B(z,1/2) N (A\ {z}) is infinite. In particular,
B(z,1/2) N (A\ {z,z1, 29, ..., xp, }) # 0

So dny > ny such that

Tny, € B(z,1/2) N (A\ {z})
Thus proceeding, for each k& € N, we choose n; > n;_; such that

Tp, € B(z,1/k) N (A\ {z})
Now d(z,z,,) < 1/k, so x,, — .

(iii) = (i): If X is sequentially compact, choose an open cover U of X. By the
Lebesgue Number Lemma I1, 36 > 0 such that any ball of radius 4 is contained
in a single member of 4. However, X is totally bounded by Lemma 8.6, so
finitely many balls {B(z1,0), B(z2,9), ..., B(x,,d)} cover X. Hence, finitely
many members of U cover X.

]

(Bolzano-Weierstrass): Every bounded sequence in R™ has a convergent subse-
quence.

Proof. 1f (x,,) C R™ is bounded, then IM > 0 such that

n

(xm) C [J[-M M) = Z

i=1
Z is compact, so it is sequentially compact. O

Example: Let
X = {(z,) € RY: (x,) is bounded}

Define a metric on X by
d(z,y) := sup{|x, — yn| : n € N}

This is a well-defined metric on X. Now consider e” to be the standard basis
vector in X. Then d(e™,0) = 1, so {e"} is a bounded sequence in X. However, e"
does not have a convergent subsequence because d(e",e™) = 1 if n # m.
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9. Local Compactness

9.1. Definition: A topological space X is said to be locally compact if, for each = € X,
there is an open neighbourhood V' of x such that V' is compact.

9.2. Examples:
(i) Every compact space is locally compact.

(ii) R is locally compact because every closed interval [a,b] = (a,b) is compact.

(iii) @Q is not locally compact because if V' C Q is open, then Ja < b in R such
that (a,b) NQ C V. If s € R\ Q is an irrational such that a < s < b, then
there is a sequence (z,,) C V that converges to s in R, so (x,) cannot have a
convergent subsequence. Hence, V cannot be compact.

(iv) R¥ with the product topology is not locally compact, because if V' is a non-
empty open set, then V' contains an open set of the form

(a1,b1) X (ag,bg) X ... X (an,by) X RXR X ...

If V were compact, then
[a1,b1] X [ag, ba] X ... X [an,by]) X RXR x ...

would be compact, but it is not [Check! Use the fact that R is not compact].
9.3. Theorem: Let X be a topological space, then 3 a compact space Y such that
i) XCY
(ii) Y\ X is a singleton.
Proof. Define Y := X U {oco} as a new set, and define 7y as the collection of sets
U satisfying one of the two following properties:
(i) U C X is open in X
(ii) co € U and Y \ U is compact in X
We show that 7y is a topology on Y, and that Y is compact.
(i) 0 € 7y because ) € 7x
(i) Y € 7y because Y \ Y = ) is compact in X
(iii) If {U,} is a collection of members of 7y, we set U := | J U, consider two cases:
(a) If co ¢ U, then U € 7x so U € 1y

(b) If oo € U, then choose I C J such that co € Ug iff B € I,s0 Ug =Y \Cj
for all 8 € J, where C3 C X is compact, then

Juv.= (U(Y\C@) U (U U7>

a€eJ pel yel¢
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Now (3¢, Cp is compact, so

Uv\cs

Bel

isin 7y, so U € 1y.
(iv) If Uy, Us € 1y, we WTS: Uy N U, € 1y. Consider cases again:
(a) If oo ¢ Uy UUs, then Uy NUy € Tx C 7y
(b) If co € Uy, 00 ¢ Uy, then Uy =Y \ C for C' C X compact, so

UlmUQZ(Y\C)ﬂUQI(X\C)ﬂUQGTXCTY

(¢) Similarly if oo € Uy \ Uy
(d) If oo € Uy N Uy, then U; = (Y \ C;) as above, so

UlﬂngY\(ClLJC’g)

but Cy U (5 is compact in X.

We now show that Y is compact: Suppose U is an open cover for Y, then
AU € U such that oo € U, so U =Y \ C for some compact C' C X. There
are finitely many elements {Uy, Us, ..., U,} of U that cover C, so

{U1,Us,..., U} U{U}

covers Y.
(End of Day 25)
O]

9.4. Lemma: If X is a locally compact and Hausdorff, then the space constructed above
is Hausdorff.

Proof. fx,y € Y withx # y. If x,y € X, then we use the fact that X is Hausdorff
to produce open sets as required. So assume y = 0o, then choose a neighbourhood
V of & such that V is compact. Then U := X \ V is an open neighbourhood of %
and UNV = (. So Y is Hausdorff. O

9.5. Theorem: If X is locally compact and Hausdorff, and suppose Y; and Y5 are two
spaces such that

(i) Both Y7 and Y5 are compact.
(i) X CYyand X C Y,
(iii) Y7 \ X is a singleton and Y3 \ X is a singleton.

Then there is a homeomorphism p : Y7 — Y5 such that p|x= idx
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9.6.

9.7.

Proof. Suppose Y1 \ X = {y1} and Y5\ X = {y2}, then define p: Y; — Y5 by

p(z):{z ze X

Y2 2=

Then p is clearly a well-defined bijection. Also, if U C Y5 is an open set such that
U C X, then p7*(U) = U C Yy is open. If U C Y5 is open and co € Ys, then
F:=Y,\U = X \U is closed in Y3. But Y5 is compact, so F' is compact in Y5.
Since F' C X, F' is compact in X. But X C Y, so F'is compact in Y;. But Y] is
Hausdorff, so F is closed in Y;. Hence, Y; \ F = p~*(U) is open in Y;. Hence, p is
continuous. But p : Y7 — Y5 is a continuous bijection from a compact space to a
Hausdorff space, so it is a homeomorphism. O

Definition: Given a locally compact Hausdorff space, we have shown that 3 a
compact space Y such that X C Y and Y \ X is a singleton. Furthermore, Y is
unique in the sense of 9.5. This space Y is called the one-point compactification
of X, and is denoted by X .

Example: If X = R", then Xt = 5"

Proof. The stereographic projection gives a continuous injective map p : X — S",
and is a homeomorphism onto its range p(X) = S™ \ {N}. Identifying X with
p(X), we see that S™ satisfies the conditions of Theorem 9.3. By Theorem 9.5,
Sm X ]

Note: For n =2, §%, thought of as (R?)T is referred to as the Riemann sphere.
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IV. Separation Axioms

1. Regular Spaces

Assume that all spaces are T7: Singleton sets are closed.

1.1. Definition: A topological space X is said to be regular if, for any closed set A C X
and any x ¢ A, there are open sets U,V C X such that A C U,x € V and
unv=40.

1.2. Example:
(i) Every regular space is Hausdorff.
(ii) Let K = {1/n:n € N} C R and define a topology on R as follows: Define
B; := { open intervals in R}
By :={(a,b) \ K : a <bin R}

Then B := By U By forms a basis for a topology on R (HW 4), which we
denote by 7x. Then Ry := (R, 7) is Hausdorff but not regular.

Proof. Rg is Hausdorff because distinct points can be separated by open
intervals. To see that Rg is not regular, note that K is closed in Rg and
0 ¢ K. However, if U is an open set containing 0, then U must contain a
basic open set around 0. It cannot contain sets of the form (—r,7) because
they intersect K. So suppose (—r,7)\ K C U. Let n € N such that 1/n < r.
Let V' be an open set containing K and choose a basic open set (a,b) around
1/n contained in V. Then

1/n € (a,b) and 1/n <r = ((a,b) \ K) N (=r,r) #0
Hence, UNV # (0, so K and 0 cannot be separated. O
(End of Day 26)

1.3. Theorem: Every compact Hausdorff space is regular.

Proof. 1f X is compact and A C X closed, z ¢ A, then A is compact. For each
y € A, there are open sets Uy, V, such that = € U,,y € V, and U, NV, = 0.
Now {V, N A : y € A} forms an open cover for A. Choose a finite subcover
{V,,NA:1<i<n} and consider

U::ﬁin andV::LnJlVi
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1.4.

1.5.

1.6.

1.7.

Then U and V are open, AC V,z € U and U NV = 0. O

Theorem: X is regular iff, for each € X and an open neighbourhood U of ,
there is an open neighbourhood V' of x such that V C U.

Proof. Suppose X is regular, and x € X,U an open neighbourhood of X. Then,
X \ U is closed and does not contain x, so there are open sets V,W such that
r €V, X\UCWand VNW = (). We claim that V C U. If y ¢ U, then y € W
and WNV =0,s0y¢V. Hence, V C U.

Conversely, suppose the given condition holds and z € X, A C X closed and = ¢ A.
Then U := X \ Ais an open set containing x, so there is an open set V' such that
V Cc U. Then W := X \ V is open, contains A and VNW = . O

Corollary: Every subspace of a regular space is regular.

Proof. If Y C X, where X is regular, suppose U is an open neighbourhood of x
inY, then U = U’'NY for some open set U’ C X. Choose V' C X open such that
V' c U'. Now take V := V' NY, which is open in Y, contains x and by I11.6.8,

dy(V) =cdx(V)NY Cex(V)NY cU'NY =U

Corollary: Every locally compact Hausdorff space is regular.

Proof. Let X be locally compact and Hausdorff, and X C X its one point com-
pactification. X is regular, so X must also be regular. O

Corollary: Any product of regular spaces is regular.

Proof. Suppose X, is regular for all & € J, and X := [[ ., Xo. Let z:= (2, € X
and U C X an open neighbourhood of . Then we may assume that U is a basic
open set of the form

Ualeagx...ananXﬁ
8

Now 4, € U,,, so there are open sets V,, such that V,, C U,,. Then

Vo=V, X Vo X oo x Vo, x [ X5
B

is an open neighbourhood of z such that V C U [Why?] O]
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2. Normal Spaces

2.1.

2.2.

2.3.

2.4.

Definition: A topological space X is said to be normal if, whenever A and B are
disjoint closed sets, there are open sets U, V such that A C U, B C V and UNV = )

Lemma: X is normal iff, given a closed set A C X and an open set U containing
A, there is an open set V' containing A such that V' C U

Proof. HW. m
Theorem: Every metric space is normal.

Proof. If A, B C X are disjoint closed sets. For each a € A, a ¢ B, so d¢, > 0
such that B(a,€,) C X \ B. Define

U:= U B(a,€,/2)

a€A

Then U is open and it contains A. Similarly, define

V=B a/2)

beB
where €, is chosen as above. Then, if z € UNV, then da € A,b € B such that
z € B(a,€e,/2) N B(b, €/2)

Assume WLOG that ¢, < ¢, then by triangle inequality,

d(a,b) < d(a,2) +d(2,0) < T+ 5 S e

Hence, B(a,€,) N B # () contradicting the choice of ¢,. O
Theorem: Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space and A, B C X disjoint closed sets.
By 1.3, X is regular, so for each a € A, there are open sets U, and V, such that

acU, BCcV,and U, NV, =10

So {U, : a € A} is an open cover for A. But A is compact, so there is a finite
subcover {Uy,,Uy,,...,U,, }. Define

k n
U:=|JU,, and vV :=(V,
=1 i=1

Then U,V are open, A C U, B CV and UNV = [Check!]. O
(End of Day 27)
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2.5.

2.6.

2.7.

2.8.

Theorem: A closed subspace of a normal space is normal.

Proof. If Y C X is closed and X is normal. We use Lemma 2.2. Suppose A C Y
is closed and U C Y an open set such that A C U. Then write U = U’ NY for
some open set U’ C X. Since A is closed in Y and Y is closed in X, A is closed in
X . Hence, there is an open set V/ C X such that A C V/ and V/ C U’. Now set

V=V'nYy
Then A C V and by 11.6.8,

dy(V)=cx(V)NY Cex(V)NY CU'NY =U

Examples:
(i) Every normal space is regular. Hence, every normal space is Hausdorff.

(ii) Let X = R with the topology whose basis are sets of the form
[a,b)
where —o0o < a < b < 0o (See Quiz 1). This topology is denoted by 7, and it

contains the usual topology. It follows that R, := (R, 74) is normal.

(iii) X := R, x Ry is thus a product of regular spaces, so it is regular. However,
it is not normal [without proof]. Hence,

(a) The product of normal spaces is not necessarily normal.
(b) This is an example of a space that is regular but not normal.

(Urysohn’s Lemma for metric spaces): Let (X, d) be a metric space and A, B C X
disjoint closed sets. Then 3f : X — [0, 1] continuous such that

flz)=0 VreAand fly) =1 VyeB

Proof. Recall that z + d(z, A) is continuous and d(x, A) = 0 iff z € A. Define
f:X —[0,1] by
d(x, A
f) =
d(z,A) + d(z, B)
Note that the denominator is non-zero because A N B = (). Now check that f
satisfies the required properties. O

Lemma: Let X be a normal space and A, B C X disjoint closed sets. Let P :=
QN 0, 1], then there is a sequence of open sets {U, : p € P} such that

(i) AcUpand Uy = X \ B
(ii) For all p,q € P,p < ¢ = U, C U,
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2.9.

2.10.

Proof. Define Uy := X \ B. Since A C Uy, define Uy by Lemma 2.2 such that
ACUyand Uy C Uy

Now arrange P in a sequence {0,1,p1,pa,...}. We wish to define Uy,: Note that
0 <pi <1and Uy C Uy, so by Lemma 2.2, there is an open set U, such that

FOCUpl andU_plCUl

Now we proceed by induction. Having define {Uy, Uy,U,,,...,U,,}, we wish to

define U, ,. Since 0 < p,41 < 1, choose an immediate predecession p; and an

immediate successor p; among {0,1,p1,pa,...,ps}. Note that U, C Up,. So by

Lemma 2.2, there is an open set U, , such that

U_pi - Upn+1 and Upn+1 - UPj

By induction, we define U, for all p € P satisfying (i) and (ii). O

Lemma: Let X be a normal space and A, B C X disjoint closed sets. Let {U, :

p € QNI0,1]} be a sequence of open sets as in the previous lemma. Define U, = ()
if p<0and U, = X if ¢ > 1. Now define f : X — R by

f(z) = inf Q(a)
where Q(z) :={p € QnN0,1] : z € U,}.
(i) f(x) €]0,1] for all z € X.
(ii) For any r € Q,z € U, = f(z) <r, and
(i) = ¢ U, = f(z) > r

Proof. Note that f is well-defined because, for any z € X, x € U, for all p > 1,
so (1,00) N Q C Q(x). Hence, f(z) < 1. Similarly, x ¢ U, for all p < 0. Hence,
f(z) > 0.

If x € Uy, then for any p > r, z € U,. Hence,

(r,00) NQ C Q(x)

Since the infimum of a subset is greater than the infimum of a super set, f(x) <r.
Similarly, if z ¢ U,., then x ¢ U, for all s < r. Hence,

Q(z) C (r,o0)NQ
As before, this implies f(z) > r O

(Urysohn’s Lemma): Let X be a normal space and A, B C X disjoint closed sets.
Then 3f : X — [0, 1] continuous such that

flz)=0 Ve Aand f(y) =1 VyeRB

66



2.11.

Proof. Let {U, : p € Q} and f : X — R defined as above. For any z € X, and
r <0,z ¢ U, so f(x) > 0. Similarly, f(z) < 1. Furthermore, if x € A, then
x € Uy, so f(x) = 0. Similarly, f(y) =1 for all y € B. It suffices to show that f
is continuous.

Fix xyp € X and U an open set containing f(zg). WTS: 3 an open set V C X
containing xg such that f(V) C U. Choose ¢,d € R such that (¢,d) C U. Now
there exists p,r € Q such that [p,r] C (¢,d) C U, and let

V.=U\TU,

Note that V is open, and if z € V, then z € U, and 2 ¢ U,. So by the previous
lemma,

p<flz)<r
Hence, f(V) C U as required. O

(End of Day 28)

Corollary: Let X be a normal space and A, B C X disjoint closed sets. Given
a,b € R with a < b, 3f : X — [a, b] continuous such that

fla=a and flg=10

Proof. Simply compose the function g : X — [0, 1] produced by Urysohn’s lemma
with the map [0, 1] — [a, b] given by

t— (1 —t)a+tb

3. Tietze’'s extension Theorem

3.1.

3.2.

Definition: Let (X, d) be a metric space.

(i) A sequence (z,) C X is said to be Cauchy if, for each ¢ > 0,dN € N such
that d(z,,x,,) < € for all n,m > N.

(ii) X is said to be complete if every Cauchy sequence in X converges to a point
in X.

Examples:
(i) Every convergent sequence is Cauchy.

(ii) Let X = Q°, and z, := v/2/n, then (x,) is Cauchy, but does not converge to
a point in X. Hence X is not complete.

(iii) X = (0,1) is not complete because (1/n) is Cauchy but not convergent.
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3.3.

3.4.

3.5.

Lemma: Let (X, d) be a metric space and (z,,) C X Cauchy. Then (z,) is bounded.
ie. dxg € X and M > 0 such that d(z,,z¢) < M for all n € N

Proof. Fix € = 1, then 9N € N such that
d(xp, xm) <1 VYn,m>1
For g € X fixed, let
M :=max{d(zg,z;) : 1 <i < N}+1
Then for any n € N, if n < N, then d(z,,z¢) < M. And if n > N, then
d(Tn, x0) < d(zp,xn) + d(xn, 0) < M
O

Lemma: Let (X, d) be a metric space and (z,) a Cauchy sequence. If (z,) has a
convergent subsequence, then (x,,) converges.

Proof. Suppose z,, — x is a convergent subsequence. For any e¢ > 0, choose
N € N such that
d(zp, ) <€/2 Vn,m >N

Now choose K € N such that
d(x,,x) <e€/2 Yi>K
Hence, Ny := max{N,ng} has the property that
d(x,,x) <€ ¥n> Ny

Lemma: Every sequence in R has a monotone subsequence.

Proof. Let (z,) C R and suppose (x,) has no monotone increasing subsequence.
We show that (z,) has a monotone decreasing subsequence. We claim: 3n; € N
such that x,, < z,, for all n > n;.

Proof. Suppose not, then set n; = 1. Then Iny > ny and x,,, such that z,, > x,,.
Similarly, 3ng > ns such that z,, > x,, and so on. Thus, we produce a subsequence
(xn,) that is strictly increasing. This contradicts the assumption that (z,) has no
increasing subsequence. O]

Now choose n; € N such that z, < x,, for all n > ny;. Now consider the sub-
sequence {Tp,, Tn,+1,Tn,+2, ..} By the same argument as above, Iny > ny such
that x,, < x,, for all n > ny. In particular,

Tny < T,y

and
Tp < Tp, VYN > ng

Thus proceeding (by induction) there is a subsequence (x,, ) that is strictly de-
creasing. O
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3.6.

3.7.

3.8.

3.9.

Theorem: R is complete.

Proof. Let (z,,) C R be Cauchy, then by the previous lemmas, (x,,) is bounded and
has a monotone subsequence. But every monotone bounded subsequence in R is
convergent (to its supremum or infimum). Some the previous lemma applies. [

Definition: Let X be a topological space and (Y, d) a metric space.

(i) A function f: X — Y is said to be bounded if f(X) is a bounded subset of
Y (ie. Jyp € X and M > 0 such that d(f(x),yo) < M for all z € X.

(i) Let Cy(X,Y") denote the set of all continuous, bounded functions f: X — Y
Theorem: Define d, : Cp(X,Y) x Cp(X,Y) — R by
doo(f,9) = sup{d(f(z), 9(z)) : € X}

Then this defines a metric on Cp(X,Y).

Proof. HW [

(End of Day 29)

Theorem: If (Y,d) is a complete metric space, and (Cy(X,Y),d) is complete.
Proof. Let (f,) C Cp(X,Y) be a Cauchy sequence. For any = € X

d(fn(2), fn(1)) < doo(frs fim)

Hence, (fn(x)) is Cauchy in Y. Hence, 3z, € Y such that f,(x) — z,. Define
f: X =Y by f(z) = z,. We claim that f is continuous and bounded.

(i) Since (f,) is Cauchy, it is bounded. Hence, 3M > 0 such that

supd(f,(z),0) <M VneN

zeX

For any = € X fixed, f,(z) — f(x). Hence, d(f(z),0) < M [Why?]. Hence,
f is bounded.

(ii) To see that f,, = f wrt ds: Fix € > 0, then 3N € N such that
doo(fry fn) < €/2 ¥n,m > M
Hence for x € X fixed,
d(fn(x), fm(z)) <€/2 ¥Yn,m >N

Let m — oo, then
d(fn(2), f(z)) <€/2 Yn =N

Hence, doo(fn, f) <€ Vn > N. Hence, f, = f in dy
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3.10.

3.11.

(iii) To see that f is continuous: Let zy € X and € > 0, then 3N € N such that
doo(fns ) <€/3 ¥n=>N

Since fx is continuous, 3U C X open such that zy € U and

d(fn(y), fn(z0)) <€/3 VyeU

Hence, for all y € U,
d(f(y), f(x0)) <€

]

Corollary: Let X be any topological space. The set Cy(X) := Cp(X,R) is a
complete metric space with respect to the metric

doo(f, 9) := sup | f(x) = g()]

zeX

(Tietze’s Extension Theorem): Let X be a normal topological space and Y C X
closed. Let f :Y — R be a continuous function, then 3h : X — R continuous
such that

hy)=fly) YyeY

(h is called a continuous extension of f)

Proof. Assume first that f is bounded and

c:=sup{|f(y)| :y €V}
Define
Eo:={reX: f(x) < —c/3} = f(—00,—¢/3]
Fo={xcX:f(x)>¢c/3} = f /3, 00)
Then Ey and Fj are disjoint closed sets. By Corollary 2.11, 4gy : X — R such that
—¢/3<go(x) <c¢/3 Ve X

and
go|lg,= —c¢/3 and go|p,= ¢/3

Hence,

lgo(2)| < ¢/3 VzeX
1f(y) —90(y)] <2¢/3 VyeY

Let fi := f—go. Then by the above argument, 4¢g; : X — R continuous such that

lg1(z)| <2¢/9 Vre X
1f(y) —90(y) — g1(y)] < 4c/9 VyeY
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Thus proceeding, we obtain a sequence (g,) of continuous functions such that

lgn(2)| < 27¢/3™ Vz e X
1f(y) = haly)] < 27F1e/3"T WyeY
where h, == go+ g1 + ...+ gn,. Now note that if m > n,

n

Z gi(x)

i=m-+1

i=m-+1

A () — b ()] =

IN

n .
e omtle

< Z 3z‘+1gw

i=m+1

Hence,
2m+1

doe (o ) < o
Since the RHS goes to zero, (h,) form a Cauchy sequence in Cy(X,R). By the
previous lemma, 3h € Cy(X,R) such that h, — h. Now if y € Y, then

2n+1

1) = hal)] < St

Letting n — oo, we see that h = f on Y.

Now suppose f is not bounded. Let g : R — (—1,1) be a homeomorphism (is
there one7) Now define f =gof. Now f is bounded, so 3h : X — R continuous

such that h\y f Now define h := g~ 'o h and check that h satisfies the required
conditions. O

(End of Day 30)

4. Urysohn Metrization Theorem

4.1.

4.2.

Definition: A topological space (X, 7) is said to be metrizable if there exists a
metric d on X such that 7 = 7.

Theorem: R* with the product topology is metrizable.
Proof. Let d: R x R — R be the metric given by

d(a,b) = min{|a — b|,1}
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Define D : R¥ x R“ — R by

TE—

Then [Check!] that D is a metric on R¥. We claim that the product topology 7,
on RY coincides with 7p

(i)

7, C 7p: Let U be a basic open set in 7, of the form
U=UxUyx ... xU, xRxRx ...
Let x = (x;) € U, so for 1 <i <mn,z; € Us;, so Je; > 0 such that
(2, —€,2,+¢€) CU;
Assume ¢; < 1 for all 4, and let € := min{¢; /i : 1 < i < n}, then we claim that
Bp(z,e) U
To see this, suppose y = (y;) € Bp(x,¢€), then for 1 <i <n,

d(f% ?/z)

4

< D(z,y) <e

Hence, d(z;,v;) < € < 1, s0 |z; — y;| < €. Hence, y; € U; for all 1 <i < n.
Hence, y € U, so
Bp(z,e) CU

Thus, U is a union of sets of the form Bp(z,€), and so U € 7p. Since U is a
generic basic open set, it follows that 7, C 7p.

Tp C 7,2 Let U € 7p be open, and = € U. Then 3e > 0 such that Bp(z,€) C
U. Choose N € N such that 1/N < ¢, and consider

Vi=(@—ear+e) x...x(ay—€axy+€ xXRx...

We claim that V' C Bp(z,€). To see this, suppose y = (y;) € V, then for
i> N,

d(Iu yz)

(4

A
IA zl"

because d(z;,y;) < 1. Furthermore, if 1 <i < N, then

d('ri.a Yi) < d(%’, Yi) < i <e
) - 1 — Nz
Hence, D(z,y) < e. This is true for any y € V', so V' C Bp(x,€) C U. Hence,
U is a union of open sets in 7,, and so U € 7,. Thus, 7p C 7, as well.

]
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4.3. Definition: A topological space is called second countable if it has a countable
basis.

4.4. Example:
(i) R™ is second countable.
(ii) If R is given the discrete metric, then it is not second countable.

(iii) Every second countable space is separable.

Proof. Let {B,, : n € N} be a countable basis for X. For each n € N, choose
z, € B, and let D := {x,, : n € N}. Then D is dense in X, because if U is
any non-empty open set, then In € N such that B, C U, so z,, € U which
implies D N U # 0. O

(iv) Any separable metric space is second countable.

Proof. Let (X,d) be a separable metric space and A := {x,} be a countable
dense subset of X. Let By, ,, := B(z,1/n), then we claim that B := {B,,»,}
forms a basis for 7.

(a) If z € X, then 3z, € A such that d(x,,,z) < 1. Hence, x € B,,1. So B
covers X.

(b) Furthermore, if € By, n, N Bimym, then let o := min{1/2ny,1/2n,}.
Choose m3 € N such that d(z,z,,,) < « and let ng € N such that
1/n3 < a, then [Check!]

Bm37n3 C Bml»nl m Bm27n2

and x € By,

(¢) Thus, B forms a basis for some topology 7 on X. Since B C 74, it follows
that 7 C 7.

(d) However, if U € 75 and = € U, then Je > 0 such that By(z,e) C U.
Now choose m € N such that d(z,z,,) < €/2, and let n € N such that
1/n < €/2, then x € B,,,, and B,,,, C Bq(x,€) C U. Hence, every U € 14
is obtained as a union of elements of B.

Hence, B is a basis for 7. O
4.5. Lemma: Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B, and let A, B C X be
two closed disjoint sets. WTS: 9 open sets U and V such that A C U, B C V and
unv =4.

(i) For each z € A, x ¢ B, so there is an open sets U,V such that € U, B C V
and U NV = (). Since X is regular, there is an open set W such that z € W
and W C U. Choose a basic open set B, € B such that z € B, and B, C W.
Thus,

B,NB=1{
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4.6.

Thus, we obtain an open cover {B, : x € A} for A which is countable, so we
denote it by {U, : n € N}. Note that

U,NB=0 VneN

Similarly, we obtain an open cover {V,, : n € N} of B which is countable such
that o
V,NA=0 VYneN

(i) YU :=U, and V :=JV,, then A C U, B C V, but U and V need not be
disjoint. So define

L=U, \ and V! .=V,

Jr

Then each U] and V! is open.

(iii) If z € A, then In € N such that z € U,. But V;N A = ( for all i. Hence,
xz € U),. Thus, {U], : n € N} forms an open cover for A. Define

e
n=1

Uz,
=1

Then A C U’. Similarly, if N
= U v/
n=1
Then B C V.

(iv) We claim that U' NV’ = (). Suppose x € U'NV’, then In,m € N such that
x € Ul and x € V.. Assume n > m, then x ¢ V,, by definition of U}. This
is a contradiction, so U' NV’ = (.

0
(End of Day 31)

Lemma: Let X be a regular space with a countable basis. Then there is a sequence
of functions f,, : X — [0, 1] such that, for any 2o € X and open set U containing
xg,3In € N such that f,(x¢) =1 and f, =0on X \ U.

Proof. Note that X is normal so Urysohn’s lemma applies. Let {B,, : n € N} be a
countable basis for X. Define

D:={(n,m)eNxN:B, C B,}

For each (n,m) € D, Urysohn’s lemma implies that there is a function g, : X —
0, 1] such that
gn,m|37n: 1 and gn,m’X\Bm: 0
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4.7.

This collection {g,m} = {fn} is countable, and it satisfies the required condition:
If xrg € X and U is an open set such that xy € U, then 3 a basic open set B,,
such that zy € B, and B,, C U. Furthermore, by regularity, 3 a basic open set
B,, such that o € B,, and B,, C B,,. Now

gn,m(I0> =1 and gn,m|X\U: 0
]

(Urysohn’s Metrization Theorem): Every regular space with a countable basis is
metrizable.

Proof. (i) We construct a continuous function F': X — R“ as follows: Let {f,}
be a sequence as in the previous lemma, and define

Fx) = (fulz))

Then F' is continuous because each coordinate function f, is continuous.

(ii) F' is injective: If = # y, then there is an open set U such that x € U and
y ¢ U. Choose n € N such that f,(z) =1 and f,|x\v= 0. In particular,

fn(y) = 0. Hence, F(x) # F(y).

(iii) Let Z := F(X). We claim that F': X — Z is a homeomorphism. F' is clearly
surjective, so it suffices to show that F'is an open map. Let U C X be an
open set. WTS: F(U) C Z is open. Fix z € F(U), then 3z € U such that

F(z) ==z
Choose n € N such that f,(z) =1 and f,|x\v= 0. Define
V:=7.(0,00)) C R¥

and set
W.=VnZz

Then W is open in Z since V is open in R¥. Furthermore, f,(z) > 0, so
z € W. We claim: W C F(U). To see this, fix y € W, then 32/ € X such
that F(2') = y. Now, m,(y) > 0, but

M (y) = T (F(2')) = fu(2)

Since f, = 0 on X \ U, it follows that 2’ € U. Hence, 2’ € F(U). Thus,
W C F(U). Hence, every z € F(U) is an interior point of F(U), so F(U) is
open.

(iv) Thus, F': X — Z is a homeomorphism. Since Z C R¥ and R¥ is metrizable,
it follows that Z is metrizable, and so X is too.

]
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4.8. Corollary: Every compact Hausdorff space with a countable basis is metrizable.

4.9. Example:

(i) Every metric space is certainly regular, but need not have a countable basis
(See 4.4(ii)).

(ii) Let K = {1/n:n € N}. Define

B, := { open intervals in R with rational end-points}
By :={(a,b)\ K : a < bin Q}

Then B := B, U B, forms a basis for a topology on R, which we denote by 7.
Then Ry := (R, 7x) is Hausdorff, has a countable basis, but is not metriz-
able because it is not regular. Thus, regularity is necessary for Urysohn’s
metrization theorem to hold.

5. Imbedding of Manifolds

5.1. An m-manifold is a topological space X with a countable basis such that for each

x € X, there is a neighbourhood U, of = such that U, is homeomorphic with an
open subset of R™.

5.2. Examples:
(i) R™ is an m-manifold. So is any open subset of R™.

(ii) [0, 1] is not a 1-manifold, because any neighbourhood of 0 is of the form [0, J),
which is not homeomorphic to an open subset of R.

(iii) S'is a 1-manifold. In general, S™ is an m-manifold (without proof)
(iv) A l-manifold is called a curve, and a 2-manifold is called a surface.

(v) The torus S* x S' is a surface. In general, if X and Y are manifolds, then so
is X xY.

(End of Day 32)
5.3. Theorem: Let X be an m-manifold. Then X is
(i) Locally path connected.
(ii) Locally compact.
(iii) Regular
(iv) Metrizable.

Proof. (i) Let 2 € X and U an open neighbourhood of z. WTS: 3V C U open
such that z € V and V is path connected. To see this, choose a neighbourhood
U, of x and a homeomorphism

g:U, = U, CR™
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where U/ is open in R™. Then U, N U is open and
Ilo,nv: Uz NU — g(U, NU) CR™

is a homeomorphism. Since ¢g(U. N U) is an open subset of R™ containing
g(x), and R™ is locally path connected, there is an open set V' C g(U., NU)
that is path connected and containing g(x). Then V := g~(V”) is open, path
connected, contains x and V C U.

(ii) Local compactness is identical to part (i).

(iii) Let z € X and an open set U containing . WTS: 3V open such that x € V
and V C U. Choose U, open and a homeomorphism

g:U, - U, CR"
as before. Since U N U, is open in U,,
gUnNU,) CU.

is open and contains g(z). Since U, C R™ and R™ is regular, U, is regular
by 1.5. Hence, there is an open set V'’ such that g(z) € V' and

V' cg(UnU,)
Then V := g~ (V) is open, contains z and since g is a local homeomorphism

V=g l(V)=¢g'(V)Cg'(gUNU,)CcUNU, CU

Hence, X is regular.

(iv) X has a countable basis, so Urysohn’s metrization theorem applies.

5.4. Definition: Let X be a topological space.
(i) Let f: X — R be a function. The support of f is the set

supp(f) :={z € X : f(z) # 0}

(ii) Let U := {Uy,Us,...,U,} be an open cover for X. A partition of unity
dominated by U is a family of continuous functions f; : X — R such that

(a) supp(fi) CU; forall 1 <i<n
(b) For each z € X, fi(z) + fo(z) + ...+ fu(z) =1

5.5. Lemma: Let X be a normal space and U := {Uy, Uy, ..., U,} be an open cover for
X. Then there is an open cover V := {V}, V5, ..., V,} such that

V; C U;

forall1<i<n
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2.6.

5.7.

Proof. We induct on n: If n = 1, then U; = X so take V; = Uy. If n > 2, note

that .
v
i=2

is closed and A C U;. Since X is normal, there is an open set V] such that

A:=X\

AcViand V; C U,

The collection {V;,Us,...,U,} now covers X. Proceeding by induction, suppose
that we have produced a cover

{‘/17‘/27 s 7Vk’—17 Uk7Ukz+la CII) Un}

such that V; c U, for all 1 <i <k — 1. Let

(Ur)-(9.)

Ehen A is closed and contained in U,. Choose V, open such that A C V, and
Vi € Ug. Now {V1, Vo, ..., Vi, Ugy1,...,U,} forms an open cover. Proceeding
thus, we exhaust all U;’s. O

A:=X\

Theorem: Let X be a normal space and U be a finite open cover for X. Then
there is a partition of unity dominated by U.

Proof. Let U := {Uy,U,,...,U,} be an open cover for X. Choose a cover V :=
{V1,Va,...,V,} such that V; C U; and an open cover W := {W, W, ... . W,}
such that W, c V; for all 1 < i < n. By Urysohn’s lemma, there exist function
¥ X — [0, 1] such that

Then o
supp(¢;) C Vi C U
For any z € X,31 < i < n such that x € W, so ¥;(z) = 1. Hence, define
fi: X = R by
i
f(2) (z)

(@) (@) ()
The denominator is never zero, so f; is continuous, and is a partition of unity
dominated by U. [

(Imbedding Theorem): Let X be a compact m-manifold, then 3N € N and an
injective map
F:X—RY

such that F': X — F(X) is a homeomorphism. (ie. F'is an imbedding of X into
R™)
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Proof. For each x € X, d an open set U, that is homeomorphic to an open subset
of R™. Choose a finite subcover {Uy, Us, ..., U,} and homeomorphisms

g9 Ui =V,

where V; C R™ is open. Let {f1, f2,..., fn} be a partition of unity dominated by
U. Let A; :=supp(f;) C U; and define h; : X — R™ by

) filw)gi(z) 2 e U
hi(x) == {O s X\A

If 2 € (X\ A4)NU;, then f;(z) = 0, so both definitions agree. So by pasting
lemma, h; is continuous. Define

F:X—>R><]R{><...I@memex...me
n‘:irrnes nagles

by
z = (fi(z), fo(z), ..., fulx), hi(z), ho(z), ... hy(z))

Then F' is continuous. Suppose we show that F' is injective, then since X is

compact,
F: X — F(X)

will be a homeomorphism. So suppose z,y € X such that F(z) = F(y), then
choose 1 < ¢ < n such that f;(x) > 0. Then x € U; and f;(z) = fi(y) > 0 and
hi(x) = h;(y) implies that
g9i(z) = gi(y)
But g; : U; — V; is a homeomorphism, so x = y as required. O
(End of Day 33)

Review
(End of Day 34)

79



V.

0.1.

0.2.

0.3.

Instructor Notes

This time, the semester was shortened by one week to accommodate an earlier
convocation.

Therefore, I was unable to cover Tychonoft’s theorem, which is unfortunate. I did
however discuss the theorem, and how the tube lemma proof does not work. The
only other topic on the syllabus I did not cover was Lindeloff spaces, which is not
a major loss. One extra week and I would have done all of it.

The student response seemed alright, but no questions were forthcoming which
made it harder to judge.
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