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Introduction

Given a C*-algebra A, we associate two abelian groups K0(A) and K1(A) to A, in a
functorial way. ie. Given a ∗-homomorphism ϕ : A → B, we obtain induced group
homomorphisms ϕ∗ : Kp(A) → Kp(B). Furthermore, if ϕ is an isomorphism, so is ϕ∗.
Hence, K-theory can be used to distinguish C*-algebras.

The goal of this course is to introduce K-theory to those who have seen the basics of
C*-algebra theory (from [Murphy] or the equivalent). We will be following [Rørdam,
Larsen, and Laustsen] almost verbatim.
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I. Projections and Unitary Elements

1. Homotopy classes of Unitary elements

Definition 1.1. Let X be a topological space. We say two points a, b ∈ X are homotopic
(in symbols, a ∼h b) if there is a continuous path v : [0, 1]→ X such that v(0) = a and
v(1) = b.

If such a path exists, we denote it by t 7→ vt or t 7→ v(t).

Definition 1.2. Let A be a unital C*-algebra. An element u ∈ A is called a unitary
if uu∗ = u∗u = 1. The group of unitaries is denoted by U(A). Write U0(A) for all the
elements u ∈ U(A) such that u ∼h 1 in U(A). This is a normal subgroup of U(A).

Recall that if u ∈ U(A), then the spectrum sp(u) ⊂ T. Given h ∈ A, we write exp(ih)
for the element obtained by applying the continuous function f(z) := exp(iz) to h.

Lemma 1.3. Let A be a unital C*-algebra.

1.1. If h ∈ Asa, then exp(ih) ∈ U0(A)

1.2. If u ∈ U(A) such that sp(u) 6= T, then u ∈ U0(A)

1.3. If u, v ∈ U(A) such that ‖u− v‖ < 2, then u ∼h v.

Proof. 1.1. The path t 7→ exp(ith) connects it to the identity.

1.2. If sp(u) 6= T, then there is a continuous branch of the log function ϕ : T → R
which satisfies z = exp(iϕ(z)). Then h := ϕ(u) works.

1.3. eee ‖u− v‖ < 2, then ‖v∗u− 1‖ < 2, so −1 /∈ sp(v∗u). Therefore, v∗u ∈ U0(A), so
u ∼h v.

Example 1.4. If A = Mn(C), then U(A) = U0(A) because every u ∈ U(A) satisfies part
(2) of the above theorem.

Example 1.5. The above proof gives us an interesting fact: If A = B(H), and u ∈ U(A),
then there is a branch of the log function ϕ : T → R which, while not necessarily con-
tinuous, is at least a Borel function. Hence, h := ϕ(u) ∈ A is a well-defined element,
and clearly u = exp(ih) must hold. Hence, u ∈ U0(A). Hence, U(A) is connected.

More generally, if A is a Von Neummann algebra, then U(A) is connected.
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Proposition 1.6. 1.1. U0(A) is a normal subgroup of U(A)

1.2. U0(A) is open and closed in U(A)

1.3. u ∈ U0(A) iff ∃h1, h2, . . . , hk ∈ Asa such that

u = exp(ih1) exp(ih2) . . . exp(ihk)

Proof. 1.1. Easy check.

1.2. If u ∈ U(A) such that ‖u − 1‖ < 1, then u ∈ U0(A). Hence, as in the case on
GL(A), we can show that U0(A) is open in U(A). Now U0(A) is a subgroup, so
U(A) is the disjoint union of its cosets. Each coset is homeomorphic to U0(A), so
each coset is open. Hence, U0(A), being the complement of an open set, must also
be closed in U(A).

1.3. Let F denote the set of finite products as above. This set is open because if u ∈ F
and ‖v − u‖ < 2, then v ∈ F as in the previous lemma. Once again, F is a
subgroup of U0(A), so it must also be closed. Since U0(A) is connected, it follows
that F = U0(A).

Corollary 1.7. Let ϕ : A→ B be a unital surjective ∗-homomorphism, then

1.1. ϕ(U0(A)) = U0(B)

1.2. Let u1, u2 ∈ U(A) such that u1 ∼h u2. If u2 lifts to a unitary in U(A), then so does
u1.

Proof. 1.1. If v ∈ U0(B), then write v =
∏n

i=1 exp(ikj). Lift kj to elements hj ∈ A,
and consider tj := (hj + h∗j)/2. Then tj ∈ Asa, so u :=

∏n
i=1 exp(itj) ∈ U0(A), and

clearly ϕ(u) = v.

1.2. Note that u1u
∗
2 ∈ U0(A), so ∃u ∈ U0(A) such that ϕ(u) = u1u

∗
2. Now suppose

u2 = ϕ(v), then ϕ(uv) = u1u
∗
2u2 = u1.

Example 1.8. [Rørdam, Larsen, and Laustsen, Exercise 2.12] Consider the short
exact sequence

0→ C0(R2)→ C(D)
ψ−→ C(T)→ 0

where ψ is the restriction map. Let v ∈ C(T) be the identity map, v(z) = z. Then there
does not exist u ∈ U(C(D)) such that ψ(u) = v.

Proof. Suppose u ∈ U(C(D)) such that ψ(u) = v, then u : D → T is a continuous
function such that u|T= v. Let ι : T → D denote the inclusion map, then u ◦ ι = idT.
So the composition of maps induced on the fundamental group

π1(T, 1)
ι∗−→ π1(D, 1)

u∗−→ π1(T, 1)

should be the identity map. But this is not possible because π1(T, 1) = Z while
π1(D, 1) = 0.
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This also shows that U(C(T)) is not connected. Compare this with the earlier statement
about Von Neumann Algebras.

(End of Day 1)

a. Lifting invertibles

Given a unital Banach algebra A, write GL(A) for the set of invertibles in A, and
GL0(A) for the set of all invertibles that are path connected to 1. Note that GL(A) is
open in A, and A is locally path connected, so path components in GL(A) coincide with
components in GL(A). Hence, GL0(A) is the connected component of the identity in
GL(A). Hence, it is a normal subgroup of GL(A)

Definition 1.9. If A is a Banach algebra, and a ∈ A, we write

exp(a) :=
∞∑
n=1

an

n!

Note that the series converges in A, and if a, b ∈ A commute, then exp(a + b) =
exp(a) exp(b). We write exp(A) for the set of all finite products of elements of the form
exp(a). Note that exp(A) ⊂ GL(A)

Lemma 1.10. [Douglas, Lemma 2.13] If ‖1 − a‖ < 1, then a ∈ exp(A). Hence,
exp(A) is an open subset of GL(A)

Proof. Define

b :=
∞∑
n=1

1

n
(1− a)n

Then the series converges absolutely, and so it converges in A, and exp(b) = a

Theorem 1.11. [Douglas, Theorem 2.14]

GL0(A) = exp(A)

Proof. If a ∈ A, then exp(ta) defines a path from exp(a) to 1, so exp(A) ⊂ GL0(A).
Conversely, exp(A) is a subgroup of GL0(A) which is an open set by the previous lemma.
Hence, every coset of exp(A) in GL0(A) is open, being homeomorphic to exp(A), so
exp(A) is also closed in GL0(A). Since GL0(A) is connected, exp(A) = GL0(A).

Corollary 1.12. If ϕ : A→ B is a surjective unital ∗-homomorphism, and b ∈ GL0(B),
then ∃a ∈ GL0(A) such that ϕ(a) = b

Proof. Write b =
∏n

i=1 exp(bi). Choose ai ∈ A such that ϕ(ai) = bi, and set a :=∏n
i=1 exp(ai).
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Example 1.13. Let S ∈ B(`2) be the right-shift operator

S((xn)) := (0, x1, x2, . . .)

Then T is the left-shift operator

T ((xn)) := (x2, x3, . . .)

Hence, TS = I and ST = I − Pe1 , where Pe1 is the projection onto the first coordinate.
In particular, ST − I ∈ K(`2), the compact operators.

Let A := B(`2) and B := Q(`2) := A/K(`2), the Calkin algebra, and let π : A → B be
the quotient map. Then

π(S) ∈ GL(B) but S /∈ GL(A)

Moreover, suppose R ∈ GL(A) such that π(R) = π(S), then S −R ∈ K(`2). However,

index(S) = dim(ker(S))− dim(coker(S)) = −1

If R is invertible, then

index(R) = dim(ker(R))− dim(coker(R)) = 0− 0 = 0

But index is invariant under addition of compacts. See [Arveson, Chapter 3]. Hence,
π(S) ∈ GL(B) cannot be lifted to an invertible in GL(A).

Given a surjective unital ∗-homomorphism ϕ : A → B, we may lift elements in
GL0(B) and U0(B) to elements in GL0(A) and U0(A) respectively. Therefore, we
may lift (invertible or unitary) elements that are path connected to liftable elements.
However, it is not, in general, possible to lift an arbitrary invertible or unitary.

b. Relationship between GL(A) and U(A)

Let A be a unital C*-algebra, then U(A) is a subgroup of GL(A).

Definition 1.14. A subspace X0 of a topological space X is said to be a retract of X
if there is a continuous map τ : X → X0 such that

1.1. x ∼h τ(x)

1.2. τ(x) = x for all x ∈ X0.

Given a ∈ A, we write |a| := (a∗a)1/2, and this is called the absolute value of a.

Proposition 1.15. 1.1. If a ∈ GL(A), then |a| ∈ GL(A) and w(a) := a|a|−1 ∈ U(A).

1.2. The map w : GL(A)→ U(A) is a retract.
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1.3. If u, v ∈ U(A) and u ∼h v in GL(A), then u ∼h v in U(A)

In order to prove this, we need a lemma

Lemma 1.16. [Rørdam, Larsen, and Laustsen, Lemma 1.2.5] Let K ⊂ R be
compact and f : K → C continuous. Let A be a unital C*-algebra and ΩK be the set of
all self-adjoint elements in A with spectrum contained in K. The induced map

f : ΩK → A given by a 7→ f(a)

is continuous.

Proof. Note that a 7→ an is continuous because multiplication is continuous by the
Banach algebra identity. Hence, any polynomial is continuous. Now apply Stone-
Weierstrass.

Now returning to the proof of the above proposition:

Proof. 1.1. If a ∈ GL(A), so is a∗, so (a∗a)1/2 ∈ GL(A) with inverse (a∗a)−1/2. Now
u := a|a|−1 has the property that

u∗u = |a|−1a∗a|a|−1 = 1 = uu∗

so u ∈ U(A)

1.2. To show that ω is continuous: Note that a 7→ a∗ is continuous and multiplication
is continuous, so a 7→ a∗a is also continuous. The inverse map is continuous on
GL(A), so it suffices to show that h 7→ h1/2 is continuous on bounded sets of A+.
This follows from the previous lemma because a bounded set is contained in ΩK

where K = [0, R] for some R > 0.

To see that ω is a retract: Let a ∈ GL(A), then the path wt := ω(a)(t|a|+(1−t)1A)
is continuous and w0 = ω(a) and w1 = a. To see that wt ∈ GL(A), note that
|a| ∈ GL(A) ∩ A+, so ∃λ ∈ (0, 1] such that |a| ≥ λ1A. Hence,

t|a|+ (1− t)1A ≥ λ1A

Hence, wt is invertible, so w(a) ∼h a in GL(A)

1.3. If u ∼h v in GL(A) via a path ut, then ω(ut) is a path in U(A) from u to v.

Remark 1.17. Let X0 ⊂ X. We say that X0 is a deformation retract of X if there is a
retract τ : X → X0 and a continuous map

H : [0, 1]×X → X

such that, for all x ∈ X

1.1. H(x, 0) = x
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1.2. H(x, 1) = τ(x)

ie. H is a homotopy between the identity map on X and the map τ .

The above proof shows that U(A) is a deformation retract of GL(A). A deformation
retract is a special case of a homotopy equivalence, ie. the above proposition implies
that the homotopy groups of U(A) and GL(A) are isomorphic.

(End of Day 2)

c. Whitehead’s Lemma

Lemma 1.18. If u, v ∈ A, then(
u 0
0 v

)
∼h
(
uv 0
0 1

)
∼h
(
vu 0
0 1

)
∼h
(
v 0
0 u

)
in U2(A). In particular, (

u 0
0 u∗

)
∼h
(

1 0
0 1

)
Proof. In M2(C), (

0 1
1 0

)
∼h
(

1 0
0 1

)
because U(M2(C)) is connected. Hence,(

u 0
0 v

)
=

(
u 0
0 1

)(
0 1
1 0

)(
v 0
0 1

)(
0 1
1 0

)
∼h
(
uv 0
0 1

)
and similarly the other claims also hold.

Corollary 1.19. Let ϕ : A→ B be a surjective unital ∗-homomorphism and u ∈ U(B),
then ∃v ∈ U2(A) such that

ϕ2(v) =

(
u 0
0 u∗

)
where ϕ2 : M2(A)→M2(B) is the induced homomorphism.

2. Equivalence of Projections

A projection in a C*-algebra A is an element p ∈ A such that p = p2 = p∗.

Example 2.1. If A = C(X), then a projection p ∈ A must be the characteristic function
of a cl-open set in X. In particular, if X is connected iff C(X) has no non-trivial
projections.
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Definition 2.2. We say that two projections p, q ∈ A are Murray-Von-Neumann equiv-
alent if ∃v ∈ A such that p = v∗v and q = vv∗. Such a v is called a partial isometry, p
its support projection, and q its range projection.

We check that this is an equivalence relation, and write p ∼ q for it. Furthermore, we
have

v = qv = vp = qvp

Example 2.3. If A = B(H) and p, q ∈ A projections, then p ∼ q iff dim(p(H)) =
dim(q(H)).

Proof. 2.1. Consider V = p(H),W = q(H). Suppose dim(V ) = dim(W ), then there
is an isomorphism v : V → W obtained by mapping orthonormal bases to each
other. Extending this map to an element of B(H) by defining it to be zero on
the orthogonal complements, we obtain a partial isometry such that v∗v = p and
vv∗ = q.

2.2. Conversely, if p ∼ q, then any orthonormal basis of p(H) must be carried to an
orthonormal basis of q(H) by the partial isometry v. Then choose an orthonormal
basis B of p(H). We claim that {v(b) : b ∈ B} is an orthonormal basis for q(H).
Firstly, note that

qv(b) = v(b)⇒ v(b) ∈ q(H)

Now if b, b′ ∈ B, then

〈v(b), v(b′)〉 = 〈v∗v(b), b′〉 = 〈q(b), b′〉 = 〈b, b′〉 = δb,b′

Furthermore, if e ∈ q(H) is such that e ⊥ v(b) for all b ∈ B, then

〈v∗(e), b〉 = 〈e, v(b)〉 = 0 ∀b ∈ B

As before, v∗(e) ∈ p(H) so this implies v∗(e) = 0, whence

e = q(e) = vv∗(e) = 0

This proves the claim.

Example 2.4. In particular, if A = Mn(C), then for any two projections p, q ∈ A,

p ∼ q ⇔ Tr(p) = Tr(q)

There are two more equivalence relations on projections. For any C*-algebra A, write
Ã for its unitization.

Definition 2.5. We say that two projections p, q ∈ A are unitarily equivalent (In

symbols, p ∼u q) if ∃u ∈ U(Ã) such that p = uqu∗. We say that they are homotopic (In
symbols, p ∼h q) if there is a path t 7→ pt of projections connecting p to q.
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Proposition 2.6. Let A be a unital C*-algebra, and p, q ∈ A projections. Then TFAE:

2.1. p ∼u q
2.2. q = upu∗ for some u ∈ U(A)

2.3. p ∼ q and 1A − p ∼ 1A − q

Proof. Write Ã = A+Cf where f = (1Ã−1A), and note that af = fa = 0 for all a ∈ A.

(i)⇒ (ii): Suppose q = zpz∗ for some z ∈ U(Ã), write z = u+λf for some u ∈ A and λ ∈ C.
Then

1Ã = zz∗ = uu∗ + |λ|2f 2 = uu∗ + |λ|2f
But 1Ã = 1A+f , so we have that uu∗ = 1A by equating terms. Similarly, u∗u = 1A.

(ii) ⇒ (iii): Suppose q = upu∗, write

v := up and w = u(1A − p)

Then
vv∗ = q, v∗v = p and w∗w = (1A − p), ww∗ = (1A − q)

(iii) ⇒ (i): Suppose v, w ∈ A are partial isometries satisfying the above relations. Set

z := v + w + f

Then vv∗ + ww∗ + ff ∗ = v∗v + w∗w + f ∗f = 1Ã, so by Exercise 2.6, z ∈ U(Ã).
Furthermore, wv∗ = v∗w = 0, and fp = pf = 0, so

zpz∗ = vpv∗ = vv∗ = q

Example 2.7. Let A = B(H) and p ∈ B(H) be any projection whose range is infinite
dimensional. Then by the earlier example, p ∼ 1A. However, if (1A − p) 6= 0, then p
cannot be unitarily equivalent to 1A. For instance, if p ∈ B(`2) is the projection whose
range is {e1}⊥, then

p ∼ 1A but p �u 1A

Proposition 2.8. p ∼h q iff ∃u ∈ U0(Ã) such that q = upu∗

Proof. For one direction, if q = upu∗ with u ∈ U0(Ã), then there is a path ut connecting
u to 1Ã. Therefore,

t 7→ utpu
∗
t

is a path of projections connecting p to q.

Conversely, suppose p ∼h q via a path pt, then choose a partition {t0, t1, . . . , tn} of [0, 1]
such that

‖pti − pti+1‖ < 1/2
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It now suffices to assume that ‖p − q‖ < 1/2 as the required property is transitive. In
this case, take

z := pq + (1− p)(1− q) ∈ Ã

Then pz = pq = zq, and ‖z − 1‖ ≤ 2‖p − q‖ < 1. Hence, z ∈ GL(Ã) and z ∼h 1Ã in

GL(Ã). Let u := ω(z) ∈ U(Ã), then

u ∼h z ⇒ u ∈ U0(Ã)

and also p = uqu∗ (See [Rørdam, Larsen, and Laustsen, Proposition 2.2.5])

We have the following implications:

p ∼h q ⇒ p ∼u q ⇒ p ∼ q

The reverse implications do not hold. But the following do hold

p ∼ q ⇒
(
p 0
0 0

)
∼u
(
q 0
0 0

)
and

p ∼u q ⇒
(
p 0
0 0

)
∼h
(
q 0
0 0

)
Example 2.9. To see that p ∼ q does not necessarily imply p ∼u q, look at the previous
example with A = B(H). To see that p ∼u q does not necessarily imply p ∼h q, we need
the following fact: There exists a C*-algebra B and a unitary u ∈ U(M2(B)) such that

u �h

(
v 0
0 1

)
for any v ∈ U(B). If we assume this, then we may choose

p =

(
1 0
0 0

)
and q := upu∗

Then one can show that p �h q, while clearly p ∼u q

Now see [Rørdam, Larsen, and Laustsen, Proposition 2.2.8].

(End of Day 3)
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II. The K0 group of a unital C*-algebra

1. Definition

a. The Grothendieck construction

Compare the following construction with the construction of the field of fractions of an
integral domain. Let (S,+) be an abelian semi-group. Define an equivalence relation ∼
on S × S by

(x1, y1) ∼ (x2, y2)⇔ ∃z ∈ S such that x1 + y2 + z = x2 + y1 + z

Write G(S) := (S × S)/ ∼, and let 〈x, y〉 denote the equivalence class of (x, y) ∈ S × S.
Define

〈x1, y1〉+ 〈x2, y2〉 := 〈x1 + x2, y1 + y2〉

Then (G(S),+) is an abelian group where 0G = 〈y, y〉 for any y ∈ S and −〈x, y〉 = 〈y, x〉.

Fix y ∈ S, and define γS : S → G(S) by

x 7→ 〈x+ y, y〉

This map independent of y and is additive. This construction has the following proper-
ties:

1.1. Universal Property: Given an abelian group H and an additive map ϕ : S → H,
there is a unique group homomorphism ϕ̂ : G(S) → H such that the following
diagram commutes:

S

γS !!

ϕ // H

G(S)
ϕ̂

<<

1.2. Functoriality: Given an additive map ϕ : S → T between abelian semigroups, there
is a unique group homomorphism G(ϕ) : G(S) → G(T ) such that the following
diagram commutes:

S

γS
��

ϕ // T

γT
��

G(S)
G(ϕ) // G(T )
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1.3. G(S) = {γS(x)− γS(y) : x, y ∈ S}

We won’t prove these results. They are easy. However, note that they have the following
consequence: Given another pair (G,ψS) where G is an abelian group and

ψS : S → G

an additive map such that these properties hold, then, ∃ψ̂S : G(S)→ G such that

ψ̂S ◦ γS = ψS

Similarly, there is a map γ̂S : G→ G(S) such that

γ̂S ◦ ψS = γS

Hence, θ := γ̂S ◦ ψ̂S is a group homomorphism from G(S) to G(S) and has the property
that

θ ◦ γS = γS

But the image of γS generates G(S), so θ = idG(S). Similarly,

ψ̂S ◦ γ̂S = idG

and so G ∼= G(S). Thus, the pair (G(S), γS) is unique. Hence,

Given an abelian semi-group (S,+), if we find one pair (G,×) with properties (i),
(ii) and (iii), then it must be the Grothendieck completion of (S,+).

Example 1.1. If S = Z+, then G(S) ∼= Z

Example 1.2. If S = Z+∪{∞}, where addition with∞ is as usual, then for any x ∈ S,

γS(x) + γS(∞) = γS(x+∞) = γS(∞)

But G(S) has cancellation, so γS(x) = 0G(S). This is true for any x ∈ S, so G(S) = {0}.

Remark 1.3. The map γS : S → G(S) need not be injective as the above example
shows. In fact, it is injective iff S has cancellation: ie. x+ z = y + z implies that x = y
in S. (proof later)

b. Semigroups of Projections

Fix a C*-algebra A. For each n ∈ N, write Pn(A) for the set of all projections in Mn(A),
and write P∞(A) for the disjoint union. Given p, q ∈ P∞(A), define

p⊕ q := diag(p, q) :=

(
p 0
0 q

)
Furthermore, if p ∈ Pn(A) and q ∈ Pm(A), we say p ∼0 q if ∃v ∈ Mm,n(A) such that
p = v∗v and q = vv∗. We have
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Proposition 1.4. [Rørdam, Larsen, and Laustsen, Proposition 2.3.2]

1.1. If n = m, then p ∼0 q iff p ∼ q

1.2. p ∼0 p⊕ 0n for all n ∈ N
1.3. If p ∼0 p

′ and q ∼0 q
′, then p⊕ q ∼0 p

′ ⊕ q′

1.4. p⊕ q ∼0 q ⊕ p
1.5. If n = m and pq = 0, then p+ q is a projection, and p+ q ∼0 p⊕ q
1.6. p⊕ (q ⊕ r) = (p⊕ q)⊕ r

Proof. We don’t prove all these statements. Here is a sample.

(ii) If p ∼0 p
′ and q ∼0 q

′, write

p = v∗v, p′ = vv∗, q = w∗w, q′ = ww∗

Then u := diag(v, w) is such that

p⊕ q = u∗u and p′ ⊕ q′ = uu∗

Definition 1.5. Define
D(A) := P∞(A)/ ∼0

Write [p]D for the equivalence class of an element, and define

[p]D + [q]D := [p⊕ q]D

This is a well-defined addition on D(A), making it into an abelian semi-group.

Definition 1.6. The K0 group of a unital C*-algebra A is defined as

K0(A) := G(D(A))

We write [p]0 := γ([p]D) for any p ∈ P∞(A).

Proposition 1.7 (The standard picture of K0 - the unital case). Let A be a unital
C*-algebra, then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)} = {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N}

Moreover,

1.1. [p⊕ q]0 = [p]0 + [q]0

1.2. [0A] = 0 where 0A is the zero projection in A

1.3. If p, q ∈ Pn(A) and p ∼h q in Pn(A), then [p]0 = [q]0
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1.4. If p, q ∈ Pn(A) such that p ⊥ q, then [p+ q]0 = [p]0 + [q]0

Proof. The first description of K0 follows from Property 1.3 of the Grothendieck con-
struction. Furthermore, if

g = [p]0 − [q]0

where p ∈ Pm(A) and q ∈ P`(A), then let n := max{m, `} and replace p, q by p′ =
p⊕ 0n−m and q′ = q ⊕ 0n−` respectively. Then p ∼0 p

′ and q ∼0 q
′ so

g = [p′]0 − [q′]0

and p′, q′ ∈ Pn(A)

1.1.
[p⊕ q]0 = γ([p⊕ q]D) = γ([p]D + [q]D) = γ([p]D) + γ([q]D) = [p]0 + [q]0

1.2. Since 0A ⊕ 0A ∼0 0A, we have [0A]0 + [0A]0 = [0A]0 whence [0A]0 = 0

1.3. Because
p ∼h q ⇒ p ∼ q ⇒ p ∼0 q ⇒ [p]D = [q]D ⇒ [p]0 = [q]0

1.4. As in 1.1 because p+q ∼0 p⊕q by [Rørdam, Larsen, and Laustsen, Proposition
2.3.2]

c. Stable Equivalence of Projections

Remark 1.8. Let (S,+) be an abelian semigroup and (G(S), γS) the corresponding
Grothendieck group. Then, for all x, y ∈ S,

γS(x) = γS(y)⇔ x+ z = y + z

for some z ∈ S

Proof. Write γS(x) = 〈x+ u, u〉. If x+ z = y + z, then

x+ u+ u+ z = y + u+ u+ z ⇒ 〈x+ u, u〉 = 〈y + u, u〉

Conversely, if γS(x) = γS(y), then ∃z′ ∈ S such that

x+ u+ u+ z′ = y + u+ u+ z′

so take z := u+ u+ z′

Hence, γS : S → G(S) is injective iff S has cancellation: ie. x + z = y + z implies that
x = y

17



Definition 1.9. We say two projections p, q ∈ P∞(A) are stably equivalent if ∃r ∈
P∞(A) such that

p⊕ r ∼0 q ⊕ r

If this happens, we write p ∼s q.

Note that if A is unital, then replacing r by r ⊕ (1n − r) ∼0 1n, we see that

p ∼s q ⇔ p⊕ 1n ∼0 q ⊕ 1n

for some n ∈ N.

Lemma 1.10. For any two projections p, q ∈ P∞(A),

[p]0 = [q]0 ⇔ p ∼s q

(End of Day 4)

d. Universal Property of K0

Proposition 1.11 (Universal Property of K0). Let A be a unital C*-algebra, G an
abelian group, and

ν : P∞(A)→ G

be a function such that

1.1. ν(p⊕ q) = ν(p) + ν(q) for all p, q ∈ P∞(A)

1.2. ν(0A) = 0

1.3. If p, q ∈ Pn(A) and p ∼h q in Pn(A), then ν(p) = ν(q)

Then ∃ a unique group homomorphism

α : K0(A)→ G

such that
α([p]0) = ν(p)

for all p ∈ P∞(A). ie The following diagram commutes

P∞(A)

[·]0
��

ν

""
K0(A) α // G

Proof. If p, q ∈ P∞(A) are projections such that p ∼0 q, then we claim that ν(p) = ν(q).
To see this, note that if p ∼0 q, then choose n ∈ N such that

p′ := p⊕ 0n−m and q′ := q ⊕ 0n−`
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are both in Pn(A). Then
p′ ∼0 q

′ ⇒ p′ ∼ q′

By earlier propositions,
p′ ⊕ 03n ∼h q′ ⊕ 03n

so that

ν(p) = ν(p) + ν(0) + . . .+ ν(0)︸ ︷︷ ︸
4n−m

= ν(p′ ⊕ 03n) = ν(q′ ⊕ 03n) = ν(q)

The result now follows from the universal property of the Grothendieck construction.

Example 1.12. A bounded linear map τ : A→ C is called a trace if

τ(ab) = τ(ba) ∀a, b ∈ A

1.1. Hence, if p, q ∈ A are projections such that p ∼ q, then τ(p) = τ(q).

1.2. If τ is a trace on A and n ∈ N, then define τn : Mn(A)→ C by

τn((ai,j)) =
n∑
i=1

τ(ai,i)

and this is trace on Mn(A) (HW)

1.3. Thus, we get an induced function

τ : P∞(A)→ C

which satisfies the above conditions. Hence, we get an induced function

K0(τ) : K0(A)→ C such that K0(τ)([p]0) = τ(p)

for any projection p ∈Mn(A).

1.4. A trace is said to be positive if τ(a) ≥ 0 for all a ∈ A+ positive. In this case, each
induced map τn is also positive, so K0(τ) maps K0(A) to R.

Example 1.13.
K0(Mn(C)) ∼= Z

Proof. Let A = Mn(C), Tr : A→ C denote the standard trace. This is a positive trace,
so it induces a map

K0(Tr) : K0(Mn(C))→ R

Furthermore, Tr(p) ∈ Z for all projections p ∈Mm(A), so we may restrict the range so

K0(Tr) : K0(Mn(C))→ Z
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1.1. K0(Tr) is injective: If g = [p]0 − [q]0 is such that K0(Tr)(g) = 0, then we may
assume that p, q ∈ Pm(A) for some m ∈ N. Hence,

Tr(p) = Tr(q)

By Example 2.4, this implies p ∼ q, so p ∼0 q, so g = [p]0 − [q]0 = 0.

1.2. K0(Tr) is surjective: Because if e ∈ A denotes a rank one projection, then

K0(Tr)([e]) = 1

Example 1.14. If H = `2, then K0(B(H)) = {0}

Proof. Let A = B(H), and define dim : P∞(A)→ N ∪ {∞} by

dim(p) := dim(p(Hn))

where we think of p ∈ Pn(A) ∼= P(B(Hn)). By earlier examples,

p ∼0 q ⇔ dim(p) = dim(q)

so this is a bijection. Furthermore,

dim(p⊕ q) = dim(p) + dim(q)

so it is an isomorphism of semigroups. Hence,

K0(A) ∼= G(N ∪ {∞}) = {0}

Note that the same is also true for B(H) if H is not separable.

Example 1.15. Let X be a connected compact Hausdorff space and A = C(X). For
x ∈ X, define

νx : P∞(A)→ Z given by p 7→ Tr(p(x))

where we think of p as an element of C(X,Mn(C)) ∼= Mn(C(X)). As before, this induces
a map

K0(νx) : K0(C(X))→ Z

If 1 denotes the unit in A, then K0(νx)([1]0) = 1, so this map is surjective.

Note that if p ∈ P∞(A) is fixed, then the map

X → Z given by x 7→ Tr(p(x))
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is continuous, because p ∈ C(X,Mn(C)). Since X is connected, this is constant, and so
the map K0(νx) is independent of x. We denote this map by

dim : K0(C(X))→ Z

This map is surjective, but not, in general, injective [For instance, it is not injective if
X = S2 or X = T2.] However, it is injective if X is totally disconnected: A space X
is totally disconnected if it has a basis of cl-open sets. See [Rørdam, Larsen, and
Laustsen, Exercise 3.4]

If A is unital, K0(A) is generated by projections in matrices over A. The univer-
sal property of K0(·) is that any function on A which extends to Mn(A) and re-
spects Murray von Neumann equivalence of projections induces a map at the level
of K0(A). One such function is a trace on the algebra.

2. Functoriality of K0

a. Categories and Functors

A category C consists of a class O(C) of objects, and for each pair A,B ∈ O(C) a set
Mor(A,B) of morphisms from A to B with an associative rule of composition

Mor(A,B)×Mor(B,C)→ Mor(A,C) denoted by (ϕ, ψ) 7→ ψ ◦ ϕ

such that, for each object A, there is a morphism idA ∈ Mor(A,A) such that

ϕ ◦ idA = ϕ = idB ◦ ϕ

for all ϕ ∈ Mor(A,B). We are concerned with two categories, C∗ − alg and Ab of C*-
algebras and abelian groups respectively.

A covariant functor from a category C to a category D is a map F : O(C)→ O(D) de-
noted byA 7→ F (A) and a collection of maps ϕ 7→ F (ϕ) from Mor(A,B)→ Mor(F (A), F (B))
such that

2.1. F (idA) = idF (A) for all A ∈ O(C)

2.2. F (ψ ◦ ϕ) = F (ψ) ◦ F (ϕ) for all morphisms ϕ ∈ Mor(B,C) and ϕ ∈ Mor(A,B)

A contravariant functor is similar, except the arrows are reversed: Given a morphism
ϕ ∈ Mor(A,B), we get a morphism F (ϕ) ∈ Mor(F (B), F (A)).

Example 2.1. 2.1. X 7→ π1(X) is a covariant functor from the category of topological
spaces to the category of groups.

2.2. S 7→ G(S) is a covariant functor from the category of abelian semigroups to the
category of abelian groups.
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2.3. X 7→ C(X) is a contravariant functor from the category of compact Hausdorff
spaces to the category of unital commutative C*-algebras. Gelfand-Naimark sim-
ply states that this is an equivalence of categories.

Definition 2.2. Let ϕ : A → B be a ∗-homomorphism, then it extends to a ∗-
homomorphism ϕn : Mn(A) → Mn(B). This induces a map ϕ : P∞(A) → P∞(B)
so the map ν : P∞(A)→ K0(B) given by

p 7→ [ϕ(p)]0

satisfies all the conditions above, and so factors through K0(A) to give a map

K0(ϕ) : K0(A)→ K0(B)

such that
K0(ϕ)[p] = [ϕ(p)]0 ∀p ∈ P∞(A)

Let {0} denote the 0 C*-algebra, and 0A,B denote the zero morphism A→ B.

Proposition 2.3. 2.1. K0(idA) = idK0(A)

2.2. K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ)

2.3. K0({0}) = {0}
2.4. K0(0B,A) = 0K0(B),K0(A)

Proof. K0(A) is generated by [p]0 for p ∈ P∞(A), so these facts are obvious from the
definition above.

(End of Day 5)

b. Homotopy Invariance

Definition 2.4. Two ∗-homomorphisms ϕ, ψ : A→ B are said to be homotopic if there
are ∗-homomorphisms ϕt : A→ B for each t ∈ [0, 1] such that

2.1. ϕ0 = ϕ and ϕ1 = ψ

2.2. For each a ∈ A, the map t 7→ ϕt(a) is continuous from [0, 1] to B.

Equivalently, there is a ∗-homomorphism

Φ : A→ C([0, 1], B)

such that ev0 ◦ Φ = ϕ and ev1 ◦ Φ = ψ, where evs the evaluation map

C([0, 1], B)→ B given by f 7→ f(s)

If this happens, we write ϕ ∼h ψ.

We say that A and B are homotopy equivalent if ∃ ∗-homomorphisms ϕ : A → B and
ψ : B → A such that

ψ ◦ ϕ ∼h idA and ϕ ◦ ψ ∼h idA

If this happens, we write A ' B
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Example 2.5.

Let A = C[0, 1] and B = C. Define ϕ : A→ B by f 7→ f(0) and ψ : B → A by λ 7→ λ1.
Then ϕ ◦ ψ = idB. Define Φ : A→ C([0, 1]2) = C([0, 1], A) by

Φ(f)(t, x) = f(tx)

Then ev0 ◦ Φ(f) ≡ f(0) = ψ ◦ ϕ(f) and ev1 ◦ Φ(f) = idA(f). Hence,

ψ ◦ ϕ ∼h idA

Example 2.6. If X and Y are compact Hausdorff spaces, two maps ϕ, ψ : X → Y are
said to be homotopic if there is a continuous function H : [0, 1]×X → Y such that

H(0, x) = ϕ(x) and H(1, x) = ψ(x) ∀x ∈ X

We write ϕ ∼h ψ.

We say that X and Y are homotopy equivalent if ∃ maps ϕ : X → Y and ψ : Y → X
such that

ψ ◦ ϕ ∼h idX and ϕ ◦ ψ ∼h idY

Given ϕ : X → Y , we get an induced map ϕ∗ : C(Y )→ C(X) given by f 7→ f ◦ ϕ. We
can check that

ϕ ∼h ψ ⇔ ϕ∗ ∼h ψ∗

In particular,
X ' Y ⇔ C(X) ' C(Y )

See also: [Rørdam, Larsen, and Laustsen, Example 3.3.6, Exercise 3.13]

Proposition 2.7. 2.1. If ϕ, ψ : A→ B are homotopic ∗-homomorphisms, then K0(ϕ) =
K0(ψ)

2.2. If ϕ : A→ B and ψ : B → A are homotopy equivalences as above, then

K0(ϕ) : K0(A)→ K0(B)

is an isomorphism with inverse K0(ψ)

Proof. Since K0(A) is generated by [p]0 where p ∈ P∞(A), it suffices to check these
assertions on projections.

2.1. If ϕ, ψ are homotopic, then ϕ(p) ∼h ψ(p) in P∞(B) (via the path t 7→ ϕt(p)), so

[ϕ(p)]0 = [ψ(p)]0

2.2. Similarly, in this case,

[ϕ(ψ(p))]0 = [p]0 = K0(ϕ) ◦K0(ψ)([p]0)

for all p ∈ P∞(B).
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3. Other points of view

a. Algebraic K-theory

(See [Rosenberg] for this section)

Definition 3.1. Let A be a unital C*-algebra. A (finitely generated) projective module
over A is a (right) A-module P such that

P ⊕Q ∼= An

for some A-module Q and n ∈ N.

Let Proj(A) denote the isomorphism classes of all such modules. This carries a binary
operation ⊕ of direct sum, under which the zero module 0 acts as an identity element.
Furthermore,

(P ⊕Q)⊕R ∼= P ⊕ (Q⊕R)

Hence, Proj(A) is an abelian semi-group.

Lemma 3.2. 3.1. Let p ∈ Pn(A) be a projection, then p(An) is a finitely generated
projective A-module.

3.2. If p, q ∈ P∞(A), then
p ∼0 q ⇐ p(Am) ∼= q(An)

as A-modules

Proof. 3.1. If p ∈ Pn(A), then P := p(An) is a right R-module such that

P ⊕Q ∼= An

where Q := (1− p)(An). Hence it is finitely generated and projective.

3.2. If p ∼0 q for some p, q ∈ P∞(A), let v ∈ Mm,n(A) such that p = v∗v and q = vv∗.
The map

ϕ : p(Am)→ q(An) given by a 7→ v(a)

is an isomorphism.

3.3. Conversely, given an isomorphism ϕ : p(Am) → q(An), we define ϕ̂ : Am → An

by extending ϕ to be zero on (1 − p)(Am) and including q(An) in An. Now ϕ̂ is
given by left multiplication by a matrix a ∈ Mm,n(A). Similarly, we get a matrix
b ∈Mn,m(A) from ϕ−1. These matrices have the property that

ab = p, ba = q, a = qa = aq, b = qb = bp

Now set

z :=

(
1− p a
b 1− q

)
∈MN(A)
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where N := n+m. Then [Check!] z2 = I, so z is invertible, and

z(p⊕ 0)z−1 = (0⊕ q)

By [Rørdam, Larsen, and Laustsen, Proposition 2.2.5], u(p⊕ 0)u−1 = (0⊕ q)
where u = ω(z). Hence,

p ∼0 q

Hence,
D(A)→ Proj(A) given by [p]D → p(Am)

is an isomorphism of abelian semigroups. In particular,

K0(A) = G(Proj(A))

Note that this definition can be applied to any ring, where we take idempotents instead
of projections.

Example 3.3. If R is a PID, then the structure theorem for modules implies that every
projective module is free. Hence,

Proj(R)↔ N ∪ {0}

so that K0(R) ∼= Z

(End of Day 6)

b. Topological K-theory

(See [Park] for this section)

Let X be a compact Hausdorff space.

Definition 3.4. A family of vector spaces over X is a topological space V and a con-
tinuous surjective map π : V → X such that, for each x ∈ X,

3.1. π−1(x) is a finite dimensional vector space.

3.2. Addition and scalar multiplication on π−1(x) is continuous in the subspace topol-
ogy induced from V .

We write ζ := (V, π,X) for such a family, π is called the projection map, and π−1(x) =:
Vx is called the fiber of ζ at x.

Example 3.5. Let V := X × Cn, π(x, v) := x. We write Θn(X) := (V, π,X)
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Definition 3.6. Let V and W be families of vector spaces over X. A homomorphism
of families is a continuous function

γ : V → W

such that γx : Vx → Wx is a linear transformation of vector spaces for each x ∈ X.

If γ is a homeomorphism (so that each γx is an isomorphism), then γ is called an
isomorphism of families. If this exists, we write

V ∼= W

Definition 3.7. Let (V, π,X) be a family of vector spaces over X and A ⊂ X. Then

(π−1(A), π, A)

is a family of vector spaces over A, and is denoted by V |A

Definition 3.8. A vector bundle over X is a family of vector spaces (V, π,X) over X
such that, for each x ∈ X, there is a neighbourhood U of x such that

V |U∼= Θn(U)

for some n ∈ N. ie. There is a homeomorphism h : π−1(U) → U × Cn such that the
following diagram commutes

π−1(U) h //

π

##

U × Cn

π1
{{

U

This property is called local triviality of the vector bundle.

We write Vect(X) for isomorphism classes of (locally trivial) vector bundles over X. We
define an addition of vector bundles by

V ⊕W := {(v, w) ∈ V ×W : πV (v) = πW (w)}

This is called the Whitney sum, and it descends to give an addition on Vect(X). Since
Θ0(X) = X acts as the identity, this makes Vect(X) into an abelian semigroup.

Definition 3.9.
K0(X) := G(Vect(X))

Given a continuous function f : X → Y between two compact Hausdorff spaces, and a
vector bundle (V, π, Y ) over Y , we define

f ∗(V ) := {(v, x) ∈ V ×X : π(v) = f(x)}
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This is a vector bundle over X, and defines a map

f ∗ : Vect(Y )→ Vect(X)

It is also additive, so we get an induced map

K0(f) : K0(Y )→ K0(X)

This ensures that the functor
X 7→ K0(X)

is a contravariant functor from the category of compact Hausdorff spaces to the category
of abelian groups.

Definition 3.10. Let A = C(X), and let p ∈ Pn(A). We may think of p as a function
p : X →Mn(C) taking values in Pn(C). Define

V := {(x, v) ∈ X × Cn : p(x)(v) = v} = {(x, v) ∈ X × Cn : v ∈ Im(p(x))}

Define π : V → X by (x, v) 7→ x, then we write

Ran(p) := (V, π,X)

Definition 3.11. Let (V, π,X) be a vector bundle over X.

3.1. A section of V is a continuous function s : X → V such that

π ◦ s = idX

3.2. Write Γ(V ) for the set of all sections of V . Given two sections s1, s2 ∈ Γ(V ), we
define

(s1 + s2)(x) := s1(x) + s2(x)

where the addition on the RHS is happening in Vx. Because vector space addition
is assumed to be continuous,

s1 + s2 ∈ Γ(V )

3.3. Given s ∈ Γ(V ) and f ∈ C(X), we define

(s · f)(x) := s(x)f(x)

This is well-defined because f(x) ∈ C and s·f ∈ Γ(V ) because scalar multiplication
is also continuous in Vx. Hence, Γ(V ) is a right C(X)-module.

Theorem 3.12 (Swan’s theorem). Let X be a compact Hausdorff space.

3.1. If p ∈ Pn(C(X)), then Ran(p) is a vector bundle over X.

3.2. If (V, π,X) is a vector bundle over X, then Γ(V ) is a finitely generated projective
C(X)-module.
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3.3. The map
D(C(X))→ Vect(X) given by [p]D → [Ran(p)]

is a well-defined isomorphism of abelian semigroups.

3.4. The map
Vect(X)→ Proj(C(X)) given by [V ] 7→ [Γ(V )]

is a well-defined isomorphism of abelian semigroups.

Hence,
K0(X) ∼= K0(C(X))

Recall that the functor
X 7→ C(X)

is contravariant from the category of compact Hausdorff spaces and unital C*-algebras.
Thus, what we have here is a composition of functors

K0 ◦ C ∼= K0

Note that C is an isomorphism of categories, so

Topological K-theory for compact Hausdorff spaces is the “same” as K-theory for
unital, commutative C*-algebras.
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III. The Functor K0

1. Definition

a. Unitization of a unital C*-algebra

Let Ã denote the unitization of a C*-algebra A, then there is a split exact sequence

0→ A
ι−→ Ã

π

�
λ
C→ 0

with splitting λ : C→ Ã given by z 7→ z1Ã. We get an induced map

K0(π) : K0(Ã)→ K0(C) ∼= Z

Lemma 1.1. Let A,B be unital C*-algebras. If ϕ, ψ : A → B are orthogonal ∗-
homomorphisms (ie. ϕ(x)ψ(y) = 0 for all x, y ∈ A), then ϕ + ψ : A → B is a ∗-
homomorphism, and

K0(ϕ+ ψ) = K0(ϕ) +K0(ψ)

Proof. Check that ϕ + ψ is a ∗-homomorphism. Furthermore, for each n ∈ N, the
induced homomorphisms ϕn, ψn : Mn(A)→Mn(B) are mutually orthogonal. Hence, for
any p ∈ Pn(A),

[(ϕ+ ψ)n(p)]0 = [ϕn(p) + ψn(p)]0 = [ϕn(p)]0 + [ψn(p)]0

because ϕn(p) ⊥ ψn(p).

Proposition 1.2. Let A be a unital C*-algebra, then there is a split exact sequence,

0→ K0(A)
K0(ι)−−−→ K0(Ã)

K0(π)−−−→ K0(C)→ 0

In particular,
K0(A) ∼= ker(K0(π))

Proof. Let f := 1Ã − 1A ∈ P1(Ã), then Ã = A + Cf . Furthermore, af = fa = 0 for all

a ∈ A. Define µ : Ã→ A by
a+ αf 7→ a

and λ′ : C→ Ã by
α 7→ αf
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Then
idA = µ ◦ ι, idÃ = ι ◦ µ+ λ′ ◦ π, π ◦ ι = 0 and π ◦ λ = idC

also, ι ◦ µ and λ′ ◦ π are orthogonal to each other. By the previous lemma,

0 = K0(0) = K0(π ◦ ι) = K0(π) ◦K0(ι)

idK0(C) = K0(π) ◦K0(λ)

idK0(A) = K0(µ) ◦K0(ι)

idK0(Ã) = K0(ι) ◦K0(µ) +K0(λ′) ◦K0(π)

The third equation shows that K0(ι) is injective. The first equation shows that

Im(K0(ι)) ⊂ ker(K0(π))

Finally, if g ∈ ker(K0(π)), then the last equation shows that

g = K0(ι) ◦K0(µ)(g) ∈ Im(K0(ι))

b. K0 for a Non-Unital C*-algebra

Definition 1.3. If A is a (possibly non-unital) C*-algebra, we define

K0(A) := ker(K0(π))

Note that this is a subgroup of K0(Ã), and that the definition for a unital C*-algebra
agrees with this one.

Let ϕ : A→ B be a ∗-homomorphism, then there is an induced ∗-homomorphism

ϕ̃ : Ã→ B̃

such that the following diagram commutes.

A
ιA //

ϕ

��

Ã
πA //

ϕ̃
��

C
=

��
B

ιB // B̃
πB // C

Functoriality in the unital case gives a diagram

K0(A)
K0(ιA)// K0(Ã)

K0(πA)//

K0(ϕ̃)
��

K0(C)

e

��
K0(B)

K0(ιB)// K0(B̃)
K0(πB)// K0(C)
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Define θ : K0(A)→ K0(B) by

θ(g) := K0(ϕ̃) ◦K0(ιA)(g)

Then K0(πB)(θ(g)) = e ◦K0(πA) ◦K0(ιA)(g) = 0, so

θ(g) ∈ ker(K0(πB)) = Im(K0(ιB))

Furthermore, K0(ιB) is injective, so we may define

K0(ϕ) : K0(A)→ K0(B) such that K0(ϕ)(g) := K0(ιB)−1(θ(g))

Then the following diagram commutes

K0(A)
K0(ιA)//

K0(ϕ)

��

K0(Ã)
K0(πA)//

K0(ϕ̃)
��

K0(C)

e

��
K0(B)

K0(ιB)// K0(B̃)
K0(πB)// K0(C)

and K0(ϕ) is the unique map with this property. Note that if p ∈ P∞(A),

K0(ϕ)([p]0) = [ϕ(p)]0

Proposition 1.4. For any C*-algebras A,B,C, we have

1.1. K0(idA) = idK0(A)

1.2. K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ)

1.3. K0({0}) = {0}
1.4. K0(0B,A) = 0K0(B),K0(A)

1.5. If ϕ, ψ : A→ B are homotopic, then K0(ϕ) = K0(ψ)

1.6. If A ' B, then K0(A) ∼= K0(B).

Example 1.5. Let A be a C*-algebra. The cone of A is

CA := {f : [0, 1]→ A : f(0) = 0}

Define ϕt : CA → CA by ϕt(f)(s) := f(st). Then ϕ0 = 0 and ϕ1 = idCA. Hence,
0 ' CA, so that

K0(CA) = {0}
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2. The standard picture of K0

Consider the split exact sequence as above

0→ A
ι−→ Ã

π

�
λ
C→ 0

Recall that
K0(Ã) = {[p]0 − [q]0 : p, q ∈ P∞(Ã)}

Hence,

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(Ã) and [π(p)]0 = [π(q)]0 in K0(C)}

Define s : Ã→ Ã by s = λ ◦ π. ie.

s(a+ α1Ã) = α1Ã

Note that π(s(x)) = π(x), so x − s(x) ∈ A for all x ∈ Ã. Let sn : Mn(Ã) → Mn(Ã) be
the induced map, then

x− sn(x) ∈Mn(A) ∀x ∈Mn(Ã)

We write s = sn. An element x ∈Mn(Ã) is called scalar if x = s(x).

Note: The scalar mapping is natural. ie. Given a ∗-homomorphism ϕ : A→ B, we have
a commuting diagram

Ã
s //

ϕ̃
��

Ã

ϕ̃
��

B̃ s
// B̃

Theorem 2.1 (Standard Picture of K0(A)). For any C*-algebra A,

K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(Ã)}

Proof. 2.1. If p ∈ P∞(Ã) and g := [p]0 − [s(p)]0 ∈ K0(Ã), then

K0(π)(g) = [π(p)]0 − [π(s(p))]0 = [π(p)]0 − [π ◦ λ ◦ π(p)]0 = [π(p)]0 − [π(p)]0 = 0

Hence g ∈ K0(A)

2.2. Conversely, if g ∈ K0(A), write g = [e]0 − [f ]0 for some e, f ∈ Pn(Ã). Define

p :=

(
e 0
0 1n − f

)
and q :=

(
0 0
0 1n

)
Then p, q ∈ P2n(Ã) and

[p]0 − [q]0 = [e]0 + [1n − f ]0 − [1n]0 = [e]0 − [f ]0 = g
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Now q = s(q) and K0(π)(g) = 0, so

[s(p)]0 − [q]0 = [s(p)]0 − [s(q)]0 = K0(s)(g) = K0(λ ◦ π)(g) = 0

Hence, [q]0 = [s(p)]0, so

g = [p]0 − [q]0 = [p]0 − [s(p)]0

(End of Day 7)

Proposition 2.2. For any p, q ∈ P∞(Ã), TFAE:

2.1. [p]0 − [s(p)]0 = [q]0 − [s(q)]0

2.2. ∃k, ` ∈ N such that
p⊕ 1k ∼0 q ⊕ 1` in P∞(Ã)

2.3. ∃ scalar projections r1 and r2 such that

p⊕ r1 ∼0 q ⊕ r2

Proof. We prove (i)⇒ (iii)⇒ (ii)⇒ (i).

(i) ⇒ (iii): If [p]0 − [s(p)]0 = [q]0 − [s(q)]0, then

[p⊕ s(q)]0 = [q ⊕ s(p)]0
Hence,

p⊕ s(q) ∼s q ⊕ s(p)
Since Ã is unital, this implies

p⊕ s(q)⊕ 1n ∼0 q ⊕ s(p)⊕ 1n

This proves (iii).

(iii) ⇒ (ii): If r1 is a scalar projection, then we may think of r1 ∈Mn(C). If Tr(r1) = k, then
r1 ∼0 1k. Similarly, r2 ∼0 1`, so (ii) follows.

(ii) ⇒ (i): Suppose p⊕ 1k ∼0 q ⊕ 1`, then note that

[p⊕ 1k]0 − [s(p⊕ 1k)]0 = [p]0 − [s(p)]0

Therefore, replacing p by p⊕ 1k and q by q ⊕ 1`, it suffices to prove that

p ∼0 q ⇒ [p]0 − [s(p)]0 = [q]0 − [s(q)]0

Now suppose v ∈ Mm,n(Ã) is such that v∗v = p and vv∗ = q. Consider s(v) ∈
Mm,n(C) thought of as a subset of Mm,n(Ã). Since s is a ∗-homomorphism,

s(v)∗s(v) = s(p) and s(v)s(v)∗ = s(q)

Hence, s(p) ∼0 s(q), so

[p]0 = [q]0 and [s(p)]0 = [s(q)]0

which proves (i).
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The proof of the next lemma is technical, and we will omit it for now.

Lemma 2.3. [Rørdam, Larsen, and Laustsen, Lemma 4.2.3] Let ϕ : A→ B be a
∗-homomorphism.

2.1. For any p ∈ P∞(Ã),

K0(ϕ)([p]0 − [s(p)]0) = [ϕ̃(p)]0 − [s(ϕ̃(p))]0

2.2. Let g ∈ ker(K0(ϕ)), then ∃n ∈ N, p ∈ Pn(Ã) and a unitary u ∈Mn(B̃) such that

g = [p]0 − [s(p)]0 and uϕ̃(p)u∗ = s(ϕ̃(p))

2.3. If ϕ is surjective and g ∈ ker(K0(ϕ)), then ∃p ∈ P∞(Ã) such that

g = [p]0 − [s(p)]0 and ϕ̃(p) = s(ϕ̃(p))

For a non-unital C*-algebra A, K0(A) is defined as a subgroup of K0(Ã). This
means that any property of K0(A) must necessarily involve passing to the unitiza-
tion. This is a difficulty that we will encounter frequently, but these lemmas given
above, while technical, will help ease the pain.

3. Basic Properties

a. Half Exactness and Split Exactness

Given a short exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

Lemma 3.1. For n ∈ N

3.1. ϕ̃n : Mn(Ĩ)→Mn(Ã) is injective.

3.2. If a ∈Mn(Ã), then a ∈ Im(ϕ̃n) if and only if

ψ̃n(a) = sn(ψ̃n(a))

Proof. 3.1. Note that ϕ̃ : Ĩ → Ã maps

a+ α1Ĩ → ϕ(a) + α1Ã

for a ∈ I and α ∈ C. This map is injective because Ã = A ⊕ C1Ã as a vector

space. It now follows that the induced map Mn(Ĩ)→Mn(Ã) is injective.
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3.2. (i) If ψ̃n(a) = sn(ψ̃n(a)), then all entries of ψ̃n(a) are scalar multiples of 1B̃.
Write

a = (ai,j + αi,j1Ã) so that ψ̃n(a) = (αi,j1B̃)

Hence, ψ(ai,j) = 0, so ∃ci,j ∈ I such that ϕ(ci,j) = ai,j. Define

c := (ci,j + αi,11Ĩ)

then ϕ̃n(c) = a.

(ii) Conversely, suppose a = ϕ̃n(c), for some c ∈Mn(Ĩ), then write

c = (ci,j + αi,11Ĩ)

so that
a = (ϕ(ci,j) + αi,j1Ã)

But then
ψ̃n(a) = (αi,j1B̃) = sn(ψ̃n(a))

Theorem 3.2 (Half-Exactness of K0). The sequence

K0(I)
K0(ϕ)−−−→ K0(A)

K0(ψ)−−−→ K0(B)

is exact at K0(A)

Proof. 3.1. K0(ψ) ◦K0(ϕ) = K0(ψ ◦ ϕ) = 0. Hence,

Im(K0(ϕ)) ⊂ ker(K0(ψ))

3.2. If g ∈ ker(K0(ψ)), then by the earlier lemma, ∃p ∈ P∞(Ã) such that

g = [p]0 − [s(p)]0 and ψ̃(p) = s(ψ̃(p))

By the previous lemma, p ∈ Im(ϕ̃n), so ∃e ∈Mn(Ĩ) such that

ϕ̃n(e) = p

Since ϕ̃n is injective, e is a projection. Hence,

g = [ϕ̃(e)]− [s(ϕ̃(e)] = K0(ϕ)([e]0 − [s(e)]0)

so g ∈ Im(K0(ϕ))
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Theorem 3.3 (Split Exactness of K0). Given a split exact sequence

0→ I
ϕ−→ A

ψ

�
λ
B → 0

We get a split exact sequence of abelian groups

0→ K0(I)
K0(ϕ)−−−→ K0(A)

K0(ψ)

�
K0(λ)

K0(B)→ 0

Proof. We have

idK0(B) = K0(idB) = K0(ψ ◦ λ) = K0(ψ) ◦K0(λ)

Hence, K0(ψ) is surjective. It suffices to show that K0(ϕ) is injective. So suppose g ∈
ker(K0(ϕ)), then by the earlier technical lemma, ∃p ∈ Pn(Ã) and a unitary u ∈Mn(B̃)
such that

g = [p]0 − [s(p)]0 and uϕ̃(p)u∗ = s(ϕ̃(p))

Define
v := λ̃ ◦ ψ̃(u∗)u

Then v ∈ Un(Ã) and ψ̃(v) = 1 = s(ψ̃(v)). Hence, by the earlier lemma, ∃w ∈ Mn(Ĩ)
such that

ϕ̃(w) = v

Since ϕ̃ is injective, w is a unitary. Furthermore,

ϕ̃(wpw∗) = vϕ̃(p)v∗

= (λ̃ ◦ ψ̃)(u∗)s(ϕ̃(p))(λ̃ ◦ ψ̃)(u)

= (λ̃ ◦ ψ̃)[u∗s(ϕ̃(p))u]

= (λ̃ ◦ ψ̃)[ϕ̃(p)]

= s(ϕ̃(p)) = ϕ̃(s(p))

Since ϕ̃ is injective, it follows that

wpw∗ = s(p)

so that g = [p]0 − [s(p)]0 = 0

Corollary 3.4.
K0(A⊕B) ∼= K0(A)⊕K0(B)

Proof. We have a split exact sequence

0→ A→ A⊕B � B → 0
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Example 3.5. For any C*-algebra A,

K0(Ã) ∼= K0(A)⊕ Z

Example 3.6. Consider the sequence

0→ C0(0, 1)→ C[0, 1]
ψ−→ C⊕ C→ 0

where ψ(f) := (f(0), f(1)). Then

K0(C[0, 1]) ∼= Z and K0(C⊕ C) ∼= Z⊕ Z

Hence, K0(ψ) is not surjective. This shows that K0 is not, in general, exact.

Example 3.7. Consider the exact sequence

0→ K(H)
ι−→ B(H)→ Q(H)→ 0

We know that K0(B(H)) = {0}. We will show later that

K0(K(H)) ∼= Z

so K0(ι) is not injective.

b. Stability

Proposition 3.8. (Stability of K0) Let A be a C*-algebra and n ∈ N. Define λ : A →
Mn(A) by

a 7→
(
a 0
0 0

)
Then K0(λ) : K0(A)→ K0(Mn(A)) is an isomorphism.

Proof. 3.1. Suppose that A is unital, and let B := Mn(A). Define µ : P∞(B)→ K0(A)
by

µ(p) := [p]0

if p ∈ Pk(B). This is well-defined, and additive, and respects homotopy, so by the
universal property of K0, we get a map

K0(µ) : K0(B)→ K0(A)

If p ∈ P∞(A), then clearly,
[µ(λ(p))]0 = [p]0

so K0(µ) ◦K0(λ) = idK0(A). Similarly, if p ∈ P∞(B), then

K0(λ)K0(µ)([p]0) = K0(λ)([p]0) = [p]0
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3.2. Now suppose A is non-unital, consider the diagram with split exact rows

0 // K0(A) //

K0(λA)

��

K0(Ã) //

K0(λ
Ã

)
��

K0(C) //

K0(λC)

��

0

0 // K0(B) // K0(B̃) // K0(Mn(C)) // 0

Since λÃ and λC induce isomorphism, λA also induces an isomorphism by a diagram
chase.

4. Example: The Cuntz Algebra

Definition 4.1. Let n ≥ 2 and H = `2(N). Decompose N = T1 t T2 t T2 . . .t Tn where

Ti = {i, i+ n, i+ 2n, . . .}

Let Pi : H → H be the natural projection onto `2(Ti) ⊂ H. Then, Pi is an infinite rank
projection, so Pi ∼ IH . Choose s1, s2, . . . , sn ∈ B(H) such that

s∗1s1 = s∗2s2 = . . . = s∗nsn = 1 =
n∑
i=1

sis
∗
i

(Note that these si are isometries). Define

On := C∗(s1, s2, . . . , sn)

This is called the Cuntz algebra.

Theorem 4.2. 4.1. On is a simple C*-algebra (no non-trivial closed two-sided ideals)

4.2. (Universal Property of On) Given a unital C*-algebra A and elements t1, t2, . . . , tn ∈
A such that

t∗j tj = 1 =
n∑
i=1

tit
∗
i

∃ a unique ∗-homomorphism ϕ : On → A such that ϕ(sj) = tj

Lemma 4.3. 4.1. Let u ∈ U(On), then ∃ a unique ∗-homomorphism ϕu : On → On
such that

ϕu(sj) = usj

Furthermore,

u =
n∑
j=1

ϕu(sj)s
∗
j

4.2. Let ϕ : On → On be a unital ∗-homomorphism, then ∃u ∈ U(On) such that ϕ = ϕu
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Proof. 4.1. Follows from the universal property with tj = usj. Furthermore,

n∑
j=1

ϕu(sj)s
∗
j =

n∑
j=1

usjs
∗
j = u

4.2. Given ϕ, consider

u :=
n∑
j=1

ϕ(sj)s
∗
j

Then

uu∗ =
n∑

i,j=1

ϕ(si)s
∗
i sjϕ(sj)

∗

But the Pi are orthogonal projections, and si = Pisi so s∗jsi = δi,j. Hence,

uu∗ =
n∑
i=1

ϕ(si)ϕ(si)
∗ = ϕ(1) = 1

Similarly, u∗u = 1. Finally,

ϕu(si) = usi =
n∑
j=1

ϕ(sj)s
∗
jsi = ϕ(si)s

∗
i si = ϕ(si)

By uniqueness of the universal property, ϕu = ϕ.

Lemma 4.4. Let λ : On → On be given by

λ(x) =
n∑
j=1

sjxs
∗
j

Then

4.1. λ is an endomorphism of On
4.2. If u ∈ U(On) such that λ = ϕu, then u = u∗

Proof. 4.1. λ(1) = 1 and λ(x∗) = λ(x)∗. By orthogonality of the Pi

λ(x)λ(y) =
n∑
j=1

sjxs
∗
jsjys

∗
j = λ(xy)

since s∗jsj = 1.
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4.2. If u =
∑n

j=1 λ(sj)s
∗
j , then λ = ϕu and

u∗ =
n∑
j=1

sjλ(s∗j) =
n∑
j=1

sj

[
n∑
i=1

sis
∗
jsi

]
=

n∑
j=1

sjsjs
∗
jsj =

n∑
j=1

s2
j

But

λ(si)si =
n∑
j=1

sjsis
∗
jsi = sisis

∗
i si = s2

i

Hence, u = u∗.

Lemma 4.5. Let A be a unital C*-algebra and s ∈ A an isometry. Define µ : A → A
by µ(a) = sas∗. Then K0(µ) = idK0(A)

Proof. Note that µn : Mn(A)→Mn(A) is given by µn(a) = snas
∗
n where

sn = diag(s, s, . . . , s)

and sn is also an isometry. Furthermore, if p ∈ Pn(A), then

snpsn = (snp)(snp)
∗ ∼ (snp)

∗(snp) = p

Hence, [µn(p)]0 = [p]0.

Theorem 4.6. If g ∈ K0(On), then (n− 1)g = 0. In particular, K0(O2) = 0

Proof. Let λ : On → On as above, then λ =
∑n

i=1 λi where

λi(x) = sixs
∗
i

Then λi(x)λj(y) = 0 for all x, y ∈ On, so

K0(λ) =
n∑
i=1

K0(λi)

By the above lemma, it follows that

K0(λ)g = ng ∀g ∈ K0(On)

However, λ = ϕu, where u = u∗. In particular, u ∈ U0(On). Let ut be a path of unitaries
from u to 1, then ϕut is a path of ∗-homomorphism from

λ = ϕu to idA = ϕ1

Hence, K0(λ) = idK0(On). Hence the result.

It is a fact that
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4.1. K0(On) ∼= Zn−1.

4.2. Furthermore, K0(On) is generated by [1]0.

Definition 4.7. A non-zero projection p ∈ A is said to be properly infinite if ∃ projec-
tions e, f ∈ A such that

4.1. e ⊥ f

4.2. e ≤ p, f ≤ p

4.3. p ∼ e ∼ f

A unital C*-algebra A is said to be properly infinite if 1A is properly infinite.

Example 4.8. 4.1. B(H) is properly infinite iff H is infinite dimensional.

4.2. On is properly infinite

Theorem 4.9. Let A be a properly infinite C*-algebra, then

K0(A) = {[p]0 : p ∈ P(A), p 6= 0}

Proof. 4.1. Since 1A is properly infinite, ∃s1, s2 isometries such that

s1s
∗
1 ⊥ s2s

∗
2

Define ti := si−1
2 s1 for i ∈ N, then the {ti} are isometries such that tjt

∗
j ⊥ tit

∗

(Check!). For n ∈ N, define

vn = (t1, t2, . . . , tn) ∈M1,n(A)

Then v∗nvn = 1n. Hence, as in Lemma 4.5, for any p ∈ Pn(A),

p ∼0 vnpv
∗
n

Note that vnpv
∗
n is a projection in A. Hence,

K0(A) = {[p]0 − [q]0 : p, q ∈ P(A)}

4.2. Let p, q ∈ A projections, then set

r := t1pt
∗
1 + t2(1− q)t∗2 + t3(1− t1t∗1 − t2t∗2)t∗3

Then r ∈ P(A) and

[r]0 = [p]0 + [1− q]0 + [1− t1t∗1 − t2t∗2]0

But [1− t1t∗1 − t2t∗2]0 = [1]0, so [r]0 = [p]0 − [q]0. Hence,

K0(A) = {[p]0 : p ∈ P(A), p 6= 0}
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Definition 4.10. Let A be a simple, unital C*-algebra which is not isomorphic to C.
A is said to be purely infinite if

4.1. Every non-zero projection in A is properly infinite.

4.2. Every non-zero hereditary subalgebra has a non-zero projection.

In fact, [Rørdam, Larsen, and Laustsen, Exercise 5.7] shows that, if A is purely
infinite simple, then

K0(A) = {[p]D : p ∈ P(A), p 6= 0}

In other words, K0(A) coincides with Murray Von Neumann equivalence classes of pro-
jections in A.

It is a fact that On(A) is purely infinite. Also, if H is infinite dimensional, then the
Calkin Algebra B(H)/K(H) is purely infinite.

(End of Day 8)
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IV. The Ordered Abelian group K0(A)

1. Stably Finite C*-algebras

Definition 1.1. An element a ∈ A is said to be left-invertible if ∃b ∈ A such that
ba = 1. Right-invertibility is similar.

Note that a is invertible iff it is both left and right invertible.

Definition 1.2. 1.1. A projection p ∈ A is said to be infinite if ∃ a projection q such
that p ∼ q and q < p. If p is not infinite, then it is said to be finite.

1.2. A unital C*-algebra is said to be infinite if 1A is infinite. A is said to be finite if
1A is finite.

1.3. A is said to be stably finite if Mn(A) is finite for all n ∈ N.

1.4. A non-unital C*-algebra is said to be finite if Ã is finite.

Note: A projection p ∈ A is finite iff pAp is a finite C*-algebra.

Lemma 1.3. If A is a unital C*-algebra, TFAE:

1.1. A is finite.

1.2. Every isometry is a unitary.

1.3. All projections in A are finite.

1.4. Every left-invertible element is invertible.

1.5. Every right-invertible element is invertible.

Proof. We prove (i)⇒ (ii)⇒ (iii)⇒ (i), and (ii)⇒ (iv)⇒ (v)⇒ (ii)

(i)⇒ (ii) : If s is an isometry, then 1A = s∗s ∼ ss∗ ≤ 1. Since A is finite, ss∗ = 1 and s is a
unitary.

(ii)⇒ (iii) : Suppose every isometry is a unitary, and p, q ∈ A projections such that

p ∼ q and q ≤ p

Let v ∈ A such that v∗v = p and vv∗ = q, and let

s := v + (1− p)

Since pq = qp = q, we have v∗(1− p) = 0 = (1− p)v. Hence,

s∗s = v∗v + (1− p) = 1 and vv∗ = 1− (p− q)

By hypothesis, s is a unitary, so p− q = 0.
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(iii)⇒ (i) : If every projection is finite, then 1A is finite.

(ii)⇒ (iv) : Suppose every isometry is a unitary, and a ∈ A be left invertible. Then ∃b ∈ A
such that ba = 1A. Then

1 = (ba)∗(ba) = a∗b∗ba ≤ ‖b‖2a∗a

(by [Murphy, Theorem 2.2.5]). Hence,

a∗a− ‖b‖−21A ≥ 0

and so sp(a∗a) ⊂ [‖b‖−2,∞). In particular, a∗a is invertible, so s := a(a∗a)−1/2

exists. Observe that
s∗s = (a∗a)−1/2a∗a(a∗a)−1/2 = 1

Thus, s is an isometry, and hence a unitary by hypothesis. In particular, s is
invertible, so

a = s(a∗a)1/2

is invertible too.

(iv)⇒ (v) : If a ∈ A is right-invertible, then a∗ is left-invertible. By hypothesis, it is invert-
ible, and hence a is invertible too.

(v)⇒ (ii) : If s∗s = 1, then s∗ is right invertible, and hence invertible. It follows by unique-
ness of inverse that ss∗ = 1.

Definition 1.4. A pair (G,G+) is called an ordered abelian group if G is an Abelian
group, G+ ⊂ G such that

1.1. G+ +G+ ⊂ G+

1.2. G+ ∩ (−G+) = {0}
1.3. G+ −G+ = G

We define an order relation on G by x ≤ y iff y−x ∈ G+. This makes (G,≤) a partially
ordered set such that

x ≤ y ⇒ x+ z ≤ y + z ∀z ∈ G
The converse is also true: If G is a partially ordered group satisfying this condition, we
may set G+ = {x ∈ G : x ≥ 0}, then it satisfies the above requirements.

Definition 1.5. Define
K0(A)+ := {[p]0 : p ∈ P∞(A)}

Proposition 1.6. 1.1. K0(A)+ +K0(A)+ ⊂ K0(A)+

1.2. If A is unital, K0(A)+ −K0(A)+ = K0(A)

1.3. If A is stably finite, then K0(A)+ ∩ (−K0(A)+) = {0}
Hence, if A is unital and stably finite, then (K0(A), K0(A)+) is an ordered Abelian group.
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Proof. 1.1. [p]0 + [q]0 = [p⊕ q]0
1.2. Proved earlier.

1.3. Suppose A is stably finite, and g ∈ K0(A)+ ∩ (−K0(A)+), then write

g = [p]0 = −[q]0

Hence, [p⊕ q]0 = 0, so ∃r ∈ P∞(Ã) such that

p⊕ q ⊕ r ∼0 r

Choose mutually orthogonal projections p′, q′, r′ such that p ∼0 p′, q ∼0 q′ and
r ∼0 r

′ and think of them in Mn(Ã) for some n ∈ N. Now

p′ + q′ + r′ ∼ r′ in Mn(Ã)

But p′+ q′+ r′ ≥ r′ and Mn(Ã) is finite, so p′+ q′ = 0. Hence, p′ = q′ = 0, so that

g = [p]0 = [p′]0 = 0

Definition 1.7. Let (G,G+) be an ordered abelian group. An element u ∈ G+ is called
an order unit if, for each x ∈ G,∃n ∈ N such that

−nu ≤ x ≤ nu

Note: Not every ordered abelian group has an order unit. For example, Cc(R) with the
pointwise order.

Proposition 1.8. If A is unital, then [1]0 is an order unit of K0(A)

Proof. If g ∈ K0(A), write g = [p]0 − [q]0 for some p, q ∈ Pn(A). Then

−n[1]0 = −[1n]0 = −[q]0 + [1n − q]0 ≤ −[q]0 ≤ [p]0 − [q]0 = g

and
g ≤ [p]0 ≤ [p]0 + [1n − p]0 = [1n]0 = n[1]0

Definition 1.9. Let (G,G+) and (H,H+) be ordered Abelian groups. A positive group
homomorphism is a map α : G → H such that α(G+) ⊂ H+. It is called an order iso-
morphism if it is an isomorphism such that α(G+) = H+. If G and H have distinguished
order units u and v respectively, α is said to be order unit preserving if α(u) = v

Example 1.10. Let ϕ : A→ B be a ∗-homomorphism, then

K0(ϕ)[p]0 = [ϕ(p)]0

so K0(ϕ) is a positive homomorphism. Furthermore, if ϕ is unital, then K0(ϕ) preserves
the order unit.
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2. Traces

Recall: If τ : A→ C be a positive trace, then it induces a map

K0(τ) : K0(A)→ R

This is a positive group homomorphism from (K0(A), K0(A)+) to (R,R+). If τ is a
state, then K0(τ) preserves the order unit.

Example 2.1. Let τ denote the usual trace on C, then τn : Mn(C) → C is a trace.
Furthermore,

τn(1n) = n

So τn induces an isomorphism

(K0(Mn(C)), K0(Mn(C))+, [1n])→ (Z,Z+, n)

Thus, (K0(A), K0(A)+, [1A]0) is a useful invariant to distinguish C*-algebras.

Definition 2.2. Let (G,G+, u) be an ordered Abelian group with order unit u. A state
on this triple is a positive group homomorphism f : (G,G+, u) → (R,R+, 1). We write
S(G) for the set of states on G.

Note: If τ : A→ C is a tracial state, then K0(τ) ∈ S(K0(A))

Theorem 2.3. Let A be a unital, exact C*-algebra, then every state on (K0(A), K0(A)+, [1A]0)
is of the form K0(τ) for some trace τ on A.

(End of Day 9)

In general, we define a quasi-trace to be a function τ : A→ C such that

2.1. τ(x∗x) = τ(xx∗) ≥ 0 for any x ∈ A
2.2. τ is linear on commutative subalgebras of A

2.3. If x = a+ ib where a, b ∈ Asa, then τ(x) = τ(a) + iτ(b)

2.4. For each n ∈ N, the map τn : Mn(A)→ C given by

τn((ai,j) =
n∑
i=1

τ(ai,i)

also has these properties.

In other words, a trace is simply a linear quasi-trace. Given a quasi-trace on A, we get
an induced map K0(τ) : K0(A) → R by the first property. The above theorem is a
special case of the following facts.

Theorem 2.4. Let A be a unital C*-algebra.
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2.1. Every state on K0(A) is of the form K0(τ) for some quasi-trace τ .

2.2. (Haageruup) If A is exact, then every quasi-trace on A is a trace.

Definition 2.5. A trace τ : A → C is called faithful if τ(a) > 0 whenever a ∈ A+ is
non-zero.

Theorem 2.6. If A is a unital C*-algebra that admits a faithful positive trace, then A
is stably finite.

Proof. Let τ : A → C be a faithful positive trace. Define τn : Mn(A) → C as above.
Then if x = (xi,j) ∈Mn(A), then (Check!)

τn(x∗x) =
n∑

i,j=1

τ(x∗i,jxi,j)

Hence, τn is also a faithful positive trace on Mn(A). Therefore, to show A is stably
finite, it suffices to show that A is finite.

Now suppose s ∈ A is an isometry, then

τ(1) = τ(s∗s) = τ(ss∗)⇒ τ(1− ss∗) = 0

But ss∗ ≤ 1 and τ is faithful, so ss∗ = 1. Hence, A is finite.

We have a partial converse of the above theorem:

Theorem 2.7. 2.1. If A is unital and stably finite, then it admits a quasi-trace.

2.2. Every unital, stably finite, separable, exact C*-algebra admits a faithful trace.

3. Example: The Rotation Algebra

Definition 3.1. Let θ ∈ R be fixed, and set ω := e2πiθ. Let H := L2(T× T) equipped
with a normalized Haar measure. Let ζ0 ∈ H be the unit vector ζ0(z1, z2) := 1. Define
u, v ∈ B(H) by

(uζ)(z1, z2) := z1ζ(z1, z2) and (vζ)(z1, z2) := z2ζ(ωz1, z2)

Then

〈uζ, η〉
∫
T2

z1ζ(z1, z2)η(z1, z2) =

∫
T2

ζ(z1, z2)z1η(z1, z2)

Hence,
(u∗η)(z1, z2) = z1η(z1, z2)

Similarly,
(v∗η)(z1, z2) = z2η(ω−1z1, z2)
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Hence, u and v are unitaries. Furthermore,

(vuζ)(z1, z2) = z2(uζ)(ωz1, z2) = z2ωz1ζ(ωz1, z2)

(uvζ)(z1, z2) = z1(vζ)(z1, z2) = z1z2ζ(ωz1, z2)

⇒ vu = ωuv

Define
Aθ := C∗(u, v) ⊂ B(H)

is called the rotation C*-algebra associated to the angle θ.

We will need the following properties:

Theorem 3.2. 3.1. If θ is irrational, then Aθ is simple, and has a unique tracial state.
(see below).

3.2. (Universal property of Aθ): If D is a unital C*-algebra and u′, v′ ∈ D are two
unitaries such that v′u′ = ωu′v′, then ∃ a unique ∗-homomorphism ϕ : Aθ → D
such that ϕ(u) = u′ and ϕ(v) = v′.

Note: If θ ∈ Z, then Aθ is the universal C*-algebra generated by two commuting uni-
taries. This is C(T2). If θ /∈ Z, Aθ is called a non-commutative two torus.

Remark 3.3. If θ, θ′ ∈ R be irrational.

3.1. Suppose θ − θ′ ∈ Z, then e2πiθ = e2πiθ′ , and so

Aθ ∼= Aθ′

3.2. If θ+ θ′ ∈ Z, then e2πiθ = (e2πiθ′)−1. Hence, there is a surjective ∗-homomorphism
ϕ : Aθ → Aθ′ such that

ϕ(u) = v′ and ϕ(v) = u′

Since Aθ is simple, it follows that this map is an isomorphism.

We will now (partially) show that if Aθ ∼= Aθ′ , then one of the above two conditions
must hold.

Define Bθ to be those elements in Aθ of the form∑
n,m∈Z

αn,mu
nvm

where only finitely many coefficients αn,m are non-zero. One thinks of these as Laurent
polynomials in u and v. Note that Bθ is a ∗-subalgebra of Aθ, and its closure is thus
a C*-algebra containing u and v. Thus, Bθ is dense in Aθ and is called the smooth
∗-subalgebra of Aθ.
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Definition 3.4. Define τ : Aθ → C by

τ(a) := 〈aζ0, ζ0〉

Then τ is a positive linear functional on Aθ of norm 1. Furthermore,

τ

( ∑
n,m∈Z

αn,mu
nvm

)
= α0,0

for elements in Bθ. Hence, it follows that if x ∈ Bθ of the above form, then

τ(x∗x) = τ

[( ∑
n,m∈Z

αn,mv
−mu−n

)( ∑
n,m∈Z

αn,mu
nvm

)]
=
∑
n,m∈Z

|αn,m|2 = τ(xx∗)

Since Bθ is dense in Aθ, it follows that

τ(x∗x) = τ(xx∗) ∀x ∈ Aθ

From [Rørdam, Larsen, and Laustsen, Exercise 3.6], it follows that τ is a tracial
state on Aθ.

(End of Day 10)

Lemma 3.5. Let ϕ : T → T is the function z 7→ ωz. Then, for any h : T → C
continuous,

vh(u) = (h ◦ ϕ)(u)v, and v∗(h ◦ ϕ)(u) = h(u)v∗

Proof. It suffices to prove the first statement. Note that

ωkukv = vuk ∀k ∈ Z

Hence, for any h : T→ R Laurent polynomial

(h ◦ ϕ)(u)v = vh(u)

Now approximate any continuous h : T→ C by Laurent polynomials.

If θ = 0, then C(T2) = Aθ has no projections because T2 is connected. We now assume
that θ ∈ (0, 1) is irrational, and show that, in this case, Aθ has many projections.

Lemma 3.6. Let f, g : T→ R be continuous functions, and define

p := f(u)v∗ + g(u) + vf(u) ∈ Aθ

Then
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3.1. p = p∗

3.2. p = p2 if and only if

(i) f · (f ◦ ϕ) = 0

(ii) f · (g + g ◦ ϕ−1) = f

(iii) g = g2 + f 2 + (f ◦ ϕ)2

3.3. Furthermore,

τ(p) =

∫
T
g(z)dz

Proof. 3.1. Clearly, p = p∗ since f and g are real-valued.

3.2. One writes out

p2 = f(u)v∗f(u)v∗ + f(u)v∗g(u) + f(u)v∗vf(u)

+ g(u)f(u)v∗ + g(u)g(u) + g(u)vf(u)

+ vf(u)f(u)v∗ + vf(u)g(u) + vf(u)vf(u)

= f · (f ◦ ϕ−1)(u)v−2 + f · (g ◦ ϕ−1)(u)v−1 + f 2(u)

+ gf(u)v−1 + g2(u) + g · (f ◦ ϕ)(u)v

+ (f ◦ ϕ)2(u) + (f ◦ ϕ) · (g ◦ ϕ)(u)v + (f ◦ ϕ) · (f ◦ ϕ ◦ ϕ)(u)v2

Note that
p = f(u)v−1 + g(u) + (f ◦ ϕ)(u)v

So comparing coefficients, we get

f · (f ◦ ϕ−1) = 0

f · (g ◦ ϕ−1) + (g · f) = f

f 2 + g2 + (f ◦ ϕ)2 = g

g · (f ◦ ϕ) + (f ◦ ϕ) · (g ◦ ϕ) = (f ◦ ϕ)

(f ◦ ϕ) · (f ◦ ϕ ◦ ϕ) = 0

Since ϕ is a homeomorphism of T, for any function h : T→ R, we have

h = 0⇔ h ◦ ϕ = 0⇔ h ◦ ϕ−1 = 0

So the first and fifth conditions collapse to one, and so do the second and fourth.
These are the three conditions mentioned above.

3.3. First we assume that f and g are both Laurent polynomials. Then p is a Laurent
polynomial, so we may use the expression for τ on Laurent polynomials. Now
approximate f and g by Laurent polynomials, and use the fact that both sides of
the equation represent continuous maps.

Theorem 3.7. There exists a projection p ∈ Aθ such that τ(p) = θ
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Proof. Choose ε > 0 such that 0 < ε ≤ θ < θ + ε ≤ 1. Define

g(t) :=


t/ε : 0 ≤ t ≤ ε

1 : ε ≤ t ≤ θ

ε−1(θ + ε− t) : θ ≤ t ≤ θ + ε

0 : θ + ε ≤ t ≤ 1

and

f(t) =

{√
g(t)− g(t)2 : θ ≤ t ≤ θ + ε

0 : otherwise

Then both f and g define functions on T because f(0) = f(1) = 0 = g(0) = g(1). The
corresponding element p as defined above is a projection, and

τ(p) =

∫
T
g(z)dz =

1

2
· ε+ (θ − ε) +

1

2
· ε = θ

Theorem 3.8. The range of the map

K0(τ) : K0(Aθ)→ R

contains (Z+ Zθ).

Proof. Since τ(1) = 1, the range of K0(τ) contains Z. If pθ is the Rieffel projection from
the previous theorem, then τ(pθ) = θ, so the range contains Zθ.

Theorem 3.9 (Pimsner-Voiculescu). If θ ∈ R is irrational, then the map K0(τ) induces
an isomorphism

K0(Aθ)→ Z+ Zθ

In fact, if we define
(Z+ Zθ)+ = (Z+ Zθ) ∩ R+

Then this is an order isomorphism

(K0(Aθ), K0(Aθ)
+, [1])→ (Z+ Zθ, (Z+ Zθ)+, 1)

Corollary 3.10. Let θ and θ′ be two irrational numbers. Then Aθ ∼= Aθ′ if and only if
either θ − θ′ or θ + θ′ is an integer.

Proof. If ϕ : Aθ → Aθ′ is an isomorphism, and τ ′ is the trace on Aθ′ , then by uniqueness
of the trace, τ ′ ◦ ϕ must be the trace on Aθ. Hence, if pθ ∈ Aθ is the Rieffel projection,
then

K0(τ ′)([ϕ(pθ)]0) = K0(τ)[pθ]0 = τ(pθ) = θ

Hence, θ ∈ Z+ Zθ′, so ∃a1, b1 ∈ Z such that

θ = a1 + b1θ
′
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Similarly, θ′ = a2 + b2θ for some a2, b2 ∈ Z. Hence,

θ = a1 + b1a2 + b1b2θ

Since θ /∈ Q, it follows that b1b2 = 1, so that b1 = b2 = ±1. Hence the result.

Remark 3.11. Let θ ∈ (0, 1) be irrational and n ∈ N, then

Anθ ⊂ Aθ

Proof. Let α = nθ, and let u′ = un and v′ = v, then

v′u′ = e2πiαu′v′

Then ∃ a surjective ∗-homomorphism ϕ : Aα → C∗(un, v) such that

ϕ(u) = un and ϕ(v) = v

However, α is irrational, so Aα is simple, so ϕ is an isomorphism by the first isomorphism
theorem. Hence,

Anθ ∼= C∗(un, v) ⊂ Aθ

This implies (see [Rørdam, Larsen, and Laustsen, Exercise 5.8]) that, for any
number α ∈ (Z+ Zθ) ∩ [0, 1], ∃ a projection e ∈ Aθ such that τ(e) = α.

(End of Day 11)
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V. Inductive Limit C*-algebras

1. Products and sums of C*-algebras

Let {Ai}i∈I be a family of C*-algebras. Define
∏

i∈IAi to be the set of all functions

a : I→
⋃
i∈I

Ai : a(i) ∈ Ai ∀i ∈ I

such that
‖a‖ := sup

i∈I
‖a(i)‖ <∞

Define
I := {a ∈

∏
Ai : a(i) = 0 for all but finitely many i ∈ I}

and define ∑
i∈I

Ai := I

Lemma 1.1. 1.1.
∏
Ai is a C*-algebra

1.2.
∑
Ai is a closed two-sided ideal of

∏
Ai

Let
π :
∏

Ai →
∏

Ai/
∑

Ai

be the quotient map.

Lemma 1.2. Let {An} be a sequence of algebras, and a ∈
∏
An, then

‖π(a)‖ = lim sup ‖an‖

In particular, a ∈
∑
Ai if and only if lim sup ‖an‖ = 0.

Proof. Since I is dense in
∑
An, we have

‖π(a)‖ = inf{‖a− b‖ : b ∈ I}

If b = (bn) ∈ I, then bn is eventually zero, so

‖a− b‖ = sup ‖an − bn‖ ≥ lim sup ‖an − bn‖ = lim sup ‖an‖
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Hence, ‖π(a)‖ ≥ lim sup ‖an‖.

Conversely, for k ∈ N, define b(k) ∈ I by

b(k)
n :=

{
an : n ≤ k

0 : n > k

Then
‖π(a)‖ ≤ inf

k∈N
‖a− b(k)‖ = inf

k∈N
sup
n>k
‖an‖ = lim sup ‖an‖

2. Inductive Limits

Let C be a category.

Definition 2.1. An inductive sequence in C is a sequence {An} of objects in C together
with morphisms ϕn : An → An+1, usually written as

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

and denoted (An, ϕn). For m > n, define

ϕm,n = ϕm−1 ◦ ϕm−2 ◦ . . . ◦ ϕn : An → Am

and write ϕn,n = idAn , ϕm,n = 0 if m < n. These are called the connecting maps of the
sequence.

Definition 2.2. Given a sequence (An, ϕn) in C, and inductive limit is a system (A, {µn})
where A is an object in C and µn : An → A are morphisms with the following two
properties:

2.1. The following diagram commutes for each n ∈ N

An
ϕn //

µn   

An+1

µn+1
||

A

2.2. If (B, {λn}) is another system where B is an object in C and λn : An → B are
morphisms such that λn = λn+1 ◦ ϕn for all n ∈ N, then there exists a unique
morphism λ : A→ B such that the following diagram commutes

An
µn

~~

λn

  
A

λ
// B
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Remark 2.3. 2.1. Inductive limits do not always exist. For instance, in the category
of finite sets. We will show that they exist in the category of C*-algebras, of
abelian groups, and of ordered abelian groups.

2.2. If an inductive limit exists, it is unique by the second property above.

Example 2.4. 2.1. Let D be a C*-algebra and An ⊂ An+1 ⊂ D be an increasing chain
of subalgebras. If ϕn = ιn : An ↪→ An+1, then (A, {jn}) is an inductive limit of
(An, ιn), where

A :=
∞⋃
n=1

An

and µn = jn : An ↪→ A is the inclusion map because

(i) µn = µn+1 ◦ ιn for all n ∈ N.

(ii) If (B, {λn}) is another system as above, then define λ : A→ B by

λ(a) = λn(a) if a ∈ An

This is well-defined, because if a ∈ An ⊂ An+1, then

λn+1(a) = λn+1(ιn(a)) = λn(a)

Then it follows that λ ◦ µn = λn for all n ∈ N. Furthermore, this map λ is a
∗-homomorphism, and is unique because

⋃
An is dense in A.

2.2. Let An = Mn(C) and ϕn : An → An+1 is the map

a 7→
(
a 0
0 0

)
Let K(H) denote the compact operators on H = `2, then fix an ONB {ei} of
H. Define pn ∈ K(H) to be the canonical rank n projection. If x, y ∈ H, define
x⊗ y ∈ K(H) by

(x⊗ y)(z) = 〈z, x〉y

Then pn =
∑n

i=1 ei ⊗ ei.
(i) Define µn : Mn(C)→ K(H) by

µn(ai,j) =
n∑

i,j=1

ai,jei ⊗ ej

Then µn is injective, and the range of µn is pnK(H)pn.
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Proof. µn is injective because the set {ei⊗ ej} is linearly independent. As for
surjectivity onto pnK(H)pn, note that if u ∈ pnK(H)pn, then

u = pnupn

=
n∑

i,j=1

(ei ⊗ ei)u(ej ⊗ ej)

=
n∑

i,j=1

〈u(ei), ej〉ei ⊗ ej

= µn(ai,j)

where ai,j = 〈u(ei), ej〉.

(ii) Check that µn+1 ◦ ϕn = µn

(iii) Finally, observe that

K(H) =
∞⋃
n=1

pnK(H)pn =
∞⋃
n=1

µn(Mn(C))

(iv) As in the previous example, we see that (K(H), {µn}) is an inductive limit of
(Mn(C), ϕn).

Proposition 2.5 (Inductive Limits of C*-algebras). Given an inductive system (An, ϕn)
of C*-algebras, an inductive limit (A, {µn}) exists.

Proof. Consider the quotient map

π :
∏

An →
∏

An/
∑

An =: Q

and let ϕm,n : An → Am as above.

2.1. Define νn : An →
∏

mAm by

νn(a) = (ϕm,n(a))

This is well-defined, because ‖ϕm,n(a)‖ ≤ ‖a‖ for all m ∈ N. Furthermore, νn is
clearly a ∗-homomorphism.

2.2. Let µn : An → Q by µn = π ◦ νn, then observe that if a ∈ An, then

c := νn(a)− (νn+1 ◦ ϕn)(a)

has the form cn = a and cm = 0 when m 6= n. Hence, c ∈
∑
Ai, so that

µn(a)− (µn+1 ◦ ϕn)(a) = π(c) = 0

Hence, µn = µn+1 ◦ ϕ.

56



2.3. Thus, {µn(An)} is an increasing sequence of C*-subalgebras of Q. Define

A :=
∞⋃
n=1

µn(An)

Then A is a C*-algebra, and µn : An → A is a sequence of ∗-homomorphisms
satisfying the first condition of Definition 2.2.

2.4. To prove the second condition, suppose (B, {λn}) is another system such that
λn = λn+1 ◦ ϕn. Then

λm ◦ ϕm,n = λn ∀m > n

Hence, ‖λn(a)‖ ≤ ‖ϕm,n(a)‖. So

‖λn(a)‖ ≤ lim sup ‖ϕm,n(a)‖ = ‖π(νn(a))‖ = ‖µn(a)‖

Hence, ker(µn) ⊂ ker(λn). By the first isomorphism theorem, ∃ a unique ∗-
homomorphism,

λ′n : µn(An)→ B such that λ′n ◦ µn = λn

By uniqueness, λ′n+1|µn(An)= λ′n. Hence, we get a ∗-homomorphism

λ′ :
∞⋃
n=1

µn(An)→ B

which extends λ′n. λ is a contraction, so it extends to a ∗-homomorphism

λ : A→ B

such that λ ◦ µn = λ′n ◦ µn = λn. Furthermore, λ is unique with this property
because

A =
∞⋃
n=1

µn(An)

(End of Day 12)

Remark 2.6. We observe the following from the above proof:

2.1.

A =
∞⋃
n=1

µn(An)

2.2. ‖µn(a)‖ = lim supm→∞ ‖ϕm,n(a)‖ for all a ∈ An
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2.3.
ker(µn) = {a ∈ An : lim sup

m→∞
‖ϕm,n(a)‖}

2.4. If (B, {λn}) is another system as in Definition 2.2, then ker(µn) ⊂ ker(λn)

2.5. If each ϕn is injective, then so are the µn.

Lemma 2.7. Let (An, ϕn) be an inductive system with inductive limit (A, µn). If (B, λn)
is another system as in Definition 2.2, and λ : A → B the unique ∗-homomorphism
guaranteed by Definition 2.2, then

2.1. λ is injective iff ker(λn) ⊂ ker(µn) for all n ∈ N, which is equivalent to ker(λn) =
ker(µn) for all n ∈ N.

2.2. λ is surjective iff B =
⋃∞
n=1 λn(An).

Proof. Exercise (See [Rørdam, Larsen, and Laustsen, Proposition 6.2.4])

Proposition 2.8. Let (Gn, αn) be an inductive system of abelian groups, then an induc-
tive limit (G, βn) exists. Moreover, one has

2.1.

G =
∞⋃
n=1

βn(Gn)

2.2.

ker(βn) =
∞⋃

m=n+1

ker(αm,n)

2.3. If (H, γn) is another system and γ : G → H the unique group homomorphism as
in Definition 2.2, then

(i) γ is injective iff ker(γn) = ker(βn) for all n ∈ N
(ii) γ is surjective iff H =

⋃∞
n=1 γn(Gn)

Proof. The proof is similar to the one above. We give an outline.∏
Gn

to be the set of all infinite sequences (g1, g2, . . .) with gi ∈ Gi. Define∑
Gn

to be the set of those sequences which are eventually zero. Note that
∑
Gn is a subgroup

of
∏
Gn, and these are all abelian groups. Let

π :
∏

Gn →
∏

Gn/
∑

Gn =: Q
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be the quotient map. Now define βn : Gn → Q exactly as above so that βn = βn+1 ◦ αn,
and set

G :=
∞⋃
n=1

βn(Gn)

Check that (G, βn) is an inductive limit of the system.

Example 2.9. 2.1. Consider Gn = Z and αn(1) = n + 1. ie. We may picture the
system as

Z 2−→ Z 3−→ Z 4−→ . . .

Define γn : Z→ Q by

γn(1) =
1

n!

Then γn is a group homomorphism such that γn = γn+1 ◦ αn. Hence, (Q, {γn}) is
a system that satisfies (i) in Definition 2.2. Let (G, {βn}) be an inductive limit of
this system, then there is a group homomorphism

γ : G→ Q such that γ ◦ αn = γn

Since

Q =
∞⋃
n=1

γn(Gn)

it follows that γ is surjective. Also, since

ker(βn) =
∞⋃

m=n+1

ker(αm,n)

and each αn is injective, it follows that βn is injective for all n. We see that each
γn is also injective. Hence,

ker(γn) = ker(βn)

for all n ∈ N. Hence, γ is injective as well.

2.2. Let Gn = Z and αn(1) = 2 for all n ∈ N. ie. We may picture the system as

Z 2−→ Z 2−→ Z 2−→ . . .

Define γn : Z→ Q by

γn(1) =
1

2n

Then γn = γn+1 ◦αn. Hence, (Q, {γn}) is a system that satisfies the first condition
of Definition 2.2. Hence, if (G, {βn}) is an inductive limit of the system, then there
is a group homomorphism

γ : G→ Q such that γ ◦ αn = γn
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As in the previous example, we may check that

ker(βn) = ker(γn) = {0}

so that γ is injective. However, γ is not surjective, but does surject onto

H =
∞⋃
n=1

γn(Gn) ∼=
{m

2n
: m ∈ Z, n ≥ 0

}
∼= Z

[
1

2

]
This is the inductive limit of the system.

Proposition 2.10 (Inductive Limits of ordered Abelian groups). Let (Gn, αn) be an
inductive system of ordered abelian groups where αn : Gn → Gn+1 are positive group
homomorphisms. Let (G, βn) be an inductive limit of this system, and define

G+ =
∞⋃
n=1

βn(G+
n )

Then (G,G+) is an ordered abelian group, βn is a positive group homomorphism, and
(G,G+, {βn}) is an inductive limit in the category of ordered abelian groups.

Proof. There are a few things that need to be checked:

2.1. G+ +G+ ⊂ G+: Note that

βn(G+
n ) = βn+1(αn(G+

n )) ⊂ βn+1(G+
n+1)

so {βn(G+
n )} is an increasing sequence of subsets of G. Hence, the union of closed

under addition.

2.2. Show that G+ ∩ (−G+) = {0}: If x ∈ G+ ∩ (−G+), then x ∈ βn(G+
n ) ∩ (−βn(G+

n )
for some n ∈ N. Hence, x = βn(y1) = −βn(y2) for some y1, y2 ∈ G+

n . Now,

βn(y1 + y2) = 0

Since

ker(βn) =
∞⋃

m=n+1

ker(αm,n)

∃m ≥ n such that αm,n(y1 + y2) = 0. Let zi = αm,n(yi) ∈ G+
m, then

z1 = −z2 ∈ G+
m ∩ (−G+

m)

Hence, z1 = z2 = 0. Thus, x = βm(z1) = 0

2.3. G+ −G+ = G: If x ∈ G, then x ∈ βn(Gn) for some n. Now

βn(Gn) = βn(G+
n −G+

n ) ⊂ βn(G+
n )− βn(G+

n ) ⊂ G+ −G+
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2.4. If (H, γn) is a system where H is an ordered abelian group and γn : Gn → H is
a positive group homomorphism, then there is a positive group homomorphism
γ : G → H making the required diagram commute: By the universal property in
the category of abelian groups, ∃ a group homomorphism

γ : G→ H

making the required diagram commute. One needs to verify that γ is positive.
But

γ(G+) = γ

(
∞⋃
n=1

βn(G+
n )

)
=
∞⋃
n=1

(γ ◦ βn)(G+
n ) =

∞⋃
n=1

γn(G+
n ) ⊂ H+

3. Continuity of K0

Lemma 3.1. Let p be a projection in A and a ∈ Asa. Let δ := ‖p− a‖, then

sp(a) ⊂ [−δ, δ] ∪ [1− δ, 1 + δ]

Proof. Note that sp(p) ⊂ {0, 1}, so suppose t ∈ R such that

d := min{|t|, |1− t|} > δ

We WTS: t /∈ sp(a). Note that (p− t1) ∈ GL(Ã) and

‖(p− t1)−1‖ = max{| − t|−1, |1− t|−1} = d−1 < δ−1

Hence,
‖(p− t1)−1(a− t1)− 1‖ = ‖(p− t1)−1(a− p)‖ ≤ d−1δ < 1

Thus, (p− t1)−1(a− t1) ∈ GL(Ã), hence

a− t1 ∈ GL(Ã)

so t /∈ sp(a) as required.

(End of Day 13)

Lemma 3.2. Let p, q ∈ A be projections such that ‖p− q‖ < 1, then p ∼h q

Proof. Let δ := ‖p− q‖/2 < 1/2, and let at := (1− t)p+ tq, then at ∈ Asa and

sp(at) ⊂ K := [−δ, δ] ∪ [1− δ, 1 + δ]
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Let f : K → C be the map

f(t) =

{
0 : |t| ≤ δ

1 : |t− 1| ≤ δ

Then f is continuous. Hence by [Rørdam, Larsen, and Laustsen, Lemma 1.2.5],
the induced map

f : ΩK → C

is also continuous. Since t 7→ at is a path in ΩK , it follows that

t 7→ f(at)

is a continuous path of projections. Furthermore,

p = f(p) = f(a0) ∼h f(a1) = f(q) = q

Lemma 3.3. Let A be a C*-algebra.

3.1. Let a ∈ Asa such that δ = ‖a − a2‖ < 1/4, then ∃ a projection p ∈ A such that
‖a− p‖ ≤ 2δ

3.2. Let p, q ∈ A be projections and x ∈ A such that ‖x∗x− p‖ < 1/2 and ‖xx∗ − q‖ <
1/2, then p ∼ q

Proof. 3.1. If t ∈ R such that min{|t|, |1− t|} > 2δ, then

|t− t2| > 4δ2 >
1

4

Hence, if |t− t2| ≤ δ < 1/4, then

t ∈ [−2δ, 2δ] ∪ [1− 2δ, 1 + 2δ]

Since a is self-adjoint, we conclude that

sp(a) ⊂ [−2δ, 2δ] ∪ [1− 2δ, 1 + 2δ]

Let p = f(a), where

f(t) =

{
0 : t ≤ 2δ

1 : t ≥ 1− 2δ

Then p = p2 = p∗ because f = f 2 = f . Furthermore,

|t− f(t)| ≤ 2δ ∀t ∈ sp(a)

Hence ‖a− p‖ ≤ 2δ
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3.2. Let

δ =
1

2
max{‖x∗x− p‖, ‖xx∗ − q‖} < 1

4

and set Γ := sp(x∗x) ∪ sp(xx∗), then by the previous lemma,

Γ ⊂ [−2δ,+2δ] ∪ [1− 2δ, 1 + 2δ]

Let f as above, and set p0 := f(x∗x), q0 := f(xx∗), then p0, q0 are projections such
that

‖p− p0‖ ≤ 4δ < 1 and ‖q − q0‖ ≤ 4δ < 1

Hence, p ∼ p0 and q ∼ q0 by the above lemma. We now show that p0 ∼ q0.

(i) First, note that x(x∗x)x∗ = (xx∗)xx∗. Hence, for any polynomial p ∈ C(Γ),

xp(x∗x)x∗ = p(xx∗)xx∗

Thus, the same is true for any p ∈ C(Γ) by density. Let g ∈ C(Γ) be the
function

g(t) =

{√
f(t)
t

: t 6= 0

0 : t = 0

This is continuous because f ≥ 0 and f(t) = 0 if t ≤ 2δ. Observe that

tg(t)2 = f(t) ∀t ∈ Γ

v := xg(x∗x)

Then
v∗v = g(x∗x)x∗xg(x∗x) = x∗xg(x∗x)2 = f(x∗x) = p0

and

vv∗ = xg(x∗x)g(x∗x)x∗ = xg(x∗x)2x∗ = g(xx∗)2xx∗ = f(xx∗) = q0

Hence, p0 ∼ q0 as required.

Remark 3.4. Given an inductive sequence

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

of C*-algebras, let (A, {µn}) be the limit of the sequence. (ie. the following diagram
commutes

An
ϕn //

µn   

An+1

µn+1
||

A
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and A is universal with this property). Then we get an inductive sequence of Abelian
groups

K0(A1)
K0(ϕ1)−−−−→ K0(A2)

K0(ϕ2)−−−−→ K0(A3)
K0(ϕ3)−−−−→ . . .

Let (G, {βn}) be the inductive limit of this sequence. ie. the following diagram commutes

K0(An)
K0(ϕn) //

βn ##

K0(An+1)

βn+1zz
G0

Theorem 3.5 (Continuity of K0). Given an inductive system (An, ϕn) of C*-algebras
with inductive limit A, we have

K0(A) ∼= lim(K0(An), K0(ϕn))

In fact, there is a unique group isomorphism γ : G0 → K0(A) such that the following
diagram commutes

K0(An)
βn

{{

K0(µn)

%%
G0 γ

// K0(A)

Proof. Note that the following diagram commutes

K0(An)
K0(ϕn) //

K0(µn) %%

K0(An+1)

K0(µn+1)xx
K0(A)

Hence, by the universal property of the inductive limit, there is a group homomorphism

γ : G0 → K0(A)

such that γ ◦ βn = K0(µn). We WTS: γ is bijective.

3.1. γ is injective: To prove this, by Proposition 2.8 above, we need to show that

ker(βn) = ker(K0(µn)) ∀n ∈ N

Since γ◦βn = K0(µn) clearly, ker(βn) ⊂ ker(K0(µn)). So suppose g ∈ ker(K0(µn)) ⊂
K0(An), then ∃ a projection p ∈Mk(Ãn) such that

g = [p]0 − [s(p)]0 and µ̃n(p) ∼ µ̃n(s(p)) in Mk(Ã)

Hence, ∃v ∈Mk(Ã) such that

µ̃n(p) = v∗v and µ̃n(s(p)) = vv∗
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However,

A =
∞⋃
j=1

µj(Aj)

Taking unitizations, and matrices, we see that

Mk(Ã)) =
∞⋃
j=1

µ̃j(Mk(Ãj))

Hence, ∃` ≥ n and x` ∈Mk(Ã`) such that µ̃`(x`) is close enough to v so that

‖µ̃`(x∗`x`)− µ̃n(p)‖ < 1/2 and ‖µ̃`(x`x∗`)− µ̃n(s(p))‖ < 1/2 in Mk(Ã)

Now note that µ̃n = µ̃` ◦ ϕ̃`,n, so

‖µ̃`[x∗`x` − ϕ̃`,n(p)]‖ < 1/2

But by Remark 2.6,
‖µ̃`(a)‖ = lim

m→∞
‖ϕ̃m,`(a)‖

Hence, ∃m ≥ ` such that

‖ϕ̃m,`[x∗`x` − ϕ̃`,n(p)]‖ < 1/2

So if xm = ϕ̃m,`(x`), then

‖x∗mxm − ϕ̃m,n(p)‖ < 1/2

Applying the same idea to the second equation above, we can arrange it so that

‖xmx∗m − ϕ̃m,n(s(p))‖ < 1/2

(Note that in principle, we get two m’s for the two equations, but the max of the
two will work for both). Hence by the previous lemma,

ϕ̃m,n(p) ∼ ϕ̃m,n(s(p)) in Mk(Ãm)

Thus,
K0(ϕm,n)(g) = 0

But βn = βm ◦K0(ϕm,n), so that βn(g) = 0, whence

ker(K0(µn)) ⊂ ker(βn)

(End of Day 14)
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3.2. γ is surjective: To prove this, we need to show that

K0(A) =
∞⋃
j=1

K0(µj)(K0(Aj))

Clearly, ⊃ holds, so we fix g ∈ K0(A), and we WTS: ∃n ∈ N such that g ∈
K0(µn)(K0(An)). So write

g = [p]0 − [s(p)]0

for some projection p ∈Mk(Ã). Since

Mk(Ã) =
∞⋃
j=1

Mk(Ãj)

∃bn ∈Mk(Ãn) such that ‖µ̃n(bn)− p‖ < 1/5. Let

an :=
bn + b∗n

2

and set am := ϕ̃m,n(an), then an is self-adjoint, and

‖µ̃m(am)− p‖ = ‖µ̃n(an)− p‖ ≤ 1

2
{‖µ̃n(bn)− p‖+ ‖b∗n − p‖} <

1

5

By the above lemma,

sp(µ̃n(an)) ⊂ [−1/5,+1/5] ∪ [4/5, 6/5]

Hence, by using calculus on the function t 7→ t2 − t,

‖µ̃n(a2
n − an)‖ = max{|t2 − t| : t ∈ sp(µ̃n(an))} < 1

4

Once again, since
‖µ̃n(x)‖ = lim

m→∞
‖ϕ̃m,n(x)‖

it follows that ∃m ≥ n such that

‖a2
m − am‖ < 1/4

By the previous lemma, ∃q ∈ Mk(Ãm) a projection such that ‖am − q‖ < 1/2.
Now

‖µ̃m(q)− p‖ ≤ ‖q − am‖+ ‖µ̃m(am)− p‖ < 1

so µ̃m(q) ∼h p. Hence,

g = [p]0 − [s(p)]0 = [µ̃m(q)]0 − [s(µ̃m(q))]0 = K0(µm)([q]0 − [s(q)]0)

Hence,

g ∈
∞⋃
j=1

K0(µj)(K0(Aj))

as required.
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Proposition 3.6. If each (K0(An), K0(An)+) is an ordered abelian group, then so is
(K0(A), K0(A)+) and

K0(A) ∼= limK0(An)

in the category of ordered abelian groups. ie.

K0(A)+ =
∞⋃
j=1

K0(µj)(K0(Aj)
+)

Proof. Since µn is a ∗-homomorphism, K0(µn) is a positive group homomorphism, so

K0(µn)(K0(An)+) ⊂ K0(A)+

Conversely, suppose g ∈ K0(A)+, then g = [p]0 for some projection p ∈ Mk(A). As in
the proof of surjectivity above, ∃m ∈ N and a projection q ∈Mk(Am) such that

‖µm(q)− p‖ < 1

Hence, µm(q) ∼h p, so

g = [µm(q)]0 = K0(µm)([q]0) ∈
∞⋃
j=1

K0(µj)(K0(Aj)
+)

(End of Day 15)

4. Stabilized C*-algebras

In what follows, ⊗ refers to the minimal tensor product between two C*-algebras.

Theorem 4.1. Let (An, ϕn) be an inductive system of C*-algebras, where each ϕn is
injective. Let B be any C*-algebra, then

(lim(An, ϕn))⊗B ∼= lim(An ⊗B,ϕn ⊗ idB)

Proof. Let (A, {µn}) be the inductive limit of (An, ϕn). ie. µn = µn+1 ◦ ϕn holds. Note
that (An ⊗ B,ϕn ⊗ idB) is an inductive system. Let (C, {λn}) be the inductive limit of
the system, so that λn = λn+1 ◦ ϕn ⊗ idB for all n ∈ N. Note that

µn ⊗ idB : An ⊗B → A⊗B

has the property that

(µn ⊗ idB) = (µn+1 ⊗ idB) ◦ (ϕn ⊗ idB)
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Hence, by the universal property of C, there is a unique ∗-homomorphism λ : C → A⊗B
such that

An ⊗B
µn⊗idB

%%

λn

{{
C

λ
// A⊗B

4.1. λ is surjective: To show this, we need to show that

A⊗B =
∞⋃
n=1

(µn ⊗ idB)(An ⊗B)

For this, let ε > 0 and z ∈ A⊗alg B be given by

z =
m∑
i=1

ai ⊗ bi

where ai ∈ A and bi ∈ B. Since A =
⋃∞
j=1 µj(Aj), ∃n ∈ N and si ∈ An such that

‖µn(si)− ai‖ <
ε

mmaxi ‖bi‖

Then x :=
∑m

i=1 si ⊗ bi ∈ An ⊗B is such that

‖(µn ⊗ idB)(x)− z‖ < ε

Hence,

z ∈
∞⋃
n=1

(µn ⊗ idB)(An ⊗B)

This is true for every z ∈ A⊗alg B, and hence for every z ∈ A⊗B.

4.2. λ is injective: Since

C =
∞⋃
n=1

λn(An ⊗B)

it suffices to show that λ is isometric on each λn(An ⊗B). But

λ ◦ λn = µn ⊗ idB

But µn is injective (see the construction of the inductive limit in Proposition 2.5),
and idB is injective, so µn ⊗ idB is injective on A ⊗ B (See [Murphy, Theorem
6.5.1]). Hence, λ must be isometric on λn(An ⊗B) as required.

Remark 4.2. The same result holds for ⊗max without the requirement that the maps
ϕn be injective. To prove this, one needs two things:
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4.1. The universal property of ⊗max: Given two ∗-homomorphism η : A → C and
δ : B → C with commuting ranges, there is a unique ∗-homomorphism θ : A⊗max
B → C such that θ(a⊗ b) = η(a)δ(b).

4.2. ⊗maxB is an exact functor.

We write K := K(`2)

Proposition 4.3. For any C*-algebra A, define ϕn : Mn(A) → Mn+1(A) by a 7→(
a 0
0 0

)
. Then

A⊗K ∼= lim(Mn(A), ϕn)

Proof. Example 2.4(2) + Theorem 4.3.

Definition 4.4. Let e ∈ K be the fixed projection of rank one e1⊗e1, and κ : A→ A⊗K
be given by a 7→ a ⊗ e. Then κ is an injective ∗-homomorphism, called the canonical
inclusion of A into A⊗K

Lemma 4.5. Let p ∈ K be any rank one projection and ϕ : A → A ⊗ K be given by
a 7→ a⊗ p, then K0(ϕ) = K0(α)

Proof. Note that p ∼ e and 1 − p ∼ 1 − e, so ∃u ∈ U(B(H)) such that e = upu∗. By
the Borel functional calculus, ∃h ∈ B(H) self-adjoint such that u = eih. Hence the
path ut := eith connects u to the identity. Hence, e = upu∗ ∼h p. Furthermore, if
ϕt : A→ A⊗K is given by

a 7→ a⊗ utpu∗t
Then ϕt is a path of ∗-homomorphisms such that ϕ0 = ϕ and ϕ1 = α. Hence, K0(α) =
K0(ϕ).

Theorem 4.6 (Stability of K0). The map κ : A → A ⊗ K induces an isomorphism
K0(κ) : K0(A)→ K0(A⊗K)

Proof. Let ϕn : Mn(A)→Mn+1(A) and µn : Mn(A)→ A⊗K be the maps as above

4.1. K0(κ) is surjective:

K0(A⊗K) =
∞⋃
j=1

K0(µn)(K0(Mn(A))

so if g ∈ K0(A⊗K),∃n ∈ N and g′ ∈ K0(Mn(A)) such that

g = K0(µn)(g′)

But ϕn,1 : A → Mn(A) is the map λn from III.3.8. Hence, K0(ϕn,1) : K0(A) →
K0(Mn(A)) is an isomorphism, so ∃h ∈ K0(A) such that g′ = K0(ϕn,1)(h). Hence,

g = K0(µn ◦ ϕn,1)(h) = K0(κ)(h)

so K0(κ) is surjective.
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4.2. K0(κ) is injective: If h ∈ K0(A) is such that K0(κ)(h) = 0, then

K0(µn)K0(ϕn,1)(h) = 0 ∀n ∈ N

But by Proposition 2.8,

ker(K0(µn)) =
∞⋃

m=n+1

ker(K0(ϕm,n))

hence,
K0(ϕm,n)(K0(ϕn,1(h)) = 0 = K0(ϕm,1)(h) in K0(Mm(A))

But K0(ϕm,1) is an isomorphism, so h = 0 as required.

This next corollary completes Example III.3.7 which showed that the functor K0(·) is
not exact.

Corollary 4.7. There is an isomorphism α : K0(K)→ Z such that

α([E]0) = Tr(E)

for every projection E ∈ K. This isomorphism is denoted by K0(Tr)

Proof. Let κ : C → C ⊗ K ∼= K be the map as above, and α1 : K0(C) → Z the
isomorphism such that

α1([1]0) = 1

Define α = α1 ◦ K0(κ)−1 : K0(K) → Z. Then α is an isomorphism. Furthermore,
F := K(1) is a one-dimensional projection in K, and

α([F ]0) = α1([1]0) = 1

If E ∈ K is any one-dimensional projection, then E ∼ F in K̃(H) as in Example I.2.3.
Hence,

α([E]0) = 1

If E is any arbitrary n-dimensional projection, then E is a sum of orthogonal rank one
projections, so

α([E]0) = n = Tr(E)

Remark 4.8. 4.1. The stabilization of a C*-algebra A is defined as A ⊗ K. We say
that A is stable if A ∼= A⊗K.

4.2. If A and B are two C*-algebras such that A⊗K ∼= B ⊗K, then K0(A) ∼= K0(B)
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4.3. If A ⊗ K ∼= B ⊗ K, then we say that A and B are stably isomorphic. Stably
isomorphic algebras share many interesting properties. They have the “same rep-
resentation theory” in the sense that they are strongly Morita equivalent. This
implies that any statement concerning only modules over A holds for any C*-
algebra B stably isomorphic to A.

Theorem 4.9. For any C*-algebra A,A⊗K is stable.

Proof. Suppose K were stable, then

(A⊗K)⊗K ∼= A⊗ (K ⊗K) ∼= A⊗K

would hold, so it suffices to show that K ∼= K ⊗K.

Let H := `2. and observe that K(H) is nuclear, so the spatial tensor product may be
realized as

K(H)⊗K(H) = span{a⊗ b : a, b ∈ K(H)} =: E ⊂ B(H ⊗H)

where, for a, b ∈ K(H) define a⊗ b ∈ B(H ⊗H) by

(a⊗ b)(x⊗ y) := a(x)⊗ b(y)

We claim that E = K(H ⊗H).

4.1. If a = x1 ⊗ y1, b = x2 ⊗ y2, then

a(z) = 〈z, y1〉x1 and b(z) = 〈z, y2〉x2

So
(a⊗ b)(z1 ⊗ z2) = 〈z1, y1〉〈z2, y2〉x1 ⊗ x2

Hence, a⊗b ∈ K(H⊗H). Hence, if a, b ∈ F(H) (the space of finite rank operators),
then a⊗ b ∈ K(H ⊗H). Finally, if u, v ∈ B(H), then

‖u⊗ v‖ = ‖u‖‖v‖

so the map ⊗ : B(H)× B(H)→ B(H ⊗H) is continuous, so

E := span(a⊗ b : a, b ∈ K(H)} ⊂ K(H ⊗H)

4.2. Conversely, if T ∈ K(H ⊗H), then T is the limit of finite rank operators. Hence,
to show the reverse inclusion, it suffices to show that F(H ⊗ H) ⊂ E. Every
finite rank operator is a linear combination of rank one operators, so it suffices to
consider rank one operators. So suppose

T = z ⊗ w
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for some z, w ∈ H ⊗H, then z and w are limits of elements in H �H. Hence, it
suffices to assume that z, w ∈ H �H. Once again, each z, w ∈ H �H is a linear
combination of elementary tensors, so it suffices to assume that z = x1 ⊗ y1 and
w = x2 ⊗ y2 for xi, yi ∈ H. But then

T (z1 ⊗ z2) = 〈z1, y1〉〈z2, y2〉x1 ⊗ x2 = (x1 ⊗ x2)⊗ (y1 ⊗ y2)(z1 ⊗ z2)

Hence, T = (x1 ⊗ x2)⊗ (y1 ⊗ y2) ∈ E. So we conclude that

E = K(H ⊗H)

(End of Day 16)
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VI. Classification of AF-Algebras

1. Finite Dimensional C*-Algebras

Definition 1.1. Define e(n, i, j) ∈Mn(C) to be the matrix whose (i, j)th entry is 1 and
other entries are zero. If

A = Mn1(C)⊕Mn2(C)⊕ . . .Mnr(C)

define
e

(k)
i,j := (0, 0, . . . , e(nk, i, j), 0, 0, . . . , 0) ∈ A

These are called the matrix units of A, and they satisfy the following identities

1.1. e
(k)
i,j e

(k)
j,` = e

(k)
i,`

1.2. e
(k)
i,j e

`
m,n = 0 if k 6= ` or if j 6= m

1.3. (e
(k)
i,j )∗ = e

(k)
j,i

1.4. A = span{e(k)
i,j : 1 ≤ k ≤ r, 1 ≤ i, j ≤ nk}

Definition 1.2. Let B be a C*-algebra and {f (k)
i,j } be a set of elements in B satisfying

(i), (ii) and (iii) above. Then this is called a system of matrix units in B of type A.

Note: Given a system of matrix units of typeA as above, there is a unique ∗-homomorphism
ϕ : A→ B such that ϕ(e

(k)
i,j ) = f

(k)
i,j for all k, i, j. Furthermore, this map is

1.1. injective if all the f
(k)
i,j are non-zero.

1.2. surjective if B = span{f (k)
i,j }

Remark 1.3. If A = Mn1(C)⊕ . . .⊕Mnr(C), then

K0(A) ∼= Zr

In fact, sinceA is stably finite (since it is finite dimensional) and unital, (K0(A), K0(A)+, [1A])
is an ordered abelian group with order unit, given by

K0(A) = Z[e
(1)
1,1] + Z[e

(2)
1,1] + . . .+ Z[e

(r)
1,1] ∼= Zr

K0(A)+ = Z+[e
(1)
1,1] + Z+[e

(2)
1,1] + . . .+ Z+[e

(r)
1,1] ∼= (Z+)r

[1A]0 = n1[e
(1)
1,1]0 + n2[e

(2)
1,1]0 + . . .+ nr[e

(r)
1,1]0
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Lemma 1.4. Suppose that {f (k)
i,i : 1 ≤ k ≤ r, 1 ≤ i ≤ nk} is a set of mutually orthogonal

projections in a C*-algebra B such that

f
(k)
1,1 ∼ f

(k)
2,2 ∼ . . . ∼ f (k)

nk,nk

for 1 ≤ k ≤ r. Then there is a system of matrix units {f (k)
i,j } in V that extends {f (k)

i,i }.

Proof. Choose partial isometries f
(k)
1,i such that

(f
(k)
1,i )∗f

(k)
1,i = f

(k)
i,i and f

(k)
1,i (f

(k)
1,i )∗ = f

(k)
1,1

and define
f

(k)
i,j = (f

(k)
1,i )∗f

(k)
1,j

Then this system works [Check!]

Definition 1.5. A C*-subalgebra D ⊂ A is called a maximal abelian subalgebra (masa)
if it is abelian, and it is not properly contained in any other abelian C*-subalgebra of A.

By Zorn’s lemma, every Abelian C*-subalgebra is contained in a masa.

Definition 1.6. Let X ⊂ A. Define

X ′ := {a ∈ A : ax = xa ∀x ∈ X}

Note that X ′ is a norm-closed subalgebra of A. Furthermore, it is a C*-subalgebra if X
is self-adjoint (ie. if a ∈ X, then a∗ ∈ X)

Note: B ⊂ A is Abelian iff B ⊂ B′.

Lemma 1.7. D ⊂ A is a masa iff D = D′

Proof. Suppose D = D′, then D is Abelian, and if E is Abelian and contains D, then

D ⊂ E ⊂ E ′ ⊂ D′ = D

so E = D. Hence D is a masa.

Conversely, suppose D is a masa, then D ⊂ D′ and D′ is a C*-subalgebra. WTS:
D′ ⊂ D. Since D′ and D are C*-algebras, it suffices to show that (D′)sa ⊂ D. So fix
a ∈ D′ self-adjoint, and set

X := D ∪ {a}
Since elements in X commute with each other,

X ⊂ X ′

Since X is self-adjoint, X ′ is a C*-subalgebra of A, and so

C∗(X) ⊂ X ′
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So if y ∈ C∗(X) and x ∈ X, then xy = yx. Hence,

X ⊂ C∗(X)′

Once again, C∗(X)′ is a C*-algebra, so

C∗(X) ⊂ C∗(X)′

It follows that C∗(X) is Abelian. Since D ⊂ X ⊂ C∗(X), and D is a masa, we conclude
that

D = C∗(X)

In particular, a ∈ D as required.

Example 1.8. Let A = Mn(C) and D denote the set of all diagonal matrices. Then D
is an Abelian C*-subalgebra of A. Furthermore, if a ∈ D′, then

ae1,1 = e1,1a

So
e1,1(a(e1)) = ae1,1(e1) = a(e1)

Hence, a(e1) is an eigen-vector of e1,1 with eigen-value 1. So a(e1) = λ1e1. Thus
continuing, we see that a must be diagonal. Hence, D′ = D, so D is a masa.

Lemma 1.9. Let D be a masa in a C*-algebra A.

1.1. If D is unital, then A is unital and 1A = 1D

1.2. If p is a projection in D such that pDp = Cp, then pAp = Cp (Note: A projection
with this property is minimal, in the sense that there is no projection q ∈ A such
that q < p other than q = 0)

Proof. 1.1. If a ∈ A, then WTS: a = a1D. Let z := a− a1D, then zd = 0 for all d ∈ D.
Since D is self-adjoint, this implies (zd∗)∗ = dz∗ = 0 for all d ∈ D. Hence,

d(z∗z) = 0(z∗z)d ∀d ∈ D

Hence, (z∗z) ∈ D′ = D since D is a masa. Hence,

(z∗z)(z∗z) = 0⇒ ‖z‖4 = 0⇒ z = 0

Hence, a = a1D for all a ∈ A. Hence,

1Da = (a∗1D)∗ = (a∗)∗ = a ∀a ∈ A

So 1D = 1A
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1.2. Let a ∈ pAp, then a = pa = ap. So if d ∈ D, we have pd = dp = pdp = λp for
some λ ∈ C. Hence,

ad = apd = λap = λa = da

Hence, a ∈ D′ = D, so a ∈ D. In that case, a ∈ pDp. Hence, pAp ⊂ pDp = Cp.

(End of Day 17)

Theorem 1.10. Any finite dimensional C*-algebra is isomorphic to

Mn1(C)⊕Mn2(C)⊕ . . .⊕Mnr(C)

for some positive integers r, n1, n2, . . . , nr ∈ N

Proof. 1.1. Choose a masa D ⊂ A. By Gelfand, D ∼= C0(X) for some space X. Since
D is finite dimensional, it follows that X is finite. In particular, X is compact.
Hence, D is unital, and so A is unital and 1A = 1D by the previous lemma.

1.2. Let X = {x1, x2, . . . , xN} and let pi ∈ D denote the corresponding characteristic
functions

pi(xj) = δi,j

Then {p1, p2, . . . , pN} ⊂ D are projections such that

p1 + p2 + . . .+ pN = 1D and pjDpj = Cpj

By the previous lemma, pjApj = Cpj for all 1 ≤ j ≤ N

1.3. Fix 1 ≤ i, j ≤ N such that pjApi 6= 0. Choose v ∈ pjApi such that ‖v‖ = 1, then

v∗v ∈ piApi

is a positive element of norm 1. But piApi = Cpi. Hence,

v∗v = pi

Similarly, vv∗ = pj. Hence, we conclude

pjApi = {0} or pi ∼ pj

1.4. Now suppose pi ∼ pj and a ∈ pjApi, then a = api = (av∗)v. As av∗ ∈ pjApj = Cpj,
so av∗ = λpj for some λ ∈ C. Furthermore, pjv = v, so

a = av∗v = λpjv = λv

Hence, a ∈ Cv, so if pi ∼ pj, then

pjApi = Cv
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1.5. Partition the set {p1, p2, . . . , pN} into Murray von-Neumann equivalence classes.
Suppose there are r equivalence equivalence classes, and that the kth class has nk
elements

{f (k)
1,1 , f

(k)
2,2 , . . . , f

(k)
nk,nk
}

By choice of these projections, we have

f
(k)
i,i Af

(`)
j,j = {0} if k 6= ` and f

(k)
i,j ∼ f

(k)
j,j

By Lemma 1.4, we can extend this collection to a system of matrix units {f (k)
i,j } in

A.

1.6. By Step 4,
f

(k)
i,i Af

(k)
j,j = Cf (k)

i,j

and by Step 2,

1 =
∑
i,k

f
(k)
i,i

1.7. Hence if a ∈ A, then

a =

(∑
i,k

f
(k)
i,i

)
a

(∑
i,k

f
(k)
i,i

)
=

r∑
k=1

nk∑
i,j=1

f
(k)
i,i af

(k)
j,j

=
r∑

k=1

nk∑
i,j=1

λ
(k)
i,j f

(k)
i,j

for some scalars λ
(k)
i,j ∈ C. Hence,

A = span{f (k)
i,j }

Thus the system of matrix units satisfies all conditions (1) - (4). Hence, by the
remark following Definition 1.2,

A ∼= Mn1(C)⊕Mn2(C)⊕ . . .⊕Mnr(C)

2. AF-Algebras

Definition 2.1. An approximately finite dimensional (AF) algebra is an inductive limit
of finite dimensional C*-algebras.

Example 2.2. 2.1. Every finite dimensional C*-algebra is AF

2.2. K(`2) is AF.
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2.3. Fix a sequence {nk} of integers such that nk | nk+1. Define ϕk : Mnk
(C) →

Mnk+1
(C) to be the unital map

a 7→ diag(a, a, . . . , a︸ ︷︷ ︸
dk times

)

where dk = nk+1/nk. The inductive limit is a unital AF-algebra, called a Uniformly
Hyperfinite Algebra (UHF) algebra of type N := {nk}

2.4. If nk = 2k for all k ∈ N, then the corresponding UHF algebra of type 2∞ is called
the CAR algebra (Canonical Anticommutation relations)

Lemma 2.3. Every AF-algebra is stably finite. Hence, (K0(A), K0(A)+) is an ordered
abelian group.

Proof. If A is an AF-algebra, then so is Ã and Mk(A). Hence it suffices to show that A
is finite when A is unital and AF. We use the characterization from Lemma IV.1.3 and
show that every isometry s ∈ A is a unitary. Suppose s ∈ A is an isometry, then fix
ε > 0 such that

ε(3 + 2ε) < 1

(For instance, ε = 1/4 works) Now, since A is an AF-algebra, ∃ a finite dimensional
C*-subalgebra B ⊂ A and x ∈ B such that

‖s− x‖ < ε

It follows that

|1− ‖x‖| = |‖s‖ − ‖x‖| ≤ ‖s− x‖ < ε⇒ ‖x‖ ≤ 1 + ε

‖1A − x∗x‖ = ‖s∗s− x∗x‖
≤ ‖s∗s− s∗x‖+ ‖s∗x− x∗x‖
≤ ‖s∗‖‖s− x‖+ ‖s∗ − x∗‖‖x‖
≤ ‖s− x‖+ ‖s− x‖(1 + ε)

≤ ε+ ε(1 + ε) = ε2 + 2ε ≤ ε(3 + 2ε) < 1

Hence, x∗x is invertible. Replacing B by B+C1A (which is also finite dimensional), and
using spectral permanence, we can conclude that x∗x is invertible in B. Furthermore, if
z = (x∗x)−1, then

z =
∞∑
k=0

(1− x∗x)k ⇒ ‖z‖ ≤
∞∑
k=0

‖1− x∗x‖k =
1

1− ‖1− x∗x‖
≤ 1

1− ε2 − 2ε

Hence, if y = zx∗, then yx = 1A and

‖y‖ < 1 + ε

1− ε2 − 2ε
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Now x is left-invertible in B. Since B is finite dimensional, it follows that x is right
invertible in B (and hence A), and the left and right-inverses coincide. Thus, xy = 1A,
so

‖sy − 1A‖ = ‖sy − xy‖ ≤ ‖s− x‖‖y‖ < ε(1 + ε)

1− ε2 − 2ε
< 1

because ε(3 + 2ε) < 1. Hence, sy is invertible, so s is right invertible as required.

a. Outline of the Classification Theorem

If A is a unital AF-algebras, we consider the triple

E(A) := (K0(A), K0(A)+, [1A]0)

If there is a unital ∗-isomorphism ϕ : A→ B, then we get an isomorphism of invariants

K0(ϕ) : E(A)→ E(B)

(End of Day 18)

Theorem 2.4 (Elliott). Let A and B be two unital AF-algebras. Given an isomorphism
α : E(A)→ E(B), there is a ∗-isomorphism ϕ : A→ B such that α = K0(ϕ).

Proof. The outline of the proof is as follows:

2.1. Write both A and B as inductive limits of finite dimensional C*-algebras

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .→ A

B1
ψ1−→ B2

ψ2−→ B3
ψ3−→ . . .→ B

The goal of the proof is to construct an intertwining: two subsequences (Anj
)

and (Bmj
) and maps between them as below

An1
//

g1

""

An2
//

g2

""

An3
// . . . // A

Bm1

f1
<<

// Bm2
//

f2
<<

Bm3

f3
<<

// . . . // B

(VI.1)

If such an intertwining exists, then there is an isomorphism ϕ : A → B. This
isomorphism will have the property that K0(ϕ) = α as well.
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2.2.

To begin with, given an isomorphism α : E(A) → E(B), we construct an
intertwining at the level of K0 groups

K0(An1) //

β1

&&

K0(An2) //

β2

&&

. . . // K0(A)

α

��
K0(Bm1)

α1

88

// K0(Bm2) //

α2

88

K0(Bm3) // . . . // K0(B)

α−1

OO

(VI.2)
This requires a lifting property of the groups K0(Aj) and K0(Bj) (which are free
Abelian groups) as follows: Given an inductive limit

K0(Ak)
K0(µk) //

α
%%

K0(A)

K0(Bj)

γ
99

Once can lift the map γ to a map β : K0(Bj)→ K0(A`) for some ` ≥ k such that
TFDC:

K0(Ak)
K0(ϕ`,k)

//

α

%%

K0(A`)
K0(µ`)// K0(A)

K0(Bj)

β

OO
γ

99

We will apply this inductively to construct an intertwining of K0 groups as above
(Equation VI.2)

2.3. Given an intertwining of K0 groups as above, we would like to construct ∗-
homomorphisms fi : Bmi

→ Ani
and gi : Ani

→ Bmi+1
such that

K0(fi) = αi and K0(gi) = βi

For this, we need an Existence theorem:

Given finite dimensional C*-algebras A and B, and a morphism η : K0(A) →
K0(B), we need to find a ∗-homomorphism f : A→ B such that K0(f) = η.

Furthermore, we would like the fi and gi to interact as in Equation VI.1. Hence,
we need a Uniqueness theorem as well:

Given finite dimensional C*-algebras A and B and two morphisms f, g : A →
B. Suppose K0(f) = K0(g), then how are f and g related to each other?
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b. Step 1: Some facts about Inductive limits

We now consider Step 1 of the outline described above - to prove that an intertwining
between sequences of C*-algebras produces an isomorphism of inductive limits.

For this, we fix a sequence of C*-algebras

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

with inductive limit (A, {µn})

Lemma 2.5. Given a subsequence 1 ≤ n1 < n2 < n3 < . . ., set ψj := ϕnj+1,nj
. Then the

inductive limit of the sequence (Anj
, ψj) is (A, {µnj

}).

Proof. Let (B, {λn}) be the inductive limit of (Anj
, ψj), then we have a commutative

diagram

Anj

ψj //

µnj   

Anj+1

µnj+1||
A

Hence, by the universal property, ∃ a ∗-homomorphism λ : B → A such that TFDC:

Anj

λj

~~

µnj

  
B λ // A

We wish to show that λ is bijective:

2.1. λ is injective: This happens iff ker(λj) ⊂ ker(µnj
) for all j ∈ N. So suppose

a ∈ ker(λj) ⊂ Anj
, then ‖λj(a)‖ = 0, whence

lim
k→∞
‖ψk,j(a)‖ = 0

where ψk,j : Anj
→ Ank

is the connecting map. But it follows by construction
that ψk,j = ϕnk,nj

. But {‖ϕnk,nj
(a)‖} is a subsequence of {‖ϕi,nj

(a)‖} which is a
convergent sequence with

‖µnj
(a)‖ = lim

i→∞
‖ϕi,nj

(a)‖

Hence the sequence converges to zero, whence µnj
(a) = 0 as required.

2.2. λ is surjective: This happens iff

A =
∞⋃
j=1

µnj
(Anj

)
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Since nj →∞, for any k ∈ N, choose nj > k, so that

µk(Ak) = µnj
(ϕk,nj

(Ak)) ⊂ µnj
(Anj

)

Hence

A =
∞⋃
k=1

µk(Ak) ⊂
∞⋃
j=1

µnj
(Anj

) ⊂ A

Lemma 2.6. Set Bn := An/ ker(µn) and let πn : An → Bn be the quotient map. Then
∃ injective ∗-homomorphisms ψn : Bn → Bn+1 and a ∗-homomorphism π : A → limBn

such that TFDC:
A1

π1
��

ϕ1 // A1

π2
��

ϕ2 // A3
// . . . // A

π
��

B1
ψ1 // B2

ψ2 // B3
// . . . // limBn

Furthermore, π is an isomorphism.

Proof. Note that µn = µn+1 ◦ ϕn. Hence,

ψn : Bn → Bn+1 given by a+ ker(µn) 7→ ϕn(a) + ker(µn+1)

is well-defined, and is clearly a ∗-homomorphism. Furthermore, note that

ψn(a+ ker(µn)) = 0⇒ ϕn(a) ∈ ker(µn+1)⇒ µn(a) = µn+1(ϕn(a)) = 0⇒ a ∈ ker(µn)

Hence each ψn is injective.

Now let (B, {λn}) be the inductive limit of (Bn, ψn). Then we have maps αn : An → B
given by

αn = λn ◦ πn
and TFDC:

An
ϕn+1 //

αn   

An+1

αn+1
||

B

because if a ∈ An, then

αn+1 ◦ ϕn+1(a) = λn+1 ◦ πn+1 ◦ ϕn+1(a)

= λn+1(ϕn+1(a) + ker(µn+2))

= λn+1 ◦ ψn+1(πn(a))

= λn ◦ πn(a) = αn(a)
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Hence by the universal property, we get a map π : A→ B such that TFDC:

An
µn

~~

αn

  
A

π // B

We check that π is bijective:

2.1. π is injective: As before, we need to check if

ker(αn) ⊂ ker(µn)

So suppose a ∈ An is such that αn(a) = 0, then

0 = ‖λn(πn(a))‖ = lim
m→∞

‖ψn,m(πn(a))‖

Now note that each ψn is injective (see above), and so isometric. Hence it follows
that πn(a) = 0, whence a ∈ ker(µn) as required.

2.2. π is surjective: It suffices to show that

B =
∞⋃
n=1

αn(An)

But each πn is surjective, so

αn(An) = λn(πn(An)) = λn(Bn)

and we know that

B =
∞⋃
n=1

λn(Bn)

Lemma 2.7. Suppose each map ϕn : An → An+1 is injective, then µn : An → A is also
injective. Suppose further that A is unital, then ∃n0 ∈ N such that, for all n ≥ n0, An
is unital and the maps ϕn : An → An+1 and µn : An → A are unital.

Proof. Note that each ϕn is isometric. So if µn(a) = 0, then

0 = lim
m→∞

‖ϕm,n(a)‖ = ‖a‖ ⇒ a = 0

Hence each µn is injective. Now suppose A is unital. Since

1A ∈ A =
∞⋃
n=1

µn(An)
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∃n0 ∈ N and a ∈ An0 such that µn0(a) ∈ GL(A). By spectral permanence,

µn0(a) ∈ GL(µn0(An0) + C1A)

so
µn0(a)−1 = µn0(b) + λ1A

for some b ∈ An0 . Then

1A = µn0(a)[µn0(b) + λ1A] = µn0(ab+ a)

Let x = ab+ a, then for any y ∈ An0 , we have

µn0(xy) = µn0(x)µn0(y) = 1Aµn0(y) = µn0(y)

Since µn0 is injective, xy = y. Similarly, yx = y, so x = 1An0
. Note that

µn0(1An0
) = 1A

We claim that if n ≥ n0

2.1. An is unital,

2.2. ϕn is unit-preserving.

Now if n ≥ n0, let z := ϕn,n0(1An0
), then for any y ∈ An, we have

µn(zy) = µn(z)µn(y) = µn0(1An0
)µn(y) = 1Aµn(y) = µn(y)

Hence, zy = y. Similarly, yz = y, so z = 1An . Furthermore, observe that

ϕn,n0(1An0
) = 1An

Once again, by injectivity of µn it follows that each ϕn is unital for n ≥ n0.

Lemma 2.8 (Intertwining Lemma). Given two inductive sequences of C*-algebras (An, {ϕn})
and (B, {ψn}) with inductive limits (A, {µn}) and (B, {λn}) respectively. Suppose there
are ∗-homomorphisms αn : An → Bn and βn : Bn → An+1 such that TFDC:

A1
ϕ1 //

α1   

A2
ϕ2 //

α2   

A3
//

α3   

. . .

B1

β1

>>

ψ1

// B2

β2

>>

ψ2

// B3
// . . .

Then ∃ a ∗-isomorphism α : A→ B such that

An
µn //

λn◦αn   

A

α
��
B
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Proof. As usual α : A → B exists by the universal property of A, and it satisfies the
above commuting diagram. Similarly, we get a map β : B → A such that TFDC:

Bn
λn //

µn+1◦βn   

B

β
��
A

Observe that

β ◦ α ◦ µn = β ◦ λn ◦ αn = µn+1 ◦ βn ◦ αn = µn+1 ◦ ϕn = µn

Since

A =
∞⋃
n=1

µn(An)

it follows that β ◦ α = idA. Similarly, α ◦ β = idB.

c. Step 2: Lifting maps at the level of K0

We now consider Step 2 of the outline of Elliott’s theorem from above - that of con-
structing an intertwining at the level of K0 groups.

Remark 2.9. 2.1. Let G be an Abelian group. Then G is said to be projective if,
whenever one has a surjective map

π : M → N

of Abelian groups and a map ϕ : G → N , then ∃ a map ϕ̂ : G → M such that
TFDC:

G
ϕ̂ //

ϕ

  

M

π
��
N

��
0

2.2. G = Z is projective because if ϕ : Z → N , then ϕ(1) ∈ N = π(M), so ∃x ∈ M
such that π(x) = ϕ(1). Now simply define ϕ̂ : Z→M by

ϕ̂(1) := x

Similarly, any free Abelian group G = Zm is projective.

2.3. Now suppose we are given an inductive system of Abelian groups

H1
α1−→ H2

α2−→ H3
α3−→ . . .
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with inductive limit (H, {βn}). Suppose we are given a group homomorphism
ϕ : G→ H, we ask whether ∃n ∈ N and a group homomorphism ϕ̂ : G→ Hn such
that TFDC:

G
ϕ̂ //

ϕ

  

Hn

βn
��
H

Note that each βn is not necessarily surjective, but

H =
∞⋃
n=1

βn(Hn)

2.4. G = Z satisfies this condition: If ϕ : Z → H, then ϕ(1) ∈ H, so ∃n ∈ N and
x ∈ Hn such that ϕ(1) = βn(x). Now define ϕ̂ : Z→ Hn such that

ϕ̂(1) = x

Similarly, G = Zm also satisfies this condition.

2.5. This kind of lifting property is sometimes called semi-projectivity (this is not
standard usage!).

(End of Day 19)

Lemma 2.10 (Semi-Projectivity Lemma). Let

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

be a sequence of finite dimensional C*-algebras with inductive limit (A, {µn}). Let B be a
finite dimensional C*-algebra and assume that there are positive group homomorphisms
α and γ as below

K0(A1)
K0(µ1) //

α
%%

K0(A)

K0(B)

γ

::

Then ∃n ∈ N and a positive homomorphism β : K0(B)→ K0(An) such that TFDC:

K0(A1)
K0(ϕn,1)//

α
%%

K0(An)
K0(µn)// K0(A)

K0(B)

β

OO
γ

99

If each ϕn is unit preserving and if α([1A1 ]0) = [1B]0, then β([1B]0) = [1An ]0.
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Proof. 2.1. Let {e(k)
i,j } be the matrix units of B and set xk := γ([e

(k)
1,1]0) ∈ K0(A)+. By

continuity of K0(A),

K0(A)+ =
∞⋃
n=1

K0(µn)(K0(An)+)

Hence, ∃m ∈ N and y1, y2, . . . , yr ∈ K0(Am)+ such that

xk = K0(µm(yk) ∀1 ≤ k ≤ r

By Remark 1.3,
K0(B) ∼= Z[e

(1)
1,1]0 ⊕ Z[e

(2)
1,1]0 ⊕ . . .Z[e

(r)
1,1]0

So, as in the previous remark, ∃ a group homomorphism β′ : K0(B) → K0(Am)
such that

β′([e
(k)
1,1]0) = yk ∀1 ≤ k ≤ r

2.2. Suppose g ∈ K0(B)+, then ∃mi ∈ N such that

g = m1[e
(1)
1,1]0 +m2[e

(2)
1,1]0 + . . .+mr[e

(r)
1,1]0

Hence, β′(g) ∈ K0(Am)+. Hence, β is positive.

2.3. Furthermore,

(K0(µm) ◦ β′)[e(k)
1,1]0 = K0(µm)(yk) = xk = γ([e

(k)
1,1]0)

Hence, K0(µm) ◦ β′ = γ

2.4. To ensure that β ◦ α = K0(ϕn,1) still requires some work: Note that K0(A1) is a
finitely generated abelian group, so choose generators {g1, g2, . . . , gs}. Note that

K0(µm) ◦ β′ ◦ α(gi) = γ ◦ α(gi) = K0(µ1)(gi) = K0(µm) ◦K0(ϕm,1)(gi)

Hence,
hi := β′ ◦ α(gi)−K0(ϕm,1)(gi) ∈ ker(K0(µm))

But
ker(K0(µm)) =

⋃
n>m

ker(K0(ϕn,m))

Hence, ∃n > m such that hi ∈ ker(K0(ϕn,m)) for all 1 ≤ i ≤ s. Define

β := K0(ϕn,m) ◦ β′

Then
[β ◦ α−K0(ϕn,1)](gi) = K0(ϕn,m)(hi) = 0 ∀1 ≤ i ≤ s

Since K0(A1) is generated by the {gi} it follows that

β ◦ α = K0(ϕn,1)

87



2.5. Finally, note that

γ = K0(µm) ◦ β′ = K0(µn) ◦K0(ϕn,m) ◦ β′ = K0(µn) ◦ β

as required.

2.6. Now for the final claim: If each ϕn is unit preserving and α([1A1 ]0) = [1B]0, then

β([1B]0) = β ◦ α([1A1 ]0) = K0(ϕn,1)([1A1 ]0) = [1An ]0

d. Step 3: Existence and Uniqueness of maps between finite
dimensional C*-algebras

We begin with Step 3 of the outline described above: To construct maps out of finite
dimensional C*-algebras from maps at the level of K-theory, and to determine to what
extent these maps are unique.

Definition 2.11. A C*-algebra A is said to have the cancellation property if, for any
two projections p, q ∈ P∞(A), we have

[p]0 = [q]0 ⇒ p ∼0 q

Example 2.12. 2.1.

2.2. Mn(C) has cancellation

Proof. Let A = Mn(C). If p, q ∈ P∞(A) are such that [p]0 = [q]0, then choose
p′, q′ ∈Mk(A) such that p ∼0 p

′, q ∼0 q
′. Then by Example II.1.13,

Tr(p′) = Tr(q′)

Then it follows that p′ ∼ q′. Hence, p ∼0 q

2.3. If A,B have cancellation, so does A⊕B. Hence every finite dimensional C*-algebra
has cancellation.

Proof. Obvious.

2.4. Let (An, ϕn) be an inductive sequence of C*-algebras with inductive limit (A, {µn}).
Suppose each An has cancellation, then so does A. Hence, every AF-algebra has
cancellation.

Proof. Let p, q ∈ P∞(A) such that [p]0 = [q]0. Assume WLOG that p, q ∈Mk(A).
As in the proof of Theorem 3.5, ∃m ∈ N and p′ ∈ Mk(Am) such that µm(p′) ∼ p.
Similarly, ∃q′ ∈Mk(Am) such that µm(q′) ∼ q (Note that in principle there might
be two different integers m and `, but we may choose the max of them). Hence,

[µm(p′)]0 = [µm(q′)]0
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Since

ker(K0(µm)) =
∞⋃

n=m+1

ker(K0(ϕn,m))

it follows that ∃n ≥ m such that

[ϕn,m(p′)]0 = [ϕn,m(q′)]0 in K0(An)

Since An has cancellation,
ϕn,m(p′) ∼0 ϕn,m(q′)

But then

p ∼ µm(p′) = µn(ϕn,m(p′)) ∼0 µn(ϕn,m(q′)) = µm(q′) ∼ q

Hence, A has cancellation.

2.5. B(H) does not have cancellation because for any two projections p, q ∈ B(H), we
have [p]0 = [q]0, but it is not true that p ∼ q in general (See Example I.2.3, and
II.1.14)

Lemma 2.13. Let B be a unital C*-algebra with cancellation. Let g1, g2, . . . , gn ∈
K0(B)+ satisfy ∑

gi ≤ [1B]0

Then ∃ mutually orthogonal projections p1, p2, . . . , pn in B such that [pj]0 = gj for all
1 ≤ j ≤ n

Proof. We proceed by induction.

2.1. If n = 1: 0 ≤ g1 ≤ [1B]0 and [1B]0 − g1 ≥ 0 so ∃e, f ∈ Pn(B) such that

g = [e]0 and [1B]− g = [f ]0

Then since B has cancellation

[e⊕ f ]0 = [1B]0 ⇒ e⊕ f ∼0 1B

So ∃v ∈M1,2n(B) such that

v∗v = e⊕ f and vv∗ = 1B

Define q := v(e⊕ 0n)v∗, then q ∈ P(B), q ≤ 1B and if w = v(e⊕ 0n), then

ww∗ = q and w∗w = (e⊕ 0n)v∗v(e⊕ 0n) = (e⊕ 0n)(e⊕ f)(e⊕ 0n) = (e⊕ 0n)

Hence, g = [e]0 = [e⊕ 0n]0 = [q]0
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2.2. If n ≥ 2: We have
n−1∑
i=1

gi + gn ≤ [1B]0 ⇒
n−1∑
i=1

gi ≤ [1B]0

By induction hypothesis, we may choose mutually orthogonal projections p1, p2, . . . , pn−1 ∈
P(B) such that gi = [pi]0. Set

p := p1 + p2 + . . . pn−1

Then 0 ≤ gn ≤ [1B] − [p]0, then ∃e ∈ Pm(B) such that gn = [e]0. Then choose
f ∈ Pk(B) such that [f ]0 = [1B]0 − [p]0 − [e]0, then

[e⊕ f ]0 = [1B]0 − [p]0 = [1B − p]0

Since B has cancellation, e⊕ f ∼0 1B − p, so ∃v ∈M1,k+m(B) such that

e⊕ f = v∗v and 1B − p = vv∗

Put pn := v(e⊕ 0k)v
∗, then pn ∈ P(B) and if w = v(e⊕ 0k), then

ww∗ = pn and w∗w = (e⊕ 0k)v
∗v(e⊕ 0k) = (e⊕ 0k)

As before, [pn]0 = [e]0 = gn. Furthermore,

(1B − p)pn = vv∗v(e⊕ 0k)v
∗ = v(e⊕ f)(e⊕ 0k)v

∗ = v(e⊕ 0k)v
∗ = pn

Hence, pn ≤ 1B − p. Hence,
n∑
i=1

pi ≤ 1B

By Exercise 2.4 (below), it follows that the {pi} are mutually orthogonal.

(End of Day 20)

We now prove the existence part of Step 3 of the outline of Elliott’s theorem described
above.

Lemma 2.14 (Existence Theorem). Let A be a finite dimensional C*-algebra, and B a
unital C*-algebra with cancellation. Let α : K0(A)→ K0(B) be a group homomorphism
such that

α([1A]0) ≤ [1B]0

Then ∃ a ∗-homomorphism ϕ : A→ B such that K0(ϕ) = α. Furthermore, if α([1A]0) =
[1B]0, then ϕ(1A) = 1B must hold.
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Proof. Write
A = Mn1(C)⊕Mn2(C)⊕ . . .Mnr(C)

and let {e(k)
i,j } be a system of matrix units of A and gi,k := α([e

(k)
i,i ]0). Then∑

i,k

gi,k = α(
∑
i,k

[e
(k)
i,i ]0) = α([1A]0) ≤ [1B]0

So by the previous lemma, ∃ mutually orthogonal projections f
(k)
i,i ∈ B such that

α([e
(k)
i,i ]0) = [f

(k)
i,i ]0

Since B has cancellation, for each 1 ≤ k ≤ r and 1 ≤ i, j ≤ nk, we have

e
(k)
i,i ∼ e

(k)
j,j ⇒ [e

(k)
i,i ]0 = [e

(k)
j,j ]0 ⇒ [f

(k)
i,i ]0 = [f

(k)
j,j ]0 ⇒ f

(k)
i,i ∼ f

(k)
j,j

By Lemma 1.4, the system {f (k)
i,i } extends to a system of matrix units {f (k)

i,j } in B of
type A. By the note following Definition 1.2, we obtain a ∗-homomorphism ϕ : A→ B
such that

ϕ(e
(k)
i,j ) = f

(k)
i,j

Note that by construction

K0(ϕ)([e
(k)
1,1]0) = [f

(k)
1,1 ]0 = α([e

(k)
1,1]0)

By Remark 1.3, K0(A) is generated by the elements {[e(k)
1,1]0}. Hence, K0(ϕ) = α.

Now suppose α([1A]0) = [1B]0. Put

p :=
∑
i,k

f
(k)
i,i

Then p ∈ P(B) and ϕ(1A) = p. Hence,

[1B − p]0 = [1B]0 − [p]0 = α([1A]0)−K0(ϕ)([1A]0) = 0

Since B has cancellation,

1B − p ∼0 0⇒ 1B − p = 0⇒ ϕ(1A) = p = 1B

so ϕ is unital.

Definition 2.15. 2.1. Let B be a unital C*-algebra, and u ∈ U(B). Define Ad u :
B → B by b 7→ ubu∗. Note that Ad u is an automorphism of B.

2.2. Let ϕ, ψ : A → B be two ∗-homomorphisms. We say that ϕ and ψ are unitarily
equivalent (In symbols, ϕ ∼u ψ) if ∃u ∈ U(B) such that ϕ = Ad u ◦ ψ.

Remark 2.16. 2.1. If ϕ ∼u ψ, then K0(ϕ) = K0(ψ).
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2.2. The converse is not true: Let A = O2, then we know that K0(O2) = 0 (Theorem
III.4.6). Hence, K0(0) = K0(idO2). However, idO2 is not unitarily equivalent to 0.

We now prove the uniqueness part of Step 3 of the outline above.

Lemma 2.17 (Uniqueness Theorem). Let A be a finite dimensional C*-algebra and B
be a unital C*-algebra with cancellation. Let ϕ, ψ : A → B be two ∗-homomorphisms
such that

K0(ϕ) = K0(ψ)

Then ϕ ∼u ψ.

Proof. Consider the matrix units {e(k)
i,j } of A. Then

[ϕ(e
(k)
1,1)]0 = K0(ϕ)[e

(k)
1,1]0 = K0(ψ)[e

(k)
1,1]0 = [ψ(e

(k)
1,1]0 and

[1B − ϕ(1A)]0 = [1B]0 −K0(ϕ)([1A]0) = [1B]0 −K0(ψ)([1A]0) = [1B − ψ(1A)]0

Since B has cancellation, ∃ partial isometries v1, v2, . . . , vr and w ∈ B such that

vkv
∗
k = ϕ(e

(k)
1,1), and vkv

∗
k = ψ(e

(k)
1,1) ∀1 ≤ k ≤ r

w∗w = 1B − ϕ(1A) and ww∗ = 1B − ψ(1A)

Define
wi,k := ψ(e

(k)
i,1 )vkϕ(e

(k)
1,i )

Then

w∗i,kwi,k = ϕ(e
(k)
1,i )
∗v∗kψ(e

(k)
i,1 )∗ψ(e

(k)
i,1 )vkϕ(e

(k)
1,i )

= ϕ(e
(k)
i,1 )v∗kψ(e

(k)
1,i e

(k)
i,1 )vkϕ(e

(k)
1,i )

= ϕ(e
(k)
i,1 )v∗kψ(e

(k)
1,1)vkϕ(e

(k)
1,i )

= ϕ(e
(k)
i,1 )v∗kvkv

∗
kvkϕ(e

(k)
1,i )

= ϕ(e
(k)
i,1 )ϕ(e

(k)
1,1)ϕ(e

(k)
1,i )

= ϕ(e
(k)
i,i )

Similarly,
wi,kw

∗
i,k = ψ(e

(k)
i,i )

Hence,

ww∗ +
∑
i,k

w∗i,kwi,k = 1B − ψ(1A) +
∑
i,k

ψ(e
(k)
i,i ) = 1B

Similarly,

w∗w +
∑
i,k

wi,kw
∗
i,k = 1B
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Hence it follows from Exercise 2.6 (See below - See also Lemma III.4.3) that

u := w +
r∑

k=1

nk∑
i=1

wi,k

is a unitary. Moreover, we claim that

uϕ(e
(m)
s,t ) = ψ(e

(m)
s,t )u ∀s, t,m

Note that

uϕ(e
(m)
s,t ) = wϕ(e

(m)
s,t ) +

[∑
i,k

ψ(e
(k)
i,1 )vkϕ(e

(k)
1,i )

]
ϕ(s, t)(m)

= wϕ(e
(m)
s,t ) + ψ(e

(m)
s,1 )vmϕ(e

(m)
1,s )ϕ(e

(m)
s,t )

= wϕ(e
(m)
s,t ) + ψ(e

(m)
s,1 )vmϕ(e

(m)
1,t )

and

ψ(e
(m)
s,t )u = ψ(e

(m)
s,t )w + ψ(e

(m)
s,t )

[∑
i,k

ψ(e
(k)
i,1 )vkϕ(e

(k)
1,i )

]
= ψ(e

(m)
s,t )w + ψ(e

(m)
s,t )ψ(e

(m)
t,1 )vmϕ(e

(m)
1,t )

= ψ(e
(m)
s,t )w + ψ(e

(m)
s,1 )vmϕ(e

(m)
1,t )

Finally, observe that w = (1B − ψ(1A))w = w(1B − ϕ(1A)). Hence,

wϕ(e
(m)
s,t ) = w(ϕ(e

(m)
s,t )− ϕ(e

(m)
s,t ) = 0 = ψ(e

(m)
s,t )w

Hence,
uϕ(e

(m)
s,t )u∗ = ψ(e

(m)
s,t )

for all s, t,m. Hence, ψ ∼u ϕ as required.

e. Elliott’s Classification Theorem

Theorem 2.18 (Elliott). Let A and B be two unital AF-algebras. Suppose

α : K0(A)→ K0(B)

is a positive group isomorphism such that α([1A]0) = [1B]0. Then ∃ a unital ∗-isomorphism

ϕ : A→ B

such that K0(ϕ) = α.

In other words,

A ∼= B ⇔ (K0(A), K0(A)+, [1A]0) ∼= (K0(B), K0(B)+, [1B]0)
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Proof. 2.1. Step 1a: Write (A, {µn}) as an inductive limit of

A1
f1−→ A2

f2−→ A3
f3−→ ...−→

where each An is finite dimensional. By applying Lemma 2.6, we may assume that
each map fn : An → An+1 is injective. Since A is unital, by Lemma 2.7, we may
further assume that each fn is unital. Similarly, we obtain a sequence of finite
dimensional C*-algebras

B1
g1−→ B2

g2−→ B3
g3−→ ...−→

where gn : Bn → Bn+1 is unital, and whose inductive limit is (B, {λn}).
2.2. Step 2: Let B0 = C and set g0 : B0 → B1 be the unique unital map. Similarly,

let ψ0 : B0 → A1, λ0 : B0 → B be the unique unital map. Set β0 := K0(ψ0). Then
we get

K0(B0)
α◦K0(µ1)◦β0=K0(λ0) //

β0 %%

K0(B)

K0(A1)
α◦K0(µ1)

99

By the Semi-Projectivity Lemma (2.10), ∃m1 ∈ N and α1 : K0(A1) → K0(Bm1)
such that TFDC:

K0(B0) //

&&

K0(Bm1)
K0(λn) // K0(B)

K0(A1)

α1

OO 99

Now consider the diagram

K0(A1)
K0(µ1) //

α1 &&

K0(A)

K0(Bm1)
α−1◦K0(λm1 )

99

By the Semi-Projectivity Lemma 2.10, we get n2 ∈ N and a map β1 : K0(Bm1)→
K0(An2) with a corresponding commuting diagram. Thus proceeding, we get maps
and diagrams as below

K0(A1)
K0(fn2,1)

//

α1 &&

K0(An2) // . . . // K0(A)

α

��
K0(B0)

K0(gm1,0)
//

β0
99

K0(Bm1) K0(gm2,m1 )
//

β1

88

. . . // K0(B)

α−1

OO

2.3. Step 1b: Consider the subsequences

An1

fn2,n1−−−→ An2

fn3,n2−−−→ A3 → . . .
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and
Bm1

gm2,m1−−−−→ Bm2

gm3,m2−−−−→ B3 → . . .

Their inductive limits are A and B respectively by Lemma 2.5. To simplify nota-
tion, we assume nj = mj = j so that fnj+1,nj

= fj and gnj+1,j = gj

2.4. Step 3: For each j ∈ N, by the Existence Theorem (Lemma 2.14), ∃ maps
ϕ′ : Aj → Bj and ψ′j : Bj → Aj+1 such that

K0(ϕ′j) = αj and K0(ψ′j) = βj

Note that

K0(fj) = βj ◦ αj = K0(ψ′j ◦ ϕ′j)
K0(gj) = αj+1 ◦ βj = K0(ϕ′j+1 ◦ ψ′j)

We define unitaries uj ∈ U(Aj+1) and vj ∈ U(Bj) inductively as follows:

(i) Set v1 = 1B. By the Uniqueness Theorem (Lemma 2.17), ∃u1 ∈ U(A2) such
that

f1 = Ad u1 ◦ ψ′1 ◦ ϕ′1
Set ψ1 := Ad u1 ◦ ψ′1 and ϕ1 := ϕ′1.

(ii) Note that
K0(g1) = K0(ϕ′2 ◦ ψ′1) = K0(ϕ′2 ◦ ψ1)

Hence, by Lemma 2.17, ∃v2 ∈ U(B2) such that

g1 = Ad v2 ◦ ϕ′2 ◦ ψ1

Set ϕ2 := Ad v2 ◦ ϕ′2.

(iii) Thus proceeding, we obtain unitaries uj ∈ U(Aj+1) and vj ∈ U(Bj) such that,
if

ϕj := Ad vj ◦ ϕ′j and ψj := Ad uj ◦ ψ′j
Then

K0(ϕ′j) = K0(ϕj) and K0(ψ′j) = K0(ψj)

and furthermore, TFDC:

A1

ϕ1

  

// A2

ϕ2

  

// A3
// . . . // A

B0

ψ0

>>

// B1

ψ1

>>

// B2

ψ2

>>

// . . . // B

By the Intertwining Lemma 2.8, there is an isomorphism ϕ : A → B and
ψ = ϕ−1 : B → A.
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2.5. To show that K0(ϕ) = α, note that we have two commuting diagrams

K0(Aj)
K0(µj)//

K0(ϕj)=αj

��

K0(A)

K0(ϕ)

��
K0(Bj)

K0(λj)
// K0(B)

K0(Aj)
K0(µj)//

αj

��

K0(A)

α

��
K0(Bj) //

K0(λj)
// K0(B)

Hence, α = K0(ϕ) on K0(µj)(K0(Aj)). By continuity if K0,

K0(A) =
∞⋃
j=1

K0(µj)(K0(Aj))

Hence, α = K0(ϕ) on all of K0(A).
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VII. The Functor K1

1. Definition

Definition 1.1. Let A be a unital C*-algebra. Define

Un(A) := U(Mn(A)) and U∞(A) :=
∞⋃
n=1

Un(A)

Define a binary operation ⊕ on U∞(A) by

u⊕ v :=

(
u 0
0 v

)
and an equivalence relation ∼1 on U∞(A) by: If u ∈ Un(A), v ∈ Um(A), then we say
u ∼1 v iff ∃k ≥ max{m,n} such that

u⊕ 1k−n ∼h v ⊕ 1k−m

where 1r is the unit in Mr(A).

Lemma 1.2. Let A be a unital C*-algebra. Then, for all u, v ∈ U∞(A)

1.1. ∼1 is an equivalence relation on U∞(A)

1.2. u ∼1 u⊕ 1n for all and n ∈ N
1.3. u⊕ v ∼1 v ⊕ u
1.4. If u ∼1 u

′ and v ∼1 v
′, then u⊕ v ∼1 u

′ ⊕ v′

1.5. If u, v ∈ Un(A) for some n ∈ N, then uv ∼1 vu ∼1 u⊕ v
1.6. (u⊕ v)⊕ w = u⊕ (v ⊕ w)

Proof. (i), (ii) and (vi) are trivial, and (v) follows from Whitehead’s lemma. Now
consider (iii): Let u ∈ Un(A) and v ∈ Um(A), and set

z =

(
0 1m
1n 0

)
∈ Un+m(A)

Then by (v),
v ⊕ u = z(u⊕ v)z∗ ∼1 z

∗z(u⊕ v)

To prove (iv): It suffices to prove:
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1.1. (u⊕ 1k)⊕ (v ⊕ 1`) ∼1 (u⊕ v): This follows from (ii), (iii) and (vi).

1.2. If u ∼h u′ and v ∼h v′, then (u⊕ v) ∼h (u′⊕ v′). But this follows by simply taking
the two paths ut and vt and considering ut ⊕ vt.

Definition 1.3. Let A be a C*-algebra, then define

K1(A) := U∞(Ã)/ ∼1

Write [u]1 for the class if u ∈ U∞(A) in K1(A). Define an addition on K1(A) by

[u]1 + [v]1 := [u⊕ v]1

The operation is well-defined by the previous lemma. It is also commutative, associative,
and has a zero element [1]1 = [1n]1. Also, if u ∈ U∞(A), then

[u]1 + [u∗]1 = [u⊕ u∗]1 = [uu∗ ⊕ 1n]1 = [12n]1 = [1]1

Hence, [u∗]1 = −[u]1. Hence, K1(A) is an Abelian group.

The next proposition follows by definition or by the previous lemma.

Proposition 1.4 (Standard picture of K1). Let A be a C*-algebra, then

K1(A) = {[u]1 : u ∈ U∞(Ã)}

The map [·]1 : U∞(A)→ K1(A) has the following properties:

1.1. [u⊕ v]1 = [u]1 + [v]1

1.2. [1]1 = 0

1.3. If u, v ∈ Un(Ã) and u ∼h v, then [u]1 = [v]1

1.4. If u, v ∈ Un(Ã), then [uv]1 = [vu]1 = [u]1 + [v]1

1.5. If u, v ∈ U∞(Ã), then [u]1 = [v]1 if and only if u ∼1 v.

Proposition 1.5 (Universal Property of K1). Let A be a C*-algebra and G an Abelian

group. Let ν : U∞(Ã)→ G be a map satisfying

1.1. ν(u⊕ v) = ν(u) + ν(v)

1.2. ν(1) = 0

1.3. If u, v ∈ Un(Ã) such that u ∼h v, then ν(u) = ν(v)

Then ∃ a unique homomorphism α : K1(A)→ G such that

α([u]1) = ν(u) ∀u ∈ U∞(A)
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Proof. Suppose u, v ∈ U∞(Ã) are such that u ∼1 v, then ∃k ∈ N such that

u⊕ 1k−n ∼h v ⊕ 1k−m

By properties (i) and (ii), ν(1r) = 0 for all r ∈ N. Hence,

ν(u) = ν(u) + ν(1k−n) = ν(u⊕ 1k−n) = ν(v ⊕ 1k−m) = ν(v) + ν(1k−m) = ν(v)

Thus, the map α : K1(A)→ G as desired exists. Uniqueness follows from the fact that

[·]1 : U∞(Ã)→ K1(A) is surjective.

Definition 1.6. Let A be a unital C*-algebra, and let f := 1Ã − 1A ∈ Ã, then

Ã = A+ Cf

Define µ : Ã→ A by a+αf 7→ a. Then µ is a unital ∗-homomorphism, which we extend
to a map µ : Mn(Ã)→Mn(A) as usual. This gives a map

µ : U∞(Ã)→ U∞(A)

Proposition 1.7. Let A be a unital C*-algebra, then there is an isomorphism

ρ : K1(A)→ U∞(A)/ ∼1

such that TFDC:

U∞(Ã)
µ //

[·]1]

��

U∞(A)

��
K1(A)

ρ // U∞(A)/ ∼1

Proof. 1.1. If u, v ∈ Un(Ã) such that u ∼h v, then µ(u) ∼h µ(v).

1.2. Conversely, suppose µ(u) ∼h µ(v), we write

u = µ(u) + u0 and v = µ(v) + v0

where u0, v0 ∈ Un(Cf). Now we know that

u0 ∼h v0 in Un(Cf)

Since µ(u) ∼h µ(v), we may add the paths to obtain a path at + bt from u to v.

Note that at + bt ∈ Un(Ã) because

atbt = atb
∗
t = a∗t bt = a∗t b

∗
t = 0
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Hence, in what follows, if A is unital, we will simply identify

K1(A) = U∞(A)/ ∼1

In particular, it follows that for any C*-algebra A,

K1(A) ∼= K1(Ã)

Example 1.8. 1.1. K1(C) = 0 = K1(Mn(C))

Proof. By the previous proposition,

K1(Mn(C)) ∼= U∞(Mn(C))/ ∼1

However, any two unitaries in Mk(Mn((C)) are connected, so K1(Mn(C)) = 0

1.2. K1(B(H)) = 0 if H is infinite dimensional as well.

Proof. Recall that if u ∈ Un(B(H)) ∼= U(B(Hn)) is any unitary, then by the Borel
functional calculus,

u = eih

for some h ∈ B(H)sa. It follows that u ∼h 1n. Hence the result.

(End of Day 21)

2. Functoriality of K1

Definition 2.1. Let ϕ : A → B be a ∗-homomorphism, then ϕ̃ : Ã → B̃ is a unital
∗-homomorphism, which extends to a unital ∗-homomorphism ϕ̃ : Mn(Ã) → Mn(B̃).
This gives a map

ϕ̃ : U∞(Ã)→ U∞(B̃)

Define ν : U∞(Ã)→ K1(B) by
ν(u) := [ϕ̃(u)]1

Then ν satisfies the conditions of Proposition 1.5. Hence, we get an induced map

K1(ϕ) : K1(A)→ K1(B) given by [u]1 7→ [ϕ̃(u)]1

Note: If A and B are unital and ϕ : A→ B is a unital ∗-homomorphism, then (Exercise)

K1(ϕ)[u]1 = [ϕ(u)]1

Proposition 2.2 (Functoriality of K1). Let A,B,C be C*-algebras. Then

2.1. K1(idA) = idK1(A)

2.2. K1(ψ ◦ ϕ) = K1(ψ) ◦K1(ϕ)
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Hence, K1 is a contravariant functor.

2.3. K1({0}) = {0}
2.4. K1(0B,A) = 0K1(B),K1(A)

2.5. If ϕ, ψ : A→ B are homotopic ∗-homomorphisms, then K1(ϕ) = K1(ψ)

2.6. If A and B are homotopy equivalent C*-algebras, then K1(A) ∼= K1(B)

Proof. 2.1. Note that ĩdA = idÃ

2.2. Note that ψ̃ ◦ ϕ = ψ̃ ◦ ϕ̃
2.3. Recall that K1(A) ∼= K1(Ã) for any A. In particular,

K1({0}) ∼= K1(C) = 0

2.4. 0B,A factors as A→ {0} → B, so it follows that

K1(0B,A) = K1(0B,{0}) ◦K1(0{0},A) = 0

2.5. Let ϕt be a path of ∗-homomorphisms from ϕ to ψ. Then ϕ̃t is a path from ϕ̃ to
ψ̃. Hence if u ∈ U∞(Ã), we have

K1(ϕ)[u]1 = [ϕ̃(u)]1 = [ψ̃(u)]1 = K1(ψ)[u]1

2.6. This follows from part (v)

3. Half and Split Exactness of K1

The proofs here are similar to that of K0. Fix a short exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

Lemma 3.1. Let ϕ : A→ B be a ∗-homomorphism and g ∈ ker(K1(ϕ)). Then

3.1. ∃u ∈ U∞(Ã) such that g = [u]1 and ϕ̃(u) ∼h 1

3.2. If ϕ is surjective, then ∃u ∈ U∞(Ã) such that g = [u]1 and ϕ̃(u) = 1.

Proof. 3.1. Let v ∈ U∞(Ã) such that g = [v]1, then [ϕ̃(v)]1 = 0 = [1m]1, so ∃n ≥ m
such that

ϕ̃(v)⊕ 1m−n ∼h 1m ⊕ 1m−n = 1n

so take u = v ⊕ 1m−n
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3.2. By part (i), ∃v ∈ U∞(Ã) such that g = [v]1 and ϕ̃(u) ∼h 1n. Since ϕ is surjective,

so is ϕ̃, so ∃w ∈ Un(Ã) such that ϕ̃(w) = ϕ̃(v) and w ∼h 1. Then u := w∗v has
the property that ϕ̃(u) = 1 and g = [v]1 = [w∗]1 + [v]1 = [u]1.

Recall the following facts we proved earlier (See Lemma III.3.1): If A is a C*-algebra,
we have a split exact sequence

0→ A
ι−→ Ã

π−→ C→ 0

and a map λ : C→ Ã that splits π. We define s : Ã→ Ã by

s = λ ◦ π

so that s(a+ α1) = α1 for all a ∈ A,α ∈ C. This induces a map

sn : Mn(Ã)→Mn(Ã)

whose image consists of all matrices with scalar entries.

Lemma 3.2. For any n ∈ N

3.1. ϕ̃n : Mn(Ĩ)→Mn(Ã) is injective.

3.2. An element a ∈Mn(Ã) belongs to the image of ϕ̃n iff ψ̃n(a) = sn(ψ̃n(a))

Proposition 3.3 (Half-Exactness of K1). Given a short exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

the sequence

K1(I)
K1(ϕ)−−−→ K1(A)

K1(ψ)−−−→ K1(B)

is exact.

Proof. Since K1 is a covariant functor, K1(ψ) ◦ K1(ϕ) = 0, so it suffices to show that
ker(K1(ψ)) ⊂ Im(K1(ϕ), so fix g ∈ ker(K1(ψ)), then by the previous lemma, ∃u ∈
U∞(Ã) such that g = [u]1 and ψ̃(u) = 1. In particular,

sn(ψ̃n(u)) = ψ̃n(u))

Hence ∃v ∈Mn(Ĩ) such that u = ϕ̃(v). Since u is a unitary and ϕ̃ is injective, it follows
that v is also a unitary. Hence,

g = [u]1 = [ϕ̃(v)]1 ∈ Im(K1(ϕ))
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Remark 3.4. We will show that, for any C*-algebra A,

K1(A) ∼= K0(SA)

where SA = C0(0, 1) ⊗ A. The next three results will follow from that fact along with
the corresponding facts for K0

Proposition 3.5 (Split Exactness of K1). Given a split exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

with splitting λ : B → A, then the following sequence is also split exact

0→ K1(I)
K1(ϕ)−−−→ K1(A)

K1(ψ)−−−→ K1(B)→ 0

with splitting K1(λ) : K1(B)→ K1(A)

Proposition 3.6 (Direct sums).

K1(A⊕B) ∼= K1(A)⊕K1(B)

Proposition 3.7 (Continuity of K1). Let

A1
ϕ1−→ A2

ϕ2−→ A3 → . . .

be a sequence of C*-algebras with inductive limit (A, {µn}). Let (G, {βn}) be the inductive
limit of the sequence

K1(A1)
K1(ϕ1)−−−−→ K1(A2)

K1(ϕ2)−−−−→ A3 → . . .

Then there is a group isomorphism γ : G→ K1(A) such that

γ ◦ βn = K1(µn) ∀n ∈ N

Furthermore,

3.1.

K1(A) =
∞⋃
n=1

K1(µn)(K1(An))

3.2. For each n ∈ N,

ker(K1(µn)) =
∞⋃

m=n+1

ker(K1(ϕm,n))

Proposition 3.8 (Stability of K1). Let A be a C*-algebra, n ∈ N and λn : A→Mn(A)
be the map as before. Then

K1(λn) : K1(A)→ K1(Mn(A))

is an isomorphism. Furthermore, if κ : A→ A⊗K is the map as before, then

K1(κ) : K1(A)→ K1(A⊗K)

is also an isomorphism.
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Example 3.9. 3.1. Let A be any finite dimensional C*-algebra, then K1(A) = 0.

3.2. If A is any AF-algebra, then K1(A) = 0

3.3. In particular, K1(K) = 0

4. K1 and determinants

Let A be a unital C*-algebra, then there is a group homomorphism ω such that TFDC:

U(A)
[·]1

&&��
U(A)/U0(A) ω

// K1(A)

which exists because [u]1 = 0 for all u ∈ U0(A). Let 〈u〉 denote the class of u in
U(A)/U0(A), so that

ω(〈u〉) = [u]1

Definition 4.1. Let A be a commutative C*-algebra. For each n ∈ N, define a deter-
minant by D : Mn(A)→ A by

D((ai,j) :=
∑
σ∈Sn

sign(σ)
n∏
j=1

aj,σ(j)

Remark 4.2. If A = C, this is the usual determinant. The determinant has the following
properties:

4.1. D(ab) = D(a)D(b) ∀a, b ∈Mn(A)

4.2.

D

(
a 0
0 b

)
= D(a)D(b)

4.3. D(a∗) = D(a)∗

4.4. D(a) = a for all a ∈ A
4.5. D : Mn(A)→ A is continuous for all n ∈ N
4.6. If A is unital and commutative, then D maps U∞(A) to U(A), and if u, v ∈ Un(A)

such that u ∼h v, then D(u) ∼h D(v)

Proof. If ut is a path of unitaries such that u0 = u and u1 = v, then D(ut) is a
path of unitaries such that D(u0) = D(u) and D(u1) = D(v).

Hence, there is a group homomorphism

∆ : K1(A)→ U(A)/U0(A) given by [u]1 7→ 〈D(u)〉
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and TFDC:
U(A)

xx &&
[·]1
��

U(A)/U0(A) ω
// K1(A)

∆
// U(A)/U0(A)

In particular, by property 4.4,

∆ ◦ ω = idU(A)/U0(A)

Proposition 4.3. Let A be a unital commutative C*-algebra. Then there is a split exact
sequence

0→ ker(∆)
ι−→ K1(A)

∆−→ U(A)/U0(A)→ 0

with splitting ω : U(A)/U0(A)→ K1(A). Hence,

K1(A) ∼= U(A)/U0(A)⊕ ker(∆)

Corollary 4.4. If A is a unital commutative C*-algebra such that U(A) is not connected,
then K1(A) 6= 0

Proof. ω : U(A)/U0(A)→ K1(A) is injective.

(End of Day 22)

Remark 4.5. If u, v ∈ U(A) such that u ∼h v, then u∗v ∈ U0(A) so 〈u〉 = 〈v〉.
Conversely, if 〈u〉 = 〈v〉, then u ∼h v. Hence, U(A)/U0(A) coincides with the set of path
components of U(A). Furthermore,

‖u− v‖ < 2⇒ u ∼h v

So U(A) is locally path connected. Hence,

U(A)/U0(A) = π0(U(A))

the set of connected components of U(A)

Definition 4.6. Let A = C(X), then U(A) = C(X,T). The cohomotopy group π1(X)
is the group

[X,T] = U(A)/U0(A)

of pointed homotopy classes of pointed continuous maps f : X → T. This is an Abelian
group under the point-wise multiplication of functions.

Example 4.7. π1(T) ∼= Z. Hence, K1(C(T)) 6= 0
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Proof. Write F : [0, 1]→ C by
F (t) := u(e2πit)

Then F (t) 6= 0 for all t ∈ [0, 1]. Hence, F ∈ GL(C[0, 1]). Set

M := sup
t∈[0,1]

|F (t)|−1

Find a partition 0 = t0 < t1 < t2 . . . < tn = 1 of [0, 1] such that

sup
tk−1≤t≤tk

|F (t)− F (tk−1)| < 1

2M

Then it follows that if t ∈ [tk−1, tk],∣∣∣∣1− F (t)

F (tk−1

∣∣∣∣ =
|F (t)− F (tk−1)|
|F (tk−1)|

≤ 1

2M |F (tk−1)|
≤ 1

2
< 1

On the domain Ω := {z ∈ C : |1 − z| < 1}, let log(z) be the principal branch of the
logarithm,

log(z) = −
∞∑
n=1

(1− z)n

n

Then log is holomorphic, and satisfies log(1) = 0 and

elog(z) = z ∀z ∈ Ω

Now define
Gk(t) := log(F (t)/F (tk−1)) on tk−1 ≤ t ≤ tk

Then Gk is continuous and Gk(tk−1) = 0 and Gk(tk) = log(F (tk)/F (tk−1)). Furthermore,

F (t) = F (tk−1)eGk(t) ∀t ∈ [tk−1, tk]

Define G : [0, 1]→ C as follows

G(t) = G1(t) on t0 ≤ t ≤ t1

and
G(t) = G1(t1) +G2(t2) + . . .+Gk−1(tk−1) +Gk(t) on [tk−1, tk]

Then it follows that
F (t) = F (0)eG(t)

Write F (0) ∈ C× as F (0) = ez0 , we obtain f ∈ C[0, 1] as

f(t) = G(t) + z0

which satisfies
F (t) = u(e2πit) = e2πif(t)

If f, g : [0, 1]→ R are continuous and satisfy the above equation, then f−g is a constant
integer. Define α : C(T,T)→ Z by

α(u) := f(1)− f(0)

This is well-defined, and is called the winding number of u. α is surjective, and
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4.1. α(uv) = α(u) + α(v)

Proof. Write u(e2πit) = e2πif(t) and v(e2πit) = e2πig(t). Then

uv(e2πit) = e2πi(f(t)+g(t))

Hence
α(uv) = f(1) + g(1)− (f(0) + g(0)) = α(u) + α(v)

4.2. α(u∗) = −α(u)

Proof. If u(e2πit) = e2πif(t), then u∗(e2πit) = e2πi(−f(t))

4.3. u ∼h v iff α(u) = α(v)

Proof. (i) Suppose u ∼h v, then w := uv∗ ∼h 1. Hence, ∃h1, h2, . . . , hk ∈ C(T)sa
such that

w =
k∏
j=1

eihj

To show that α(w) = 0, it suffices to assume that k = 1 by part (i), so assume

w = eih

for some h : T→ R continuous. Then

f(t) :=
1

2π
h(e2πit)⇒ w(e2πit) = e2πif(t)

Hence,
α(w) = f(1)− f(0) = 0

(ii) Conversely, suppose α(u) = α(v), then for w := u∗v, we have α(w) = 0 by
part (i) and (ii). So write

w(e2πit) = e2πif(t)

such that f(1) − f(0) = 0. Now recall that T = [0, 1]/ ∼ via the quotient
map

t 7→ e2πit from [0, 1]→ T
Since F (0) = F (1), it induces a function h ∈ C(T) by the formula

h(e2πit) = f(t)

Hence,
u∗v = w = exp(2πih) ∈ U0(A)

Thus, u ∼h v
All these properties combine to produce an isomorphism

α : π1(T)→ Z given by 〈u〉 7→ α(u)

where 〈u〉 denotes the class of u in [T,T].
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Remark 4.8. In fact, we will show later that

∆ : K1(C(T))→ π1(T)

is an isomorphism. Hence, K1(C(T)) ∼= Z

Definition 4.9. A unital C*-algebraA is said to beK1-injective (resp. K1-surjective/K1-
bijective) if ω is injective (resp. surjective/bijective). If A is non-unital, we require that

Ã have this property.

Example 4.10. 4.1. If A = Mn(C) or B(H), then U(A) = U0(A) and K1(A) = 0, so
A is K1-bijective.

4.2. If A is a unital, commutative C*-algebra, then it is K1-injective.

4.3. C(T) is K1-bijective, but C(T3) is not. (to be proved later)

4.4. Also, the irrational rotation algebra Aθ is K1-bijective [due to Rieffel]

4.5. Every purely infinite, simple, unital C*-algebra isK1-bijective [Rørdam, Larsen,
and Laustsen, Exercise 8.13]. In particular, On and Q(H) are K1-bijective.

4.6. For a unital C*-algebra A, A⊗K is K1-bijective [Rørdam, Larsen, and Laust-
sen, Exercise 8.17]
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VIII. The Index Map

Given a short exact sequence of C*-algebras

0→ I → A→ B → 0

we have obtained two sequences

Ki(I)→ Ki(A)→ Ki(B)

We now wish to define a map

δ : K1(B)→ K0(I)

which connects the two sequences, giving a long exact sequence

K1(I)→ K1(A)→ K1(B)
δ−→ K0(I)→ K0(A)→ K0(B)

1. The Fredholm Index

To motivate this, consider the exact sequence

0→ K → B(H)
π−→ Q(H)→ 0

Theorem 1.1 (Atkinson). The following conditions are equivalent for an operator T ∈
B(H):

1.1. ker(T ) and coker(T ) = ker(T ∗) are both finite dimensional.

1.2. ∃S ∈ B(H) such that 1− ST and 1− TS are compact.

1.3. π(T ) is invertible in Q(H)

Proof. [Murphy, Theorem 1.4.15]

Definition 1.2. 1.1. If T ∈ B(H) satisfies one, and hence all, of the above conditions,
then T is said to be Fredholm. Write Φ(H) for the set of all Fredholm operators
in B(H). Note that

Φ(H) = π−1(GL(Q(H))

Hence, Φ(H) is an open subset of B(H). Furthermore, note that if T, S ∈ Φ(H),
then ST ∈ Φ(H) as well.
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1.2. To each T ∈ Φ(H), we define the index of T as

index(T ) := dim(ker(T ))− dim(ker(T ∗)) ∈ Z

Example 1.3. Let S ∈ B(`2) denote the left shift operator

S((xn)) = (x2, x3, . . .)

and let T denote the right shift

T ((xn)) = (0, x1, x2, . . .)

Then S = T ∗, ST = I and TS = I − Pe1 , so T is Fredholm. Also,

ker(T ) = {0} and ker(T ∗) = span(e1)

Hence,
index(T ) = −1

Theorem 1.4. ( [Murphy, Section 1.4]) The map index : Φ(H)→ Z has the following
properties:

1.1. index(T +K) = index(T ) for all T ∈ Φ(H) and K ∈ K(H)

1.2. index(TS) = index(T )index(S) for all S, T ∈ Φ(H)

1.3. The index map is locally constant on Φ(H), and continuous in the norm.

1.4. Two Fredholm operators are homotopic in Φ(H) iff they have the same index.

Remark 1.5. If T denotes the right-shift operator, then index(T ) = −1, and index(T ∗) =
1. By taking powers, it follows from the previous theorem, that

index(T n) = −n and index((T ∗)m) = m

Hence index : Φ(H)→ Z is surjective. Furthermore, observe that T n is an isometry for
each n ∈ N.

Theorem 1.6. The index map induces an isomorphism

ind : K1(Q(H))→ K0(K)

Hence, K1(Q(H)) ∼= Z.

Proof. 1.1. Let u ∈ U(Q(H)), and let T ∈ B(H) such that π(T ) = u. Write the polar
decomposition

T = V |T |
Then V is a partial isometry. Furthermore,

π(T ∗T ) = u∗u = 1⇒ π(|T |) = π((T ∗T )1/2) = 1

Hence, π(V ) = π(T ) = u
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1.2. Now note that (check!)
ker(V ) = range(1− V ∗V )

and similarly, ker(V ∗) = range(1− V V ∗). Hence,

index(V ) = rank(1− V ∗V )− rank(1− V V ∗)

1.3. Furthermore, if W is any other partial isometry such that π(W ) = u, then W−V ∈
K(H), so

index(W ) = index(V )

1.4. Recall that K0(K) ∼= Z via the map [p]0 7→ rank(p) = K0(Tr)([p]0). Hence, the
map

ν : U(Q(H))→ K0(K) given by u 7→ [1− V ∗V ]0 − [1− V V ∗]0
is well-defined. Furthermore, if u ∈ U0(Q(H)), then we may choose V to be a
unitary, in which case the RHS is zero. Hence, ν descends to a map

ind : U(Q(H))/U0(Q(H))→ K0(K)

Since Q(H) is purely infinite,

K1(Q(H)) ∼= U(Q(H))/U0(Q(H))

Hence, we get a map

ind : K1(Q(H))→ K0(K) given by [u]1 7→ [1− V ∗V ]0 − [1− V V ∗]0

where V ∈ B(H) is any partial isometry such that π(V ) = u.

1.5. We claim that ind is an isomorphism. Since K0(Tr) : K0(K) → Z is an isomor-
phism, it suffices to show that

µ := K0(Tr) ◦ ind

1.6. µ is a homomorphism: If u1, u2 ∈ U(Q(H)) and V1, V2 ∈ B(H) are partial isome-
tries such that π(Vi) = ui. Then

π(V1V2) = u1u2

Let W be any partial isometry such that π(W ) = u1u2, then W − V1V2 ∈ K(H),
so

index(W ) = index(V1V2)

Hence,

µ(u1) + µ(u2) = index(V1) + index(V2) = index(V1V2) = index(W ) = µ(u1u2)
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1.7. µ is injective: Suppose µ([u]1) = 0, then

index(V ) = 0 = index(I)⇒ V ∼h I in Φ(H)

Hence, u = π(V ) ∼h I in GL(Q(H)). Since U(Q(H)) is a deformation retract of
GL(Q(H)), it follows that u ∈ U0(Q(H)), whence [u]1 = 0

1.8. µ is surjective: If x ∈ K0(K), then write

n := K0(Tr)(x)

By Remark 1.5, ∃T ∈ Φ(H) such that index(T ) = n. Since µ is a group homo-
morphism, it suffices to assume n ≤ 0. In which case, we may choose T to be an
isometry. Hence,

T ∗T = I and TT ∗ − I ∈ K(H)

Hence,
u := π(T ) ∈ U(Q(H))

and by definition
µ([u]1) = index(T ) = n

(End of Day 23)

2. Definition of the Index Map

Fix a short exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

Recall the following facts we proved earlier (See Lemma III.3.1): If A is a C*-algebra,
we have a split exact sequence

0→ A
ι−→ Ã

π−→ C→ 0

and a map λ : C→ Ã that splits π. We define s : Ã→ Ã by

s = λ ◦ π

so that s(a+ α1) = α1 for all a ∈ A,α ∈ C. This induces a map

sn : Mn(Ã)→Mn(Ã)

whose image consists of all matrices with scalar entries.

Lemma 2.1. For any n ∈ N

2.1. ϕ̃n : Mn(Ĩ)→Mn(Ã) is injective.
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2.2. An element a ∈Mn(Ã) belongs to the image of ϕ̃n iff ψ̃n(a) = sn(ψ̃n(a))

In what follows, write

qn :=

(
1n 0
0 0

)
∈ P2n(Ĩ)

Lemma 2.2. Let u ∈ Un(B̃), then

2.1. ∃v ∈ U2n(Ã) and a projection p ∈ P2n(Ĩ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, ϕ̃(p) = vqnv

∗, s(p) = qn

2.2. If v, p are as in (i) and w ∈ U2n(Ã) and q ∈ P2n(Ĩ) also satisfy the same equation,
then

s(q) = qn and p ∼u q in P2n(Ĩ)

Proof. 2.1. By Whitehead’s lemma,(
u 0
0 u∗

)
∼h 12n in U2n(B̃)

Hence, v exists as required. Also,

ψ̃ (vqnv
∗) = qn

Hence, by the previous lemma, ∃p ∈M2n(Ĩ) such that

ϕ̃(p) = vqnv
∗

Since the RHS is a projection and ϕ̃ is injective, p ∈ P2n(Ĩ). Now,

ψ̃(ϕ̃(p)) = qn

Hence,
s(p) = qn

2.2. Suppose w, q also satisfy the same equations, then the same argument as above
shows that

s(q) = qn

Note that ψ̃(w∗v) = 12n. Hence, by the previous lemma, ∃z ∈M2n(Ĩ) such that

ϕ̃(z) = w∗v

Since ϕ̃ is injective, it follows that z is a unitary. Furthermore,

ϕ̃(zpz∗) = ϕ̃(q)

Since ϕ̃ is injective, we conclude that

zpz∗ = q

Hence, p ∼u q in P2n(Ĩ) as required.
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Definition 2.3. Define µ : U∞(B̃)→ K0(I) by

µ(u) := [p]0 − [s(p)]0 = [vqnv
∗]0 − [qn]0

where v ∈ U2n(Ã) and p ∈ P2n(Ĩ) satisfy the previous lemma. Then, µ is a well-defined
function.

Lemma 2.4. The map µ : U∞(B̃)→ K0(I) has the following properties:

2.1. µ(u1 ⊕ u2) = µ(u1) + µ(u2)

2.2. µ(1) = 0

2.3. If u1, u2 ∈ Un(B̃) are such that u1 ∼h u2, then µ(u1) = µ(u2)

Proof. 2.1. Technical. Skipped.

2.2. If u = 1, then the recipe from Lemma 2.2 gives

v = 12 and p = diag(1, 0) = s(p)

Hence, ν(1) = [p]0 − [s(p)]0 = 0

2.3. If u1 ∼h u2, choose v1 ∈ U2n(Ã) and p1 ∈ P2n(Ĩ) such that

ψ̃(v1) =

(
u1 0
0 u∗1

)
, ϕ̃(p1) = v1

(
1n 0
0 0

)
v∗1

Then µ(u1) = [p1]0 − [s(p1)]0. Since

u∗1u2 ∼h 1n ∼h u1u
∗
2

there are unitaries a, b ∈Mn(Ã) such that

ψ̃(a) = u∗1u2 and ψ̃(b) = u1u
∗
2

Set v2 := v1diag(a, b) ∈ U2n(Ã), then

ψ̃(v2) =

(
u2 0
0 u∗2

)
and v1

(
1n 0
0 0

)
v∗2 = ϕ̃(p1)

Hence, µ(u2) = [p1]0 − [s(p1)]0 = µ(u1).

Definition 2.5. The map µ : U∞(B̃)→ K0(I) satisfies all the conditions of Proposition
VII.1.5. Hence by the universal property of K1, we obtain a group homomorphism

δ1 : K1(B)→ K0(I)

such that δ1([u]1) = µ(u) for all u ∈ U∞(B̃). ie. If u ∈ Un(B̃), choose a unitary

v ∈ U2n(Ã) such that ψ̃(v) = diag(u, u∗). Then

δ1([u]1) = [vqnv
∗]− [qn]
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Proposition 2.6 (Naturality of the Index Map). Let

0 // I
ϕ //

γ
��

A
ψ //

α
��

B //

β
��

0

0 // I ′
ϕ′ // A′

ψ′ // B′ // 0

be a commutative diagram with short exact rows of C*-algebras. Let

δ1 : K1(B)→ K0(I) and δ′1 : K1(B′)→ K0(I ′)

be the index maps associated to the two sequences. Then TFDC:

K1(B)
δ1 //

K0(β)
��

K0(I)

K0(γ)
��

K1(B′)
δ′1

// K0(I ′)

Proof. Let g ∈ K1(B) and u ∈ Un(B̃) be such that g = [u]1. Then choose v ∈ U2n(Ã)

and p ∈ P2n(Ĩ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, ϕ̃(p) = vqnv

∗

Set v′ := α̃(v) ∈ U2n(Ã′ and p′ := γ̃(p) ∈ P2n(Ĩ ′), then

ψ̃′(v′) = ψ̃′ ◦ α(v) = β̃ ◦ ψ(v) = β̃

(
u 0
0 u∗

)
=

(
β̃(u) 0

0 β̃(u)∗

)

and similarly,
ϕ̃′(p′) = v′qn(v′)∗

Hence by definition of the index map,

δ′1(K0(β)(g)) = δ′1([β̃(u)]1) = [p′]0 − [s(p′)]0 = [ϕ̃(p)]0 − [ϕ̃(s(p))]0 = K0(ϕ)(δ1(g))

Hence the result.

Consider the short exact sequence 0 → I → A
π−→ A/I → 0, where A (and hence A/J)

is unital.

Proposition 2.7. Let u ∈ Un(A/J), then there is a partial isometry x ∈ M2n(Ã) such
that

δ1([u]1) = [1− x∗x]0 − [1− xx∗]0
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Proof. Let v ∈ U2n(Ã) and p ∈ P2n(Ĩ) be such that

ψ̃(v) =

(
u 0
0 u∗

)
, ϕ̃(p) = vqnv

∗, s(p) = qn

Write x := (1− qn)v∗, then

x∗x = v(1− qn)v∗ = 1− vqnv∗

and xx∗ = 1− qn. Hence,

[1− x∗x]0 − [1− xx∗]0 = [vqnv
∗]0 − [qn]0 = δ1([u]1)

Proposition 2.8. Let u ∈ Un(A/J) and suppose u lifts to a partial isometry x ∈Mn(A).
Then

δ1([u]1) = [1− x∗x]0 − [1− xx∗]0
Proof. Let

w :=

(
x 1− xx∗

1− x∗x x∗

)
∈M2n(A)

Then w is a unitary and π(w) = diag(u, u∗). Hence,

δ1([u]1) = [wqnw
∗]0 − [qn]0

However,
x = x(x∗x) and x∗ = x∗xx∗

Hence,

wqnw
∗ =

(
x 1− xx∗

1− x∗x x∗

)(
1n 0
0 0

)(
x∗ 1− x∗x

1− xx∗ x

)
=

(
x 0

1− x∗x 0

)(
x∗ 1− x∗x

1− xx∗ x

)
=

(
xx∗ x(1− x∗x)

(1− x∗x)x∗ (1− x∗x)

)
=

(
xx∗ 0
0 1− x∗x

)
⇒ wqnw

∗ + diag(1− xx∗, 0) =

(
1n 0
0 1− x∗x

)
= qn + diag(0, 1− x∗x)

⇒ δ1([u]1) = [wqnw
∗]0 − [qn]0 = [1− x∗x]0 − [1− xx∗]0

Corollary 2.9. For the exact sequence

0→ K(H)→ B(H)→ Q(H)→ 0

The map ind : K1(Q(H))→ K0(K(H)) constructed earlier coincides with δ1
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3. Exact Sequence of K-groups

Let
0→ I

ϕ−→ A
ψ−→ B → 0

be a short exact sequence of C*-algebras.

Theorem 3.1. The sequence

K1(I)
K1(ϕ) // K1(A)

K1(ψ)// K1(B)

δ1
��

K0(B) K0(A)
K0(ψ)oo K0(I)

K0(ϕ)oo

is exact.

Proof. We show two out of four steps and omit the rest, because they are too technical.

3.1. δ1 ◦ K1(ψ) = 0: Let u ∈ Un(Ã) and let x := K1(ψ)([u]1) = [ψ̃(u)]1. We WTS:
δ1(x) = 0. Now set

v =

(
u 0
0 u∗

)
and p := qn

Then p = s(p) and

ψ̃(v) =

(
ψ̃(u) 0

0 ψ̃(u∗)

)
, and ϕ̃(p) = vqnv

∗

Hence,
δ1(x) = [p]0 − [s(p)]0 = 0

3.2. K0(ϕ) ◦ δ1 = 0: If [u]1 ∈ K1(B), then let v and p as above. Then

K0(ϕ)(δ1([u]1)) = [ϕ̃(p)]0 − [ϕ̃(s(p))]0

But by construction,
ϕ̃(p) = vqnv

∗ and ϕ̃(s(p)) = qn

Hence, ϕ̃(p) ∼u ϕ̃(p), and so

K0(ϕ) ◦ δ1([u]1) = 0

Example 3.2 (The Toeplitz Algebra). Let H = `2 and s ∈ B(H) be the right shift
operator. Then s is an isometry,

s∗s = 1 and ss∗ = 1− pe1

Let T := C∗(S). This is called the Toeplitz algebra.
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3.1. We claim that K(H) ⊂ T : First define ei,j to be the map

ei,j(x) := 〈x, ej〉ei
and set

fn :=
n∑
j=1

ej,j

to be the projection onto span{e1, e2, . . . , en}. Observe that

f1 = 1− ss∗ ∈ T and ei,j = si−1f1(s∗)j−1

Hence, ei,j ∈ T for all i, j ∈ N. Together, they span all finite rank operators.
Hence,

K(H) = span{ei,j} ⊂ T

3.2. Consider the quotient map π : T → Q(H). Then π(s) ∈ Q(H) is a unitary and

[π(s)]1 6= 0 in K1(Q(H))

because index(s) = −1. Hence, π(s) /∈ U0(Q(H)), so it follows that

sp(π(s)) = T

Hence, π(T ) = C∗(π(s)) ∼= C(T).

3.3. Thus, we get a short exact sequence

0→ K(H)→ T → C(T)→ 0

and hence a long exact sequence of K-groups with

δ1 : K1(C(T))→ K0(K(H))

Let u := π(s) ∈ U(C(T)), then since s is an isometry, we have

δ1([u]1) = [1− s∗s]0 − [1− ss∗]0 = −[f1]0

Furthermore, in K0(K), −[f1]0 is a generator. Hence,

δ1 : K1(C(T))→ K0(K(H))

is surjective.

3.4. Now consider the long exact sequence of K-groups

K1(K)→ K1(T )→ K1(C(T))
δ1−→ K0(K)

K0(ι)−−−→ K0(T )
K0(π)−−−→ K0(C(T))

Since δ1 is surjective,

ker(K0(ι)) = im(δ1) = K0(K)⇒ K0(ι) = 0

Hence, this reduces to

0→ K1(T )→ K1(C(T))
δ1−→ Z 0−→ K0(T )

K0(π)−−−→ K0(C(T))

where K0(π) is injective.
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Remark 3.3. We will show that K0(T ) ∼= Z and that K1(T ) = {0}.

Example 3.4. Consider the short exact sequence

0→ C0(R2)→ C(D)→ C(T)→ 0

Since D is contractible, C(D) ∼h C. Hence, K0(C(D)) ∼= Z and K1(C(D)) = 0. Hence,
the long exact sequence of K-groups gives

K1(C0(R2))→ 0→ K1(C(T))→ K0(C0(R2))→ Z K0(ψ)−−−→ K0(C(T))

Hence, the map
K1(C(T))→ K0(C0(R2))

is injective. Since K1(C(T)) 6= 0 by Example 4.7, it follows that K0(C0(R2)) 6= 0.

4. Higher K-functors

Corollary 4.1. For any C*-algebra A, there is a natural isomorphism

K1(A) ∼= K0(SA)

Proof. Note that SA = C0(0, 1) ⊗ A. Define the cone of A to be CA = C0[0, 1) ⊗ A,
then we have a short exact sequence

0→ SA→ CA→ A→ 0

Since CA ∼h {0}, we have K0(CA) = K1(CA) = 0. So by exactness, we get an
isomorphism

αA := δ1 : K1(A)→ K0(SA)

To see that this is natural, note that if ϕ : A→ B is a ∗-homomorphism, we get a map
of exact sequences

0 // SA //

Sϕ
��

CA //

Cϕ
��

A //

ϕ
��

0

0 // SB // CB // B // 0

where Sϕ = idC0(0,1) ⊗ ϕ and Cϕ = idC0[0,1) ⊗ ϕ. Now the naturality of αA follows from
the naturality of the index map.

Note: This completes all the proofs we had left unfinished from Chapter VII.

Definition 4.2. For each n ≥ 2, define the functor Kn inductively as

Kn(A) := Kn−1(SA)

Given a ∗-homomorphism ϕ : A→ B, we have a ∗-homomorphism

Sϕ : SA→ SA
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By induction, it follows that we get a map

Kn(ϕ) : Kn(A)→ Kn(B)

which satisfies all the required properties so that Kn is a covariant functor.

Lemma 4.3. For each n ≥ 2, the functor Kn is a half-exact, split exact, homotopy
invariant, continuous functor from the category of C*-algebras to the category of Abelian
groups.

Proof. Given a short exact sequence

0→ I → A→ B → 0

the induced sequence
0→ SI → SA→ SB → 0

Hence, the functor S from the category of C*-algebras to itself is exact, split exact and
continuous (See [Rørdam, Larsen, and Laustsen, Exercise 10.2]). Furthermore, if
A ' B, then SA ' SB. Hence, by induction, if Kn−1 satisfies any of these properties,
then Kn would too.

(End of Day 24)

Definition 4.4. Given a short exact sequence

0→ I → A→ B → 0

we have an induced exact sequence

0→ SI → SA→ SB → 0

The index map of this sequence is a map

δ2 := K1(SB)→ K0(SI)⇒ δ2 := K2(B)→ K1(I)

This allows us to extend the long exact sequence one step further

. . .→ K2(B)
δ2−→ K1(I)→ K1(A)→ K1(B)

δ1−→ K0(I)→ . . .

Proceeding inductively, we define

δn : Kn(B)→ Kn−1(I)

which gives a long exact sequence in K-theory.

. . .→ Kn(B)
δn−→ Kn−1(I)→ Kn−1(A)→ Kn−1(B)

δn−1−−→ Kn−2(I)→ . . .
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IX. Bott Periodicity

1. Cuntz’ Proof of Bott Periodicity

We wish to prove the following theorem

Theorem 1.1 (Bott). For any C*-algebra A, there is a natural isomorphism

βA : Kn(A)→ Kn+2(A)

Consider the Toeplitz algebra T defined earlier. Note that

T = C∗(s)

where s ∈ B(`2) is the right shift operator. Then there is a short exact sequence

0→ K(H)→ T π−→ C(T)→ 0

We will need the following

Theorem 1.2 (Universal Property of T ). If v is an isometry in a unital C*-algebra B,
then there is a unique ∗-homomorphism ϕ : T → B such that ϕ(s) = v.

Definition 1.3. Define q : T → C by

q := ev1 ◦ π

Then q is a ∗-homomomorphism such that q(s) = 1.

Theorem 1.4 (Cuntz). For any C*-algebra A and any n ∈ N, the map

Kn(idA ⊗ q) : Kn(A⊗ T )→ Kn(A)

is an isomorphism.

Proof. Fix A and n ∈ N. For simplicity of notation, for any C*-algebras C and D and
any ∗-homomorphism ψ : C → D, we write

C ′ := C ⊗ A and ψ′ : C ′ → D′ for ψ ⊗ idA

Let j : C→ T be the unique unital ∗-homomorphism. Then

q ◦ j = idC ⇒ q′ ◦ j′ = idA

Hence,
Kn(q′) ◦Kn(j′) = idKn(A)

WTS: Kn(j′) ◦Kn(q′) = idKn(T ′).
We will show that there are maps α and β such that
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• Kn(α) is injective and

• Kn(β) +Kn(α) ◦Kn(j′) ◦Kn(q′) = Kn(β) +Kn(α)

1.1. Step 1 (Finding α):

(i) Let e := 1− ss∗ ∈ T be the rank one projection. Let ε : T → K ⊗ T be the
map

a 7→ e⊗ a

Consider ε′ : T ⊗ A→ (K ⊗ T )⊗ A. There is an isomorphism

γ : (K ⊗ T )⊗ A→ (T ⊗ A)⊗K

such that γ((a⊗ b)⊗ c) = (b⊗ c)⊗ a for all elementary tensors. Hence,

λ := Kn(γ) ◦Kn(ε′) : Kn(T ⊗ A)→ Kn((T ⊗ A)⊗K)

is the natural isomorphism from Theorem V.4.6 (Note that Lemma V.4.5
applies to Kn, not just K0). Furthermore, Kn(γ) is an isomorphism. Hence,

Kn(ε′) : Kn(T ′)→ Kn(T ′ ⊗K)

is an isomorphism.

(ii) Inside the algebra T ⊗ T , we have a subalgebra

T ⊗ 1 := {a⊗ 1 : a ∈ T }

and a closed ideal K ⊗ A. So define a subalgebra

B := T ⊗ 1 +K ⊗ T

Let π : B → B/(K ⊗ T ) be the quotient map and let θ : T → B be the map
a 7→ a⊗ 1. Define the pullback

C := {(b, a) ∈ B ⊕ T : π(b) = π ◦ θ(a)}

(iii) Define ι : K ⊗ T → C by
x 7→ (x, 0)

Then this is a well-defined ∗-homomorphism. Also define p : C → T by

(b, a) 7→ a

Note that im(ι) ⊂ ker(p) by definition. Furthermore, if p((b, a)) = 0, then
a = 0, so

π(b) = 0⇒ b ∈ K ⊗ T ⇒ (b, a) ∈ im(ι)
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Hence we have an exact sequence

0→ K⊗ T → C → T → 0

Define α : T → C by
a 7→ (a⊗ 1, a)

Then α is a well-defined ∗-homomorphism because

a⊗ 1− θ(a) = 0 ∈ K ⊗ T

and clearly p ◦ α(a) = a. Hence, this exact sequence splits.

(iv) Hence, the exact sequence

0→ (K ⊗ T )′
ι′−→ C ′ → T ′ → 0

also splits, and so does the sequence

0→ Kn(K ⊗ T ′) Kn(ι′)−−−→ Kn(C ′)→ Kn(T ′)→ 0

In particular,
Kn(ι′) : Kn(K ⊗ T ′)→ Kn(C ′)

is injective. Define ψ : T → C by ψ = ι ◦ ε. Then

Kn(ψ′) : Kn(T ′)→ Kn(C ′)

is injective. We show that

Kn(ψ′) ◦Kn(j′) ◦Kn(q′) = Kn(ψ′)

1.2. Step 2 (Finding β):

(i) Let v := s2s∗. Then v is an isometry. Furthermore,

v ⊗ 1− θ(s) = v ⊗ 1− s⊗ 1 = s((ss∗ − 1)⊗ 1) ∈ K ⊗ T

Hence, (v ⊗ 1, s) ∈ C. Furthermore, this element is an isometry in C. Thus,
by the universal property of T , there is a unique ∗-homomorphism ϕ : T → C
such that

ϕ(s) = (v ⊗ 1, s)

(ii) Recall: ψ : T → C is given by

ψ(a) = (e⊗ a, 0)

Now ev = (1− ss∗)s2s∗ = s2s∗ − ss∗s2s∗ = 0. Hence,

ψ(s)ϕ(s) = ((e⊗ s)(v ⊗ 1), 0) = (0, 0)
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Similarly,
ψ(s)∗ϕ(s) = ϕ(s)ψ(s) = ϕ(s)ψ(s)∗ = 0

Hence, ϕ(x)ψ(y) = 0 for all x, y ∈ T . Therefore,

ϕ+ ψ

is a ∗-homomorphism. Similarly, ϕ ⊥ ψ ◦ j ◦ q, and so

ϕ+ ψ ◦ j ◦ q

is a ∗-homomorphism. We show that

ϕ+ ψ ∼h ϕ+ ψ ◦ j ◦ q

(iii) Define

z0 = s2(s∗)2 ⊗ 1 + es∗ ⊗ s+ se⊗ s∗ + e⊗ e
z1 = s2(s∗)2 ⊗ 1 + es∗ ⊗ 1 + se⊗ 1

Then z0, z1 ∈ B. Furthermore, they are both unitaries (Check!). Define a
path

ut := −i exp(iπ(1− t)z0/2) exp(iπtz1/2)

Then t 7→ ut is a path of unitaries in B such that u0 = z0 and u1 = z1.
Furthermore, there is an identification [Murphy, Remark 3.3]

B/(K ⊗ T ) = (K ⊗ T + T ⊗ 1)/(K ⊗ T )
∼= T ⊗ 1/(K ⊗ T ∩ T ⊗ 1)
∼= T /K ∼= C(T)

And under this isomorphism, we have a commuting diagram

T π //

θ

��

C(T)

∼=
��

B π
// B/K ⊗ T

Hence, it is clear that
π(z0) = π(z1) = 1

and so π(ut) = 1 for all t ∈ [0, 1].

(iv) For each t ∈ [0, 1], the element

wt := (ut(s⊗ 1), s) ∈ C

is an isometry. Hence, it defines an isometry

w ∈ C[0, 1]⊗ C
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By the universal property of T , there is a ∗-homomorphism ϕ : T → C[0, 1]⊗
C such that

ϕ(s) = w

This gives a ∗-homomorphism ϕ′ : T ′ → C[0, 1] ⊗ C ′ which we think of as a
path of ∗-homomorphism ϕ′t : T ′ → C ′.

(v) Note that,

(ϕ+ ψ)(s) = ϕ(s) + ψ(s) = (v ⊗ 1, s) + (e⊗ s, 0) = (u0(s⊗ 1), s)

Hence, ϕ+ ψ = ϕ0 by uniqueness. Similarly,

ϕ+ ψ ◦ j ◦ q = ϕ1

Tensoring with A, we get

ϕ′ + ψ′ ◦ j′ ◦ q′ = ϕ′1 and ϕ′ + ψ′ = ϕ′0

1.3. Step 3 (Completing the proof): By homotopy invariance, we have

Kn(ϕ′) +Kn(ψ′) = Kn(ϕ′) +Kn(ψ′) ◦Kn(j′) ◦Kn(q′)

Hence,
Kn(ψ′) = Kn(ψ′) ◦Kn(j′) ◦Kn(q′)

Since Kn(ψ′) is injective, we have

Kn(j′) ◦Kn(q′) = idKn(T ′)

as required.

Example 1.5. We conclude that

K0(T ) ∼= K0(C) ∼= Z and K1(T ) = 0

This completes Example VIII.3.2.

Remark 1.6. 1.1. The reduced Toeplitz Algebra is defined as

T0 := ker(q)

1.2. Note that K(H) ⊂ T0 and

π(T0) = {f ∈ C(T) : f(1) = 0}

Hence, we have a short exact sequence

0→ K(H)→ T0 → C0(R)→ 0

Since all the C*-algebras are nuclear, for any C*-algebra A, we have

0→ A⊗K → A⊗ T0 → SA→ 0
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1.3. Furthermore, we have a split exact sequence

0→ T0 → T → C→ 0

Once again, this induces a split exact sequence

0→ A⊗ T0 → A⊗ T → A→ 0

Theorem 1.7. For any C*-algebra A, there is a natural isomorphism

βA : Kn(A)→ Kn+2(A) = Kn+1(SA)

This map is called the Bott map.

Proof. Since Kn is split exact, we have a split exact sequence

0→ Kn(A⊗ T0)→ Kn(A⊗ T )
Kn(idA⊗q)−−−−−−→ Kn(A)→ 0

By the previous theorem, Kn(idA ⊗ q) is an isomorphism. Hence,

Kn(A⊗ T0) = 0

Now consider the long exact sequence in K-theory arising from the second short exact
sequence from the previous remark

Kn+1(A⊗K) // Kn+1(A⊗ T0) // Kn+1(SA)

δn+1

��
Kn(SA) Kn(A⊗ T0)oo Kn(A⊗K)oo

Since Kn(A⊗ T0) = 0 = Kn+1(A⊗ T0), it follows by exactness that

δn+1 : Kn+1(SA)→ Kn(A⊗K)

is an isomorphism. Let λ : K0(A)→ K0(A⊗K) be the isomorphism from earlier, then

βA := λ−1 ◦ δn+1

is an isomorphism. It is also natural because both λ and δn+1 are natural.

2. The Six Term Exact Sequence

Definition 2.1. Given a short exact sequence

0→ I
ϕ−→ A

ψ−→ B → 0

we define the exponential map as the map δ0 : K0(B)→ K1(I) by

δ0 = δ2 ◦ βB : K0(B)→ K2(B)→ K1(I)

where δ2 is the index map associated to the sequence

0→ SI
Sϕ−→ SA

Sψ−→ SB → 0
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Note that δ0 is natural in the sense described earlier. Given another short exact sequence
and maps as below

0 // I
ϕ //

γ
��

A
ψ //

α
��

B //

β
��

0

0 // I ′
ϕ′ // A′

ψ′ // B′ // 0

be a commutative diagram with short exact rows of C*-algebras. Then TFDC:

K0(B)
δ0 //

K0(β)

��

K1(I)

K1(γ)

��
K0(B′)

δ′0

// K1(I ′)

This is because both βB and δ2 are natural.

Theorem 2.2. The six term sequence

K0(I)
K0(ϕ) // K0(A)

K0(ψ)// K0(B)

δ0
��

K1(B)

δ1

OO

K1(A)
K1(ψ)oo K1(I)

K1(ϕ)oo

is exact.

Proof. It suffices to show exactness at K0(B) and K1(I). To see this, consider the
diagram

K2(A)
K2(ψ)// K2(B)

δ2 // K1(I)
K1(ϕ)// K1(A)

K0(A)
K0(ψ)

//

βA

OO

K0(B)
δ0
//

βB

OO

K1(I)
K1(ϕ)

//

=

OO

K1(A)

=

OO

The diagram commutes by naturality of the Bott map. The top row is exact, so the
bottom row must be.

3. Examples and Calculations

Example 3.1. For the exact sequence

0→ K(H)→ B(H)→ Q(H)→ 0

we had seen that the map
δ1 : K1(Q(H))→ K0(K)

was an isomorphism (The Fredholm index). We may now conclude, from the six-term
exact sequence and the fact that K0(B(H)) = K1(B(H)) = 0 that

K0(Q(H)) ∼= K1(K) = 0

as well.
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Example 3.2. For any n ∈ N

K0(C0(Rn)) ∼= Kn(C) ∼=

{
K0(C) ∼= Z : n even

K1(C) ∼= 0 : n odd

and similarly,

K1(C0(Rn)) ∼=

{
0 : n even

Z : n odd

Example 3.3 (C(Tn)). 3.1. For any C*-algebra A, we have a split exact sequence

0→ SA→ C(T, A)→ A→ 0

so we get

Kn(C(T, A)) ∼= Kn(A)⊕Kn(SA) ∼= Kn(A)⊕Kn+1(A)

3.2. If A = C, we have
K0(C(T)) ∼= K0(C)⊕K1(C) ∼= Z

and similarly, K1(C(T)) ∼= Z. We had shown (Example VII.4.7) that there was an
injective map

ω : U(C(T))/U0(C(T))→ K1(C(T))

and we had shown that U(C(T))/U0(C(T)) = [T,T] ∼= Z. We now conclude that
this map is an isomorphism.

3.3. If A = C(Tn−1), then C(Tn) = C(T, A), so by induction, we have

K0(C(Tn)) ∼= K1(C(Tn)) ∼= Z2n−1

3.4. If n = 3, we observe that
K1(C(T3)) ∼= Z4

However, by [Rørdam, Larsen, and Laustsen, Exercise 8.15],

U(C(T3))/U0(C(T3)) ∼= Z3

so the map ω (which is always injective for commutative C*-algebras) is not sur-
jective in this case.

3.5. Hence, if A = C(T3), then ∃x ∈ K1(A) such that

x 6= [v]1 ∀v ∈ U(A)

Choose k ∈ N minimal such that ∃u ∈ U2k(A) such that x = [u]1. Then, if
B = Mk(A), then we have found a unitary u ∈ U(M2(B)) such that

u �h

(
v 0
0 1

)
for any v ∈ U(B). This completes Example I.2.9, where we needed such a C*-
algebra to show that, for projections, p ∼u q does not necessarily imply p ∼h q.
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3.6. Note: In fact, we may take k = 1. To prove this, we need to understand homo-
topical stable ranks for C*-algebras.

(End of Day 25)

Example 3.4 (Dimension Drop Algebras). For n ∈ N, define the dimension drop algebra

Dn := {f : [0, 1]→Mn(C) : f(0) = 0, f(1) ∈ C1n}

We have a short exact sequence

0→ SMn(C)
ι−→ Dn

π−→ C→ 0

where π(f) = f(1). So we get a six-term exact sequence

K0(SMn(C))
K0(ι) // K0(Dn)

K0(π) // K0(C)

δ0
��

K1(C)

δ1

OO

K1(Dn)
K1(π)oo K1(SMn(C))

K1(ι)oo

Now Kk(SMn(C)) ∼= Kn+1(C), so we get

0
K0(ι)// K0(Dn)

K0(π) // Z

δ0
��

0

δ1

OO

K1(Dn)
K1(π)oo ZK1(ι)oo

so it suffices to understand the map δ0 : K0(C) → K1(SMn(C)). There is an explicit
description of the map δ0, which allows us to compute that δ0 is the map

1 7→ n

from Z 7→ Z. Hence,
K0(Dn) = 0 and K1(Dn) ∼= Z/nZ

Hence, we have the following K-groups:

K0 K1

Dn 0 Z/nZ
SDn Z/nZ 0
C0(R) 0 Z
C Z 0

Corollary 3.5. Let G0 and G1 be any finitely generated Abelian group, then ∃ a C*-
algebra A such that

K0(A) ∼= G0 and K0(A) ∼= G1

Proof. Simply take direct sums of the above C*-algebras.
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X. Exercises

1. Chapter 1

2. Chapter 2

2.1. Assume A is unital by replacing it with A+, and note that p − q is a self-adjoint
element.

2.2.

2.3.

2.4.

(i) ⇒ (ii): If pq = 0, then qp = q∗p∗ = (pq)∗ = 0, so

(p+ q)2 = p2 + q2 + pq + qp = p+ q

and clearly p+ q is self-adjoint.

(ii) ⇒ (iii): If p+ q is a projection, then p+ q ≤ 1 must hold.

(iii) ⇒ (i): If p+q ≤ 1, then p(p+q)p ≤ p by [Murphy, Theorem 2.2.5]. So p+pqp ≤ p,
so pqp = 0. Hence, (pq)2 = 0, so pq = 0

The second part follows by induction.

2.5.

2.6. Let pj := v∗j vj, qj = vjv
∗
j , then by the previous statement, the pi ⊥ pj and qi ⊥ qj,

if i 6= j. So if i 6= j, then

v∗i vj = (qivi)
∗qjvj = v∗i qiqjvj = 0

Hence if u =
∑n

i=1 vi, then

u∗u =
n∑
i=1

v∗i vi +
∑
i 6=j

v∗i vj =
n∑
i=1

v∗i vi = 1A

Similarly, uu∗ = 1A as well.

2.7.
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2.8. If a were invertible, then u := ω(a) would be a candidate for the required unitary.
Furthermore, we would need ‖a − ω(a)‖ < ε. To ensure this, let K = [0, 2] and
ΩK the set of all self-adjoint elements of A with spectrum contained in K. Then
the square root function h 7→ h1/2 is continuous on ΩK , so ∃δ > 0 such that, for
any h ∈ ΩK

‖h− 1‖ < δ ⇒ ‖h1/2 − 1‖ < ε

In particular, if a ∈ A such that ‖a∗a− 1‖ < δ, then ‖|a| − 1‖ < ε, whence

‖a− ω(a)‖ = ‖ω(a)|a| − ω(a)‖ ≤ ‖|a| − 1‖ < ε

So now we need to ensure that a is invertible, but this follows if δ < 1 (which can,
of course, be arranged), so that a∗a and aa∗ are both invertible (so a is both left
and right invertible, hence invertible).

For the second part of the problem: Fix ε > 0, and choose δ1 > 0 such that

‖1− x‖ < δ1 ⇒ ‖1− x−1‖ < ε/3

This is possible because the inverse map is continuous at 1. Using ΩK as above,
choose δ2 > 0 such that, for any h ∈ Bsa such that sp(h) ⊂ [0, 2]

‖1− h‖ < δ2 ⇒ ‖1− h1/2‖ < δ1

In particular, if b ∈ B such that ‖b‖ ≤
√

2, then h := b∗b has the property that
sp(h) ⊂ [0, 2] so

‖1− b∗b‖ < δ2 ⇒ ‖1− |b|‖ < δ1

Now define

δ := min

{
δ2

2
,
ε

2
,
√

2− 1

}
Then if ‖u− b‖ < δ, then ‖b‖ ≤ ‖u− b‖+ 1 ≤

√
2, and

‖1− b∗b‖ = ‖u∗u− b∗b‖
≤ ‖u∗u− u∗b‖+ ‖u∗b− b∗b‖
≤ ‖u− b‖+ ‖u∗ − b∗‖ = 2‖u− b‖ < δ2

Hence, ‖1− |b|‖ < δ1, so ‖1− |b|−1‖ < ε/3. Hence,

‖u− ω(b)‖ = ‖u− b|b|−1‖ ≤ ‖u− b‖+ ‖b− b|b|−1‖

≤ ε

2
+ ‖b‖‖1− |b|−1‖

≤ ε

2
+ ‖b‖ ε

3
≤ ε

2
+

√
2ε

3
≤ ε

Finally, note that ‖u− b‖ ≤ 1 = 1
‖u−1‖ , so b is invertible, whence ω(b) is a unitary

in B.
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3. Chapter 3

3.1.

3.2.

3.3.

3.4. Let X be compact Hausdorff

(i) As in Example 3.3.5, for each x ∈ X, there is a map

νx : K0(C(X))→ Z given by [p]0 7→ Tr(p(x))

For p ∈ Pn(C(X)) fixed, the map x 7→ Tr(p(x)) is continuous from X to Z.
Thus, we get a map

dim : K0(C(X))→ C(X,Z)

This map is surjective: If X =
⊔n
i=1Ci, where each Ci is a connected compo-

nent of X, then any f ∈ C(X,Z) can be expressed uniquely in the form

f =
n∑
i=1

fiχCi

where fi ∈ Z the common value taken by f on Ci. Hence, it suffices to show
that χCi

∈ Im(dim). But if pi ∈ P(C(X)) is the projection χCi
, then

dim(pi) = χCi

(ii) If there is such a vx ∈ Mm,n(C(X)), then it follows that p(x) ∼0 q(x), so
that Tr(p(x)) = Tr(q(x)) for all x ∈ X. Conversely, if Tr(p(x)) = Tr(q(x)),
then ∃ṽx ∈ Mm,n(C) such that ṽx

∗ṽx = p(x) and ṽxṽx
∗ = q(x). However, the

evaluation map
Mm,n(C(X))→Mm,n(C)

is surjective, so ∃vx ∈ Mm,n(C(X)) such that vx(x) = ṽx, which solves the
problem.

(iii) Suppose dim([p]0) = dim([q]0), then for each x ∈ X, ∃vx ∈ Mm,n(C(X))
such that v∗x(x)vx(x) = p(x) and vx(x)v∗x(x) = q(x). By continuity, ∃ a
neighbourhood Ux of x such that

‖v∗x(y)vx(y)− p(y)‖ < 1

2
and ‖vx(y)v∗x(y)− q(y)‖ < 1

2

for all y ∈ Ux. Choose a refinement of {Ux : x ∈ X} made up of mutually
disjoint sets, and choose a finite subcover {X1, X2, . . . , Xr} such that, for each
1 ≤ i ≤ r,∃vi ∈Mm,n(C(X)) such that

‖v∗i (y)vi(y)− p(y)‖ < 1

2
and ‖vi(y)v∗i (y)− q(y)‖ < 1

2

It follows that ‖p(y) − q(y)‖ < 1 for all y ∈ X, so that ‖p − q‖ < 1. Hence,
p ∼h q as required.
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3.5.

3.6.

4. Chapter 4

5. Chapter 5

6. Chapter 6

6.1.

6.2.

6.3.

6.4.

6.5.

6.6. Let A be a C*-algebra, ande define ρ : P∞(A)→ P(A⊗K) as follows: If p ∈ Pn(A),
then ρ(p) := κn(p). Then ρ induces a bijection

ρ̂ : D(A)/ ∼0 → P(A⊗K)/ ∼

Proof. (i) Let p ∈ Pn(A), then κn(p) ∈ P(A⊗K) since κn is a ∗-homomorphism.
Furthermore, if p ∈ Pm(A), q ∈ Pn(A) such that p ∼0 q, then choose ` ≥
max{n,m} and p′ = ϕ`,m(p), q′ = ϕ`,n(q) ∈ P`(A) such that p ∼0 p′ and
q ∼0 q

′ so that
p′ ∼ q′ in Mn(A)

Then

κm(p) = κ` ◦ ϕ`,m(p) = κ`(p
′) ∼ κ`(q

′) = κ` ◦ ϕ`,n(q) = κn(q)

Hence, ρ induces a map ρ̂ as required.

To show that ρ̂ is a bijection, it would suffice to prove two things:

(ii) If p, q ∈ P∞(A) such that ρ(p) ∼ ρ(q), then p ∼0 q

Proof. The proof proceeds along the lines of the injectivity part of Theorem
3.5: If κn(p) ∼ κm(q), then ∃v ∈ A⊗K such that

v∗v = κn(p) and vv∗ = κm(q)

Choose ` ∈ N and x ∈M`(A) such that κ`(x) is close enough to v so that

‖κ`(x∗x)− κn(p)‖ < 1/2 and ‖κ`(xx∗)− κm(q)‖ < 1/2
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Once again, ∃k ≥ max{`, n,m} and y ∈Mk(A) such that

‖y∗y − ϕk,n(p)‖ < 1/2 and ‖yy∗ − ϕk,m(q)‖ < 1/2

Hence,
ϕk,n(p) ∼ ϕk,m(q)

But ϕk,n(p) ∼0 p and ϕk,m(q) ∼0 q in P∞(A).

(iii) If p ∈ P(A ⊗ K) then ∃q ∈ P∞(A) such that ρ(q) ∼ p: The proof proceeds
along the same lines as the surjectivity part of Theorem 3.5: Since

A⊗K ∼= lim(Mn(A), ϕn)

∃k ∈ N and b ∈Mk(A) such that

‖κk(b)− p‖ < 1/5

Let a = (b+ b∗)/2, then a is self-adjoint and

‖κk(a)− p‖ < 1/5

As in that proof, this implies that

‖κk(a2 − a)‖ < 1/4

Since
‖κk(d)‖ = lim

m→∞
‖ϕm,k(d)‖

∃m ≥ k and c := ϕm,k(a) such that

‖c2 − c‖ < 1/4

By Lemma 3.3, ∃ a projection q ∈Mm(A) such that

‖c− q‖ < 1/2

Hence,
‖κm(q)− p‖ < 1

so p ∼h κm(q)

For any C*-algebra A,

K0(A) = {[p]− [q] : p, q ∈ P(A⊗K)}
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Proof. Let A be any C*-algebra (not necessarily stable), and consider P(A⊗K)/ ∼,
which we make into an Abelian semigroup as follows: Given p, q ∈ P(A⊗K), choose
n,m ∈ N and p′ ∈ Pn(A), q′ ∈ Pm(A) such that

p ∼ ρ(p′) and q ∼ ρ(q′)

Let ` = n+m and set

p′′ :=

(
p 0
0 0m

)
and q′′ :=

(
0n 0
0 q

)
Then p′′ ⊥ q′′ and

p ∼ ρ(p′′) and q ∼ ρ(q′′)

Define
[p] + [q] := [p′′ + q′′]

Then (Check!) that this is a well-defined operation, and that P(A⊗ K)/ ∼ is an
Abelian semi-group under this operation. Furthermore, the map

ρ̂ : D(A)/ ∼0 → P(A⊗K)/ ∼

is an isomorphism of Abelian semi-groups. Hence,

K0(A) ∼= G(P(A⊗K)/ ∼) = {[p]− [q] : p, q ∈ P(A⊗K)}

7. Chapter 7

8. Chapter 8

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9. Let A be a unital C*-algebra.
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(i) Let u ∈ U(A) and s an isometry, ie. s∗s = 1. Let w := sus∗+ (1− ss∗), then

ww∗ = sus∗su∗s∗ + sus∗(1− ss∗) + (1− ss∗)su∗s∗ + (1− ss∗)(1− ss∗)
= suu∗s∗ + sus∗ − sus∗ss∗ + su∗s∗ − ss∗su∗s∗ + 1− ss∗ − ss∗ + ss∗ss∗

= ss∗ + sus∗ − sus∗ + su∗s∗ − su∗s∗ + 1 + ss∗

= ss∗ + 1− ss∗ = 1

Similarly, w∗w = 1. Now set

v =

(
s 1− ss∗
0 s∗

)
then

vv∗ =

(
s 1− ss∗
0 s∗

)(
s∗ 0

1− ss∗ s

)
=

(
ss∗ + 1− ss∗ 0
s∗ − s∗ss∗ s− ss∗s

)
=

(
1 0
0 1

)
Similarly, v∗v = 1, so v is a unitary. Furthermore,

v

(
u 0
0 1

)
v∗ =

(
s 1− ss∗
0 s∗

)(
u 0
0 1

)
v

=

(
su 1− ss∗
0 s∗

)(
s∗ 0

1− ss∗ s

)
=

(
sus∗ + 1− ss∗ s− ss∗s
s∗ − s∗ss∗ s∗s

)
=

(
w 0
0 1

)
Hence, [u]1 = [w]1

(ii) Define vi := sius
∗
i + (1 − sis∗i ), then each vi is a unitary by part (i). Since

s∗i sj = δi,j, we have

v1v2 = (s1us
∗
1 + 1− s1s

∗
1)(s2us

∗
2 + 1− s2s

∗
2)

= s1us
∗
1 + s2us

∗
2 + 1− s2s

∗
2 − s1s

∗
1

By induction, it follows that u =
∏n

i=1 vi, so the result follows.

(iii) Let t as in the question, then

t∗t =


s∗1 0 . . . 0
s∗2 0 . . . 0
...

...
...

...
s∗n 0 . . . 0



s1 s2 . . . sn
0 0 . . . 0
...

...
...

...
0 0 . . . 0

 = 1n

Hence, t is an isometry. Now if u ∈ Un(A), then by part (i),

w := tut∗ + (1n − tt∗) ∈ Un(A)
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Observe that if u = (ai,j), then

w =


s1 s2 . . . sn
0 0 . . . 0
...

...
...

...
0 0 . . . 0



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann



s∗1 0 . . . 0
s∗2 0 . . . 0
...

...
...

...
s∗n 0 . . . 0

+ 1n − tt∗

=


∑n

i=1 siai1
∑n

i=1 siai2 . . .
∑n

i=1 siain
0 0 . . . 0
...

...
...

...
0 0 . . . 0



s∗1 0 . . . 0
s∗2 0 . . . 0
...

...
...

...
s∗n 0 . . . 0

+ 1n − tt∗

=


∑n

j=1

∑n
i=1 siai,js

∗
j 0 . . . 0

0 0 . . . 0
...

...
...

...
0 0 . . . 0

+


1−

∑n
i=1 sis

∗
i 0 . . . 0

0 1 . . . 0
...

...
...

...
0 0 . . . 1


So if

v :=
n∑
j=1

n∑
i=1

siai,js
∗
j + 1−

n∑
i=1

sis
∗
i

Then w = v ⊕ 1n−1, and

v∗ =
n∑
k=1

n∑
`=1

s`a
∗
k,`s
∗
k + 1−

n∑
i=1

sis
∗
i

so one can check (hopefully) that v is a unitary using the fact that s∗i sj = δi,j.

(iv) If A is properly infinite, then for each n ∈ N, there exist (by [Rørdam,
Larsen, and Laustsen, Exercise 4.6]) isometries {s1, s2, . . . , sn} such that
sjs
∗
j ⊥ sis

∗
i when i 6= j. The result now follows from the previous steps.

8.10.

8.11. Let A be a unital C*-algebra, p a projection in A, and let u0 ∈ U((1−p)A(1−p)).
ie.

u0u
∗
0 = 1− p = u∗0u0

Set u = u0 + p

(i) Then u0 ∈ (1− p)A(1− p) implies that u0 = (1− p)u0(1− p), so u0p = pu0 =
pu∗0 = u∗0p = 0. Hence,

uu∗ = u0u
∗
0 + p = 1 = u∗u

(ii) If u ∼h 1, then [u]1 = 0. Conversely, if [u]1 = 0, then there is a natural number
n ∈ N such that u⊕1n ∼h 1n+1. Let t 7→ wt be a path of unitaries in Un+1(A)
such that w0 = 1n+1 and w1 = u⊕ 1n. Since p is property infinite and full, by
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[Rørdam, Larsen, and Laustsen, Exercise 4.9(i)], ∃v0 ∈ M1,n+1(A) such
that v∗0v0 = p⊕ 1n and v0v

∗
0 ≤ p. Set

v = (1− p 0 . . . 0) + v0 ∈M1,n+1(A)

and set zt := vwtv
∗ + (1− vv∗). Then

v∗v = ((1−p 0 . . . 0)∗+v∗0)((1−p 0 . . . 0)+v0) = (1−p)⊕0n+v∗0v0 = (1−p)⊕0n+p⊕1n = 1n+1

and

vv∗ = ((1− p 0 . . . 0) + v0)((1− p 0 . . . 0)∗ + v∗0) = (1− p) + v0v
∗
0

Thus, v∗(1− vv∗) = 0 = (1− vv∗)v, so

z∗t zt = (vw∗t v
∗ + (1− vv∗)(vwtv∗ + (1− vv∗)) = vw∗twtv

∗ + (1− vv∗) = 1

and

ztz
∗
t = (vwtv

∗ + (1− vv∗))(vw∗t v∗ + (1− vv∗) = vwtw
∗
t v
∗ + 1− vv∗ = 1

Hence, each zt is a unitary. Furthermore,

z0 = vv∗ + (1− vv∗) = 1

and (this needs to be checked)

z1 = v(u⊕ 1n)v∗ + (1− vv∗) = u

Hence, u ∼h 1 iff [u]1 = 0.

8.12.

8.13. If A is a purely infinite, simple, unital C*-algebra, then we want to show that

ω : U(A)/U0(A)→ K1(A)

is an isomorphism.

(i) ω is surjective: This follows directly from [Rørdam, Larsen, and Laust-
sen, Exercise 8.9(iv)]

(ii) ω is injective: Suppose u ∈ U(A) is such that [u]1 = 0, then by [Rørdam,
Larsen, and Laustsen, Exercise 8.12], ∃ a non-zero projection p ∈ A such
that u ∼h p+u0 for some u0 ∈ U((1−p)A(1−p)). Since [u]1 = 0, we conclude
from [Rørdam, Larsen, and Laustsen, Exercise 8.11] that u ∼h 1. Hence,
u ∈ U0(A). Thus, ω is injective.
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