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Symmetries of a Square

[Gallian, §2.1]

0.1. Definition of a symmetry of a square with vertices labelled {1, 2, 3, 4}: A transfor-
mation that maps the object to itself.

0.2. List of all such symmetries. Proof that there are exactly 8 such symmetries.

Proof. We list them down as

{R0, R90, R180, R270, H, V,D,D
′}

where

• Rθ is a rotation by θ degrees.

• H is the flip about the horizontal axis.

• V,D,D′ are flips about the vertical axis, the leading diagonal, and the off
diagonal axes respectively.

1

2 3

4

Each of these are distinct symmetries. There are 8 total because there are 4 pos-
sible spots for 1, and two possible spots for 2. Once those are fixed, 3 and 4 are
automatically fixed as as well.

0.3. Definition: D4 is the set of all symmetries of a square. We can compose two elements
of D4 to obtain a third. We denote this by

σ ◦ τ

0.4. Properties of D4 :

(i) Closure: Given σ, τ ∈ D4, σ ◦ τ ∈ D4

(ii) Existence of Identity: δ = R0 has the property that σ ◦ δ = δ ◦ σ = σ for all
σ ∈ D4.

(iii) Existence of Inverses: Given σ ∈ D4, there is a σ′ ∈ D4 such that σ ◦ σ′ = δ =
σ′ ◦ σ.
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I. Groups

1. Definition and Basic Properties

Definition 1.1. Let G be a set.

1.1. A binary operation on G is a function

f : G×G→ G

1.2. A group is a set G, together with a binary operation f : G×G→ G such that the
following axioms hold:

(i) Associativity: For any a, b, c ∈ G,

f(f(a, b), c) = f(a, f(b, c))

(ii) Identity: ∃e ∈ G such that

f(a, e) = f(e, a) = a ∀a ∈ G

(iii) Inverse: For any a ∈ G,∃a′ ∈ G such that

f(a, a′) = f(a′, a) = e

Notation: Given a group (G, f) as above, we write

ab := f(a, b)

Hence the first axiom reads: (ab)c = a(bc) for all a, b, c ∈ G. Note that the operation
may not be multiplication in the usual sense.

Example 1.2. 1.1. (Z,+) is a group. (Z,−) is not a group. (N,+) is not a group.

1.2. (Q, ·) is not a group, but Q∗ = (Q \ {0}, ·) is. Similarly, R∗ and C∗ are groups.

1.3. (Rn,+), (Cn,+) are groups. More generally, any vector space is a group under
addition.

1.4. The Dihedral groups Dn = the group of symmetries of a regular n-gon

Proposition 1.3. Let (G, ∗) be a group

1.1. Uniqueness of Identity: Suppose e1, e2 ∈ G are such that ae1 = ae2 = a = e1a = e2a,
then e1 = e2
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1.2. Cancellation laws: Suppose a, b, c ∈ G such that ab = ac, then b = c. Similarly, if
ba = ca, then b = c

1.3. Uniqueness of inverses: Given a ∈ G, suppose b1, b2 ∈ G such that ab1 = ab2 = e =
b1a = b2a, then b1 = b2

Proof. 1.1. By hypothesis, e1 = e1e2 = e2.

1.2. If ab = ac, then choose a′ ∈ G such that aa′ = a′a = e, so

a′(ab) = a′(ac)

By associativity,
(a′a)b = (a′a)c

But a′a = e and eb = b. Similarly on the RHS, so b = c. The right cancellation law
is similar.

1.3. Suppose ab1 = ab2, then by left cancellation, b1 = b2.

Definition 1.4. Let G be a group, a ∈ G

1.1. For n ∈ Z, define
an := a · a · a . . . a︸ ︷︷ ︸

n times

Note that by associativity, we may write this expression without any parentheses.
Furthermore,

anam = an+m, and (an)m = anm

1.2. A group G is said to be cyclic if ∃a ∈ G such that, for any b ∈ G,∃n ∈ Z with
b = an. Such an element a is called a generator of G (note that it may not be
unique).

(End of Day 1)

Example 1.5. 1.1. (Z,+) is cyclic with generators 1 or −1

1.2. (Z× Z,+) is not cyclic

Proof. Suppose a = (a1, a2) generated Z× Z. Then ∃n,m ∈ Z such that

(1, 0) = n(a1, a2) and (0, 1) = m(a1, a2)

But n(a1, a2) = (na1, na2), so this would imply that na2 = 0, whence n = 0 or
a2 = 0. But if n = 0 this equation cannot hold, so a2 = 0. Similarly, from the other
equation a1 = 0, so (a1, a2) = (0, 0). But this contradicts the first equation.

1.3. For k ∈ N, define Gk = {ξ ∈ C : ξk = 1}. Gk is cyclic with generator ξ0 = e2πi/k
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Note: Every cyclic group is either the same as Z or the same as Gk for some k (Proof
later). Can represent Gk as a cycle in C. Hence the term cyclic.

Definition 1.6. A group G is said to be abelian if

a ∗ b = b ∗ a

for all a, b ∈ G

Example 1.7. 1.1. (Z,+) is abelian. In general, any cyclic group is abelian.

1.2. (Z× Z,+) is abelian, but not cyclic.

1.3. Consider the water molecule: It has one rotational symmetry R180, and two reflec-
tion symmetries V about the XZ-plane and H about the XY -plane. We write

V4 := {e, R180, V,H}

for the symmetries of this molecule. Note that

R2
180 = V 2 = H2 = e

Thus, this group is not cyclic. It is abelian, however (Check!).

1.4. D4 is non-abelian (and hence not cyclic)

Proof. Check that
HR90 = D but R90H = D′

so it is non-abelian.

1.5. For n ∈ N, the general linear group is defined as

GLn(R) := {A = (ai,j)n×n : det(A) 6= 0}

This is the collection of all invertible matrices, which is a group under multiplication.
It is non-abelian and infinite.

Definition 1.8. The order of a group G is |G|, the cardinality of the underlying set.

Table of groups discussed thus far (Note that Cyclic ⇒ Abelian)
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Group Finite Cyclic Abelian
Gk Y Y Y
V4 Y N Y
Dn Y N N
Z N Y Y

Z× Z N N Y
GLn(R) N N N

2. The Integers

(See [Gallian, §0.1], and [Herstein, §1.3])

Axiom 2.1 (Well-Ordering Principle): Every non-empty subset of positive integers con-
tains a smallest member.

Definition 2.2. 2.1. For a, b ∈ Z, b 6= 0, we say that b divides a (In symbols b | a) if
∃q ∈ Z such that a = bq.

Note: If a | b and b | a, then a = ±b.
2.2. A number p ∈ Z is said to be prime if, whenever a | p, then either a = ±1 or

a = ±p.

Theorem 2.3 (Euclidean Algorithm). Let a, b ∈ Z with b > 0. Then ∃ unique q, r ∈ Z
with the property that

a = bq + r and 0 ≤ r < b

Proof. We prove existence and uniqueness separately.

• Existence: Define
S := {a− bk : k ∈ Z, and a− bk ≥ 0}

Note that S is non-empty because:

– If a ≥ 0, then a− b · 0 ∈ S
– If a < 0, then a− b(2a) = a(1− 2b) ∈ S because b > 0

If 0 ∈ S, then b | a, so we may take q = a/b and r = 0.

Suppose 0 /∈ S, then S has a smallest member, say

r = a− bq

Then a = bq + r, so it remains to show that 0 ≤ r < b. We know that r ≥ 0 by
construction, so suppose r ≥ b, then

r − b = a− b(q + 1) ∈ S

Since b > 0, this contradicts the fact that r is the smallest member in S.
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• Uniqueness: Suppose r′, q′ are such that

a = bq′ + r′ and 0 ≤ r′ < b

Then suppose r′ ≥ r without loss of generality, so

r′ − r + b(q′ − q) = 0

Hence, b | (r′−r), but r′−r ≤ r′ < b, so this is impossible unless r′−r = 0. Hence,
q′ − q = 0 because b 6= 0.

Theorem 2.4. Given two non-zero integers a, b ∈ Z, there exists d ∈ Z+ such that

2.1. d | a and d | b
2.2. If c | a and c | b, then c | d

Furthermore, ∃s, t ∈ Z such that
d = sa+ tb

Note that this number if unique and is called the greatest common divisor (GCD) of a
and b, denoted by

gcd(a, b) = (a, b)

(proof later)

Definition 2.5. Given a, b ∈ Z, we say that they are relatively prime if gcd(a, b) = 1

Lemma 2.6 (Euclid’s Lemma). If a | bc and (a, b) = 1, then a | c. In particular, if p
prime and p | bc, then either p | b or p | c

Proof. By the previous theorem, ∃s, t ∈ Z such that

sa+ tb = 1

Hence,
sac+ tbc = c

Since a | sac and a | tbc, it follows that a | c.

(End of Day 2)

Theorem 2.7 (Unique Factorization theorem). Given a ∈ Z with a > 1, then ∃ prime
numbers p1, p2, . . . , pk ∈ Z such that

a = p1p2 . . . pk

Furthermore, these primes are unique upto re-arrangement. ie. If q1, q2, . . . , qm ∈ Z are
primes such that

a = q1q2 . . . qm

Then m = k and, after rearrangement, qi = pi for all 1 ≤ i ≤ m.
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Proof. • Existence: Let a ∈ Z+ with a > 1. If a = 2, then there is nothing to prove, so
suppose a > 2. By induction, assume that the theorem is true for all numbers d < a.

Now fix a and note that if a is prime, there is nothing to prove. Suppose a is not
prime, then ∃b ∈ Z+ such that b | a, but b 6= ±a and b 6= ±1. Hence, a = bc where
we may assume that 1 < b, c < a. So by induction hypothesis, both b and c can be
expressed as products of primes. Hence, a can be too.

• Uniqueness: Suppose a can be expressed in two ways as above. Then

p1 | a = q1q2 . . . qm

By Euclid’s lemma, ∃1 ≤ j ≤ m such that p | qj. Assume without loss of generality
that p | q1. Since p is prime, p 6= ±1. Since q1 is prime, it follows that p = ±q1.
Hence,

q1p2p3 . . . pk = q1q2 . . . qm

Cancellation implies that
p2p3 . . . pk = q2q3 . . . qm

Now induction completes the proof (How?)

3. Subgroups and Cyclic Groups

3.1. Definition: Let (G, ∗) be a group and H ⊂ G. H is called a subgroup of G if, (H, ∗)
is itself a group. If this happens, we write H < G.

3.2. Lemma: let G be a group and H ⊂ G. Then H < G if and only if, for each a, b ∈ H,
ab−1 ∈ H.

Proof. Suppose H is a subgroup, then for any a, b ∈ H, b−1 ∈ H, so ab−1 ∈ H.

Conversely, suppose this condition holds, then we wish to show thatH is a subgroup.

• Identity: If a ∈ H, then aa−1 = e ∈ H
• Inverse: If a ∈ H, then ea−1 = a−1 ∈ H
• Closure: If a, b ∈ H, then b−1 ∈ H, so b = (b−1)−1 ∈ H. Hence, ab =
a(b−1)−1 ∈ H.

• Associativity: holds trivially because it holds in G.

3.3. Examples :

(i) For fixed n ∈ N, consider

nZ := {0,±n,±2n, . . .}
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(ii) {R0, R90, R180, R270} < D4

(iii) (See Example 1.5(iii)) Gk < S1 where S1 := {z ∈ C : |z| = 1}.
(iv) (Q,+) < (R,+)

(v) SLn(R) < GLn(R) where SLn(R) := {A ∈ GLn(R) : det(A) = 1}
3.4. Theorem: Every subgroup H < Z is of the form nZ for some n ∈ Z

Proof. If H < Z, then consider S := {h ∈ H : h > 0}, then S has a smallest
member n by the well-ordering principle. We claim

H = nZ

Since n ∈ H, so nZ ⊂ H. So suppose h ∈ H, we WTS: h ∈ nZ. Assume WLOG
that h > 0, and use Division Algorithm to write

h = nq + r, where 0 ≤ r < n

Now, nq ∈ H and h ∈ H, so r ∈ H. But then r ∈ S, and 0 ≤ r < n. If r > 0, then
this would contradict the minimality of n, so r = 0. Hence,

h = nq ∈ nZ

Proof of Theorem 2.4

Proof. Let a, b ∈ Z. WTS: ∃d ∈ Z with the required properties. Consider

H := {sa+ tb : s, t ∈ Z}

Then (Check!) that H < Z. Hence, ∃d ∈ Z+ such that H = dZ. Now observe:

• a = 1 · a+ 0 · b ∈ H, so d | a. Similarly, d | b
• ∃s, t ∈ Z such that d = sa+ tb.

• If c | a and c | b, then c | sa+ tb = d.

Hence, d = gcd(a, b).

3.5. Remark : G a group, a ∈ G fixed.

(i) Cyclic subgroup generated by a is the set

{an : n ∈ Z}

and is denoted by 〈a〉
(ii) Order of a, denoted by O(a), is |〈a〉|. If n = O(a) <∞, then

(a) am = e⇔ n | m
(b) 〈a〉 = {e, a, a2, . . . , an−1}

3.6. Example :
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(i) G = Z, a = n, then a has infinite order

(ii) G = D4, a = R90, then O(a) = 4

(iii) G = S1, a = e2πi/k, then O(a) = k

3.7. Theorem: Every subgroup of a cyclic group is cyclic.

Proof. Suppose G = 〈a〉 is cyclic, and H < G, then consider

S := {n ∈ Z : an ∈ H} ⊂ Z

Since e ∈ H, 0 ∈ S. If n,m ∈ S, then an, am ∈ H, so

an−m = an(am)−1 ∈ H ⇒ n−m ∈ S

Hence, S < Z by Lemma 3.2. By Theorem 3.4, ∃k ∈ Z such that S = kZ. Hence,

an ∈ H ⇔ k | n

In other words, H = 〈ak〉.

(End of Day 3)

4. Orthogonal Matrices and Rotations

(See [Artin, §5.1] (mostly taken from the 1st edition))

4.1. Definition :

(i) Real Orthogonal matrix is a matrix A such that AtA = AAt = I

(ii) On(R) is the set of all orthogonal matrices.

SOn(R) := {A ∈ On(R) : det(A) = 1}

Note that On(R) and SOn(R) are subgroups of GLn(R) [Check!]

4.2. Theorem : Let A be an n× n real matrix. Then TFAE :

(i) A is an orthogonal matrix

(ii) 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Rn

(iii) The columns of A form an orthonormal basis of Rn

Proof. We prove each implication (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i)⇒ (ii): If AAt = AtA = I, then fix x, y ∈ Rn, then

〈Ax,Ay〉 = (Ay)t(Ax) = (ytAt)(Ax) = yt(AtA)x = ytx = 〈x, y〉

(ii)⇒ (iii): If 〈Ax,Ay〉 = 〈x, y〉, then consider the standard basis {e1, e2, . . . , en} of Rn.
Then

〈Aei, Aej〉 = 〈ei, ej〉 = δi,j

But the columns of A are precisely the vectors {Aei : 1 ≤ i ≤ n}
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(iii)⇒ (i): Suppose the columns of A form an orthonormal basis of Rn. Then, for any
1 ≤ i ≤ n,

〈ei, ej〉 = δi,j = 〈Aei, Aej〉 = 〈AtAei, ej〉

This is true for all 1 ≤ j ≤ n, so (Why?)

AtAei = ei

Hence, AtA = I because the {ei} form a basis. Similarly, AAt = I as well.

4.3. Example :

(i) For θ ∈ R, ρθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO2(R)

(ii) r =

(
1 0
0 −1

)
∈ O2(R) \ SO2(R)

4.4. Lemma: SO2(R) = {ρθ : θ ∈ R}. Hence, SO2(R) is called the 2× 2 rotation group.

Proof. If

A =

(
c a
s b

)
is an orthogonal matrix, then (c, s) ∈ R2 is a unit vector. Hence, ∃θ ∈ R such that
c = cos(θ) and s = sin(θ). Now let

R :=

(
c −s
s c

)
= ρθ

Then R ∈ SO2(R) and hence

P := RtA =

(
1 ∗
0 ∗

)
∈ SO2(R)

By the previous lemma, the second column of P is a unit vector perpendicular to
(0, 1). Hence,

P =

(
1 0
0 ±1

)
Since det(P ) = 1, P = I, so A = R = ρθ.

4.5. Definition: A rotation of R3 about the origin is a linear operator ρ with the following
properties:

(i) ρ fixes a unit vector u ∈ R3

(ii) ρ rotates the two dimensional subspace W orthogonal to u.

The matrix associated to a rotation is called a rotation matrix, and the axis of
rotation is the line spanned by u.

4.6. Example/Remark:
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(i) The identity matrix is a rotation, although its axis is indeterminate.

(ii) The matrix 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


is a rotation matrix with axis span(e1).

(iii) If ρ is a rotation that is not the identity, then let u be a unit vector in its
axis of rotation. Let W := {u}⊥ denote the subspace orthogonal to u. Then
W ∼= R2, and

ρ|W : W → W

is a rotation. Hence, we may think of ρ|W∈ SO2(R). The angle of rotation
(computed by the Right Hand Rule) is denoted by θ, and we write ρ = ρ(u,θ).
The pair (u, θ) is called the spin of the rotation ρ.

4.7. Lemma: If A ∈ SO3(R),∃v ∈ R3 such that Av = v.

Proof. We show that 1 is an eigen-value of A. To see this, note that

det(A− I) = (−1) det(I − A) and det(A− I) = det((A− I)t)

by the properties of the determinant. Since det(A) = 1, we have

det(A− I) = det((A− I)t) = det(A) det(At − I) = det(AAt − A) = det(I − A)

Hence, det(A− I) = 0 as required.

(End of Day 4)

4.8. Euler’s Theorem: The elements of SO3(R) are precisely all the rotation matrices.
ie.

SO3(R) = {ρu,θ : u ∈ R3 unit vector, θ ∈ R}

Proof. (i) Let ρ = ρu,θ. Since u is a unit vector, there is an orthonormal basis
B of R3 containing u. Let P denote the change of basis matrix associated to
B. Then P ∈ SO3(R) because its columns are orthogonal (by Lemma 4.2).
Furthermore,

B := PAP−1 =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


Hence, B ∈ SO3(R). Since P ∈ SO3(R), it follows that ρ ∈ SO3(R).

(ii) Conversely, suppose A ∈ SO3(R), then choose a unit vector v ∈ R3 such that
Av = v. Consider an orthonormal basis B of R3 containing v, then with P as
above,

B := PAP−1 ∈ SO3(R)
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Let W := {e1}⊥, then B(e1) = e1 and B(W ) ⊂ W . Hence, B has the form

B =

1 0 0
0 a b
0 c d


Let C :=

(
a b
c b

)
, then det(C) = det(B) = 1, and the columns of C are

orthogonal vectors. Hence by Lemma 4.2, C ∈ SO2(R). Hence, ∃θ ∈ R such
that

C =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Hence, B = ρe1,θ, so A = ρv,θ.

4.9. Corollary: Composition of rotations about any two axes is a rotation about some
other axis.

5. Homomorphisms

5.1. Definition: Let (G, ∗) and (G′, ·) be two groups. A function ϕ : G→ G′ is called a
group homomorphism if

ϕ(g1 ∗ g2) = ϕ(g1) · ϕ(g2)

for all g1, g2 ∈ G.

5.2. Examples :

(i) n 7→ 2n from Z to Z
(ii) x 7→ ex from (R,+) to (R∗,×)

(iii) det : GLn(R)→ R∗

(iv) θ 7→ ρθ from (R,+) to SO2(R)

5.3. Lemma : Let ϕ : G→ G′ be a group homomorphism, then

(i) ϕ(e) = e′ where e, e′ are the identity elements of G and G′ respectively

(ii) ϕ(g−1) = ϕ(g)−1 for all g ∈ G

Proof. (i) Note that

e′ · ϕ(e) = ϕ(e) = ϕ(e ∗ e) = ϕ(e) ∗ ϕ(e)

By cancellation, ϕ(e) = e′

(ii) For g ∈ G,

ϕ(g) · ϕ(g−1) = ϕ(g ∗ g−1) = ϕ(e) = e′ = ϕ(g) · ϕ(g)−1

By cancellation ϕ(g−1) = ϕ(g)−1.
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5.4. Definition : ϕ : G→ G′ a homomorphism

(i) ker(ϕ) := {g ∈ G : ϕ(g) = e′}. Note that ker(ϕ) < G

(ii) Image(ϕ) := {ϕ(g) : g ∈ G}. Note that Image(ϕ) < G′.

5.5. Examples :

(i) ϕ : Z→ Z is ϕ(n) = 2n, then ker(ϕ) = {0}, Image(ϕ) = 2Z
(ii) ϕ : GLn(R)→ R∗ is ϕ(A) = det(A), then ker(ϕ) = SLn(R), Image(ϕ) = R∗

(iii) ϕ : R → SO2(R) is ϕ(θ) = ρθ, then ker(ϕ) = 2πZ, Image(ϕ) = SO2(R) by
Lemma 4.4

(iv) ϕ : C∗ → R∗ is ϕ(z) = |z|, then ker(ϕ) = S1, Image(ϕ) = R∗

5.6. Definition : Let ϕ : G→ G′ be a group homomorphism

(i) ϕ is said to be injective (or one-to-one) if, for any g1, g2 ∈ G,

ϕ(g1) = ϕ(g2)⇒ g1 = g2

(ii) ϕ is said to be surjective (or onto) if, for any g′ ∈ G′, ∃g ∈ G such that
ϕ(g) = g′.

(iii) ϕ is said to be bijective if it is both injective and surjective. Note, if ϕ is
bijective, then

ϕ−1 : G′ → G

is also a group homomorphism. If such a homomorphism exists, then we say
that ϕ is an isomorphism, and we write

G ∼= G′

5.7. Theorem : ϕ : G→ G′ is injective iff ker(ϕ) = {e}. In that case, ϕ : G
∼−→ Image(G).

Proof. (i) If ϕ is injective, and g ∈ ker(ϕ), then ϕ(g) = e′ = ϕ(e). Hence, g = e,
whence ker(ϕ) = {e}.

(ii) Conversely, if ker(ϕ) = {e}, and suppose g1, g2 ∈ G such that ϕ(g1) = ϕ(g2),
then

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 = e′

Hence, g1g
−1
2 ∈ ker(ϕ), so g1g

−1
2 = e, whence g1 = g2. Thus, ϕ is injective.

The second half of the argument follows from the fact that ϕ : G → Image(ϕ) is
surjective.

(End of Day 5)

5.8. Examples :

(i) ϕ : Z→ Z is ϕ(n) = 2n, then ϕ is injective, but not surjective

(ii) ϕ : (R,+) → SO2(R) is ϕ(θ) = ρθ, then f is surjective, but not injective,
because ρ0 = ρ2π.
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(iii) If G is a finite cyclic group with |G| = k, then G ∼= Gk

Proof. Let G = 〈a〉 with |a| = k. Define a map ϕ : G→ Gk by

an 7→ ζn

where ζ = e2πi/k. Then (Check!) that ϕ is an isomorphism.

(iv) G4 � V4

Proof. Suppose there were an isomorphism ϕ : G4 → V4, then consider b :=
ϕ(ζ), where ζ = e2πi/4. Since |ζ| = 4, it follows that |b| = 4 (Why?). But V4
has no elements of order 4, so this is impossible.

6. The Symmetric Group

6.1. Definition : Let X be a set

(i) A permutation of X is a bijective function σ : X → X

(ii) Let SX denote the set of all permutations of X. Given two elements σ, τ ∈ SX ,
the product σ◦τ ∈ SX is given by composition. Since composition of functions
is associative, this operation makes SX a group, called the symmetric group
on X.

6.2. Lemma : If |X| = |Y |, then SX ∼= SY

Proof. If |X| = |Y |, there is a bijective function f : X → Y . Define Θ : SX → SY
by

Θ(σ) := f ◦ σ ◦ f−1

Then

(i) Θ is a group homomorphism:

Θ(σ ◦ τ) = f ◦ σ ◦ τ ◦ f−1 = f ◦ σ ◦ f−1 ◦ f ◦ τ ◦ f− = Θ(σ) ◦Θ(τ)

(ii) Θ is injective: If σ ∈ ker(Θ), then f ◦ σ ◦ f−1 = idY . For each y ∈ Y ,

f(σ(f−1(y)) = y ⇒ σ(f−1(y)) = f−1(y) ∀y ∈ Y

Since f−1 is surjective, this implies

σ(x) = x ∀x ∈ X

So σ = idX .

(iii) Θ is surjective: Given τ ∈ SY , define σ := f−1 ◦ τ ◦ f , then σ ∈ SX and
Θ(σ) = τ .

16



6.3. Definition : If X = {1, 2, . . . , n}, then SX is denoted by Sn, and is called the
symmetric group on n letters. By the previous lemma, if Y is any set such that
|Y | = n, then SY ∼= Sn

6.4. Remark :

(i) O(Sn) = n!

Proof. Let σ ∈ Sn, then σ(1) ∈ {1, 2, . . . , n} has n choices. Now σ(2) has
(n− 1) choices, and so on. The total number of possible such σ’s is n× (n−
1)× . . .× 1 = n!.

(ii) If σ ∈ Sn, we represent σ by

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
(iii) For σ ∈ Sn, define Pσ ∈ GLn(R) by Pσ(ei) = eσ(i). Since the columns of Pσ

are orthogonal, Pσ ∈ On(R)

6.5. Theorem : The function ϕ : Sn → On(R) by σ 7→ Pσ is a homomorphism.

Proof. Given σ, τ ∈ Sn, consider

Pσ◦τ (ei) = eσ◦τ(i) = eσ(τ(i)) = Pσ(eτ(i)) = PσPτ (ei)

This is true for each i, so Pσ◦τ = PσPτ .

6.6. Definition :

(i) Note that det : On(R) → {±1} is a group homomorphism. Define the sign
function

sgn : Sn → {±1}
as the composition σ 7→ Pσ 7→ det(Pσ)

(ii) The alternating group on n letters is

An := {σ ∈ Sn : sgn(σ) = 1}

6.7. Remark/Example :

(i) In S3, consider (
1 2 3
2 1 3

)
7→

0 1 0
1 0 0
0 0 1

 7→ −1

(
1 2 3
2 3 1

)
7→

0 0 1
1 0 0
0 1 0

 7→ 1

Hence, (
1 2 3
2 3 1

)
∈ A3 but

(
1 2 3
2 1 3

)
/∈ A3

17



(ii) Sn = An tBn where Bn = {σ ∈ Sn : sgn(σ) = −1} [Not a subgroup of Sn]

(iii) Let σ0 ∈ Sn denote the permutation(
1 2 3 . . . n
2 1 3 . . . n

)
For any σ ∈ An, σ0σ ∈ Bn and conversely. Hence the map

f : An → Bn given by σ 7→ σ0σ

is a bijection (not a group homomorphism though). Hence,

Sn = An tBn

and

|An| = |Bn| =
n!

2

(End of Day 6)
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II. Quotient Groups

1. Modular Arithmetic

1.1. Definition : Let X be a set. An equivalence relation on a set X is a subset R ⊂
X ×X such that

(i) (x, x) ∈ R for all x ∈ X [Reflexivity]

(ii) If (x, y) ∈ R, then (y, x) ∈ R [Symmetry]

(iii) If (x, y), (y, z) ∈ R, then (x, z) ∈ R [Transitivity]

We write x ∼ y if (x, y) ∈ R.

1.2. Examples :

(i) X any set, x ∼ y ⇔ x = y

(ii) X = R2, (x1, y1) ∼ (x2, y2)⇔ y1 − y2 = x1 − x2
(iii) X = C, z ∼ w ⇔ |z| = |w|
(iv) X = Z, a ∼ b⇔ n | (b− a). Denote this by a ≡ b (mod n)

Proof. (a) Reflexivity: Obvious

(b) Symmetry: If a ∼ b, then b − a = nk for some k ∈ Z, so a − b = n(−k),
whence n | (a− b), so b ∼ a.

(c) Transitivity: If a ∼ b and b ∼ c, then ∃k, ` ∈ Z such that

b− a = nk and c− b = n`

Hence

c− a = c− b+ b− a = n(`+ k)⇒ n | (c− a)⇒ a ∼ c

1.3. Definition: Let X be a set, and ∼ an equivalence relation on X. For x ∈ X, the
equivalence class of x is the set

[x] := {y ∈ X : y ∼ x}

Note that x ∈ [x], so it is a non-empty set.

1.4. Theorem : Equivalence classes partition the set
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Proof. Since x ∈ [x] for all x ∈ X, we have that

X =
⋃
x∈X

[x]

WTS: Any two equivalence classes are either disjoint or equal. So fix two classes
[x], [y] and suppose

z ∈ [x] ∩ [y]

WTS: [x] = [y] So choose w ∈ [x], then

w ∼ x ∼ z ∼ y ⇒ w ∈ [y]

Hence, [x] ⊂ [y]. Similarly, [y] ⊂ [x]

1.5. Examples : (See Example 1.2)

(i) [x] = {x}
(ii) [(x1, y1)] = the line parallel to the line y = x passing through (x1, y1)

(iii) [z] = the circle of radius |z|
(iv) [a] = {b ∈ Z : ∃q ∈ Z such that b = a+ nq}

1.6. Lemma : Consider Z with ≡ (mod n)

(i) There are exactly n equivalence classes {[0], [1], . . . , [n− 1]}
(ii) If a ≡ a′ (mod n) and b ≡ b′ (mod n), then a+ b ≡ (a′ + b′) (mod n)

Proof. (i) Firstly note that if 0 ≤ i, j ≤ n − 1, then i � j. Hence, there are at
least n − 1 equivalence classes as listed above. To see that there are exactly
n equivalence classes, note that if a ∈ Z, then by the Division Algorithm,
∃q, r ∈ Z such that

a = nq + r, and 0 ≤ r < n

Hence, [a] = [r] as required.

(ii) If a ≡ a′ (mod n) and b ≡ b′ (mod n), then ∃k, ` ∈ Z such that

a = a′ + kn and b = b′ + `n

Hence,
a+ b = a′ + b′ + n(k + `)

so (a+ b) = (a′ + b′) (mod n) as required.

1.7. Definition: Consider the set of all equivalence classes

Zn := {[0], [1], [2], . . . , [n− 1]}

We define the sum of two classes as

[a] + [b] := [a+ b]

This is well-defined by the previous lemma.
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1.8. Theorem: Zn = {[0], . . . , [n− 1]} is a cyclic group of order n with generator [1]

Proof. (i) Associativity: Because + on Z is associative.

(ii) Identity: [0] is the identity element.

(iii) Inverse: Given [a] ∈ Zn, assume without loss of generality that 0 ≤ a < n,
then b := n− a has the property that

[a] + [b] = [a+ b] = [n] = [0]

(iv) Cyclic: For any a ∈ Z
[a] = a[1]

so Zn is cyclic with generator [1].

2. Lagrange’s Theorem

Recall: In constructing Zn, we had 4 steps :

(i) Define an equivalence relation ≡ (mod n) on Z
(ii) Collecting the equivalence classes together : Zn

(iii) Counting that there are n of them

(iv) Defining a group structure on the equivalence classes, and showing that it is
well-defined.

We now do the same thing for a general group.

2.1. Definition/Lemma : G a group, H < G. We say that two elements a, b ∈ G are
equivalent iff

a−1b ∈ H
This is an equivalence relation, and we write a ≡ b (mod H) if this happens.

Proof. (i) Reflexivity: If a ∈ G, then

a−1a = e ∈ H

Hence, a ≡ a (mod H).

(ii) Symmetry: If a, b ∈ G and a ≡ b (mod H), then a−1b ∈ H. Since H is a
subgroup

b−1a = (a−1b)−1 ∈ H
So b ≡ a (mod H)

(iii) Transitivity: If a, b, c ∈ G and a ≡ b (mod H), b ≡ c (mod H), then

a−1b, b−1c ∈ H ⇒ a−1c ∈ H

so a ≡ c (mod H).
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2.2. Definition :

(i) The equivalence class [a] is called a left coset of H in G. Note that

[a] = {ah : h ∈ H} =: aH

Note that a coset aH is not a group unless aH = H.

(ii) The number of cosets of H in G is called the index of H in G and is denoted
by [G : H]

(End of Day 7)

2.3. Examples :

(i) G = Z, H = nZ, then

(a) a ≡ b (mod H) iff a ≡ b (mod n)

(b) [Z : nZ] = n (Lemma 1.6)

(ii) G = Sn, H = An, then

(a) σ = τ (mod H) iff sgn(σ) = sgn(τ)

(b) [G : H] = 2 (Remark I.6.7)

(iii) G = C∗, H = S1, then

(a) z ≡ w (mod H) iff |z| = |w|
(b) [G : H] = |(0,∞)| = +∞

(iv) G = R2, H = {(x, x) : x ∈ R}, then

(a) (x1, y1) ≡ (x2, y2) (mod H) iff y1− y2 = x1− x2 iff (x1, y1) and (x2, y2) lie
on the same line parallel to the line y = x.

(b) [G : H] = |R| = +∞
2.4. Lemma : |aH| = |bH| for any a, b ∈ G

Proof. Define f : aH → bH by ah 7→ bh. This map is

(i) Well-defined: If ah1 = ah2, then h1 = h2 by cancellation, so bh1 = bh2.

(ii) Injective: If bh1 = bh2, then h1 = h2 by cancellation, so ah1 = ah2

(iii) Surjective: Obvious.

Hence f is a bijection.

2.5. Lagrange’s theorem : Let G be a finite group, then |G| = [G : H]|H|. In particular,
|H| | |G|

Proof. Since the equivalence relation partitions G, G is a disjoint union of cosets.
We enumerate the disjoint cosets by {a1H, a2H, . . . , akH}, where k = [G : H], so
that

G =
k⊔
i=1

aiH
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By Lemma 2.4, |aiH| = |H| for all i, so

|H| =
k∑
i=1

|aiH| =
k∑
i=1

|H| = [G : H]|H|

2.6. Corollary: If |G| = p, a prime, then G is cyclic.

Proof. Let x ∈ G be a non-identity element, then H := 〈x〉 is a subgroup of G. In
particular,

|H| | p⇒ |H| ∈ {1, p}

But |H| 6= 1, so |H| = p whence H = G.

2.7. Corollary: If a ∈ G, then O(a) | |G|, and hence a|G| = e

Proof. Note that O(a) = |〈a〉|, so O(a) | |G| by Lagrange’s theorem. Furthermore,
if k ∈ Z such that kO(a) = |G|, then

a|G| = (aO(a))k = ek = e

3. Normal Subgroups

3.1. Definition : Let G be a group and H < G. Define

G/H := {aH : a ∈ G}

to be the set of all cosets of H in G. Note that [G : H] = |G/H|.
Important: G/H is not, in general, a group.

3.2. Examples :

(i) G = Z, H = nZ, then G/H = Zn
(ii) G = C∗, H = S1, then G/H = {circles with varying radii around 0}

(iii) G = R2, H = {(a, a) : x ∈ R}, then G/H = {lines parallel to y = x}
(iv) G = Sn, H = An, then G/H = {An, Bn} where Bn = {σ ∈ Sn : sgn(σ) = −1}

3.3. Remark : We want to define a group operation on G/H by

[a] ∗ [b] = [ab]

Recall proof of Lemma 1.6(ii). Note: We only used the fact that G = Z is abelian.

3.4. Lemma : If G is abelian, and H < G, then (G/H, ∗) is a group.
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Proof. (i) Well-definedness of ∗: If a1 ≡ a2 (mod H) and b1 ≡ b2 (mod H), then
WTS:

a1b1 ≡ a2b2 (mod H)

To see this, note that a−11 a2 ∈ H and b−11 b2 ∈ H, so

(a1b1)
−1(a2b2) = b−11 a−11 a2b2 = a−11 a2b

−1
1 b2 ∈ H

since G is abelian.

(ii) Now it is clear that ∗ is a binary operation that is associative since multipli-
cation in G is associative.

(iii) Identity: [e] ∈ G/H has the property that [a] ∗ [e] = [ae] = [a] = [e] ∗ [a] for
all [a] ∈ G/H

(iv) Inverse: Given [a] ∈ G/H, a ∈ G, so a−1 ∈ G, and

[a] ∗ [a−1] = [e] = [a−1] ∗ [a]

3.5. Remark: To show that ∗ is well-defined, we needed that: If a−11 a2 ∈ H and b−11 b2 ∈
H, then

(a1b1)
−1(a2b2) ∈ H

Expanding out, this requires
b−11 a−11 a2b2 ∈ H

We don’t necessarily need G to be abelian.

3.6. Definition : Let G be a group and H < G. We say that H is a normal subgroup if,
for each h ∈ H and g ∈ G, we have

ghg−1 ∈ H

If this happens, we write H C G.

(End of Day 8)

3.7. Theorem : If H C G, then (G/H, ∗) is a group under the operation

[a] ∗ [b] := [ab]

Proof. We only need to prove well-definedness of ∗. The rest of the argument is
as in Lemma 3.4. As before, we have a1, a2, b1, b2 ∈ G such that a−11 a2 ∈ H and
b−11 b2 ∈ H. We WTS:

(a1b1)
−1a2b2 = b−11 a−11 a2b2 ∈ H

Note that since H C G
h := b−11 (a−11 a2)b1 ∈ H

Hence, hb−11 = b−11 a−11 a2, so

b−11 a−11 a2b2 = hb−11 b2 ∈ H
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3.8. Examples :

(i) G = Z, H = nZ, then Zn = Z/nZ
(ii) G = C∗, H = S1, then ∗ is the same as multiplying radii. G/H ∼= ((0,∞),×)

Proof. Define ϕ : G/H → (0,∞) by

ϕ([z]) := |z|

Then ϕ is well-defined and injective because

|z| = |w| ⇔ [z] = [w]

ϕ is clearly surjective, so it is suffices to show that it is a group homomorphism.
But this follows from

ϕ([z] ∗ [w]) = ϕ([zw]) = |zw| = |z||w| = ϕ([z])ϕ([w])

(iii) G = R2, H = {(a, a) : a ∈ R}, then ∗ is the same as adding Y-intercepts.
G/H ∼= (R,+)

Proof. Recall that any coset of H is of the form

y +H := {(a, a+ y) : a ∈ R}

and is a line parallel to the line y = x with Y -intercept y. Define ϕ : G/H → R
by

ϕ(y +H) := y

This map is well-defined (Check!) and a group homomorphism. It is also
injective because

y1 +H = y2 +H ⇔ y1 = y2

and is clearly surjective, so it is an isomorphism.

(iv) G = Sn, H = An. H C G and G/H ∼= ({±1},×)

Proof. Define ϕ : G/H → {±1} by

ϕ([σ]) = sgn(σ)

Then (Check!) ϕ is an isomorphism.

3.9. Proposition: If G abelian, then every subgroup is normal.

Proof. Trivial, because ghg−1 = h for all g, h ∈ G.

3.10. Proposition: If ϕ : G → G′ is a group homomorphism, then ker(ϕ) C G. In
particular, G/ ker(ϕ) is a group.

Proof. If H = ker(ϕ), then H < G (by I.5.4). If h ∈ H, then for any g ∈ G,

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1 = ϕ(g)e′ϕ(g)−1 = e′

so ghg−1 ∈ H.
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4. The Isomorphism Theorems

4.1. Proposition : Let H C G, then the map π : G → G/H given by π(a) = aH is a
surjective homomorphism and ker(π) = H

Proof. (i) π is surjective: Obvious because every element in G/H is of the form
aH

(ii) π is a homomorphism: Because of the way multiplication is defined in G/H

(aH) ∗ (bH) = abH

(iii) ker(π) = H: If h ∈ H, then hH = H which is the identity in G/H. Hence,

H ⊂ ker(π)

Conversely, if a ∈ ker(π), then aH = H. But a ∈ aH, so a ∈ H as required.

4.2. First Isomorphism theorem : Let ϕ : G→ G′ be a group homomorphism, then

G/ ker(ϕ) ∼= Image(ϕ)

In particular, if ϕ is surjective, then G/ ker(ϕ) ∼= G′

Proof. Define H := ker(ϕ) and ϕ̂ : G/H → G′ by

ϕ̂(aH) := ϕ(a)

Then

(i) ϕ̂ is well-defined: Suppose aH = bH, then a−1b ∈ H, so

ϕ(a−1b) = e′ ⇒ ϕ(a)−1ϕ(b) = e′ ⇒ ϕ(a) = ϕ(b)

(ii) ϕ̂ is a homomorphism: If aH, bH ∈ G/H, then

ϕ̂(aH ∗ bH) = ϕ̂(abH) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ̂(aH)ϕ̂(bH)

(iii) ϕ̂ is injective: If ϕ̂(aH) = e′, then ϕ(a) = e′, so a ∈ ker(ϕ) = H, so aH = H,
which is the identity element in G/H. Hence,

ker(ϕ̂) = {H}

so it is injective by I.5.7.

(iv) Im(ϕ̂) = Im(ϕ): Obvious.

Hence,
ϕ̂ : G/ ker(ϕ)→ Im(ϕ)

is a bijective homomorphism, hence an isomorphism.

26



(End of Day 9)

4.3. Examples :

(i) Any cyclic group is isomorphic to either Z or Zn for some n ∈ N

Proof. Let G be a cyclic group with generator a. Define ϕ : Z→ G by

ϕ(n) := an

Then ϕ is a surjective homomorphism. Hence,

Z/ ker(ϕ) ∼= G

by the First isomorphism theorem. But ker(ϕ) < Z, so is of the form nZ for
some n ∈ Z. Hence,

G ∼= Z/nZ ∼= Zn
If n = 0, then G ∼= Z

(ii) G = R2, and H = {(a, a) : a ∈ R}, then G/H ∼= R

Proof. Define ϕ : G→ R by (x, y) 7→ y−x. Then H = ker(ϕ), and ϕ is clearly
surjective. Hence G/H ∼= R

(iii) G = C∗, H = S1, then G/H ∼= ((0,∞),×)

Proof. Let ϕ : G→ (0,∞) be z 7→ |z|

(iv) Sn/An ∼= {±1}

Proof. Define ϕ : Sn → {±1} be given by σ 7→ sgn(σ)

(v) GLn(R)/SLn(R) ∼= R∗

Proof. Define ϕ : GLn(R)→ R∗ by A 7→ det(A)

4.4. Proposition : Let ϕ : G→ G′ be a homomorphism.

(i) If H ′ < G′, then ϕ−1(H ′) < G

(ii) If H < G, then ϕ(H) < G′

Proof. (i) If x, y ∈ ϕ−1(H ′), then ϕ(x), ϕ(y) ∈ H ′, so

ϕ(xy−1) ∈ H ′ ⇒ xy−1 ∈ ϕ−1(H ′)

So ϕ−1(H ′) < G

(ii) Similar.

4.5. Remark : If H C G and π : G → G/H the natural projection, then if K ′ < G/H,
then K = π−1(K ′) < G contains H.
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4.6. The Second Isomorphism Theorem : If H C G and π : G → G/H the natural
projection, then there is a one-to-one correspondence{

K ′ < G/H
}
↔
{
K < G such that H ⊂ K

}
Proof. Let S := {K ′ < G/H} and T := {K < G : H ⊂ K}, and define f : S → T
by

f(K ′) := π−1(K ′)

This is a well-defined function by 4.4 and 4.5.

(i) f is injective: If f(K ′1) = f(K ′2), then π−1(K ′1) = π−1(K ′2). WTS: K ′1 = K ′2.
By symmetry, it suffices to show that K ′1 ⊂ K ′2, so let xH ∈ K ′1, then x ∈
π−1(K ′1) = π−1(K ′2), so xH = π(x) ∈ K ′2. Thus, K ′1 ⊂ K ′2.

(ii) f is surjective: If K < G such that H ⊂ K, consider K ′ := π(K) < G/H
by 4.4. We claim that: π−1(π(K)) = K. Fix x ∈ K, then xH ∈ π(K), so
x ∈ π−1(π(K)). Hence,

K ⊂ π−1(π(K))

Conversely, if x ∈ π−1(π(K)), then xH = π(x) ∈ π(K). Hence, ∃y ∈ K such
that

xH = yH

But then xy−1 ∈ H ⊂ K. Hence, x ∈ K as required.

4.7. Example : For n ∈ N fixed{
subgroups of Zn

}
↔
{

divisors of n
}

Proof. We know that{
subgroups of Zn

}
↔
{

subgroups of Z containing nZ
}

But if H < Z such that nZ ⊂ H, then H = dZ for some d ∈ Z and n ∈ dZ, whence
d | n. Conversely, if d | n, then n ∈ dZ whence nZ ⊂ dZ. Hence the result.

(End of Day 10)

5. Modular Arithmetic : The Units

5.1. Lemma : Let n ∈ N fixed. If a ≡ c (mod n) and b ≡ d (mod n), then

ab = cd (mod n)

Proof. If a = c+ nk and b = d+ n`, then

ab = cd+ nkd+ n`c+ n2k`
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5.2. Definition : For [a], [b] ∈ Zn, [a]× [b] = [ab] is well-defined.

Note: (Zn,×) is not a group because [0] does not have a multiplicative inverse.

5.3. Lemma : If a ≡ c (mod n) and (a, n) = 1, then (c, n) = 1.

Proof. By I.2.4, ∃s, t ∈ Z such that as+ tn = 1. Also, ∃k ∈ Z such that a = c+kn.
Hence,

cs+ (ks+ t)n = 1

and hence (c, n) = 1.

5.4. Definition :

(i) Z∗n = {[a] ∈ Zn : (a, n) = 1} [Note: This is well-defined by 5.3.]

(ii) ϕ(n) = |Z∗n| is called the Euler Phi function

5.5. Theorem : (Z∗n,×) is a group, called the group of units modulo n

Proof. (i) Closure: If [a], [b] ∈ Z∗n, then (a, n) = (b, n) = 1, so ∃s1, t1 ∈ Z such
that

as1 + nt1 = 1

Similarly, ∃s2, t2 ∈ Z such that

bs2 + nt2 = 1

Multiplying, we see that

abs1s1 + n(as1t2 + bs2t1 + nt1t2) = 1

and so (ab, n) = 1

(ii) Associativity: Follows from associativity of multiplication of integers.

(iii) Identity: [1] ∈ Z∗n
(iv) Inverse: If (a, n) = 1, then ∃b, t ∈ Z such that

ab+ tn = 1

But then (b, n) = 1 and clearly [ab] = [1] in Z∗n. Hence, [a]× [b] = [1].

5.6. Examples :

(i) If p prime, then Z∗p = {[1], [2], . . . , [p− 1]}, ϕ(p) = p− 1

(ii) If p prime, then [a] ∈ Zpk iff p - a. Hence, ϕ(pk) = pk − pk−1

(iii) Z∗8 is not cyclic.

Proof. Write Z∗8 = {[1], [3], [5], [7]}, and note that

[3]2 = [9] = [1], [5]2 = [25] = [1], and [7]2 = [49] = [1]

Hence there is no element of order 4.
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(iv) Z∗
pk

is cyclic if p odd prime, k ∈ N (Proof Later)

5.7. Euler’s theorem : If n ∈ N and (a, n) = 1, then aϕ(n) ≡ 1 (mod n)

Proof. Because ϕ(n) = |Z∗n|, this follows from Corollary 2.7.

5.8. Fermat’s Little Theorem : If a ∈ Z and p a prime, then ap ≡ a (mod p)

Proof. Because ϕ(p) = p − 1, ap−1 ≡ 1 (mod p), so multiply both sides by a, and
use Lemma 5.1.
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III. Symmetry

(See [Artin, §6])

1. Isometries of Rn

1.1. Motivation : Recall

(i) Dn = symmetries of regular n−gon

(ii) V4 = symmetries of water molecule

More generally, if ∆ ⊂ Rn, we are interested in the symmetries of ∆

Examples :

(i) [Human figure] has only one non-trivial symmetry, namely reflection.

(ii) [Square] has 8 symmetries, the group D4

(iii) [Infinite arrows] has infinitely many symmetries - translation by any k ∈ Z
(iv) [Glide symmetry] has infinitely many symmetries - translation + flip

(v) [Sphere] has infinitely many symmetries - all rotations, and reflections

(vi) [Cube] has finitely many - some reflections, some rotations. How many are
there?

(End of Day 11)

1.2. Definition :

(i) For x = (xi), y = (yi) ∈ Rn,

〈x, y〉 :=
n∑
i=1

xiyi

and

|x− y| :=

√√√√ n∑
i=1

(xi − y2i = 〈x− y, x− y〉1/2

(ii) An isometry of Rn is a map T : Rn → Rn such that

|T (x)− T (y)| = |x− y| ∀x, y ∈ Rn

(iii) En is the set of isometries of Rn. Note : We will show that En is a group,
called the Euclidean Group
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1.3. Examples :

(i) Translation τb : x 7→ x+ b for any fixed b ∈ Rn

(ii) An orthogonal linear operator T : Rn → Rn has the property that 〈Tx, Ty〉 =
〈x, y〉. Hence |T (x)− T (y)| = |x− y| so T is an isometry.

(iii) The composition of two isometries is an isometry. Hence, if A ∈ On(R) and
b ∈ Rn, then the map g : Rn → Rn given by

g(x) = Ax+ b

is an isometry.

1.4. Lemma : Let u, v ∈ Rn such that 〈u, u〉 = 〈v, v〉 = 〈u, v〉, then u = v

Proof. Consider

〈u− v, u− v〉 = 〈u, u〉 − 2〈u, v〉+ 〈v, v〉 = 0

Hence u = v.

1.5. Theorem : Let g ∈ En such that g(0) = 0, then ∃A ∈ On(R) such that g(x) = Ax
for all x ∈ Rn

Proof. (i) g preserves dot products: If x, y ∈ Rn then 〈g(x), g(y)〉 = 〈x, y〉. Since
g is an isometry with g(0) = 0, we have

〈g(x)− g(y), g(x)− g(y)〉 = |g(x)− g(y)|2 = |x− y|2 = 〈x− y, x− y〉

In particular,

〈g(x), g(x)〉 = 〈x, x〉 and 〈g(y), g(y)〉 = 〈y, y〉

Expanding out the first equation, we get

〈g(x), g(y)〉 = 〈x, y〉

(ii) g is additive: If x, y ∈ Rn, then g(x) + g(y) = g(x+ y). Let z := x+ y, and let

u = g(z) = g(x+ y) and v = g(x) + g(y)

To show u = v, it suffices by Lemma 1.4 to show that

〈u, u〉 = 〈v, v〉 = 〈u, v〉

So note that

〈u, u〉 = 〈g(z), g(z)〉 = 〈z, z〉
= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
= 〈g(x), g(x)〉+ 2〈g(x), g(y)〉+ 〈g(y), g(y)〉
= 〈g(x) + g(y), g(x) + g(y)〉 = 〈v, v〉
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Also, consider

〈u, v〉 = 〈g(z), g(x) + g(y)〉
= 〈g(z), g(x)〉+ 〈g(z), g(y)〉
= 〈z, x〉+ 〈z, y〉
= 〈z, x+ y〉
= 〈g(x+ y), g(x+ y)〉 = 〈u, u〉

Hence g is additive.

(iii) g(λx) = λg(x) for all x ∈ Rn, λ ∈ R: Let z = λx, then we WTS:

g(z) = λg(x)

so let u = g(z), v = λg(x), and check

〈u, u〉 = 〈g(z), g(z)〉 = 〈z, z〉
= 〈λx, λx〉 = λ2〈x, x〉
= λ2〈g(x), g(x)〉
= 〈λg(x), λg(x)〉 = 〈v, v〉

and similarly, 〈u, v〉 = 〈u, u〉
(iv) Hence, g is linear and preserves the dot product. By I.4.2, g(x) = Ax for some

A ∈ On(R).

1.6. Corollary : If g ∈ En, then ∃A ∈ On(R) and b ∈ Rn such that g(x) = Ax+ b for all
x ∈ Rn

Proof. Consider b := g(0), then h(x) := g(x) − b is also an isometry, and satisfies
h(0) = 0. By Theorem 1.5, ∃A ∈ On(R) such that h(x) = Ax, so that g(x) = Ax+b
for all x ∈ Rn.

1.7. Corollary : Every g ∈ En is bijective, and En is a group.

Proof. (i) If g ∈ En, then write g(x) = Ax+ b as above. Define

h(x) := A−1(x− b) = A−1x− A−1b

Then h ∈ En by Example 1.3(iii). Furthermore,

g(h(x)) = Ah(x) + b = (x− b) + b = x

Hence, gh = idRn . Similarly, hg = idRn , so g is bijective.

(ii) Clearly, En is now a group under composition with identity idRn .
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1.8. Remark: Note that if A ∈ On(R), we get a unique isometry TA ∈ En given by
TA(x) = A(x). This map

A 7→ TA

is an injective group homomorphism. Therefore, we identify On(R) with its image
in En.

1.9. Theorem : There is a surjective homomorphism π : En → On such that ker(π) ∼= Rn.
Thus

En/Rn ∼= On(R)

Proof. Define π : En → On by

π(g) := τ−g(0) ◦ g

Then

(i) π is well-defined: If g ∈ En, then h := τ−g(0) ◦ g has the property that h(0) =
g(0)− g(0) = 0, and so h ∈ On(R) by 1.5.

(ii) If h ∈ On(R) and b ∈ Rn, then

h ◦ τb(x) = h(x+ b) = h(x) + h(b) = τh(b) ◦ h(x)

and so h ◦ τb = τh(b) ◦ h
(iii) π is a homomorphism: If g1, g2 ∈ En, then let hi := π(gi), then

g1 = τa1 ◦ h1 and g2 = τa2 ◦ h2

and hi ∈ On(R). Hence,

g1g2 = τa1h1τa2h2 = τa1τh1(a2)h1h2 = τa1+h1(a2)h1h2

Also, g1g2(0)g1(g2(0)) = g1(a2) = τa1(h1(a2)) = h1(a2) + a1. Hence,

π(g1g2) = h1h2

as required.

(iv) π is surjective: Clearly, because On(R) ⊂ En as in Remark 1.8.

(v) ker(π) ∼= Rn: By definition, g ∈ ker(π) iff ∃b ∈ Rn such that g = τb. Hence,

ker(π) = {τb : b ∈ Rn}

The map b 7→ τb is a group isomorphism from Rn to ker(π) [Check!]

(End of Day 12)
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2. Symmetries of Platonic Solids

2.1. Definition: A polyhedron is a region in R3 bounded by planes. It is said to be
regular if all its faces, edges and vertices are equal. This implies that each face is
the same regular polygon. There are exactly five such objects, the Platonic solids

(i) Tetrahedron (T): 4 faces.

(ii) Cube (C): 6 faces.

(iii) Octahedron (O): 8 faces.

(iv) Dodecahedron (D): 12 faces.

(v) Icosahedron (I): 20 faces.

Imagine each embedded in the unit sphere S2 ⊂ R3

2.2. Definition : Given ∆ ⊂ Rn, M(∆) = {g ∈ M(Rn) : g(∆) = ∆} is called the (full)
group of symmetries of ∆. Note : This does not mean that g(x) = x for all x ∈ ∆.

2.3. Remark : Let ∆ be a platonic solid. Then

(i) M(∆) ∩ ker(π) = {e}, and so π : M(∆)→ π(M(∆)) is an isomorphism

(ii) Reflection about a plane is a physical impossibility. In fact, any isometry that
”switches” two axes is not physically possible in R3. We are only going to
be interested in those symmetries which preserve the order of the axes, which
happens iff det(g) = +1

2.4. Definition : For ∆ ⊂ Rn with M(∆) < On(R), we write

G(∆) = π(M(∆)) ∩ SOn(R) = {g ∈ SO3(R) : g(∆) = ∆}

for the group of rotational (or orientation-preserving) symmetries of ∆

2.5. Example : Let ∆ = T =The tetrahedron

(i) G(T ) permutes the set X = {v1, v2, v3, v4} of vertices.

(ii) G(T ) has 12 elements, because any rotation must send v1 to four possible
vertices, v2 to any of the remaining three, and then the last two positions are
determined.

2.6. Lemma : There is an injective homomorphism f : G(T )→ SX where f(g) = σg as
above.

Proof. Given g ∈ G(T ), consider X ⊂ T , then g must permute X. Hence, define

σg := g|X : X → X

Clearly, σg ∈ SX because g is bijective, and maps X to X. Hence, f : G(T )→ SX
given by f(g) = σg is well-defined. It is clearly a homomorphism because the oper-
ation on both sides is composition.

Finally, f is injective, because if σg = idX , then g fixes all vertices, hence all edges,
and hence all faces. Thus, g = idT .
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2.7. Theorem : G(T ) ∼= A4

Proof. We identify G(T ) ∼= f(G(T )) < S4, and list out the elements:

(i) The identity e ∈ G(T )

(ii) If 1 is fixed, we get two non-trivial rotations:(
1 2 3 4
1 3 4 2

)
, and

(
1 2 3 4
1 4 2 3

)
(iii) Similarly, if two rotations each when each vertex is fixed. So far we have 9

elements.

(iv) Consider the product(
1 2 3 4
1 3 4 2

)(
1 2 3 4
2 3 1 4

)
=

(
1 2 3 4
3 4 1 2

)
This is an element of order 2, therefore not in our list yet. Similarly, we get
two more elements of order 2 of the form(

1 2 3 4
4 3 2 1

)
, and

(
1 2 3 4
2 1 4 3

)
Thus, we get 12 elements. This must exhaust all of G(T ).

(v) Now observe that all these elements are in A4. Furthermore, |A4| = 24/2 = 12,
so this exhausts A4.

(End of Day 13)

2.8. Example : Let ∆ = C =The cube

(i) G(C) has 24 elements: There are 8 choices for the first vertex, three subsequent
choices for an adjacent second vertex (because vertex 2 must be connected to
vertex 1 by an edge). Finally, there are two choices for vertex 3 (adjacent to
vertex 1) because it must remain adjacent to vertex 1, but cannot go where
vertex 2 has gone. However, if we consider only orientation preserving maps,
then there is only one choice. Hence, there are 8× 3 = 24 such symmetries.

(ii) G(C) permutes the set X = {D1, D2, D3, D4} of principal diagonals

2.9. Theorem : G(C) ∼= S4

Proof. Let X = {D1, D2, D3, D4} denote the set of principal diagonals. Then G(C)
permutes X, so, as before, we get a group homomorphism

f : G(C)→ SX

which is injective. Since |G(C)| = 24 = |SX |, it follows that f is an isomorphism.
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2.10. Remark :

(i) An octahedron can be obtained from a cube by joining mid-points of adjacent
faces and filling up the solid. We say that O is dual to C. This implies thatO
has the same group of symmetries as C. ie. G(O) ∼= S4

(ii) Similarly, the dodecahedron D is dual to the icosahedron I. Hence, G(D) ∼=
G(I). We will discuss this group later.

(iii) The tetrahedron is dual to itself.

3. Group Actions

3.1. Definition : Let G be a group, and X any set. We say that G acts on X if there is
a function

α : G×X → X

such that, for all g1, g2 ∈ G and x ∈ X

α(e, x) = x and α(g1g2, x) = α(g1, α(g2, x))

If this happens, we write Gyα X, or just Gy X. Furthermore, we write

g · x := α(g, x)

3.2. Examples :

(i) G(T ) acts on the set of vertices of T

(ii) G(C) acts of the set of principal diagonals of C

(iii) Dn acts on the set of vertices of a regular n-gon.

(iv) GLn(R) acts on Rn by (A, x) 7→ A(x). Similarly, SLn(R), On(R) and SOn(R)
act on Rn

(v) Sn acts on {1, 2, . . . , n}
(vi) Any group G acts on itself by the left regular action [See HW 2]

3.3. Lemma (Permutation Representation) : If G acts on X, then there is a homomor-
phism, G→ SX

Proof. Given a group action α : G×X → X, let g ∈ G, and define σg : X → X by

σg(x) := α(g, x)

Then

(i) σg ∈ SX : Note that

σg−1 ◦ σg(x) = σg−1(α(g, x)) = α(g−1, α(g, x)) = α(gg−1, x) = α(e, x) = x

Hence, σg−1 ◦ σg = idX . Similarly,

σg ◦ σg−1 = idX

Hence, σg ∈ SX .

37



(ii) Define f : G→ SX by f(g) = σg. As in the previous step, it follows that

σg1g2 = σg1 ◦ σg2

so f is a homomorphism.

3.4. Definition : Let Gy X

(i) For x, y ∈ X, write x ∼ y iff ∃g ∈ G such that y = g ·x. This is an equivalence
relation on X. [Why?]

(ii) For x ∈ X, the orbit of x is the set

O(x) := {g · x : g ∈ G}

Note : Orbits partition X (See II.1.4)

(iii) We say that the action is transitive if it has exactly one orbit. ie. For any
x, y ∈ X, ∃g ∈ G such that y = g · x.

(End of Day 14)

3.5. Examples :

(i) GLn(R) acts on Rn as before. Then the orbit of the origin is the origin itself.
The orbit of any other point is Rn \ {0}

(ii) SO2(R) acts on R2. If x ∼ y, then |x| = |y|, and so the orbit of any point
x ∈ R2 is the circle of radius |x|

(iii) Sn acts transitively on {1, 2, . . . , n}
3.6. Definition : For x ∈ G, the stabilizer of x is

Stab(x) := {g ∈ G : g · x = x}

Note that Stab(x) < G.

3.7. Proposition : Let Gy X. Let x ∈ X and H = Stab(x). Then there is a bijection
η : G/H → O(x)

Proof. Define η : G/H → O(x) by

gH 7→ g · x

(i) η is well-defined: If g1H = g2H, then g−11 g2 ∈ H = Stab(x), so (g−11 g2) ·x = x,
so (applying g1 to both sides),

g1 · x = g2 · x

(ii) η is surjective: Obvious.
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(iii) η is injective: If g1 · x = g2 · x, then (g−12 g1) · x = x, whence g−12 g1 ∈ H, so

g1H = g2H

3.8. (Orbit-Stabilizer Theorem) Let G be a finite group acting on a set X. Let x ∈ X,
then |G| = |O(x)||Stab(x)|. In particular, if G acts transitively on X, then |G| =
|X||Stab(x)|

Proof. Let H := Stab(x), then by Lagrange’s theorem and 3.7,

|O(x)| = |G/H| = [G : H] =
|G|
|H|

3.9. Example : Let D be the regular dodecahedron, then |G(D)| = 60

Proof. The dodecahedron has 12 faces, each of which is a pentagon. Let x ∈ D be
the center of one such face, then O(x) consists of the centers of all the faces of D.
Hence,

|O(x)| = 12

Also, Stab(x) consists of those elements g ∈ G that fix x, and hence the face
containing x. The only such elements are elements that rotate the pentagon, and
there are five such elements.

|Stab(x)| = 5

So by the Orbit-Stabilizer theorem, |G(D)| = 60.

4. Cayley’s Theorem

4.1. Remark : G acts on itself by left multiplication by the formula

g · h := gh

4.2. Cayley’s Theorem : Let G be a finite group with n = |G|, then G is isomorphic to
a subgroup of Sn

Proof. Let f : G → SG ∼= Sn be the group homomorphism induced by the left-
multiplication action. We claim that f is injective. Suppose g ∈ ker(f), then

σg = idG

In other words, for any h ∈ H

h = σg(h) = g · h = gh

By cancellation, this implies g = e, so ker(f) = {e} as required. Hence, f : G →
Image(f) < Sn is an isomorphism.
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4.3. Definition: Let G be a group, and H < G. Let X = G/H, then G acts on X by
left multiplication.

g · (xH) := (gx)H

Let fH : G→ SX be the induced permutation representation.

4.4. Lemma : ker(fH) ⊂ H

Proof. Let g ∈ ker(fH), then σg = idG/H . In other words,

g · (xH) = xH ∀xH ∈ G/H
In particular, this implies

gH = g · (eH) = eH = H

and so g ∈ H.

4.5. Lemma : Let G be a finite group, and K < H < G, then [G : K] = [G : H][H : K]

Proof. By Lagrange’s theorem, [G : H] = |G|/|H|. So

[G : K] =
|G|
|K|

=
|G|
|H|
|H|
|K|

= [G : H][H : K]

4.6. (Strong Cayley Theorem) Let G be a finite group, and p the smallest prime dividing
|G|. Then any subgroup of index p is normal in G. In particular, any subgroup of
index 2 is normal in G.

Proof. Let H < G such that [G : H] = p where p is the smallest prime dividing
|G|. Consider the map

fH : G→ Sp

as above, then by the first isomorphism theorem,

G/ ker(fH) : G ∼= Image(fH) < Sp

By Lagrange,
|Image(fH)| | p!

But |Image(fH)| = [G : ker(fH)] | |G|. Hence,

|Image(fH)| | gcd(|G|, p!) = p

Since p is prime, |Image(fH)| = p or 1. Hence,

[G : ker(fH)] ∈ {p, 1}
But ker(fH) ⊂ H, so

[G : ker(fH)] = [G : H][H : ker(fH)] = p[H : ker(fH)] ≥ p

Hence, [G : ker(fH)] = p, whence [G : ker(fH)] = [G : H], so that [H : ker(fH)] = 1.
Hence,

H = ker(fH) C G

(End of Day 15)
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5. The Class Equation

5.1. Definition :

(i) Define α : G×G→ G by
α(g, h) := ghg−1

Then α is a group action of G on G, called the conjugation action.

(ii) Two elements x, y ∈ G are conjugate iff ∃g ∈ G such that y = gxg−1 (ie. they
lie in the same orbit)

5.2. Examples :

(i) Let T : Rn → Rn be an invertible linear operator, and A1, A2 be two represen-
tations of T w.r.t two different bases, then A1 is conjugate to A2 in GLn(R)

(ii) Let G = M(R2), x = ρθ, g = τv, then gxg−1 is the rotation by θ about v

(iii) Let G = D3, x = the reflection about v1, g = rotation by 120 degrees clockwise,
then gxg−1 is the reflection about v3. ie. Conjugation is “looking at the group
from different perspectives/change of coordinates in the group”

5.3. Definition : G a group, x ∈ G
(i) The conjugacy class of x in G is

C(x) := {gxg−1 : g ∈ G} = O(x)

(ii) The centralizer of x in G is

Z(x) := {g ∈ G : gxg−1 = x} = Stab(x)

5.4. Remark : Let G be a finite group

(i) By the orbit-stabilizer theorem, |G| = |Z(x)||C(x)|
(ii) In particular, for any x ∈ G, |C(x)| | |G|

(iii) By 3.4, G is partitioned into conjugacy classes. Hence

|G| = |C(x1)|+ |C(x2)|+ . . .+ |C(xn)|

where the sum is taken over all distinct conjugacy classes

(iv) |C(x)| = 1 iff gxg−1 = x for all g ∈ G. Equivalently, |C(x)| = 1 iff xg = gx
for all g ∈ G

5.5. Definition : The Center of the group is

Z(G) = {x ∈ G : gx = xg ∀g ∈ G}

5.6. Remark :

(i) Z(G) C G (HW)
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(ii) Z(G) = G iff G is abelian

(iii) x ∈ Z(G) iff |C(x)| = 1

5.7. (The class equation) : Let G be a finite group, then

|G| = |Z(G)|+
∑

|C(xi)|>1

|C(xi)|

where the sum on the RHS is taken over all distinct conjugacy classes whose cardi-
nality is > 1. Furthermore, each term on the RHS divides |G|

Proof. We simply take the equation

|G| = |C(x1)|+ |C(x2)|+ . . .+ |C(xn)|

Each term on the RHS equal to one constitutes an element of Z(G), so we collect
all these terms to get |Z(G)|.

5.8. Corollary : Let G be a group such that |G| = pn, where p is prime, then Z(G) 6= {e}

Proof. If x ∈ G such that |C(x)| > 1, then |C(x)| | |G|, so p | |C(x)|. Hence, the
class equation reads

|G| ≡ |Z(G)| (mod p)

Since |G| ≡ 0 (mod p), it follows that p | |Z(G)|. Hence, Z(G) 6= {e}.

5.9. Lemma : If G/Z(G) is cyclic, then G is abelian. [HW]

5.10. Theorem : If |G| = p2, where p is prime, then G is abelian

Proof. By Corollary 5.8, |Z(G)| ∈ {p, p2}. If |Z(G)| = p2, then G = Z(G), so G
is Abelian. If |Z(G)| = p, then |G/Z(G)| = p, so G/Z(G) is cyclic, whence G is
abelian. Thus, Z(G) = G, so this is not possible.

6. The Icosahedral Group

(See [Artin, §7.4])

6.1. Remark : G(D) is the group of rotational symmetries of a regular dodecahedron.
Note that D has 20 vertices, 12 faces and 30 edges.

(i) By 3.9, |G(D)| = 60

(ii) What are these elements?

(a) The identity (1)

(b) Rotation by 2π/3 about every vertex (+20)

(c) Rotation by π about the centre of an edge. There are 30 edges, but each
such rotation accounts for 2 edges (+15)
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(d) Rotation by 2π/5 about the centre of a face (+12) [This accounts for a
rotation by 8π/5]

(e) Rotation by 4π/5 about the centre of a face (+12) [This accounts for a
rotation by 6π/5]

(End of Day 16)

6.2. Lemma : Let x = ρu,α ∈ SO3(R)

(i) trace(x) = 1 + 2 cos(α)

(ii) Let g ∈ SO3(R) and v = g(u), then gxg−1 = ρv,α

Proof. (i) HW

(ii) Note that gxg−1(v) = v. Let α′ be the angle of rotation of gxg−1, then

1 + 2 cos(α′) = Tr(gxg−1) = Tr(x) = 1 + 2 cos(α)

Hence, α′ = ±α. WTS: α′ = α. So write g = ρw,θ, and define a continuous
function f : [0, 1]→ SO3(R) by

f(t) = ρw,tθxρ
−1
w,tθ

Note that f(0) = ρw,0xρ
−1
w,0 = IxI−1 = x and f(1) = gxg−1. Since the angle

of rotation is continuous along this path, and takes only two values {±α}, it
must be constant. Hence, α′ = α.

6.3. Remark (Class Equation of G(D))

(i) If e ∈ G(D) is the identity, then |C(e)| = 1

(ii) If u is a vertex, α = 2π/3, let x1 = ρu,α, then |C(x1)| = 20

Proof. If g ∈ G(D), then gx1g
−1 = ρu′,α for some other vertex u′. There are

20 such vertices. Furthermore, if v is any other vertex, ∃g ∈ G(D) such that
g(u) = v, so |C(x1)| = 20.

(iii) If e is the centre of an edge, and α = π, let x2 = ρe,α, then |C(x2)| = 15

Proof. If g ∈ G(D), then gx2g
−1 = ρe′,α for some other mid-point e′ of and

edge of D. Potentially, this give 30 elements, but

ρe,π = ρ−e,−π

so we get only 15 rotations.

(iv) If f is the centre of a face, and α = 2π/5, let x3 = ρf,α, then |C(x3)| = 12

Proof. If g ∈ G(D), then gx3xg
−1 = ρf ′,2π/5 for some other centre f ′ of a face

of D. There are 12 such faces.
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(v) Similarly, If f is the centre of a face, and α = 4π/5, let x4 = ρf,α, then
|C(x4)| = 12.

So the class equation is : 60 = 1 + 20 + 15 + 12 + 12

6.4. Lemma : Let G be a group, N C G, then

(i) If x ∈ N , then C(x) ⊂ N

(ii) |N | is the sum of the cardinalities of disjoint conjugacy classes in G

Proof. (i) If x ∈ N and g ∈ G, then gxg−1 ∈ N , so C(x) ⊂ N .

(ii) For any x ∈ G, it follows that

C(x) ∩N = ∅ or C(x) ⊂ N

Hence, N is the disjoint union of conjugacy classes in G.

6.5. Definition : A group G is said to be simple if it contains no non-trivial normal
subgroups. ie. {e} and G are the only normal subgroups of G.

6.6. Theorem : G(D) is a simple group

Proof. If N C G(D), then |N | | 60, and |N | must be 1+ a sum of some subset of
{20, 15, 12, 12}. This is impossible unless |N | = 1 or |N | = 60.

(End of Day 17)

6.7. Theorem : G(D) ∼= A5. In particular, A5 is a simple group.

Proof. Let X denote the set of 5 cubes embedded in the dodecahedron. Then G
acts on X, so this gives a group homomorphism f : G → S5. Since G acts non-
trivially on X, it follows that f is not constant. Since G is simple, ker(f) = {e},
so f is injective. Hence, we get an isomorphism

f : G→ Image(f)

We claim that Image(f) = A5.

Since |Image(f)| = |G| = 60 = |A5|, it suffices to show that Image(f) ⊂ A5. Now
consider sgn ◦ f : G → {±1}. Since |G| = 60, this map cannot be injective. Since
G is simple, it must happen that ker(sgn ◦ f) = G. Hence, Image(f) ⊂ A5 as
required.

7. Conjugation in Sn and An

7.1. Definition : Fix n ∈ N and m ≤ n
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(i) An m-cycle in Sn is a permutation σ ∈ Sn such that, there is a subset
{a1, a2, . . . , am} ⊂ {1, 2, . . . , n} such that

σ(a1) = a2, σ(a2) = a3, . . . , σ(am−1) = am, σ(am) = a1

and furthermore, σ(j) = j if j /∈ {a1, a2, . . . , am}. We write such an m-cycle
as

(a1a2 . . . am)

Note that any cyclic permutation of this symbol also represents the same
element.

(ii) Two cycles (a1a2 . . . am) and (b1b2 . . . bk) are said to be disjoint if

{a1, a2, . . . , am} ∩ {b1, b2, . . . , bk} = ∅

(iii) The length of a cycle

(iv) A 2 cycle is called a transposition.

7.2. Proposition : Every σ ∈ Sn can be written as a product of disjoint cycles.

Proof. Given σ ∈ Sn, follow the algorithm given below:

(i) Start with x1 := 1 ∈ {1, 2 . . . , n} =: X and let a1 = σ(1). This starts a new
cycle

(1a2

(ii) Determine ak = σk(1). Since σ has finite order, ∃k ∈ N such that σk(1) = 1
and σj(1) 6= 1 if j < k. Consider the set

S1 = {1, a1, a2, . . . , ak−1}

If ai = aj for 0 ≤ i, j ≤ k − 1, then σj−i(1) = 1 must hold. This is impossible
by minimality of k, so these k elements are distinct. This is the first cycle

σ1 := (1a1a2 . . . ak−1)

(iii) If S = X, then stop, else choose x2 ∈ X\S which is smallest with this property.
Repeat the above 3 steps. If σi(x2) = σj(x1), then x2 ∈ S must hold. Thus,
the corresponding set S2 must be disjoint from S1. This gives a second cycle
σ2

(iv) Continue this process until we exhaust all of X. This must happen because
|X| <∞. Now we have obtained disjoint cycles σ1σ2 . . . σk.

(v) Finally, remove all cycles of length 1.

Claim : σ = σ1σ2 . . . σk To see this, choose x ∈ X, then ∃1 ≤ j ≤ k such that
x ∈ Sj. Write x = σ`(xj), then

σ(x) = σ`+1(xj) = σj(x)
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Since the other σi are disjoint, σi(x) = x and σi(σ(x)) = x for all i 6= j. Hence,

σ(x) = σ1σ2 . . . σk(x)

This is true for all x ∈ X as required.

7.3. Remark:

(i) Let σ ∈ Sn and H := 〈σ〉. Then H acts on X = {1, 2 . . . , n}, so X decomposes
as a disjoint union or orbits under this action. These orbits are precisely the
sets Sj constructed above.

(ii) Example: If σ ∈ S10 is given by(
1 2 3 4 5 6 7 8 9 10
2 4 1 5 6 7 9 10 3 8

)
Then

σ = (1, 2, 4, 5, 6, 7, 9, 3)(8, 10)

(End of Day 18)

(iii) Disjoint cycles commute.

(iv) The cycle decomposition is unique upto order in which the elements are writ-
ten, and upto cyclic permutation of a cycle.

(v) If σ = σ1σ2 . . . σk as above, then [HW]

O(σ) = lcm(O(σ1), O(σ2), . . . , O(σk))

(vi) For m ≤ n, the number of m-cycles in Sn is [Why?]

1

m

n!

(n−m)!
=
n(n− 1) . . . (n−m+ 1)

m

7.4. Proposition : If σ ∈ Sn has the cycle decomposition

(a1a2 . . . a`1)(b1b2 . . . b`2) . . .

and τ ∈ Sn, then τστ−1 has the cycle decomposition

(τ(a1)τ(a2) . . . τ(a`1))(τ(b1)τ(b2) . . . τ(b`2)) . . .

Proof. If σ(i) = j, then
τστ−1(τ(i)) = τ(j)

Hence, if (ij) appears in a cycle within σ, then (τ(i)τ(j)) appears within the cor-
responding cycle in τστ−1

7.5. Definition :
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(i) Given σ ∈ Sn, express it uniquely as a product of disjoint cycles

σ = σ1σ2 . . . σk

The cycle-type of σ is the tuple (`1, `2, . . . , `k), where `i is the length of σi. To
ensure well-definedness, we require that `1 ≤ `2 ≤ . . . ≤ `k.

(ii) A partition of n is a tuple (`1, `2, . . . , `k) where `i ≤ `i+1 such that n =
∑k

j=1 `j

7.6. Theorem : For σ ∈ Sn, the conjugacy class of σ consists of all those elements in Sn
with the same cycle-type as σ

Proof. If σ, τ ∈ Sn, then τστ−1 has the same cycle type as σ by 7.4. Conversely,
suppose η ∈ Sn has the same cycle type as σ, then write

η = η1η2 . . . ηk and σ = σ1σ2 . . . σk

where `i = length of σi = length of ηi, and include the 1-cycles as well. Write

σi = (ai,1, ai,2, . . . , ai,`i) and ηi = (bi,1, bi,2, . . . , bi,`i)

Define τ(ai,j) := bi,j, then τ is a permutation of {1, 2, . . . , n} because the cycles are
disjoint. Furthermore, τστ−1 = η by 7.4.

7.7. Corollary : The number of conjugacy classes in Sn is equal to the number of parti-
tions of n

7.8. Examples:

(i) If σ1 = (1)(2)(35)(46) and σ2 = (2)(6)(13)(45), then we may choose

τ =

(
1 2 3 4 5 6
2 6 1 4 3 5

)
so that τσ1τ

−1 = σ2

(ii) We may also choose

τ ′ =

(
1 2 3 4 5 6
6 2 4 1 5 3

)
so that τ ′σ1τ

′−1 = σ2, so there is no uniqueness in this expression.

(iii) If n = 5, the conjugacy classes are as follows:

Partition of 5 Representative of Conjugacy class Number of elements
1,1,1,1,1 e 1
1,1,1,2 (12) 10 = 1

2
5!
3!

1,1,3 (123) 20
1,4 (1234) 30
5 (12345) 24 = 1

5
5!
1

1,2,2 (12)(34) 15 [Why?]
2,3 (12)(345) 20 [Why?]
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7.9. Corollary : Let σ ∈ Sn be an m-cycle (a1a2 . . . am)

(i) |C(σ)| = n!

m(n−m)!

(ii) |Z(σ)| = m(n−m)!

(iii) Z(σ) = {σiτ : 0 ≤ i ≤ m− 1, τ ∈ H} where

H = {τ ∈ Sn : τ(ai) = ai ∀1 ≤ i ≤ m}

Proof. (i) By 7.3(vi), the number of m-cycles in Sn is given by

n(n− 1) . . . (n+m− 1)

m
=

n!

m(n−m)!
= |C(σ)|

(ii) By the Orbit-Stabilizer theorem,

|Z(σ)| = |Sn|
|C(σ)|

= m(n−m)!

(iii) If τ ∈ H, then τσ = στ . Furthermore, σi ∈ Z(σ), so clearly

A := {σiτ : 0 ≤ i ≤ m− 1, τ ∈ H} ⊂ Z(σ)

Note that O(σ) = m and H ∼= Sn−m, so |A| = (n−m)!m, so A = Z(σ)

(End of Day 19)

7.10. Definition:

(i) A permutation σ ∈ Sn is said to be even if σ ∈ An, and is said to be odd
otherwise.

(ii) For an element σ ∈ An, we write CSn(σ) for its conjugacy class in Sn, while
we write

CAn(σ) := {τστ−1 : τ ∈ An}

Note that CAn(σ) ⊂ CSn(σ)

(iii) Similarly, we write ZSn(σ) and ZAn(σ) for the corresponding centralizers.

7.11. Lemma: Let σ ∈ An
(i) If σ commutes with an odd permutation, then CAn(σ) = CSn(σ)

(ii) If σ does not commute with any odd permutation, then

CSn(σ) = CAn(σ) t CAn((12)σ(12))

In particular,

|CAn(σ)| = |CSn(σ)|
2
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Proof. (i) Let τ ∈ Sn be an odd permutation such that στ = τσ, then WTS:
CSn(σ) ⊂ CAn(σ), so suppose η ∈ CSn(σ), so ∃δ ∈ Sn such that

η = δσδ−1

If δ ∈ An, then η ∈ CAn(σ). If δ /∈ An, then δ′ := τδ ∈ An, and

η = δ′σδ′−1

Hence, η ∈ CAn(σ) as required.

(ii) If σ does not commute with any odd permutation, then by definition

ZSn(σ) = ZAn(σ)

Hence,

|CAn(σ)| = |An|
|ZAn(σ)|

=
1

2

|Sn|
|ZSn(σ)|

=
|CSn(σ)|

2

Now observe that

CSn(σ) = {δσδ−1 : δ ∈ An} t {δσδ−1 : δ odd }

Note that these sets are disjoint because if δ ∈ An and θ is odd such that

δσδ−1 = θσθ−1

Then θ−1δ is an odd permutation that commutes with σ. Since there is no
such permutation, these sets must be disjoint. Now δ ∈ Sn is odd if and only
if η := (12)δ is even. Hence,

{δσδ−1 : δ odd} = {η(12)σ(12)η−1 : η ∈ An}

Hence,
CSn(σ) = CAn(σ) t CAn((12)σ(12))

7.12. Example: Examine the conjugacy classes in S5 from 7.8(iii)

e (12) (123) (1234) (12345) (12)(34) (12)(345)
1 10 20 30 24 15 20

Of these, (12) /∈ A5, (1234) /∈ A5, (123)(45) /∈ A5. Also,

(123)(45) = (45)(123)⇒ CA5((123)) = CS5((123))

(12)(12)(34) = (12)(34)(12)⇒ CA5((12)(34)) = CS5((12)(34))

However, if σ = (12345), then by 7.9,

ZS5(σ) = {σi : 0 ≤ i ≤ 4} ⊂ A5

Hence, σ does not commute with any odd permutation. By 7.11, this implies that

CS5(σ) = CA5(σ) t CA5(12)σ(12))

Note that (12)σ(12) = (13452), so we get the conjugacy classes of A5 to be
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e (123) (12345) (13452) (12)(34)
1 20 12 12 15

Compare this example with 6.3.

7.13. Example: Consider the conjugacy classes in S4

e (12) (123) (1234) (12)(34)
1 6 8 6 3

Once again, (12) /∈ A4, (1234) /∈ A4. Also,

(12)(34)(12) = (12)(12)(34)

so CA4((12)(34)) = CS4((12)(34)). Now observe that

(12)−1(123)(12) = (132) 6= (123)

Similarly, (123) does not commute with any transposition. Also,

(1234)−1(123)(1234) = (2143)(123)(1234) = (124) 6= (123)

Similarly, (123) does not commute with any 4-cycle. Hence, (123) does not commute
with any odd transposition. Hence,

CS4((123)) = CA4((123)) t CA4((132))

So the class equation of A4 can be read of from

e (123) (132) (12)(34)
1 4 4 3

7.14. Corollary: A4 does not have a subgroup of order 6. Hence, the converse of La-
grange’s theorem fails.

Proof. If H < A4 of order 6, then H C A4, so H must be a union of conjugacy
classes. If (123) ∈ H, then (132) = (123)−1 ∈ H, so |H| ≥ 1 + 4 + 4 = 9. Hence,
|H| = 12, so H = A4.

Hence, (123) /∈ H and (132) /∈ H. Hence,

H ⊂ {e, (12)(34), (13)(24), (14)(23)}

so |H| 6= 6.

7.15. Remark:

(i) A4 is not simple, because the subgroup

{e, (12)(34), (13)(24), (14)(23)} C A4

(ii) An is simple for all n ≥ 5. We have proved this for n = 5, but will not prove
it for n ≥ 6 (See [Conrad])

(End of Day 20)
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IV. Structure of Finite Groups

All groups in this chapter will be assumed to be finite.

1. Direct Products

1.1. Definition : Let (G1, ∗), (G2, ·) be two groups. The external direct product, G =
G1 ×G2, is the set G1 ×G2 together with the binary operation

(x1, y1) ◦ (x2, y2) := (x1 ∗ x2, y1 · y2)

Note that G1 ×G2 is a group.

1.2. Lemma : If G = G1 ×G2, Ĝ1 = {(a, e2) : a ∈ G1} C G and

G/Ĝ1
∼= G2

Proof. Define π2 : G → G2 be given by (a, b) 7→ b, then π2 is a surjective group
homomorphism with

ker(π2) = Ĝ1

So the result follows from the first isomorphism theorem.

1.3. Lemma : If g = (a, b) ∈ G1 ×G2, then O(g) = lcm(O(a), O(b))

Proof. Let n := lcm(O(a), O(b)), then

gn = (an, bn) = (e1, e2)⇒ O(g) | n

Furthermore, if m = O(g), then gm = (e1, e2), then am = e1, b
m = e2, so

O(a) | m and O(b) | m

Hence, n | m, so O(g) = n.

1.4. Theorem : LetG1, G2 be finite cyclic groups, thenG1×G2 is cyclic iff (|G1|, |G2|) = 1

Proof. (i) Suppose (|G1|, |G2|) = 1, let a ∈ G1, b ∈ G2 be the generators of G1

and G2 respectively. Then if g = (a, b), then

O(g) = lcm(|G1|, |G2|) = |G1||G2| = |G1 ×G2|

Hence, G1 ×G2 is cyclic with generator g.
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(ii) Suppose (|G1|, |G2|) 6= 1, let m = lcm(|G1|, |G2|), then m < |G1 × G2|. Fur-
thermore, for any g = (a, b) ∈ G1 ×G2,

gm = (am, bm) = (e1, e2)

by Corollary I.2.7. Hence, G1 ×G2 does not have a generator.

1.5. Corollary : If (n1, n2) = 1, and n = n1n2, then Zn ∼= Zn1 × Zn2 . In particular, if

n = pα1
1 p

α2
2 . . . pαkk

is the prime decomposition of n, then

Zn ∼= Zpα11
× Zpα22

× . . .× Zpαkk

1.6. Definition : If H,K ⊂ G, HK := {hk : h ∈ H, k ∈ K}
1.7. Lemma : Let H,K < G, then

|HK| = |H||K|
|H ∩K|

Proof. Note that HK is a union of left cosets

HK =
⋃
h∈H

hK

Now, h1K = h2K ⇔ h−12 h1 ∈ K ⇔ h−12 h1 ∈ H ∩K ⇔ h1(H ∩K) = h2(H ∩K).
Hence, the number of distinct left cosets is equal to

[H : H ∩K]

Hence,

|HK| = [H : H ∩K]|K| = |H||K|
|H ∩K|

1.8. Proposition : HK < G iff HK = KH

Proof. (i) Suppose HK < G. Since K < HK and H < HK, it follows that
KH < HK. By the previous lemma, |KH| = |HK|, so KH = HK.

(ii) Suppose KH = HK and a, b ∈ HK. Write a = h1k1, b = h2k2. Then

ab−1 = h1k1k
−1
2 h−12

Now h1(k1k
−1
2 ) ∈ HK = KH, so ∃k3 ∈ K,h3 ∈ H such that

h1(k1k
−1
2 ) = k3h3

Hence,
ab−1 = k3h3h

−1
2 ∈ KH = HK

So HK < G.
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1.9. Corollary : If K C G, and H < G, then HK < G

Proof. If K C G, then for any h ∈ H,

hKh−1 ⊂ K ⇒ hK ⊂ Kh⇒ HK ⊂ KH

Since |HK| = |KH|, we have HK = KH.

1.10. Corollary : If G = G1 ×G2, then G = Ĝ1Ĝ2

Proof. Since Ĝ1 C G, Ĝ1Ĝ2 < G. Also,

|Ĝ1Ĝ2| =
|Ĝ1||Ĝ2|
|Ĝ1 ∩ Ĝ2|

=
|G1||G2|

1
= |G|

Hence, G = Ĝ1Ĝ2

1.11. Definition: If G is a group and H,K < G such that G = HK, then G is said to be
an internal direct product of H and K.

(End of Day 21)

1.12. Remark/Example:

(i) By Corollary 1.10, if G is an external direct product of G1 and G2, then it is

an internal direct product of Ĝ1 and Ĝ2. Since Ĝi
∼= Gi, we simply say that

G is a direct product of G1 and G2

(ii) If G = HK, it does not necessarily imply that G ∼= H ×K. ie. An internal
direct product is not necessarily an external direct product.

(iii) Let G = S3 and H = A3 = {e, (123), (132)}. Then H C G. Furthermore, if
K := {e, (12)}, then K < G. Hence,

HK < G

Furthermore, |H ∩ K| | (3, 2) = 1. Hence, |HK| = |H||K| = 6. Hence,
HK = G. However,

S3 � H ×K
because H ×K is Abelian and S3 is not.

1.13. Theorem: Let G be a group and H,K < G such that

(i) H C G,K C G.

(ii) H ∩K = {e}
Then HK ∼= H ×K.

Proof. Since H C G,HK < G by 1.9. If h ∈ H and k ∈ K, then consider
x := hkh−1k−1. By normality,

x = (hkh−1)k−1 ∈ K and x = h(kh−1k−1) ∈ H

Hence, x ∈ H ∩K = {e}, so hkh−1k−1 = e, whence

hk = kh ∀h ∈ H, k ∈ K

Define f : H ×K → HK by (h, k) 7→ hk.
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(i) f is a homomorphism: If (h1, k1), (h2, k2) ∈ H ×K, then

f((h1, k1)(h2, k2)) = f(h1h2, k1k2) = h1h2k1k2 = h1k1h2k2 = f(h1, k1)f(h2, k2)

(ii) f is injective: If (h, k) ∈ ker(f), then

hk = e⇒ h = k−1 ∈ H ∩K = {e}

Hence h = k = e, so ker(f) = {(e, e)}.
(iii) f is surjective: Obvious.

1.14. Proposition : Let |G| = p2, then

G ∼=

{
Zp2 : if G cyclic

Zp × Zp : otherwise

Proof. Suppose ∃x ∈ G such that O(x) = p2, then G is cyclic. So

G ∼= Zp2

by II.4.3. Now suppose O(x) = p for all x ∈ G, x 6= e. Fix x ∈ G, and consider
H := 〈x〉. Since H 6= G,∃y ∈ G \H. Let K := 〈y〉.

Since G is Abelian by III.5.10, H C G,K C G, so HK < G. Also, since |K| = p,
and

H ∩K < K ⇒ H ∩K = {e} or K ⊂ H

Since y ∈ K \H, it follows that H ∩K = {e}, so

|HK| = p2 = |G| ⇒ G = HK

By Theorem 1.13, it follows that

G ∼= H ×K ∼= Zp × Zp

2. Cauchy’s Theorem

2.1. Remark: Let G be a finite group.

(i) By Lagrange’s theorem, if H < G, then |H| | |G|.
(ii) However, the converse is not true. For instance, if G = A4, then 6 | |A4|, but

A4 does not have a subgroup of order 6. (See III.7.14)

Cauchy’s theorem can be thought of a partial converse to Lagrange’s theorem.
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2.2. Lemma: Let G be a group and g ∈ G. If d | O(g), then G contains an element of
order d.

Proof. Let m := O(g) and x := gm/d then we claim that O(x) = d.

First note that xd = gm = e, so O(x) | d. Furthermore, if k = O(x), then xk = e,
so gmk/d = e. Hence, m | mk/d. So ∃` ∈ N such that

mk

d
= `m⇒ k = `d⇒ d | k

Hence, d = k as required.

2.3. Lemma: Let ϕ : G→ G′ be a homomorphism and x ∈ G, then O(ϕ(x)) | O(x)

Proof. Letm := O(x), then xm = e, so ϕ(x)m = ϕ(e) = e′. Hence, O(ϕ(x)) | m.

2.4. Theorem (Abelian Case): Let G be an Abelian group and p a prime such that
p | |G|, then ∃x ∈ G such that O(x) = p. Equivalently, G has a subgroup of order
p.

Proof. We induct on the number P (G) of prime factors of |G|. Since p | |G|,
P (G) ≥ 1. If P (G) = 1, then |G| = p, so G contains an element of order p by I.2.6.
Now suppose P (G) ≥ 2 and assume that the result is true for any group G′ such
that P (G′) ≤ P (G)− 1.

Fix x ∈ G. If p | O(x), then ∃y ∈ G such that O(y) = p by Lemma 2.1. Hence,
assume p - O(x). Set H := 〈x〉. Then H C G since G is Abelian, so define

G′ := G/H and set π : G→ G′

the natural homomorphism. Since p - |H|, it follows that p | |G′|. Also, by defini-
tion,

|G′| = |G|/p

so P (G′) ≤ P (G) − 1. So by induction hypothesis, ∃x′ ∈ G′ such that O(x′) = p.
However, x′ = π(y) for some y ∈ G, so we have

O(π(y)) = p

By Lemma 2.2,
p | k = O(y)

By Lemma 2.1, G contains an element of order p.

2.5. Remark:

(i) The class equation reads

|G| = |Z(G)|+
∑

|C(xi)|>1

|C(xi)| = |Z(G)|+
∑

|C(xi)|>1

[G : Z(xi)]
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(ii) If H < G such that H ⊂ Z(G), then H C G

(iii) If x /∈ Z(G), then |C(x)| > 1, so the centralizer

Z(x) = {g ∈ G : gx = xg}

is a proper subgroup of G. ie. Z(x) 6= G

(iv) Z(G) is an Abelian subgroup of G.

The following argument is a more sophisticated version of what we saw in trying to
prove that the center of a p-group is non-trivial (III.5.8).

2.6. Theorem (Non-Abelian Case): Let G be any group and p a prime such that p | |G|.
Then G contains an element of order p. Equivalently, G contains a subgroup of
order p.

Proof. We induct on |G|. If |G| = p, then G is cyclic, and contains an element of
order p. Now suppose |G| ≥ p + 1, and assume that the theorem is true for any
group G′ such that |G′| < |G|.

Consider the class equation

|G| = |Z(G)|+
∑

|C(xi)|>1

[G : Z(xi)]

We consider the following cases:

(i) Suppose ∃x /∈ Z(G) such that p | |Z(x)|: If x /∈ Z(G), then Z(x) is a proper
subgroup of G. Suppose p | |Z(x)|, then by the induction hypothesis, Z(x)
contains an element of order p. Hence, G contains an element of order p.

(ii) Suppose that p - |Z(x)| for all x /∈ Z(G): Then, since p | |G| = |Z(x)||C(x)|,
we see that

p | |C(xi)|

for any xi such that |C(xi)| > 1. Since p | |G|, we see from the class equation
that

0 ≡ |Z(G)| (mod p)

Hence, p | |Z(G)|. But Z(G) is Abelian, so by Theorem 2.2, ∃x ∈ Z(G) of
order p.

2.7. Corollary : If |G| = 6, then

G ∼=

{
Z6 : if G is abelian

S3 : otherwise
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Proof. By Cauchy’s theorem, ∃H < G such that |H| = 3 and K < G such that
|K| = 2. Since |G| = 6, it follows by the Strong Cayley theorem that H C G.
Hence, HK < G. By order considerations,

G = HK

We thus have two cases:

(i) If K C G, then by 1.14, G ∼= H ×K ∼= Z3 × Z2
∼= Z6 by 1.4.

(ii) If K is not normal in G, then consider the action of G on G/K by left-
multiplication. This gives a map

f : G→ S3

since [G : K] = 3. By III.4.4, ker(f) ⊂ K. Since K is not normal in G,
ker(f) 6= K. Since |K| = 2, it must follow that ker(f) = {e}. Hence, f is
injective. Since |G| = |S3|, we conclude that

G ∼= S3

2.8. Corollary: D3
∼= S3

2.9. Corollary : If |G| = 15, then G ∼= Z15

Proof. By Cauchy’s theorem, ∃H,K < G such that |H| = 5, |K| = 3. Once
again, by the Strong Cayley theorem, H C G, so HK < G. Once again, by order
considerations,

G = HK

We claim: K C G. To this end, consider the action of K on H by conjugation: For
each k ∈ K, define ϕk : H → H by

ϕk(h) := khk−1

Note that ϕk ∈ Aut(H). Furthermore,

ϕk1 ◦ ϕk2 = ϕk1k2

Hence, we get a group homomorphism

f : K → Aut(H)

Now |H| = 5, so H ∼= Z5. By HW 3,

Aut(H) ∼= Z∗5 ⇒ |Aut(H)| = 4

Now,
|Image(f)| | 4 and |Image(f)| = [K : ker(f)] | |K| = 3
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Hence, |Image(f)| = 1, whence f is trivial. Hence, for each k ∈ K,h ∈ H,

khk−1 = h⇒ hk = kh

It follows as in Theorem 1.13 that

HK ∼= H ×K

Hence, G ∼= H ×K ∼= Z5 × Z3
∼= Z15 by 1.5.

(End of Day 22)

3. Sylow’s Theorems

Cauchy’s theorem gives is a partial converse to Lagrange’s theorem: If p | |G|, then G
has a subgroup of order p. We now wish to extend this theorem to powers of primes. We
will show: If p is prime, and pi | |G|, then G has a subgroup of order pi. This is called
Sylow’s first theorem, and the proof is similar to that of Cauchy’s theorem (2.6)

3.1. Lemma: Let G be a group, H C G and K ′ < G/H. If π : G→ G/H is the quotient
map, and K := π−1(K ′), then K < G and

|K| = |K ′||H|

Proof. That K < G follows from the Second Isomorphism theorem (II.4.6). Fur-
thermore, H ⊂ K. Restriction of π gives a surjective map group homomorphism

π̃ : K → K ′

Now, ker(π̃) = ker(π) ∩K = H ∩K = H. So by the first isomorphism theorem,

K/H ∼= K ′

The result follows.

3.2. Remark:

(i) Once again, recall the class equation reads

|G| = |Z(G)|+
∑

|C(xi)|>1

|C(xi)|

(ii) If H < G such that H ⊂ Z(G), then H C G

(iii) If x /∈ Z(G), then |C(x)| > 1, so the centralizer

Z(x) = {g ∈ G : gx = xg}

is a proper subgroup of G. ie. Z(x) 6= G
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3.3. (Sylow I): Let G be any group and p a prime number, i ∈ N. If pi | |G|, then G has
a subgroup of order pi.

Proof. We induct on i and |G| simultaneously. Let P (i, n) be the statement “If G
is a group of order n and pi | n, then G has a subgroup of order pi”. Note that

(i) P (1, n) is true for all n by Cauchy’s theorem.

(ii) P (i, 1) is true for all i trivially.

(iii) For fixed (i, n) ∈ N× N, assume that, if 1 ≤ j ≤ i− 1 and 1 ≤ k ≤ n− 1

(a) P (j, k) is true.

(b) P (i, k) is true.

(c) P (j, n) is true.

then WTS P (i, n) is true: So let G be a group of order n and pi | |G|. Consider
the class equation of G

|G| = |Z(G)|+
∑

|C(xi)|>1

|C(xi)|

We consider two cases:

(a) Suppose that for one xi appearing on the RHS, pi | |Z(xi)|, then, since
P (i, k) is true for all k < n and |Z(xi)| < |G|, it would follow by induction
hypothesis that Z(xi) has a subgroup of order pi. This would also be the
required subgroup of G.

(b) Suppose that for each xi appearing on the RHS, pi - |Z(xi)|. Since

pi | |G| = |Z(xi)||C(xi)|

it follows that p | |C(xi)|. Since p | |G|, going modulo p, we see that

|Z(G)| ≡ 0 (mod p)

Hence, p | |Z(G)|. By Cauchy’s theorem, Z(G) has a subgroup H of order
p. By Remark 4.3(ii),

H C G

Now set G′ := G/H. Then pi−1 | |G′|. Since P (i− 1, |G′|) is true, G′ has
a subgroup K ′ of order pi−1. By Lemma 3.1, G has a subgroup of order
pi.

3.4. Definition: Let G be a group, p a prime, and suppose k ∈ N such that

pk | |G| but pk+1 - |G|

By the First Sylow theorem, there is P < G such that |P | = pk. Such a subgroup
is called a p−Sylow subgroup of G
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Note: This subgroup may not be unique.

3.5. Examples:

(i) If |G| = pn, then G itself is a p-Sylow subgroup of G.

(ii) If G = Z2 × Z6
∼= Z2 × Z2 × Z3, then

H = Z2 × Z2 × {0}

is a 2-Sylow subgroup. Furthermore,

K := {0} × {0} × Z3

is a 3-Sylow subgroup. We will show later that these are the only Sylow
subgroups of G.

(iii) Let G = S3, then |G| = 6 = 2× 3

(a) A3 < S3 is a 3-Sylow subgroup. Also, this is the unique subgroup of G of
order 3 (Check!)

(b) Any subgroup of order 2 is a 2-Sylow subgroup. For instance,

K1 := {(12), e}, and K2 := {(13), e}

are distinct 2-Sylow subgroups.

(iv) If G = A4, then |G| = 12 = 22 × 3.

(a) We know a 2-Sylow subgroup of G

H := {e, (12)(34), (13)(24), (14)(23)}

By Remark III.7.15, H C A4. We will show that this is a unique 2-Sylow
subgroup of G.

(b) Any subgroup of order 3 is a 3-Sylow subgroup. For instance,

K1 := {e, (123), (132)} and K2 := {e, (124), (142)}

are distinct 3-Sylow subgroups.

(v) Let G = S4, then |G| = 24 = 23 × 3.

(a) Any subgroup of order 3 is a 3-Sylow subgroup. For instance, the sub-
groups listed above for A4 work.

(b) Any subgroup of order 8 is a 2-Sylow subgroup. For instance, consider
D4 < S4 by using the action of D4 on the set of vertices of the square.
Then |D4| = 8, so D4 is a 2-Sylow subgroup of S4.

Note: If we relabel the vertices, then we get another subgroup of S4 of
order 8, which is isomorphic to D4, but not the same subgroup of S4.
Thus, the 2-Sylow subgroup is not unique.
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(End of Day 23)

3.6. Definition: A group G is called a p-group if p is a prime, and |G| = pn for some
n ∈ N

3.7. (Fixed Point Lemma): Let G be a p-group acting on a finite set X. Define the fixed
point set

XG := {x ∈ X : g · x = x ∀g ∈ G}

Then
|X| ≡ |XG| (mod p)

In particular, if p - |X|, then X has a fixed point.

Proof. Write X as a disjoint union of orbits. Note that an orbit is a singleton set
{x} iff x ∈ XG. Hence, we may write

X = XG t O(x1) t O(x2) t . . . t O(xk)

where |O(xi)| > 1 for all 1 ≤ i ≤ k. Taking cardinalities, we see that

|X| = |XG|+
k∑
i=1

|O(xi)|

By the orbit-stabilizer theorem, |O(xi)| = [G : Stab(xi)]. Since G is a p-group, it
follows that

p | |O(xi)| ∀1 ≤ i ≤ k

Hence the result.

3.8. Definition: Let G be a group and H,K < G be two subgroups. We say that H and
K are conjugate to each other if ∃g ∈ G such that gHg−1 = K.

3.9. Remark:

(i) Conjugacy is an equivalence relation on the set of all subgroups of G.

(ii) If H < G, then gHg−1 < G.

(iii) If two subgroups are conjugate, then they have the same cardinality. In par-
ticular, if H is a p-Sylow subgroup, then so is K.

3.10. (Sylow II): Let G be a group, then any two p-Sylow subgroups of G are conjugate
to each other.

Proof. Let P be a p-Sylow subgroup, and Q any other p-Sylow subgroup. Since
conjugacy is an equivalence relation, it suffices to show that ∃g ∈ g such that
gPg−1 = Q. Set X = G/P and let Q act on X by left-multiplication. Since P is a
p-Sylow subgroup,

|X| = [G : P ]⇒ p - |X|

Hence by the Fixed Point Lemma, ∃x ∈ X such that

g · x = x ∀g ∈ Q
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Write x = g0P , then we see that, forall g ∈ Q,

gg0P = g0P ⇒ g−10 gg0 ∈ P

Hence,
g−10 Qg0 ⊂ P

But |g−10 Qg0| = |Q| = |P |, so g−10 Qg0 = P . Equivalently,

Q = g0Pg
−1
0

3.11. Definition : Normalizer of a subgroup H < G, denoted by NG(H)

3.12. Lemma :

(i) NG(H) < G

(ii) H ⊂ NG(H) and H C NG(H)

Proof. (i) Let G act on X := G/H by conjugation. Then consider the stabilizer

Stab(H) = {g ∈ G : gHg−1 = H} = NG(H)

Thus, NG(H) < G.

(ii) Clearly, H ⊂ NG(H). Since H < G, it follows that H < NG(H). That
H C NG(H) follows from the definition of NG(H).

3.13. Lemma: LetH be a subgroup ofG and letH act onX := G/H by left-multiplication.
Then for any x ∈ G,

xH ∈ XH ⇔ x ∈ NG(H)

Hence,
|XH | = [NG(H) : H]

Proof. If xH ∈ XH , then for any h ∈ H,

h · (xH) = xH ⇒ x−1hx ∈ H ⇒ x−1Hx ⊂ H ⇒ x−1Hx = H ⇒ x ∈ NG(H)

Conversely, all the arrows are reversible. Thus, it follows that

XH = NG(H)/H

so the result follows.

(End of Day 24)

3.14. (Sylow I’) Let H < G be a p−group, then there exists a p−Sylow subgroup P < G
such that H ⊂ P
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Proof. If H is a p-Sylow subgroup, then there is nothing to show. So assume H is
not a p-Sylow subgroup. In that case,

p | [G : H]

Let X = G/H, and let H act on X by left-multiplication. By the Fixed Point
Lemma,

[G : H] = |X| ≡ |XH | (mod p)

Hence, p | |XH | = [NG(H) : H]. Since H C NG(H), it follows that NG(H)/H is a
group. Since

p | |NG(H)/H|

NG(H)/H has a subgroup K ′ of order p by Cauchy’s theorem. Let π : NG(H) →
NG(H)/H be the quotient map, then

H ⊂ K := π−1(K ′) < G

has the cardinality, |K| = |K ′||H| = p|H|. If K is a p-Sylow subgroup, then we
may stop. Else, we may proceed inductively, until we obtain a p-Sylow subgroup of
G containing H.

3.15. Remark: By Cauchy’s theorem and induction, this provides another proof of Sylow
I using induction.

3.16. (Sylow III) : Let G be a group and p a prime. Suppose that

|G| = pkm where p - m

Let np denote the number of p-Sylow subgroups in G, then

(i) np ≡ 1 (mod p)

(ii) For any p-Sylow subgroup P , np = [G : NG(P )]

(iii) np | m

Proof. Let X := Sylp(G) denote the set of all p-Sylow subgroups of G. Then G
acts on X by conjugation. Furthermore, by Sylow II, this action is transitive. Note
that np = |X|

(i) Let P be a p-Sylow subgroup, and let P act on X by conjugation. Then by
the Fixed Point Lemma,

np ≡ |XP | (mod p)

Now if Q ∈ XP , then for any p ∈ P , pQp−1 = Q. Hence, P ⊂ NG(Q).
However,

Q C NG(P )

Thus, Q and P are both p-Sylow subgroups of NG(Q). By Sylow II, ∃g ∈
NG(Q) such that

gQg−1 = P
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However, g ∈ NG(Q), so gQg−1 = Q. Thus, P = Q. Hence, XP = {P},
whence

np ≡ 1 (mod p)

as required.

(ii) Now consider the action of G on X by conjugation. This action is transitive
by Sylow II, so by the Orbit-Stabilizer theorem,

|X| = [G : Stab(P )]

However, Stab(P ) = {g ∈ G : gPg−1 = P} = NG(P ). Hence,

np = [G : NG(P )]

(iii) Since P < NG(P ), we have

np =
[G : P ]

NG(P ) : P ]
=

m

[NG(P ) : P ]

Thus, np | m as required.

3.17. Corollary: Let G be a group and p a prime dividing |G|, and let P be a p-Sylow
subgroup of G. Then P C G iff np = 1

Proof. If g ∈ G, then gPg−1 is a p-Sylow subgroup of G. If np = 1, then gPg−1 = P
for all g ∈ G, so P C G.

Conversely, if P C G and Q is any p-Sylow subgroup of G, then by Sylow II, ∃g ∈ G
such that gPg−1 = Q. Since P C G, Q = P must hold. Hence, np = 1.

3.18. Examples:

(i) Suppose |G| = 15, we give another proof that G ∼= Z15

Proof. Note that

n3 ≡ 1 (mod 5) and n3 | 5⇒ n3 = 1

Let H be a 3-Sylow subgroup, then by 3.17, H C G. Furthermore,

n5 ≡ 1 (mod 5) and n5 | 3⇒ n5 = 1

Hence if K is the 3-Sylow subgroup, then by 3.17, K C G. Once again

H ∩K = {e}

Hence, G = HK ∼= H ×K ∼= Z3 × Z5
∼= Z15.

(End of Day 25)
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4. The Dihedral Group

4.1. Remark: LetG = Dn denote the group of symmetries of a regular n-gon. Enumerate
the vertices as {1, 2, . . . , n}, so we view G as a subgroup of Sn. Define

r = (1, 2 . . . , n)

to be the rotation in G by 2π/n. Let s ∈ G denote the reflection about the axis
passing through the vertex 1 and the origin. Hence, if n is odd, then write n = 2k+1,
then the axis passes through the edge joining k + 1 and k + 2

s =

(
1 2 3 . . . k + 1 k + 2 . . . 2k 2k + 1
1 2k + 1 2k . . . k + 2 k + 1 . . . 3 2

)
If n = 2k is even, then the axis passes through the vertex k, so

s =

(
1 2 3 . . . k − 1 k k + 1 . . . 2k
1 2k 2k − 1 . . . k + 1 k k − 1 . . . 2

)
In each case, we may verify

(i) {1, r, r2, . . . , rn−1} are all distinct, because O(r) = n

(ii) srs−1 = r−1

Proof. Suppose n = 2k + 1 is odd, then

srs−1 = srs =

(
1 2 . . . k + 1 k + 2 . . . 2k 2k + 1
1 2k + 1 . . . k + 2 k + 1 . . . 3 2

)
(

1 2 . . . 2k 2k + 1
2 3 . . . 2k + 1 1

)
(

1 2 . . . k + 1 k + 2 . . . 2k 2k + 1
1 2k + 1 . . . k + 2 k + 1 . . . 3 2

)
=

(
1 2 . . . k + 1 k + 2 . . . 2k 2k + 1

2k + 1 1 . . . k k + 1 . . . 2k − 1 2k

)
= (1, 2k + 1, 2k, 2k − 1, . . . , 2)

= r−1

The even case is similar.

(iii) If 1 ≤ i < j ≤ n− 1, then sri 6= srj

Hence,
Dn = {1, r, r2, . . . , rn−1, sr, sr2, . . . , srn−1}

If H = 〈r〉 and K = 〈s〉, then

[G : H] = 2⇒ H C G

and H ∩K = {e}, so |HK| = 2n. Hence,

G = HK

Note that G is non-Abelian, while both H and K are cyclic, so G � H ×K.
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4.2. Theorem: Let G be a group with two elements a, b ∈ G such that

an = b2 = e and bab = a−1

Then ∃ a unique group homomorphism ϕ : Dn → G such that

ϕ(r) = a and ϕ(s) = b

Proof. If bab = bab−1 = a−1, then

bajb = a−j ∀j ∈ Z

Since b2 = e, we have
bkajb−k = a(−1)

kj ∀k, j ∈ Z
Note that

Dn = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}
so define ϕ : Dn → G by

ϕ(skrj) := bkaj, ∀k, j ∈ Z

Then

(i) ϕ is well-defined because

skrj = s`rm ⇒ k ≡ ` (mod 2) and j ≡ m (mod n)

and in that case bkaj = b`am since an = e = b2.

(ii) ϕ is a group homomorphism:

ϕ((skrj)(s`rm)) = ϕ(r(−1)
kjsks`rm)

= ϕ(r(−1)
kjsk+`rm)

= ϕ(r(−1)
kjr(−1)

(k+`)ms(k+`))

= ϕ(r(−1)
kj+(−1)(k+`)ms(k+`))

= a(−1)
kj+(−1)(k+`)mb(k+`)

= . . . = (bkaj)(b`am)

(iii) Uniqueness: If ψ : Dn → G is any other homomorphism such that

ψ(r) = a and ψ(s) = b

Then ψ = ϕ because every element of Dn is a product of powers of r and s.

4.3. Theorem: Let p be an odd prime and G be a group of order 2p. Then

G ∼=

{
Z2p : G Abelian

Dp : G non-Abelian
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Proof. By Cauchy’s theorem, G has elements a, b ∈ G such that O(a) = p,O(b) = 2.
Let H := 〈a〉, then H C G since [G : H] = 2. So

bab−1 = at

for some t ∈ {0, 1, . . . , p− 1}. Then

a = b2ab−2 = b(bab−1)b−1 = batb−1 = (bab−1)t = at
2

Hence, at
2−1 = e, whence

p | (t2 − 1) = (t− 1)(t+ 1)

Since p is prime, p | t− 1 or p | t+ 1.

(i) If p | t− 1, then at = at−1a = a. Hence,

bab−1 = a⇒ ba = ab

Since G = 〈a, b〉, it follows that G is abelian. In that case,

O(ab) | lcm(O(a), O(b)) = 2p

However, if O(ab) = m, then

am = b−m ∈ 〈a〉 ∩ 〈b〉

But O(a) = p and O(b) = 2. Since p is an odd prime,

〈a〉 ∩ 〈b〉 = {e}

Hence, am = b−m = e. Hence,

p | m and 2 | m⇒ 2p | m

Hence,
O(ab) = 2p

Hence, G is cyclic, so G ∼= Z2p.

(ii) If p | t + 1, then bab−1 = at = at+1a−1 = a−1. By the previous theorem, there
is a group homomorphism

ϕ : Dp → G

such that ϕ(r) = a, ϕ(s) = b. Since G = 〈a, b〉, this map is surjective. Since

|G| = 2p = |Dp|

this map is also injective. Hence, G ∼= Dp.
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5. Simple Groups of order ≤ 60

Recall : A group is called simple if its has no non-trivial normal subgroups.

5.1. Remark :

(i) Any group of of prime order is simple (by Lagrange’s theorem, it has no sub-
groups).

(ii) If G is abelian with |G| composite, then G is not simple ((HW5)

(iii) A5 is a simple group of order 60.

(End of Day 26)

5.2. Lemma: If |G| = pn, where p is prime, and n > 1, then G is not simple.

Proof. If G is simple, then Z(G) must be trivial. Since Z(G) 6= {e}, it follows that
Z(G) = G, whence G is Abelian. Since |G| is composite, this is impossible.

5.3. Lemma: If G has a proper subgroup H such that |G| - [G : H]!, then G is not
simple.

Proof. HW 5

5.4. Lemma: Let G be a group of order pqr, where p < q < r are primes, then G is not
simple.

Proof. Let np denote the number of p-Sylow subgroups of G. Since any two distinct
p-Sylow subgroups intersect trivially, G must have

np(p− 1)

elements of order p. Similarly, G has

nq(q − 1)

elements of order q and nr(r − 1) elements of order r. Thus,

pqr = |G| ≥ np(p− 1) + nq(q − 1) + nr(r − 1) + 1

Now, by Sylow III
nr | pq and nr ≡ 1 (mod r)

If nr = 1, then the r-Sylow subgroup is normal in G. So assume nr 6= 1. Then,
nr | pq implies that

nr ∈ {1, p, q, pq}
Since p < q < r, it follows that nr = pq. Thus, we have

pqr ≥ np(p− 1) + nq(q − 1) + pq(r − 1) + 1

Now if nq = 1, we are once again done. If not, then nq | pr, so

nq ∈ {1, p, r, pr}

68



Since nq ≡ 1 (mod q), and p < q, it must happen that

nq ∈ {r, pr}

In particular, nq ≥ r. Finally, if np 6= 1, then np | qr implies that

np ∈ {1, q, r, qr}

So np ≥ q. Hence, we get

pqr ≥ q(p− 1) + r(q − 1) + pq(r − 1) + 1

Hence,

0 ≥ qr − r − q ⇒ 2 < q ≤ r

r − 1
≤ 2

This is absurd. Hence, one of np, nq or nr must be one. Thus, G is non-simple.

5.5. Theorem: If |G| < 60 and G is simple, then |G| is a prime. (HW)

5.6. Theorem: If G is any simple group of order 60, then G ∼= A5

Proof. Note that
60 = 22 × 3× 5

(i) Let n5 denote the number of 5−Sylow subgroups of G. Then by Sylow III,

n5 ≡ 1 (mod 5) and n5 | 12

Hence, n5 ∈ {1, 6}. If n5 = 1, then the unique Sylow subgroup would be
normal, contradicting the simplicity of G. Hence,

n5 = 6

Hence, there are
6(5− 1) = 24

elements in G of order 5.

(ii) Let n3 denote the number of 3-Sylow subgroups. Then by Sylow III,

n3 ≡ 1 (mod 3) and n3 | 20⇒ n3 ∈ {1, 4, 10}

If n3 = 4, then [G : NG(P )] = 4 where P is any 3-Sylow subgroup. Since

60 - 4!

we conclude from 5.3 that G is not simple. This is a contradiction. Hence,

n3 = 10

Once again, this implies that there are

10(3− 1) = 20

elements of order 3.
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(iii) Let n2 denote the number of 2-Sylow subgroups. Then by Sylow III,

n2 ≡ 1 (mod 2) and n2 | 15⇒ n2 ∈ {1, 3, 5, 15}

(a) If n2 = 1, then the Sylow subgroup is normal. This is not possible.

(b) If n2 = 3, then
[G : NG(Q)] = 3

where Q is any fixed 2−Sylow subgroup. Once again, since 60 - 3!, this is
impossible by 5.3.

(c) If n2 = 5: Fix a 2-Sylow subgroup Q and set H := NG(Q). Then [G :
H] = 5, so the action of left-multiplication on X := G/H induces a group
homomorphism

f : G→ S5

Furthermore, ker(f) ⊂ H, so ker(f) 6= G. Since G is simple, ker(f) = {e}.
Hence, f is injective. Now consider the map ϕ : G→ {±1} given by

ϕ = sgn ◦ f

Then ϕ is a group homomorphism. If ker(ϕ) = {e}, then ϕ would be
injective. But this is absurd because

|G| = 60 > 2 = |{±1}|

Since G is simple, it follows that ker(ϕ) = G. Hence,

f(G) ⊂ ker(sgn) = A5

Since |f(G)| = 60 = |A5|, we conclude that

f : G→ A5

is an isomorphism.

(d) If n2 = 15: Let P be a fixed 2-Sylow subgroup and x ∈ P such that x 6= e.
Consider

H := Z(x)

Since |P | = 4, P is Abelian. Hence, P ⊂ H. Hence,

k := [G : H] | [G : P ] =
60

4
= 15⇒ k ∈ {1, 3, 5, 15}

• If k = 1, then G = H = Z(x). In which case, x ∈ Z(G), so

K := 〈x〉 C G

This contradicts the assumption that G is simple.

• If k = 3, then |G| - 3!, so this would contradict Lemma 5.3.
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• If k = 5, then G has a subgroup of order 5. The same argument as
above would imply that G ∼= A5

• If k = 15, then [G : H] = [G : P ], in which case P = H: So suppose

G � A5

Then, for any 2-Sylow subgroup P and any x ∈ P, x 6= e, we have

P = Z(x)

In particular, if P and Q are any two Sylow subgroups, suppose P ∩
Q 6= {e}, then let

x ∈ P ∩Q

As before, we have P = Z(x) = Q. Hence, any two distinct 2-Sylow
subgroups must intersect trivially. Therefore, the number of elements
of order 2 or 4 is

15(4− 1) = 45

Thus the number of elements in G exceeds 60 by the calculations in
Steps (i) and (ii).

6. Finite Abelian Groups

Notation: In this section, all groups will be finite and Abelian. In this case, we write the
group operation as +, and we write −g := g−1.

6.1. Remark/Definition:

(i) If G is an Abelian group and p a prime dividing |G|, then G has a unique
p-Sylow subgroup H.

(a) If x ∈ H, then O(x) is a power of p since O(x) | |H|
(b) If x ∈ G such that O(x) is a power of p, then K := 〈x〉 is a p-group. By

Corollary 3.14, K ⊂ H, so x ∈ H.

Hence,
G(p) := {x ∈ G : O(x) is a power of p}

is called the p-primary component of G.

(ii) If G = H ×K and p is a prime, then

G(p) = {(x, y) ∈ H ×K : O(x) and O(y) is a power of p} = H(p)×K(p)

6.2. Lemma : Let G be a finite abelian, then G is isomorphic to the direct product of
its Sylow subgroups.

71



Proof. Consider the decomposition into prime factors of m := |G|:

m = pn1
1 p

n2
2 . . . pnkk

Let G(p1), G(p2), . . . , G(pk) be the Sylow subgroups of G. Let G′ := G(p1)×G(p2)×
. . .×G(pk) and define ϕ : G′ → G by

ϕ(x1, x2, . . . , xk) := x1 + x2 + . . .+ xk

(i) ϕ is a homomorphism because G is Abelian.

(ii) ϕ is injective: If ϕ(x1, x2, . . . , xk) = e, then

−x1 = x2 + . . .+ xk ∈ G(p1) ∩G(p2) . . . G(pk−1) =: K

Since xi ∈ G(pi), it follows that ∃`i ∈ N such that

p`ii (xi) = 0 ∀1 ≤ i ≤ k

Let n :=
∏k

i=2 p
`i
i , then

n(−x1) = nx2 + . . .+ nxk = 0

But x1 ∈ G(p1), so if x1 6= 0, then p1 | O(x1) so p1 | n, which is false. Hence,

x1 = x2 + . . .+ xk = 0

Now by induction it follows that xi = 0 for all i, so ϕ is injective.

(iii) ϕ is surjective: |G| = |G′|

(End of Day 27)

6.3. Lemma: Let G be a finite Abelian p-group and let b ∈ G and r ∈ N such that

prb 6= 0

Suppose O(prb) = pm. Then
O(b) = pr+m

Proof. Clearly,
pr+mb = pm(prb) = 0

and if pnb = 0, then n ≥ r because prb 6= 0. Hence,

0 = pn−r(prb) = 0⇒ pm | pn−r ⇒ m ≤ n− r

Hence n ≥ r +m. Hence, O(b) = pr+m
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6.4. Lemma: Let G be a finite Abelian p-group and let a ∈ G be an element of maximal
order. Define

H := 〈a〉

and let π : G→ G/H be the quotient map. For any y ∈ G/H,∃x ∈ G such that

π(x) = y and O(x) = O(y)

Proof. Suppose O(a) = pk, and O(y) = pr, then choose b ∈ G such that b+H = y,
so

pr(b+H) = prb+H = H ⇒ prb ∈ H

Hence, ∃n ∈ N such that prb = na. Now write

n = p`m where p - m

(i) If ` ≥ k, then na = p`ma = 0. In this case,

prb = 0⇒ O(b) ≤ pr = O(y)

But by Lemma 2.3,
O(y) = O(π(b)) | O(b)

Hence, O(b) = pr, so x = b works.

(ii) If ` < k, then
prb = na = p`ma 6= 0

Furthermore, by Mid-Sem Q6,

O(prb) = O(p`ma) =
O(a)

gcd(O(a), p`m)
=

pk

gcd(pk, p`m)
=
pk

p`
= pk−`

Hence by the previous lemma, O(b) = pr+k−`. Now O(a) is maximal. Hence,

r + k − ` ≤ k ⇒ r ≤ `

Hence define
x := b− p`−rma

so one has
x+H = b+H = y ⇒ pr = O(y) ≤ O(x)

However,
prx = prb− p`ma = prb− na = 0

Hence, O(x) = pr as required.
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6.5. Lemma: Suppose G is a finite Abelian group, and there is an isomorphism

ϕ : G→ G1 ×G2 × . . .×Gk =: G′

Define Ĝi < G′ as in Lemma 1.2, and set

Hi := ϕ−1(Ĝi)

Then every x ∈ G can be uniquely expressed as a sum

x = x1 + x2 + . . .+ xk

where xi ∈ Hi. Furthermore, observe that Hi
∼= Gi

Proof. (i) Existence: Let x ∈ G, then ϕ(x) = (a1, a2, . . . , ak) for some ai ∈ Gi.
Set

xi := ϕ−1(0, 0, . . . , 0, ai, 0, . . . , 0) ∈ ϕ−1(Ĝi) = Hi

Then

ϕ(x) = ϕ(x1) + ϕ(x2) + . . .+ ϕ(xk) = ϕ(x1 + x2 + . . .+ xk)

Since ϕ is injective, we get that x = x1 + x2 + . . .+ xk

(ii) Uniqueness: If
x1 + x2 + . . .+ xk = y1 + y2 + . . .+ yk

with xi, yi ∈ Hi, then

x1 − y1 = (y2 + y3 + . . .+ yk)− (x2 + x3 + . . .+ xk)

Applying ϕ, we see that

(a1 − b1, 0, 0, . . . , 0) = (0, b2 − a2, b3 − a3, . . . , bk − ak)

where ai = ϕ(xi) and bi = ϕ(yi). Hence,

ai = bi ∀i⇒ xi = yi

(End of Day 28)

6.6. (Fundamental Theorem of Finite Abelian Groups - Existence): Every finite Abelian
group is a direct product of cyclic groups.

Proof. By Lemma 6.2, it suffices to prove the result for a finite Abelian p-group. So
let G be a p-group, and we induct on |G|. If |G| = 1 there is nothing to prove, so
assume that the result is true for any finite Abelian p-group G′ such that |G′| < |G|.
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Let x1 ∈ G be an element of maximal order, and let H1 := 〈x1〉. Set G′ := G/H1

and let π : G→ G′ be the quotient map. By hypothesis, we may express

G′ ∼= L2 × L3 × . . .× Ls

for some cyclic groups Li. By the previous lemma, there are cyclic subgroups
Ki < G′ such that, every z ∈ G′ has a unique expression of the form

z = z2 + . . .+ zs (∗)

where zi ∈ Ki. Let pri = |Ki| and let yi be its generator. By the previous lemma,
∃xi ∈ G such that

O(xi) = pri and π(xi) = yi

Let Hi := 〈xi〉. We claim that

G ∼= H1 ×H2 × . . .×Hs

Define L := H1 ×H2 × . . .×Hs and define ϕ : L→ G by

(a1, a2, . . . , as) 7→ a1 + a2 + . . .+ as

Then ϕ is clearly a homomomorphism.

(i) ϕ is injective: Suppose ai ∈ Hi such that a1 + a2 + . . .+ as = 0, then ∃mi ∈ Z
such that ai = mixi, so we get

m1x1 +m2x2 + . . .+msxs = 0

Applying the quotient map to this expression, we get an equation in G′

π(0) = m2π(x2) + . . .+msπ(xs) = π(0) + . . .+ π(0)

But by the uniqueness of the expression in (∗), we get

miπ(xi) = π(0)⇒ O(π(xi)) = pri | mi ∀2 ≤ i ≤ s

But O(xi) = pri , so
ai = mixi = 0 ∀2 ≤ i ≤ s

Hence, the above expression yields a1 = m1x1 = 0 as well.

(ii) ϕ is surjective: If x ∈ G, then by (∗),∃mi ∈ N such that

π(x) = m2π(x2) + . . .msπ(xs)

Hence,
x−m2x2 −m3x3 − . . .−msxs ∈ H1 = 〈x1〉

Hence, ∃m1 ∈ N such that

x−m2x2 −m3x3 − . . .−msxs = m1x1

so x = m1x1 +m2x2 + . . .+msxs ∈ Image(ϕ).
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6.7. (Fundamental Theorem of Finite Abelian Groups - Uniqueness): The decomposition
from the previous theorem is unique upto permutation.

Proof. Suppose that

G ∼=
k∏
i=1

Gi
∼=
∏̀
j=1

Hj

where each Gi and Hj are cyclic groups. Then for any prime p, by Remark 6.1,

G(p) ∼=
k∏
i=1

Gi(p) ∼=
∏̀
j=1

Hj(p)

Hence, it suffices to prove uniqueness for p-groups. So suppose G is a finite Abelian
p-group, and write

G ∼= G1 ×G2 × . . .×Gk

where each Gi is a cyclic group of order pri and r1 ≥ r2 ≥ . . . ≥ rk. Furthermore,
suppose

G ∼= H1 ×H2 × . . .×Hm

where each Hj is a cyclic group of order p`j and `1 ≥ `2 ≥ . . . ≥ `m. Then ,we
WTS:

(i) m = k

(ii) `i = ri for all 1 ≤ i ≤ k

So induct on |G|. Consider

pG ∼= pG1 × pG2 × . . .× pGk

Then pG < G is a proper subgroup of G and is of type

(pr1−1, pr2−1, . . . , prk−1)

with the convention that, if ri = 1, then pGi = 0. Similarly,

pG ∼= pH1 × pH2 × . . . pHm

Hence it follows by induction that if ri ≥ 2 or mi ≥ 2. In this case, we have

ri = mi

Hence, the two decompositions are of the type

(pr1 , pr2 , . . . , prj , p, p, . . . , p︸ ︷︷ ︸
s times

) and (pr1 , pr2 , . . . , prj , p, p, . . . , p︸ ︷︷ ︸
t times

)

Comparing orders, we see that

|G| = pr1+r2+...+rjps = pr1+r2+...+rjpt ⇒ s = t
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6.8. Example :

(i) Abelian groups of order 54 are

(a) Z5 × Z5 × Z5 × Z5

(b) Z5 × Z5 × Z25

(c) Z5 × Z125

(d) Z25 × Z25

(e) Z625

(ii) Abelian groups of order 100 are

(a) Z2 × Z2 × Z5 × Z5

(b) Z2 × Z2 × Z25

(c) Z4 × Z5 × Z5

(d) Z4 × Z25
∼= Z100

(End of Day 29)

7. Semi-Direct Products

7.1. Remark: Let G be a group and H,K < G such that H C G. Then HK < G. It is
possible that

G = HK

but G � H ×K (See Example 1.12). However, there is a map

ψ : K → Aut(H) given by ψ(k)(h) := khk−1

and G ∼= H ×K if and only if ψ is trivial. ie. khk−1 = h for all k ∈ K,h ∈ H (For
instance, this happened in Corollary 2.9). We now wish to understand the situation
when G is non-Abelian (and ψ is non-trivial).

7.2. Theorem: Let H and K be two groups, and let ϕ : K → Aut(H) be a group
homomorphism. Define

G := H ×K

with group multiplication given by

(h1, k1) · (h2, k2) := (h1ϕ(k1)(h2), k1k2)

Then G is a group, and is called the semi-direct product of H and K. It is denoted
by

H oϕ K

Proof. Clearly · is a binary operation on G. We now check the axioms:
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(i) Associativity: Let (hi, ki) ∈ G for i = 1, 2, 3, then

(h1, k1) · [(h2, k2) · (h3, k3)] = (h1, k1) · (h2ϕ(k2)(h3), k2k3)

= (h1ϕ(k1)(h2ϕ(k2)(h3), k1k2, k3)

= (h1ϕ(k1)(h2)ϕ(k1k2)(h3), (k1k2)k3)

= (h1ϕ(k1)(h2), k1k2) · (h3, k3)
= [(h1, k1) · (h2, k2)] · (h3, k3)

(ii) Identity: Let eH and eK denote the identities in H and K respectively. Then,
for any (h, k) ∈ G,

(h, k) · (eH , eK) = (hϕ(k)(eH), keK) = (heH , k) = (h, k)

and
(eH , eK) · (h, k) = (eHϕ(eK)(h), eKk) = (eHh, k) = (h, k)

(iii) Inverse: Let (h, k) ∈ G, then consider (h′, k′) := (ϕ(k−1)(h−1), k−1), so

(h, k) · (h′, k′) = (hϕ(k)(ϕ(k−1(h−1)), kk−1)

= (hϕ(kk−1)(h−1), eK)

= (hϕ(eK)(h−1), eK)

= (hh−1, eK) = (eH , eK)

Similarly, one can verify that (h′, k′) · (h, k) = (eH , eK).

7.3. Lemma: Let G = H oϕ K, then

(i) |G| = |H||K|

(ii) Define Ĥ := {(h, e2) : h ∈ H} and K̂ := (e1, k) : k ∈ K}. Then Ĥ and K̂ are

subgroups of G. Furthermore, H ∼= Ĥ and K ∼= K̂

(iii) Ĥ C G

(iv) Ĥ ∩ K̂ = {(e1, e2)}. Hence, G = ĤK̂

(v) For all k ∈ K and h ∈ H, we have

(e1, k)(h, e2)(e1, k)−1 = (ϕ(k)(h), e2)

Identifying H with Ĥ and K with K̂ this reads,

khk−1 = ϕ(k)(h)

Proof. (i) Obvious.

78



(ii) Let (h1, eK), (h2, eK) ∈ Ĥ, then

(h1, eK) · (h2, eK)−1 = (h1, eK) · (h−12 , eK) = (h1h
−1
2 , eK) ∈ Ĥ

Hence, Ĥ < G. Simlarly, K̂ < G. Furthermore, the above argument shows
that the map

ψ : H → Ĥ given by h 7→ (h, eK)

is a homomorphism. It is clearly bijective, so it is an isomorphism. Similarly,
K ∼= K̂ as well [Check!].

(iii) If (h, k) ∈ G and (x, eK) ∈ Ĥ, then

(h, k)−1 · (x, eK) · (h, k) = (z, eK) ∈ Ĥ

for some z ∈ H. Hence, Ĥ C G

(iv) Obvious by a cardinality argument.

(v) Check!

7.4. Examples:

(i) If G = H ×K, then G = H oϕ K where ϕ : K → Aut(H) is the trivial map

ϕ(k)(h) = h ∀k ∈ K,h ∈ H

(ii) If G = Dn = 〈r, s〉 and H := 〈r〉 and K = 〈s〉. Define ϕ : K → Aut(H) by

ϕ(s)(rj) := srjs−1 = r−j

Then G ∼= H oϕ K

Proof. Consider a := (r, e) ∈ Ĥ and b := (e, s) ∈ K̂, then [Check!]

an = (rn, e) = (e, e)

b2 = (e, s2) = (e, e)

bab−1 = (ϕ(s)(r), e) = (srs−1, e) = a−1

Hence there is a unique group homomorphism ϕ : Dn → G such that

ϕ(r) = a and ϕ(s) = b

Since G = ĤK̂ = 〈a, b〉, the map is surjective. Furthermore,

|Dn| = 2n = |Ĥ||K̂| = 2n

so ϕ is injective as well.

(End of Day 30)
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7.5. Theorem: Let G be a group and H,K < G such that

(i) H C G

(ii) H ∩K = {e}
Then ∃ϕ : K → Aut(H) such that HK ∼= H oϕ K

[Compare this with Theorem 1.13]

Proof. Since H C K, for each k ∈ K, we have kHk−1 = H. Hence, we define

ϕ : K → Aut(H) given by k 7→ ϕk

where ϕk(h) := khk−1. Then ϕ is clearly a homomorphism. Set G′ := H oϕK and
define µ : G′ → HK by

(h, k) 7→ hk

(i) µ is a homomomorphism: If (h1, k1), (h2, k2) ∈ G′, then

µ((h1, k1) · (h2, k2)) = µ((h1ϕ(k1)(h2), k1k2))

= h1ϕ(k1)(h2)k1k2

= h1(k1h2k
−1
1 )k1k2

= (h1k1)(h2k2)

= µ((h1, k1))µ((h2, k2))

(ii) µ is injective: If µ(h, k) = e, then hk = e, so

h = k−1 ∈ H ∩K = {e} ⇒ h = k = e

(iii) µ is surjective: Since H C G, we have HK < G, so

|HK| = |H||K|
|H ∩K|

= |H||K| = |G′|

Hence, µ is surjective.

7.6. Theorem: Let H and K be groups and ϕ : K → Aut(H) be a homomorphism.
Then TFAE:

(i) The identity map
H oϕ K → H ×K

is a group homomorphism.

(ii) ϕ is the trivial homomorphism

(iii) K̂ C H oϕ K
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Proof. [(i)⇒ (ii):] By definition of the group operation, it follows that, for any
(hi, ki) ∈ H ×K, we have

(h1ϕ(k1)(h2), k1k2) = (h1h2, k1k2)

Hence, ϕ(k1)(h2) = h2 for all k1 ∈ K and h2 ∈ H. Hence, ϕ(k) = idH for all
k ∈ K.

[(ii)⇒ (iii):] If ϕ is the trivial homomorphism, then for any (h, k) ∈ H oϕ K

and (e, k′) ∈ K̂, we have

(h, k)−1 = (ϕ(k−1)(h−1), k−1) = (h−1, k−1)

so

(h, k) · (e, k′) · (h, k)−1 = (hϕ(k)(e), kk′) · (h−1, k−1)
= (h, kk′)(h−1, k−1)

= (hϕ(kk′)(h−1), kk′k−1)

= (hh−1, kk′k−1) = (e, kk′k−1) ∈ K̂

Hence, K̂ C H oϕ K

[(iii)⇒ (i):] Note that Ĥ ∩ K̂ = {e},

Ĥ C H oϕ K =: G and ĤK̂ = G

If K̂ C H oϕ K, then it follows by Theorem 1.13 that

H oϕ K ∼= Ĥ × K̂ ∼= H ×K

Furthermore, the isomorphism is explicitly given by

((h, e), (e, k)) 7→ (h, e) · (e, k) = (hϕ(e)(e), k) = (h, k)

Hence, the identity map is an isomorphism. In particular, a homomorphism.

8. Meta-Cyclic Groups

8.1. Example: Let p, q be two primes such that p < q and let G be a group of order pq.

(i) Suppose p - (q− 1): Then, ∃H,K < G such that |H| = q and |K| = p. By the
Strong Cayley theorem,

H C G

Also, H ∩ K = {e}. Hence, G = HK. Furthermore, by theorem 7.5, ∃ϕ :
K → Aut(H) such that

G ∼= H oϕ K

However, |K| = p and |Aut(H)| = q − 1. Since p - (q − 1), ϕ must be trivial.
Hence, by 7.6,

G ∼= H ×K ∼= Zq × Zp ∼= Zpq
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(ii) Now suppose p | (q−1): Then by Cauchy’s theorem, ∃H ′ < Aut(H) such that

|H ′| = p

Hence, there exists a non-trivial homomorphism

ϕ : K → Aut(H)

that maps K isomorphically onto H ′. By 7.6,

H oϕ K

is a group of order pq that is not isomorphic to H × K. Furthermore, K is
not normal in G, so this group is non-Abelian. We wish show later that this
group is the only such group upto isomorphism, and is called the meta-cyclic
group of order pq.

(iii) Note: If p = 2 and q is an odd prime, then by Theorem 4.3,

Zq oϕ Z2
∼= D2p

8.2. Lemma: Let p be a prime and r ∈ N, then there are atmost r elements in Zp which
satisfy the equation

ar = 1

Proof. Omitted. This will be done in a course on Field theory.

(End of Day 31)

8.3. Definition: Let p ∈ Z a prime and d ∈ Z. Write Np(d) for the number of elements
in Z∗p of order d. Note that

Np(1) = 1

and Np(d) > 0 implies that d | (p− 1). Observe that∑
d|(p−1)

Np(d) = p− 1

8.4. Lemma: Let d | (p− 1) and Np(d) > 0, then Np(d) = ϕ(d)

Proof. If Np(d) > 0, then ∃x ∈ Z∗p such that O(x) = d. Consider the equation

ad = 1

Then 1, x, x2, . . . , xd−1 are all distinct elements that satisfy this equation. By
Lemma 8.1, these must be all the solutions to that equation. Hence, if y ∈ Z∗p
has order d, then

y = xi for some 0 ≤ i ≤ d− 1
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Now by Mid-Sem Q6,

d = O(y) = O(xi) =
d

gcd(d, i)

Hence, gcd(d, i) = 1. Hence, the elements of order d are precisely

{xi : gcd(d, i) = 1}

There are exactly ϕ(d) such numbers.

8.5. Theorem: For any n ∈ N, we have ∑
d|n

ϕ(d) = n

Proof. Consider G = 〈a〉 ∼= Zn be a cyclic group of order n. For each d | n, consider

Sd = {x ∈ G : O(x) = d}

By Mid-Sem Q6, G has a unique subgroup H of order d generated by z := an/d.
Hence,

Sd ⊂ H

Hence, if x ∈ Sd, then ∃i ∈ N such that x = zi, so

d = O(x) = O(zi) =
O(z)

gcd(O(z), i)
=

d

gcd(d, i)
⇒ gcd(d, i) = 1

Once again, we conclude that
|Sd| = ϕ(d)

Now note that
G =

⊔
d|n

Sd

so we get the result.

8.6. Corollary: For any prime p, Aut(Zp) is cyclic.

Proof. Note that
Aut(Zp) ∼= Z∗p

Now applying Theorem 8.5 with n = p− 1, we see that∑
d|(p−1)

ϕ(d) = p− 1 =
∑

d|(p−1)

Np(d) ≤
∑

d|(p−1)

ϕ(d)

Hence, we conclude that Np(d) = ϕ(d) for all d | (p− 1). In particular,

Np(p− 1) = ϕ(p− 1) > 0

By definition, this implies that Z∗p contains an element of order (p− 1). Thus, it is
cyclic.
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8.7. Lemma: Let H and K be groups.

(i) Let ϕ : K → Aut(H) be a homomorphism and τ : K → K be an automor-
phism. Then

H oϕ◦τ K ∼= H oϕ K

(ii) Let ϕ1 and ϕ2 : K → Aut(H) be two injective homomomorphisms such that

ϕ1(K) = ϕ2(K)

Then
H oϕ1 K

∼= H oϕ2 K

Proof. (i) Let G1 := H oϕ◦τ K and G2 := H oϕ K. Define

µ : G1 → G2 by (h, k) 7→ (h, τ(k))

Then we claim that µ is an isomorphism. Since µ is clearly bijective, it suffices
to show that it is a homomorphism. To see this, let (h1, k1), (h2, k2) ∈ G1,
then

µ((h1, k1) · (h2, k2)) = µ(h1ϕ ◦ τ(k1)(h2), k1k2)

= (h1ϕ(τ(k1))(h2), τ(k1k2))

= (h1ϕ(τ(k1))(h2), τ(k1)τ(k2))

= (h1, τ(k1)) · (h2, τ(k2))

(ii) Now suppose ϕ1(K) = ϕ2(K), then define τ : K → K by

τ := ϕ−11 ◦ ϕ2

Then τ ∈ Aut(K), and clearly

ϕ1 ◦ τ = ϕ2

So part (ii) follows from part (i).

8.8. Theorem: Let p and q be two primes such that p | (q − 1). Then there is a unique
non-Abelian group of order pq. This is called the meta-cyclic group of order pq and
is written as

Zq o Zp
Proof. Let G be a non-Abelian group of order pq, then as argued before, ∃H C G
and K < G such that |H| = q, |K| = p and

G ∼= H oϕ K

for some homomorphism ϕ : K → Aut(H). Since G is non-Abelian, ϕ is non-trivial.
Since |K| = p, ϕ must be injective. Hence,

ϕ(K) < Aut(H)
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is a subgroup of order p. However, Aut(H) is cyclic, so it has a unique subgroup
of order p (Mid-Sem Q6). Hence, if ψ : K → Aut(H) is any other non-trivial
homomomorphism, we have

ϕ(K) = ψ(K)

So by Lemma 8.7,
H oϕ K ∼= H oψ K

Thus, upto isomorphism, there is only one such group.

8.9. Corollary: Let p and q be two primes, and G be a group of order pq.

(i) If p = q, then G must be one of

Zp2 or Zp × Zp

(ii) If p < q and p - (q − 1), then G must be Zpq
(iii) If p < q and p | (q − 1), then G must be one of

Zpq or Zq o Zp

(End of Day 32)

9. Groups of Small Order

a. Groups of Order 8

9.1. Remark: Let G be a group of order 8.

(i) If G is Abelian, then G is isomorphic to one of

• Z8

• Z4 × Z2, or

• Z2 × Z2 × Z2

(ii) The group of isometries of a square, D4 is a group of order 8. As in Section 4,
write r and s for the two elements that generate D4. They satisfy

r4 = s2 = e and srs−1 = r3

Note that H := 〈r〉 has order 4, and thus H C G. Let K := 〈s〉, then

G ∼= H oϕ K

by Theorem 7.5. Furthermore, since G is non-Abelian, K is not normal in G
by Theorem 7.6.
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(iii) The quaternion group Q8 is the group of 8 complex matrices

Q8 = {±1,±i,±j,±k}

where

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
,k =

(
0 i
i 0

)
By HW 3.10, every subgroup of Q8 is normal in Q8. In particular, it follows
that

D4 � Q8

(iv) Set a := i and b := j. Then (Check!)

(a) a4 = 1

(b) b2 = a2

(c) b−1ab = a−1

(d) Q8 = {anbm : 0 ≤ n < 4, 0 ≤ m < 2}

Proof. Let H = 〈a〉 and K = 〈b〉, then by the first two steps,

|H| = O(a) = 4 = O(b) = |K|

Hence, H C G, so HK < G. Furthermore, H 6= K since a and b do not
commute. Hence, by part (b),

H ∩K = {a2, e}

Hence,

|HK| = |H||K|
|H ∩K|

= 8⇒ G = HK

Hence,
Q8 = {anbm : 0 ≤ n < 4, 0 ≤ m < 4}

However, b3 = b2b = a2b. Hence, we see that

Q8 = {anbm : 0 ≤ n < 4, 0 ≤ m < 2}

as required.

9.2. Theorem Let G be a group with two elements a, b ∈ G such that

a4 = e, b2 = a2 and b−1ab = a−1

Then there is a unique group homomorphism ϕ : Q8 → G such that

ϕ(i) = a and ϕ(j) = b

Proof. Similar to Theorem 4.2
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9.3. Lemma: Let G be a group such that

(ab)2 = a2b2 ∀a, b ∈ G

Then G is Abelian.

Proof. It follows by hypothesis that

(ab)(ab) = aabb⇒ ba = ab

for all a, b ∈ G.

9.4. Theorem: The only non-Abelian groups of order 8 are Q8 and D4.

Proof. (i) Let G be a non-Abelian group of order 8. For any a ∈ G,O(a) ∈
{1, 2, 4, 8}. Since G is not cyclic, there is no element of order 8. If every
element in G had order 2, then

(ab)2 = e = a2b2 ∀a, b ∈ G

By the previous lemma, this would imply that G is Abelian. Hence, ∃a ∈ G
such that O(a) = 4.

(ii) Set
H := 〈a〉

Then |H| = 4, so H C G.

(iii) Let b ∈ G \H. Then consider the quotient map π : G → G/H. Since b /∈ H,
π(b) 6= H. However, |G/H| = 2, so

〈bH〉 = G/H

So if x ∈ G, then π(x) ∈ 〈bH〉. Hence, ∃m ∈ {0, 1} such that x ∈ bmH.
Hence, b−mx ∈ H, so ∃n ∈ N such that

b−mx = an ⇒ x = anbm

So G is generated by a and b.

(iv) Since H C G, bab−1 ∈ H. Since O(bab−1) = O(a), it follows that

bab−1 = a or bab−1 = a3

If bab−1 = a, then ba = ab. Since G is generated by a and b, it follows that G
is Abelian. This is a contradiction. Hence,

bab−1 = a3 = a−1
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(v) Furthermore,
π(b2) = π(b)2 = H ⇒ b2 ∈ H

If b2 = a, then O(b2) = 4, so O(b) = 8. This implies that G is cyclic, which it
is not. Hence, b2 6= a. Similarly, if b2 = a3, then

O(b2) = O(a3) =
O(a)

gcd(O(a), 3)
=

4

gcd(4, 3)
= 4

which would imply that O(b) = 8 - a contradiction. Hence, it follows that

b2 = e or b2 = a2

Since bab−1 = a−1, we have by Theorems 4.2 and 9.2, that

G ∼=

{
D4 : b2 = e

Q8 : b2 = a2

9.5. Remark: There are no proper subgroups H,K < Q8 such that

Q8
∼= H oϕ K

Proof. Suppose Q8
∼= H oϕ K, then K̂ < Q8. Every subgroup of Q8 is normal, so

K̂ C Q8, but this implies by Theorem 7.6 that

Q8
∼= H ×K

But if H < G is proper, then |H| ≤ 4, so H is Abelian. Similarly, K is Abelian, so
Q8 would be Abelian - a contradiction.

b. Groups of order 12

9.6. Remark: Let G be a group of order 12.

(i) If G is Abelian, then G is one of

• Z12

• Z2 × Z6

(ii) We know two other groups of order 12, A4 and D6. Note that D6 has a
subgroup of order 6. Since A4 does not, D6 � A4.

(iii) Note that, in A4, there are many 3-Sylow subgroups

{e, (123), (132)}, {e, (124), (142)}, etc.

Hence, A4 does not have a normal 3-Sylow subgroup.
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9.7. Lemma: Let G be a finite group and a, b ∈ G such that ab = ba and 〈a〉∩〈b〉 = {e}.
Then

O(ab) = lcm(O(a), O(b))

Proof. Exercise.

(End of Day 33)

9.8. Example: Note that Aut(Z3) ∼= Z∗3 ∼= Z2, so write

Aut(Z3) = {e, ε}

Let τ : Z4 → Aut(Z2) be the map

τ([j]) = εj

Then τ is a well-defined surjective homomorphism. Define

T := Z3 oτ Z3

(i) T is a non-Abelian group of order 12.

(ii) Notice that [2] ∈ ker(τ). Hence,

([0], [2]) · ([1], [0]) = ([1], [2])

and τ([2])([1]) = [1], so

([1], [0]) · ([0], [2]) = ([1], [2])

Hence, ([0], [2]) and ([1], [0]) commute. Also, by the isomorphism in Lemma
7.3

O([0], [2]) = 2 and O([1], [0]) = 3

By Lemma 9.6, O([1], [2]) = 6. Since A4 does not have an element of order 6,
it follows that

T � A4

(iii) Also, O([0], [1]) = 4. In D6, there is no element of order 4 (Check!), so

T � D6

9.9. Lemma: Let G be a group of order 12. If G does not have a normal 3-Sylow
subgroup, then G ∼= A4.

Proof. Let P be a 3-Sylow subgroup of G and n3 be the number of 3-Sylow sub-
groups in G. Then

n3 ≡ 1 (mod 3) and n3 | 4
Suppose P is not normal, then n3 = 4. Hence

4 = [G : NG(P )] = [G : P ]⇒ P = NG(P )
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Let G act on X := G/P by left multiplication. This gives a group homomorphism

f : G→ S4

such that ker(f) ⊂ P . Since P is not normal in G, ker(f) 6= P . Since |P | = 3, it
follows that

ker(f) = {e}
Hence, f is injective. Hence, f(G) < S4 is a subgroup of order 12. By HW 3.18,

f(G) = A4

so G ∼= A4.

9.10. Lemma: Let K = Z2 × Z2, then Aut(K) ∼= S3

Proof. Write K = {e, a1, a2, a3} where a1 = ([0], [1]), a2 = ([1], [0]) and a3 =
([1], [1]). Then

a1a2 = a3, a1a3 = a2, and a2a3 = a1 (∗)
S3 acts on H by

(σ, e) 7→ e and (σ, ai) 7→ aσ(i)

This gives a map
f : S3 → SK

which is clearly injective. Furthermore, if σ ∈ S3, then

σ(a1a2) = σ(a3) = aσ(3)

One can check that for each σ ∈ S3,

aσ(3) = aσ(1)aσ(2)

by the equation (∗). Hence, f(S3) ⊂ Aut(K). Finally, if ϕ ∈ Aut(K), then
ϕ : K → K is bijective, and ϕ(e) = e. Hence, ϕ is a permutation on the set
{a1, a2, a3}. Hence, ϕ ∈ f(S3), so f is surjective.

Thus, f : S3 → Aut(K) is an isomorphism.

9.11. Theorem: There are, upto isomorphism, only three non-Abelian groups of order 12,
viz. A4, D6 and T .

Proof. Since these three groups are not isomorphic to each other, it suffices to show
that there are atmost 3 non-Abelian groups of order 12. Let G be such a group and
assume G � A4. Let H,K < G be subgroups with

|H| = 3 and |K| = 4

Since G � A4, then H C G, so HK < G. Since H ∩K = {e}, it follows that

G = HK ∼= H oϕ K

for some map ϕ : K → Aut(H). Since G is non-Abelian, and H and K are Abelian,
it follows that ϕ is non-trivial. Since |Aut(H)| = 2, ϕ is surjective, and write

Aut(H) = {e, ε}

90



(i) Case 1: K ∼= Z4, then since ϕ is surjective and non-zero, it follows that

ϕ([1]) = ε⇒ ϕ([j]) = εj

Hence, G ∼= T by construction.

(ii) Case 2: K ∼= Z2 × Z2, then write

K = {e, a1, a2, a3}

as before. Suppose that i, j ∈ {1, 2, 3} such that

ϕ(ai) = ε and ϕ(aj) = e

Then, by 9.10, there is a τ ∈ Aut(K) such that

τ(a1) = ai and τ(a2) = aj

Set ψ = ϕ ◦ τ , then ψ(a1) = ε and ψ(a2) = e, and hence ψ(a3) = ψ(a1a2) = ε.
Thus, for any non-trivial ϕ : K → Aut(H), there is a τ ∈ Aut(K) such that

ϕ ◦ τ = ψ

By 8.7,
H oϕ K ∼= H oψ K

so there is only one group in this case (and in fact, it must be D6)

(End of Day 34)

c. Groups of order ≤ 15

Order of G Abelian Non-Abelian Reference
1 {0} None -

2, 3, 5, 7, 11, 13 Zp None I.2.6, I.4.3
4, 9 Zp2 ,Zp × Zp None IV.1.14

6, 10, 14 Z2p Dp IV.4.3
8 Z2 × Z2 × Z2,Z2 × Z4,Z8 D4, Q8 Section IV.6, IV.9.4
12 Z12,Z2 × Z6 A4, D6, T Section IV.6, IV.9.11
15 Z15 None IV.2.9

Review for Final Exam.

(End of Day 35)
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V. Instructor Notes

0.1. Overall, the course structure is sound, and doesn’t need any tinkering at all.

0.2. This semester, because of all the holidays I got only 35 lectures, which is way less
than ideal. If I had had a few more lectures, I could have discussed solvability and
composition series as well.
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