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Introduction

Given a C*-algebra A, we associate two abelian groups Ky(A) and K;(A) to A, in a
functorial way. ie. Given a s*-homomorphism ¢ : A — B, we obtain induced group
homomorphisms ¢, : K,(A) — K,(B). Furthermore, if ¢ is an isomorphism, so is ¢.
Hence, K-theory can be used to distinguish C*-algebras.

The goal of this course is to introduce K-theory to those who have seen the basics of
C*-algebra theory (from [MURPHY] or the equivalent). We will be following [RORDAM,
LARSEN, and LAUSTSEN] almost verbatim.



. Projections and Unitary Elements

1. Homotopy classes of Unitary elements

Definition 1.1. Let X be a topological space. We say two points a, b € X are homotopic
(in symbols, a ~, b) if there is a continuous path v : [0,1] — X such that v(0) = a and
v(l) =b.

If such a path exists, we denote it by ¢ +— v; or ¢ +— v(t).

Definition 1.2. Let A be a unital C*-algebra. An element u € A is called a unitary
if uu* = u*u = 1. The group of unitaries is denoted by U(A). Write Uy(A) for all the
elements u € U(A) such that u ~p, 1 in U(A). This is a normal subgroup of U(A).

Recall that if u € U(A), then the spectrum sp(u) C T. Given h € A, we write exp(ih)
for the element obtained by applying the continuous function f(z) := exp(iz) to h.

Lemma 1.3. Let A be a unital C*-algebra.

1.1. If h € Ag,, then exp(ih) € Uy(A)
1.2. If u € U(A) such that sp(u) # T, then u € Uy(A)
1.3. If u,v € U(A) such that ||u —v|| < 2, then u ~ v.

Proof. 1.1. The path t — exp(ith) connects it to the identity.

1.2. If sp(u) # T, then there is a continuous branch of the log function ¢ : T — R
which satisfies z = exp(i¢(z)). Then h := p(u) works.
1.3. eee ||lu —v| <2, then ||[v'u —1|| <2, s0 —1 ¢ sp(v*u). Therefore, v*u € Uy(A), so

U ~p .
[

Example 1.4. If A = M,,(C), then U(A) = Uy(A) because every u € U(A) satisfies part
(2) of the above theorem.

Example 1.5. The above proof gives us an interesting fact: If A = B(H), and u € U(A),
then there is a branch of the log function ¢ : T — R which, while not necessarily con-
tinuous, is at least a Borel function. Hence, h := p(u) € A is a well-defined element,
and clearly v = exp(ih) must hold. Hence, u € Uy(A). Hence, U(A) is connected.

More generally, if A is a Von Neummann algebra, then U/(A) is connected.



Proposition 1.6. 1.1. Uy(A) is a normal subgroup of U(A)
1.2. Uy(A) is open and closed in U(A)
1.8. uw € Up(A) iff 3hy, ha, ..., hy € Ayq such that

u = exp(ihy) exp(ihs) ... exp(ihy)

Proof. 1.1. Easy check.

1.2. If uw € U(A) such that ||u — 1|| < 1, then v € Uy(A). Hence, as in the case on
GL(A), we can show that Uy(A) is open in U(A). Now Uy(A) is a subgroup, so
U(A) is the disjoint union of its cosets. Each coset is homeomorphic to Uy(A), so
each coset is open. Hence, Uy(A), being the complement of an open set, must also

be closed in U(A).

1.3. Let F denote the set of finite products as above. This set is open because if u € F
and ||[v — u|| < 2, then v € F as in the previous lemma. Once again, F' is a
subgroup of Uy(A), so it must also be closed. Since Uy(A) is connected, it follows

that F = Uy(A).
0

Corollary 1.7. Let ¢ : A — B be a unital surjective x-homomorphism, then

1.1. o(Uy(A)) = Uy(B)
1.2. Let uy,ug € U(A) such that uy ~p us. If uy lifts to a unitary in U(A), then so does
Uq.

Proof. 1.1. If v € Uy(B), then write v = ]I, exp(ik;). Lift k; to elements h; € A,
and consider t; := (h; + h})/2. Then t; € Ay, so u =[], exp(it;) € Uy(A), and
clearly ¢(u) = v.

1.2. Note that ujuy € Uy(A), so Fu € Uy(A) such that p(u) = uyus. Now suppose

us = @(v), then p(uv) = ujuius = uy.
]

Example 1.8. [R@rRDAM, LARSEN, and LAUSTSEN, Exercise 2.12] Consider the short
exact sequence

0 = Cy(R?) = C(D) % C(T) = 0
where 1 is the restriction map. Let v € C(T) be the identity map, v(z) = z. Then there
does not exist u € U(C(D)) such that ¢ (u) = v.

Proof. Suppose u € U(C(D)) such that ¢)(u) = v, then uw : D — T is a continuous
function such that u|p= v. Let ¢ : T — D denote the inclusion map, then w o ¢ = idy.
So the composition of maps induced on the fundamental group

7T1(T, 1) L_*> 7T-1(]1])7 1) u—*> 71-l(Tv 1)

should be the identity map. But this is not possible because m(T,1) = Z while
1 (ID), 1) =0. ]



This also shows that ¢ (C(T)) is not connected. Compare this with the earlier statement
about Von Neumann Algebras.

(End of Day 1)

a. Lifting invertibles

Given a unital Banach algebra A, write GL(A) for the set of invertibles in A, and
GLy(A) for the set of all invertibles that are path connected to 1. Note that GL(A) is
open in A, and A is locally path connected, so path components in GL(A) coincide with
components in GL(A). Hence, GLy(A) is the connected component of the identity in
GL(A). Hence, it is a normal subgroup of GL(A)

Definition 1.9. If A is a Banach algebra, and a € A, we write

oo n

exp(a) := Z %

n=1

Note that the series converges in A, and if a,b € A commute, then exp(a + b) =
exp(a) exp(b). We write exp(A) for the set of all finite products of elements of the form
exp(a). Note that exp(A) C GL(A)

Lemma 1.10. /Doucras, Lemma 2.13] If |1 — a|| < 1, then a € exp(A). Hence,
exp(A) is an open subset of GL(A)

Proof. Define
=1
b= —(1—a)"
> (1-a)

n=1

Then the series converges absolutely, and so it converges in A, and exp(b) = a O]

Theorem 1.11. /Doucras, Theorem 2.1/4]
GLo(A) = exp(A)

Proof. If a € A, then exp(ta) defines a path from exp(a) to 1, so exp(A) C GLy(A).
Conversely, exp(A) is a subgroup of G Ly(A) which is an open set by the previous lemma.
Hence, every coset of exp(A) in GLg(A) is open, being homeomorphic to exp(A), so
exp(A) is also closed in GLy(A). Since GLy(A) is connected, exp(A) = GLy(A). O

Corollary 1.12. If ¢ : A — B is a surjective unital x-homomorphism, and b € GLo(B),
then Ja € GLo(A) such that p(a) =b

Proof. Write b = [[;_, exp(b;). Choose a; € A such that p(a;) = b;, and set a =
[T exp(a;). =



Example 1.13. Let S € B(¢?) be the right-shift operator
S((xy)) == (0,21, 2o, . ..)
Then T is the left-shift operator
T((x)) := (xg,x3,...)

Hence, T'S = I and ST = I — P,,, where P,, is the projection onto the first coordinate.
In particular, ST — I € K(¢?), the compact operators.

Let A := B((?) and B := Q((?) := A/K(?), the Calkin algebra, and let 7 : A — B be
the quotient map. Then

7(S) € GL(B) but S ¢ GL(A)
Moreover, suppose R € GL(A) such that m(R) = m(S), then S — R € K(¢?). However,
index(S) = dim(ker(5)) — dim(coker(5)) = —1
If R is invertible, then

index(R) = dim(ker(R)) — dim(coker(R)) =0—-0=0

But index is invariant under addition of compacts. See [ARVESON, Chapter 3]. Hence,
7(S) € GL(B) cannot be lifted to an invertible in GL(A).

b. Relationship between GL(A) and U(A)
Let A be a unital C*-algebra, then U(A) is a subgroup of GL(A).

Definition 1.14. A subspace Xy of a topological space X is said to be a retract of X
if there is a continuous map 7 : X — Xj such that

1.1, & ~p, 7(2)

1.2. 7(z) =z for all x € X.

1/2

Given a € A, we write |a| := (a*a)'/?, and this is called the absolute value of a.

Proposition 1.15. 1.1. Ifa € GL(A), then |a| € GL(A) and w(a) := ala|™ € U(A).
1.2. The map w : GL(A) — U(A) is a retract.



1.3. If u,v €e U(A) and u ~p, v in GL(A), then u ~p, v in U(A)
In order to prove this, we need a lemma

Lemma 1.16. /RORDAM, LARSEN, and LAUSTSEN, Lemma 1.2.5] Let K C R be
compact and [ : K — C continuous. Let A be a unital C*-algebra and Qg be the set of
all self-adjoint elements in A with spectrum contained in K. The induced map

f:Qx — A given by a — f(a)
15 continuous.

Proof. Note that a — a" is continuous because multiplication is continuous by the
Banach algebra identity. Hence, any polynomial is continuous. Now apply Stone-
Weierstrass. O

Now returning to the proof of the above proposition:
Proof. 1.1. If a € GL(A), so is a*, so (a*a)/? € GL(A) with inverse (a*a)~*/2. Now
u := ala|~! has the property that

uw*u = |a| ta*ala) Tt = 1 = wu*

sou € U(A)

1.2. To show that w is continuous: Note that a — a* is continuous and multiplication
is continuous, so a + a*a is also continuous. The inverse map is continuous on
GL(A), so it suffices to show that h +— h'/? is continuous on bounded sets of A*.
This follows from the previous lemma because a bounded set is contained in Qg
where K = [0, R] for some R > 0.

To see that w is a retract: Let a € GL(A), then the path w; := w(a)(t|a|+(1—1t)14)
is continuous and wy = w(a) and w; = a. To see that w, € GL(A), note that
la| € GL(A) N A", so 3\ € (0,1] such that |a|] > A14. Hence,

tla| 4+ (1 —)14 > Ay

Hence, w; is invertible, so w(a) ~, a in GL(A)

1.3. If u ~, v in GL(A) via a path u;, then w(u;) is a path in U (A) from u to v.
[

Remark 1.17. Let Xy C X. We say that X is a deformation retract of X if there is a
retract 7: X — X and a continuous map

H:0,1]xX—>X
such that, for all x € X

1.1. H(z,0) ==z



1.2. H(z,1) =7(x)

ie. H is a homotopy between the identity map on X and the map 7.

(End of Day 2)

c. Whitehead’s Lemma
Lemma 1.18. Ifu,v € A, then

u 0 uv 0 vu 0 v 0
0 v) Lo 1) "\o 1)7"\0 u

in Us(A). In particular,

Proof. In M5(C),

( é) =0 1)

because U(My(C)) is connected. Hence,

62 =E GG )G~

and similarly the other claims also hold. O

Corollary 1.19. Let ¢ : A — B be a surjective unital x-homomorphism and u € U(B),
then Jv € Us(A) such that
u 0
SO2(,U) = (0 u*)

where vy @ My(A) — My(B) is the induced homomorphism.

2. Equivalence of Projections

A projection in a C*-algebra A is an element p € A such that p = p? = p*.

Example 2.1. If A = C(X), then a projection p € A must be the characteristic function
of a cl-open set in X. In particular, if X is connected iff C(X) has no non-trivial
projections.

10



Definition 2.2. We say that two projections p,q € A are Murray-Von-Neumann equiv-
alent if Juv € A such that p = v*v and ¢ = vv*. Such a v is called a partial isometry, p
its support projection, and ¢ its range projection.

We check that this is an equivalence relation, and write p ~ ¢ for it. Furthermore, we
have

U =qu =1vp = qup

Example 2.3. If A = B(H) and p,q € A projections, then p ~ ¢ iff dim(p(H)) =
dim(q(H)).

Proof. 2.1. Consider V = p(H),W = q(H). Suppose dim(V') = dim(W), then there
is an isomorphism v : V' — W obtained by mapping orthonormal bases to each
other. Extending this map to an element of B(H) by defining it to be zero on
the orthogonal complements, we obtain a partial isometry such that v*v = p and
vt =q.

2.2. Conversely, if p ~ ¢, then any orthonormal basis of p(H) must be carried to an
orthonormal basis of ¢(H) by the partial isometry v. Then choose an orthonormal
basis B of p(H). We claim that {v(b) : b € B} is an orthonormal basis for ¢(H).
Firstly, note that

qu(b) = v(b) = v(b) € q(H)

Now if b, 0/ € B, then
(w(b),0()) = (v*o(b),6) = (g(B), ) = (b, ) = Gy
Furthermore, if e € ¢(H) is such that e L v(b) for all b € B, then
(v*(e),b) = (e,v(b)) =0 Vbe B
As before, v*(e) € p(H) so this implies v*(e) = 0, whence
e=gq(e) =wvv*(e) =0

This proves the claim.

Example 2.4. In particular, if A = M,,(C), then for any two projections p,q € A,

p~qeTr(p)=Tr(q)

There are two more equivalence relations on projections. For any C*-algebra A, write
A for its unitization.

Definition 2.5. We say that two projections p,q € A are unitarily equivalent (In
symbols, p ~,, ¢) if Ju € U(A) such that p = uqu*. We say that they are homotopic (In
symbols, p ~, q) if there is a path ¢ — p, of projections connecting p to g.

11



Proposition 2.6. Let A be a unital C*-algebra, and p,q € A projections. Then TFAE:

2.1. pr~yq
2.2. q =upu* for some u € U(A)
28. p~qandlya—p~14—gq

Proof. Write A = A+Cf where f = (1;—14), and note that af = fa =0for alla € A.

(i)= (ii): Suppose q¢ = zpz* for some z € U(A), write z = u+ Af for some u € A and X € C.
Then
17 = 22" = wu* + |A\2f2 = wu” + |M\Pf
But 1; = 14+ f, so we have that uu* = 14 by equating terms. Similarly, u*u = 14.

(ii) = (iii): Suppose ¢ = upu*, write
v:=upand w=u(ly — p)

Then
U’U* = q7’U*U =p and w*w = (1A _p)aww* = <1A - q)

(iii) = (i): Suppose v,w € A are partial isometries satisfying the above relations. Set

z=v+w+f

Then vv* + ww* + ff* = v'v +w*w + f*f = 13, so by Exercise 2.6, z € U(A).
Furthermore, wv* = v*w =0, and fp=pf =0, so

Zpz* = vpv* = vt =gq

]

Example 2.7. Let A = B(H) and p € B(H) be any projection whose range is infinite
dimensional. Then by the earlier example, p ~ 14. However, if (14 — p) # 0, then p
cannot be unitarily equivalent to 14. For instance, if p € B(¢?) is the projection whose
range is {e; }+, then

pr~1abut poee, 1y

Proposition 2.8. p ~, ¢ iff Ju € Uy(A) such that ¢ = upu*

Proof. For one direction, if ¢ = upu* with v € Uy(A), then there is a path u; connecting
u to 15. Therefore,
t — ugpuy

is a path of projections connecting p to q.

Conversely, suppose p ~, ¢ via a path p;, then choose a partition {t¢,t1,...,t,} of [0, 1]
such that

Hpti _pti+1H < 1/2

12



It now suffices to assume that ||p — ¢|| < 1/2 as the required property is transitive. In
this case, take

zi=pg+(1-p(l-g €A

Then pz = pg = zq, and ||z — 1|| < 2||p —¢|| < 1. Hence, z € GL(A) and z ~j, 15 in

GL(A). Let u = w(z) € U(A), then
U 2 = u € Up(A)
and also p = uqu* (See [RORDAM, LARSEN, and LAUSTSEN, Proposition 2.2.5]) O
We have the following implications:
P~ q=pP~uqd=pr~(q

The reverse implications do not hold. But the following do hold

p 0 q 0
p~a=(§ o)~ (§ o)
p 0 q 0

Example 2.9. To see that p ~ ¢ does not necessarily imply p ~,, ¢, look at the previous

example with A = B(H). To see that p ~, g does not necessarily imply p ~y, ¢, we need
the following fact: There exists a C*-algebra B and a unitary u € U(Ms(B)) such that

v 0
u »*p 0 1

for any v € U(B). If we assume this, then we may choose

_ (L0 and ¢ := upu*

Then one can show that p ~; ¢, while clearly p ~, ¢

and

Now see [R@ORDAM, LARSEN, and LAUSTSEN, Proposition 2.2.8].

(End of Day 3)
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Il. The K| group of a unital C*-algebra

1. Definition

a. The Grothendieck construction

Compare the following construction with the construction of the field of fractions of an
integral domain. Let (S, +) be an abelian semi-group. Define an equivalence relation ~

on S x S by
(x1,y1) ~ (x2,92) < Iz € S such that z1 + yo + 2 =22+ Y1 + 2

Write G(S) := (S x S)/ ~, and let (x,y) denote the equivalence class of (z,y) € S x S.
Define
(@1, 51) + (@2, 92) = (@1 + T2, 91 + ¥2)

Then (G(S),+) is an abelian group where 0g = (y,y) for any y € S and —(x,y) = (y, x).
Fix y € S, and define s : S — G(5) by
= (r+y,y)

This map independent of y and is additive. This construction has the following proper-
ties:

1.1. Universal Property: Given an abelian group H and an additive map ¢ : S — H,
there is a unique group homomorphism @ : G(S) — H such that the following

diagram commutes:
S ¢ H
N A
G(95)

1.2. Functoriality: Given an additive map ¢ : S — T between abelian semigroups, there
is a unique group homomorphism G(y) : G(S) — G(T') such that the following
diagram commutes:

S—% T
Ys YT
G(s) 2L a(1)

14



1.3. G(S) = {vs(z) —vs(y) : 2,y € S}

We won’t prove these results. They are easy. However, note that they have the following
consequence: Given another pair (G, ¥g) where G is an abelian group and

Ys: S — G

an additive map such that these properties hold, then, EI@ : G(S) — G such that

s 075 = s
Similarly, there is a map 7g : G — G(S) such that

s o ts =g

Hence, 6 := 750 z/ﬁ; is a group homomorphism from G(S) to G(S) and has the property
that

0oys="s
But the image of vg generates G(S), so = idg(s). Similarly,

Ysoqs = idg
and so G = G(S). Thus, the pair (G(S),7s) is unique. Hence,

Example 1.1. If S =Z*, then G(S) = Z

Example 1.2. If S = Z"U{oo}, where addition with oo is as usual, then for any = € S,
7s(x) +7s(00) = vs(z + 00) = 75(00)
But G(S) has cancellation, so yg(x) = Og(g). This is true for any z € S, so G(S) = {0}.

Remark 1.3. The map 75 : S — G(S) need not be injective as the above example
shows. In fact, it is injective iff S has cancellation: ie. x + z = y + 2z implies that x =y
in S. (proof later)

b. Semigroups of Projections

Fix a C*-algebra A. For each n € N, write P,,(A) for the set of all projections in M, (A),
and write P, (A) for the disjoint union. Given p,q € P (A), define

. p 0
@ q := diag(p, q) :=
p®© q := diag(p, q) (0 q>

Furthermore, if p € P,(A) and ¢ € P,,,(A), we say p ~ ¢ if Jv € M,,,,(A) such that
p =v*v and ¢ = vv*. We have

15



Proposition 1.4. /[RORDAM, LARSEN, and LAUSTSEN, Proposition 2.5.2]

1.1. If n=m, then p ~o q iff p ~ q

1.2. p~ogp® 0, for alln € N

1.8. If pr~op and g ~o ¢, thenp® q~o 0’ ® ¢

14 pDqgrogqDp

1.5. If n =m and pq = 0, then p + q is a projection, and p+ q ~op & q
1.6. p®(qdr)=(p®q @7

Proof. We don’t prove all these statements. Here is a sample.
(ii) If p ~o p' and q ~q ¢/, write
p=0v"v,p =w ¢=ww,qd = ww
Then u := diag(v, w) is such that

p®q=u'uand p ®q = uu*

Definition 1.5. Define
D(A) :=Py(A)/ ~o

Write [p]p for the equivalence class of an element, and define
[plo + o = [p @ dlp
This is a well-defined addition on D(A), making it into an abelian semi-group.

Definition 1.6. The K, group of a unital C*-algebra A is defined as

We write [plo := v([p]p) for any p € Py (A).

Proposition 1.7 (The standard picture of Ky - the unital case). Let A be a unital
C*-algebra, then

Ko(A) = {lplo = ldlo : P, ¢ € Poo(A)} = {[plo — ldlo : p, ¢ € Pu(A),n € N}

Moreover,

1.1. [p@® qlo = [plo + [alo
1.2. [04] = 0 where 04 is the zero projection in A

1.3. If p,q € Pp(A) and p ~p, q in P,(A), then [plo = [qlo

16



1.4. If p,q € P,(A) such that p L q, then [p+ qlo = [plo + [dlo

Proof. The first description of Ky follows from Property 1.3 of the Grothendieck con-
struction. Furthermore, if
9= [plo — ldlo

where p € P,,(A) and ¢ € Py(A), then let n := max{m, ¢} and replace p,q by p' =
p®0,_m and ¢ = q¢ P 0,,_, respectively. Then p ~q p’ and ¢ ~¢ ¢’ so

9=1[7"—1d
and p', ¢ € Pn(A)

1.1,
[P ® dlo = (lp @ dlp) = v([plp + lalp) = ¥([plp) + 7 ([alp) = [plo + [dlo

1.2. Since 04 @ 04 ~o 04, we have [04]o + [04]o = [04]o Whence [04)o =0

1.3. Because
prhq=>p~qg=pe~oq=[plp = [dp = [plo = [dlo

1.4. Asin 1.1 because p+q ~¢ p®q by [RORDAM, LARSEN, and LAUSTSEN, Proposition
2.3.2)

]

c. Stable Equivalence of Projections

Remark 1.8. Let (S,+) be an abelian semigroup and (G(S),~s) the corresponding
Grothendieck group. Then, for all z,y € S,

vs(x) =vs(y) ©x+z=y+=z2
for some z € S

Proof. Write vs(z) = (x +u,u). If v+ 2z =y + 2, then
r+ututz=y+tutu+z=(T+uu =y+uu)
Conversely, if yg(z) = vs(y), then 32’ € S such that
r+utut+Z=y+tutu+z

so take z i=u+u+ 2 0

Hence, 75 : S — G(S) is injective iff S has cancellation: ie. x + z = y + z implies that
rT=y
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Definition 1.9. We say two projections p,q € P, (A) are stably equivalent if Ir €
Poo(A) such that
POT~qOT

If this happens, we write p ~; q.

Note that if A is unital, then replacing r by r @ (1,, — r) ~q 1,,, we see that
P~ pOly~qDl,

for some n € N.

Lemma 1.10. For any two projections p,q € Ps(A),

[plo = lglo © p ~s q

(End of Day 4)

d. Universal Property of K|

Proposition 1.11 (Universal Property of Ky). Let A be a unital C*-algebra, G an
abelian group, and

v:Pxo(A) = G

be a function such that

1.1. v(p®q) = v(p) +v(q) for all p,q € Pu(A)
1.2. v(04) =0
1.3. If p,q € P,(A) and p ~p, q in P,(A), then v(p) = v(q)

Then 3 a unique group homomorphism
Q K(](A) -G

such that

a([plo) = v(p)

for all p € Py (A). ie The following diagram commutes

Poo(A)
AN

Proof. If p,q € Ps(A) are projections such that p ~q ¢, then we claim that v(p) = v(q).
To see this, note that if p ~¢ ¢, then choose n € N such that

p/ =pD Onfm and q/ =qD Onff
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are both in P,(A). Then

p~od =P ~d

By earlier propositions,

p/ @ O3, ~p q, @ 03n

so that

v(p) =v(p) +v(0) +... +v(0) = v(p' & 0sn) = v(¢ © O3n) = v(q)

Vv
An—m

The result now follows from the universal property of the Grothendieck construction. [

Example 1.12. A bounded linear map 7 : A — C is called a trace if

1.1.
1.2.

1.3.

1.4.

7(ab) = 7(ba) Va,be A

Hence, if p,q € A are projections such that p ~ ¢, then 7(p) = 7(q).
If 7 is a trace on A and n € N, then define 7, : M, (A) — C by

n

T((aig) = ) (as)

i=1
and this is trace on M, (A) (HW)

Thus, we get an induced function
T:Px(A) = C
which satisfies the above conditions. Hence, we get an induced function
Ko(7) : Ko(A) — C such that Ko(7)([plo) = 7(p)

for any projection p € M, (A).

A trace is said to be positive if 7(a) > 0 for all @ € Ay positive. In this case, each
induced map 7, is also positive, so Ky(7) maps Ky(A) to R.

Example 1.13.

Ko(M,(C)) = Z

Proof. Let A = M, (C), Tr : A — C denote the standard trace. This is a positive trace,
so it induces a map

Ko(Tr) : Ko(M,(C)) > R

Furthermore, Tr(p) € Z for all projections p € M,,(A), so we may restrict the range so

Ko(Tr) : Ko(M,(C)) — Z
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1.1. Ko(Tr) is injective: If g = [plo — [g]o is such that Ky(Tr)(g) = 0, then we may
assume that p,q € P,,(A) for some m € N. Hence,

Tr(p) =Tr(q)

By Example 2.4, this implies p ~ ¢, so p ~q ¢, so g = [plo — [q]o = 0.

1.2. Ko(Tr) is surjective: Because if e € A denotes a rank one projection, then

Ko(Tr)([e]) =1

Example 1.14. If H = ¢?, then Ko(B(H)) = {0}
Proof. Let A = B(H), and define dim : Py (A) - NU {oco} by
dim(p) := dim(p(H"))
where we think of p € P,(A) = P(B(H")). By earlier examples,
p ~o q < dim(p) = dim(q)
so this is a bijection. Furthermore,
dim(p @ ¢q) = dim(p) + dim(q)
so it is an isomorphism of semigroups. Hence,

Ko(A) = G(NU {oo}) = {0}

Note that the same is also true for B(H) if H is not separable.

Example 1.15. Let X be a connected compact Hausdorff space and A = C(X). For
r € X, define
Vy : Pso(A) = Z given by p — Tr(p(z))

where we think of p as an element of C(X, M,,(C)) = M, (C(X)). As before, this induces
a map

Ko(vy) : Ko(C(X)) = Z
If 1 denotes the unit in A, then Ky(v,)([1]o) = 1, so this map is surjective.

Note that if p € P (A) is fixed, then the map

X — Z given by x — Tr(p(z))
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is continuous, because p € C(X, M, (C)). Since X is connected, this is constant, and so
the map Ky(v,) is independent of x. We denote this map by

dim : Ko(C(X)) = Z

This map is surjective, but not, in general, injective [For instance, it is not injective if
X = 5% or X = T2.] However, it is injective if X is totally disconnected: A space X
is totally disconnected if it has a basis of cl-open sets. See [RORDAM, LARSEN, and
LAUSTSEN, Exercise 3.4]

2. Functoriality of K

a. Categories and Functors

A category C' consists of a class O(C') of objects, and for each pair A, B € O(C) a set
Mor(A, B) of morphisms from A to B with an associative rule of composition

Mor(A, B) x Mor(B,C) — Mor(A, C') denoted by (¢, ¢) — o
such that, for each object A, there is a morphism id4 € Mor(A, A) such that
poidy =p=idgoyp

for all ¢ € Mor(A, B). We are concerned with two categories, C* — alg and Ab of C*-
algebras and abelian groups respectively.

A covariant functor from a category C to a category D is a map F : O(C) — O(D) de-

noted by A — F(A) and a collection of maps ¢ +— F(¢) from Mor(A, B) — Mor(F(A), F(B))

such that
2.1. F(ida) = idp(a) for all A € O(C)
2.2. F(¢Yop)=F(1) o F(p) for all morphisms ¢ € Mor(B,C) and ¢ € Mor(A, B)

A contravariant functor is similar, except the arrows are reversed: Given a morphism
¢ € Mor(A, B), we get a morphism F'(¢) € Mor(F(B), F(A)).

Example 2.1. 2.1. X — m(X) is a covariant functor from the category of topological
spaces to the category of groups.

2.2. S+ G(S5) is a covariant functor from the category of abelian semigroups to the
category of abelian groups.
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2.3. X — C(X) is a contravariant functor from the category of compact Hausdorff
spaces to the category of unital commutative C*-algebras. Gelfand-Naimark sim-
ply states that this is an equivalence of categories.

Definition 2.2. Let ¢ : A — B be a sx-homomorphism, then it extends to a *-
homomorphism ¢, : M,(A) — M,(B). This induces a map ¢ : Px(A) = Px(B)
so the map v : Py (A) — Ko(B) given by
p = el
satisfies all the conditions above, and so factors through Ky(A) to give a map
Ko(p) : Ko(A) — Ko(B)
such that
Ko(p)p] = [p(P)lo VP € Poo(A)

Let {0} denote the 0 C*-algebra, and 04 p denote the zero morphism A — B.
Proposition 2.3. 2.1. K(ida) = idk,(a)

2.2. Ko(1pop) = Ko(¥) o Ko(p)

2.3. Ko({0}) ={0}

2.4. Ko(0p,a) = Oy (), K0(4)

Proof. Ky(A) is generated by [plo for p € Ps(A), so these facts are obvious from the
definition above. O]

(End of Day 5)

b. Homotopy Invariance

Definition 2.4. Two *-homomorphisms ¢, : A — B are said to be homotopic if there
are *-homomorphisms ¢; : A — B for each t € [0, 1] such that

21. pg=pand p; =9
2.2. For each a € A, the map ¢ — ¢4(a) is continuous from [0, 1] to B.
Equivalently, there is a x-homomorphism
®:A— C(0,1], B)
such that evg o ® = p and ev; o & = 1), where ev, the evaluation map
C([0,1], B) — B given by f — f(s)
If this happens, we write p ~yp 1.

We say that A and B are homotopy equivalent if 3 x-homomorphisms ¢ : A — B and
1 : B — A such that

Yoy ryidg and poth ~pidy
If this happens, we write A ~ B
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Example 2.5.

Let A= C]0,1] and B = C. Define ¢ : A — B by f+ f(0)and ¢ : B — A by A +— AL.
Then ¢ o ¢ = idp. Define ® : A — C([0,1]?) = C([0,1], A) by

(f)(t, ) = [(tz)
Then evg o ®(f) = f(0) = o p(f) and evy o ®(f) = ida(f). Hence,
Yoo idy

Example 2.6. If X and Y are compact Hausdorff spaces, two maps p,v : X — Y are
said to be homotopic if there is a continuous function H : [0,1] x X — Y such that

H(0,2) = ¢(x) and H(1,2) = ¢(z) Vre X
We write ¢ ~p, 1.

We say that X and Y are homotopy equivalent if 3 maps ¢ : X - Y and v : Y — X
such that

Yo ~ypidx and @ o) ~y idy
Given ¢ : X — Y, we get an induced map ¢* : C(Y) — C(X) given by f — fo . We
can check that
P @t vy
In particular,

XY & C0X)~CY)
See also: [RoORDAM, LARSEN, and LAUSTSEN, Example 3.3.6, Exercise 3.13]

Proposition 2.7. 2.1. Ifp,v : A — B are homotopic x-homomorphisms, then Ky(¢) =
Ko(v)
2.2. If p: A— B and ¢ : B — A are homotopy equivalences as above, then

Ko(SO) : Ko(A) — Ko(B)
is an isomorphism with inverse Ko(1))

Proof. Since Ky(A) is generated by [p]o where p € Py (A), it suffices to check these
assertions on projections.

2.1. If o, are homotopic, then ¢(p) ~; ¥(p) in P (B) (via the path t — ¢;(p)), so
[e(@)lo = [¥(P)lo

2.2. Similarly, in this case,

[o(¥(p))]o = [Plo = Ko() o Ko(¥)([plo)
for all p € P (B).
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3. Other points of view

a. Algebraic K-theory

(See [ROSENBERG] for this section)

Definition 3.1. Let A be a unital C*-algebra. A (finitely generated) projective module
over A is a (right) A-module P such that

PoQ=A"
for some A-module ) and n € N.

Let Proj(A) denote the isomorphism classes of all such modules. This carries a binary
operation & of direct sum, under which the zero module 0 acts as an identity element.
Furthermore,

(POQ)®R=2P®(Q®R)

Hence, Proj(A) is an abelian semi-group.

Lemma 3.2. 3.1. Let p € P,(A) be a projection, then p(A™) is a finitely generated
projective A-module.

3.2. If p,q € Pxo(A), then
p~o0q <= p(A™) = q(A")

as A-modules

Proof. 3.1. If p € P,(A), then P := p(A") is a right R-module such that
Pp=A"

where ) := (1 — p)(A™). Hence it is finitely generated and projective.

3.2. If p ~g g for some p,q € Ps(A), let v € My, ,(A) such that p = v*v and ¢ = vv*.
The map
0 :p(A™) = q(A") given by a — v(a)
is an isomorphism.

3.3. Conversely, given an isomorphism ¢ : p(A™) — ¢(A"), we define p : A™ — A"
by extending ¢ to be zero on (1 — p)(A™) and including ¢(A") in A™. Now @ is
given by left multiplication by a matrix a € M, ,(A). Similarly, we get a matrix
b€ M, m(A) from ¢ '. These matrices have the property that

ab=p,ba =q,a =qa =aq,b=qgb="bp

Now set

2= (1;1’) 1iq) € My(A)
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where N :=n + m. Then [Check!] 22 = I, so z is invertible, and
2p@0)z ' = (0 ¢q)

By [RoRDAM, LARSEN, and LAUSTSEN, Proposition 2.2.5], u(p@® 0)u™! = (0@ q)
where u = w(z). Hence,

b ~o4q

Hence,
D(A) — Proj(A) given by [plp — p(A™)

is an isomorphism of abelian semigroups. In particular,
Ko(A) = G(Proj(4))

Note that this definition can be applied to any ring, where we take idempotents instead
of projections.

Example 3.3. If R is a PID, then the structure theorem for modules implies that every
projective module is free. Hence,

Proj(R) > NU {0}
so that Ko(R) = Z

(End of Day 6)

b. Topological K-theory

(See [PARK] for this section)

Let X be a compact Hausdorff space.

Definition 3.4. A family of vector spaces over X is a topological space V and a con-
tinuous surjective map 7 : V' — X such that, for each x € X,

3.1. 77 !(z) is a finite dimensional vector space.

3.2. Addition and scalar multiplication on 7~!(z) is continuous in the subspace topol-
ogy induced from V.

We write ¢ := (V,m, X) for such a family, 7 is called the projection map, and 7~*(z) =:
V, is called the fiber of  at x.

Example 3.5. Let V := X x C", 7(z,v) := z. We write O"(X) := (V, 7, X)
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Definition 3.6. Let V and W be families of vector spaces over X. A homomorphism
of families is a continuous function

vy: V=W
such that v, : V, — W, is a linear transformation of vector spaces for each = € X.

If v is a homeomorphism (so that each ~, is an isomorphism), then 7 is called an
isomorphism of families. If this exists, we write

V=W
Definition 3.7. Let (V, 7, X) be a family of vector spaces over X and A C X. Then
(r1(4), 7, A)
is a family of vector spaces over A, and is denoted by V|4

Definition 3.8. A vector bundle over X is a family of vector spaces (V, 7, X) over X
such that, for each = € X, there is a neighbourhood U of z such that

Vip= ")

for some n € N. ie. There is a homeomorphism h : 771(U) — U x C" such that the
following diagram commutes

~1(U) h U x Cr

This property is called local triviality of the vector bundle.

We write Vect(X) for isomorphism classes of (locally trivial) vector bundles over X. We
define an addition of vector bundles by

VeW:={(v,w) eV xW:my(v) =mw(w)}

This is called the Whitney sum, and it descends to give an addition on Vect(X). Since
0% X) = X acts as the identity, this makes Vect(X) into an abelian semigroup.

Definition 3.9.
K°(X) := G(Vect(X))

Given a continuous function f : X — Y between two compact Hausdorff spaces, and a
vector bundle (V,7,Y") over Y, we define

F(V)i=Alv,z) e Vx X :7(v) = f(2)}
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This is a vector bundle over X, and defines a map

7 Veet(Y) — Vect(X)
It is also additive, so we get an induced map

KO(f) : KO(Y) = K°(X)

This ensures that the functor
X— K 0(X )

is a contravariant functor from the category of compact Hausdorff spaces to the category
of abelian groups.

Definition 3.10. Let A = C(X), and let p € P,(A). We may think of p as a function
p: X — M,(C) taking values in P, (C). Define

Vi={(z,v) € X xC":p(z)(v) =v} ={(z,v) € X xC":v € Im(p(z))}
Define 7 : V — X by (z,v) +— x, then we write
Ran(p) := (V, 7, X)
Definition 3.11. Let (V, 7, X) be a vector bundle over X.

3.1. A section of V is a continuous function s : X — V such that

mTos=1idyx

3.2. Write I'(V') for the set of all sections of V. Given two sections sy, s2 € I'(V), we
define

(s1+ s2)(x) := s1(x) + s2(x)

where the addition on the RHS is happening in V.. Because vector space addition
is assumed to be continuous,
S1+ So € F(V)

3.3. Given s € I'(V) and f € C(X), we define
(s [)(x) = s(x)f(x)

This is well-defined because f(z) € C and s-f € T'(V') because scalar multiplication
is also continuous in V.. Hence, I'(V) is a right C'(X)-module.

Theorem 3.12 (Swan’s theorem). Let X be a compact Hausdorff space.

3.1. If p € P,(C(X)), then Ran(p) is a vector bundle over X.

3.2. If (V,m, X) is a vector bundle over X, then I'(V') is a finitely generated projective
C(X)-module.
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3.3. The map
D(C(X)) — Vect(X) given by [p]p — [Ran(p)]

is a well-defined isomorphism of abelian semigroups.

3.4. The map
Vect(X) — Proj(C(X)) given by [V] — [T'(V)]

15 a well-defined isomorphism of abelian semigroups.

Hence,
K°(X) = Ko(C(X))

Recall that the functor
X — C(X)

is contravariant from the category of compact Hausdorff spaces and unital C*-algebras.
Thus, what we have here is a composition of functors

KOOCgKO

Note that C' is an isomorphism of categories, so
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Ill. The Functor K|

1. Definition

a. Unitization of a unital C*-algebra

Let A denote the unitization of a C*-algebra A, then there is a split exact sequence

0 A% A=C =0
N

with splitting A : C — A given by z + 2z15. We get an induced map

Ko(m) : Ko(A) = Ko(C) = Z

Lemma 1.1. Let A, B be unital C*-algebras. If ¢, : A — B are orthogonal *-
homomorphisms (ie. o(x)Y(y) = 0 for all x,y € A), then ¢ + ¢ : A — B is a *-
homomorphism, and

Ko(o +1v) = Ko(p) + Ko(v)

Proof. Check that ¢ + ¢ is a *-homomorphism. Furthermore, for each n € N, the
induced homomorphisms ¢y, ¥, : M,(A) — M, (B) are mutually orthogonal. Hence, for
any p € P,(A),

[(o +©)n(P)lo = [en(P) + ¥n(P)lo = [en(P)lo + [¥n(p)lo

because ¢y, (p) L 1 (p). O

Proposition 1.2. Let A be a unital C*-algebra, then there is a split exact sequence,

Ko(v)

20 Ko(A)

Ko(m)

0— Ko(A) — Ko(C) =0

In particular,

Ko(A) 2 ker(Ko(r))

Proof. Let f:=1;7—14 € 791(11), then g:A—’—(Cf. Furthermore, af = fa = 0 for all
a € A. Define u: A — A by
a+af —a
and V' : C — A by
a— af
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Then
idgy =poridy=top+Nommor=0and 7o =idc

also, ¢ o 1 and X o 7 are orthogonal to each other. By the previous lemma,

= Ko(0) = Ko(m o) = Ko(m) o Ko(e)
1dK0 Ko(m) o Ko(N)
1dK0 Ko(p) o Ko(t)
idy, KO(L) o Ko(p) + Ko(XN') o Ko(m)

The third equation shows that Ky(¢) is injective. The first equation shows that
Im(Ko(e)) C ker(Ko(m))
Finally, if g € ker(Ky(7)), then the last equation shows that

g = Ko(1) o Ko(p)(g) € Im(Ko(r))

b. K, for a Non-Unital C*-algebra
Definition 1.3. If A is a (possibly non-unital) C*-algebra, we define
Ko(A) := ker(Ky(m))

Note that this is a subgroup of KO(AV), and that the definition for a unital C*-algebra
agrees with this one.

Let ¢ : A — B be a x-homomorphism, then there is an induced *-homomorphism
O A— B
such that the following diagram commutes.

A4 AT C
LR
B-2~B "2 C

Functoriality in the unital case gives a diagram

Ko(ea) Ko(ma)

Ko(A) =2 Ko (A) =5 Ko (C)
Ko(o) e

Ko(tp) Ko(mg)

Ko(B) =% Ko(B) =% Ko (C)
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Define 0 : Ko(A) — Ko(B) by

0(g) == Ko(@) o Ko(ea)(g)
Then Ko(7p)(0(g)) = e o Ko(ma) o Ko(ta)(g) =0, so
0(g) € ker(Ko(mp)) = Im(Ko(ep))
Furthermore, Ky(tp) is injective, so we may define
Ko(p) : Ko(A) — Ko(B) such that Ko(¢)(g) := Ko(ts) ™ (0(g))
Then the following diagram commutes

KO(LA) KO(”A)

Ko(A) == Ko(A) == K(C)
Ko(e) Ko(®) e

Ko(LB) KO(WB)

Ko(B) =% Ko(B) "2 Ky (C)
and Ko(p) is the unique map with this property. Note that if p € Py (A),

Ko(e)([Plo) = [¢(®)]o

Proposition 1.4. For any C*-algebras A, B, C, we have
1.1. Ko(ida) = idgy(a)

1.2. Koo p) = Ko() o Ko(p)

1.3, Ko({0}) = {0}
1.4. Ko(0B,4) = Oy(B),Ko(A)
1.5. If ,v : A — B are homotopic, then Ky(¢) = Ko(¥)
1.6. If A~ B, then Ko(A) = Ko(B).

Example 1.5. Let A be a C*-algebra. The cone of A is
CA:={f:[0,1] — A: f(0) =0}

Define ¢, : CA — CA by ¢i(f)(s) := f(st). Then ¢y = 0 and ¢; = idca. Hence,
0~ CA, so that

Ko(CA) = {0}
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2. The standard picture of K

Consider the split exact sequence as above

0 AL A=C =0
A

Recall that

Ko(A) = {[plo — [qlo : p.q € Poo(A)}

Hence,

Ko(A) = {[plo — lglo : p,q € Poc(A) and [r(p)]o = [7(q)]o in Ko(C)}
Deﬁnes:g—wqbys:)\ow. ie.
s(a+aly) =aly

Note that 7(s(z)) = 7(z), so « — s(z) € A for all z € A. Let s, : M,(A) — M,(A) be
the induced map, then

x — sp(z) € M,(A) Vo e M,(A)

We write s = s,,. An element € M,(A) is called scalar if z = s(z).

Note: The scalar mapping is natural. ie. Given a x-homomorphism ¢ : A — B, we have
a commuting diagram

A A
s s

Theorem 2.1 (Standard Picture of Ky(A)). For any C*-algebra A,

Ko(A) = {[plo — [5(p)]o : p € Pa(A)}

Proof. 2.1. If p e Poo(ﬁ) and ¢ := [plo — [s(p)]o € Ko(A), then

Ko(m)(9) = [r(p)lo = [7(s(p))]o = [m(p)]o — [r o Aom(p)]o = [7(p)]o — [*(p)lo = 0
Hence g € Ko(A)
2.2. Conversely, if g € Ko(A), write g = [e]o — [f]o for some e, f € P,(A). Define

(e 0 o (00
P=\o 1,-f) %= \o 1,

Then p,q € P2, (A) and

[plo — [glo = [elo + [1n — flo — [Lalo = [eJo — [flo =9
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Now ¢ = s(q) and Ky(m)(g) = 0, so
[s(p)]o — lalo = [s(P)lo — [s(@)]o = Ko(s)(g) = Ko(Aom)(g) =0
Hence, [glo = [s(p)]o, so
9 = [plo — lalo = [plo — [s(p)]o
O
(End of Day 7)

Proposition 2.2. For any p,q € Px(A), TFAE:

2.1 [plo — [s(p)]o = lalo — [s(a)]o
2.2. Ak, 0 € N such that

P& Lk ~0 q & 1g in Po(A)
2.3. 3 scalar projections r1 and ro such that
PDOTL~ gD T
Proof. We prove (i) = (iii) = (i7) = (i).
(i) = (iii): If [plo — [s(p)]o = [glo — [s()]o, then
[p® s(a)lo = [g @ s(p)lo
Hence,
p @ s(q) ~s ¢ s(p)
Since A is unital, this implies
p@s(@) @ Ly~0q&s(p) @1,
This proves (iii).

(iii) = (ii): If r; is a scalar projection, then we may think of r; € M,,(C). If Tr(ry) = k, then
r1 ~o lg. Similarly, 75 ~¢ 14, so (ii) follows.

(il) = (i): Suppose p ® 1) ~¢ ¢ P 1y, then note that
[P © 1kJo — [s(p @ 1i)]o = [plo — [s(P)lo
Therefore, replacing p by p & 1 and ¢ by ¢ @ 1, it suffices to prove that
p~oq = [plo—[s(p)lo = lalo — [s(q)]o

Now suppose v € an(Z) is such that v*v = p and vv* = ¢. Consider s(v) €
M, ,(C) thought of as a subset of M,,,,(A). Since s is a *-homomorphism,

s(v)"s(v) = s(p) and s(v)s(v)" = 5(q)
Hence, s(p) ~o s(q), so

[plo = lalo and [s(p)]o = [s(¢)lo

which proves (i).
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The proof of the next lemma is technical, and we will omit it for now.

Lemma 2.3. [RorDAM, LARSEN, and LLAUSTSEN, Lemma 4.2.3] Let ¢ : A — B be a
x-homomorphism.

2.1. For any p € Ps(A),
Ko(e)([plo — [s(p)]o) = [(p)lo — [s(2(p))]o

2.9. Let g € ker(Ko()), then 3n € N,p € Po(A) and a unitary u € M,(B) such that
9 = [plo — [s(p)]o and u@(p)u” = s((p))

2.3. If ¢ is surjective and g € ker(Ko(y)), then Ip € Poo(A) such that

g = [plo — [s(p)]o and &(p) = s(&(p))

3. Basic Properties

a. Half Exactness and Split Exactness

Given a short exact sequence

0515 A5BS0

Lemma 3.1. Forn € N

3.1. B Mu(I) = M,(A) is injective.

3.2. If a € M,,(A), then a € Im(p,) if and only if
Un(a) = s (4n(a))
Proof. 3.1. Note that ¢ : I — A maps
a+aly = a)+aly

for a € I and o € C. This map is injective because A=AaCl 7 as a vector

space. It now follows that the induced map M,,(I) — M, (A) is injective.
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32. (i) If ¥n(a) = $p(Un(a)), then all entries of 1, (a) are scalar multiples of 1.
Write _
a = (am + Oéi’jlg) so that wn(a) = (Oéi’jlé)

Hence, 9(a; ;) = 0, so 3¢; ; € I such that p(c¢; ;) = a; ;. Define
C = (Cm‘ + Oé@llf)

then ¢, (c) = a.

(ii) Conversely, suppose a = @,(c), for some ¢ € M, (I), then write
Cc = (CZ'J' + Ofi’llf)

so that
a = (p(cij) + aiglz)
But then B B
wn(@) = (ai,jlﬁ) = Sn(wn(a))

Theorem 3.2 (Half-Exactness of Ky). The sequence

Ko(I) 229 go(4) 22 ko(B)

is exact at Ky(A)

Proof. 3.1. Ko(¢) o Ko(p) = Ko(¢) o) = 0. Hence,

Im(Ko(p)) C ker(Ko(¢))

3.2. If g € ker(Ko(v)), then by the earlier lemma, Jp € Pa(A) such that

g =[plo — [s()]o and ¢ (p) = s((p))

By the previous lemma, p € Im(3,), so 3e € M, (I) such that
Pnle) =p
Since @, is injective, e is a projection. Hence,
g9 =[p(e)] = [s(e(e)] = Ko(e)([elo — [s(e)]o)

so g € Im(Ky(p))
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Theorem 3.3 (Split Exactness of Ky). Given a split exact sequence
o P
0—-1>A=B—=0
A

We get a split exact sequence of abelian groups

Ko(p) Ko(¥)
Ko(N)

Proof. We have
ing(B) = Ko(ldB) = K()(w 9] )\) = K()(Q/}) o Ko()\)

Hence, Ky(1)) is surjective. It suffices to show that Ky(¢) is injective. So suppose g €
ker(Ko(¢)), then by the earlier technical lemma, 3p € P,(A) and a unitary u € M, (B)
such that
9 = [plo — [s(p)lo and u@(p)u” = s(&(p))
Define
vi= o ¥(u)u

Then v € U, (A) and ¥(v) = 1 = s(x(v)). Hence, by the earlier lemma, Jw € M, (1)
such that

p(w) =v
Since ¢ is injective, w is a unitary. Furthermore,
p(wpw”) = ve(p)v”

— (o d)()sEP) (o ) (w)

— (o d)lus(F(p)u

= (A o9)[@(p)]

= s(2(p)) = ¢(s(p))
Since ¢ is injective, it follows that

wpw” = 5(p)

so that g = [po — [s(p)]o =0 O

Corollary 3.4.
Ko(A® B) = Ky(A) & Ky(B)

Proof. We have a split exact sequence

0A—-ApB=2B—=0
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Example 3.5. For any C*-algebra A,
Ko(A) = Ko(A) @ Z
Example 3.6. Consider the sequence
0— Cy(0,1) = C[0,1] B CoHTC -0
where (f) := (f(0), (1)). Then
Ko(C[0,1]) 2 Z and Ko(CapC)=Z G Z
Hence, Ky(7)) is not surjective. This shows that Kj is not, in general, exact.
Example 3.7. Consider the exact sequence
0—K(H)S B(H)— Q(H) =0
We know that Ko(B(H)) = {0}. We will show later that
Ko(K(H)) = Z

so Ko(¢) is not injective.

b. Stability
Proposition 3.8. (Stability of Kq) Let A be a C*-algebra and n € N. Define A : A —

M,(A) by
o (g g)

Then Ko(N) : Ko(A) — Ko(M,(A)) is an isomorphism.

Proof. 3.1. Suppose that A is unital, and let B := M,,(A). Define u : Poo(B) — Ky(A)
by
p(p) = [plo

if p € Py(B). This is well-defined, and additive, and respects homotopy, so by the
universal property of Ky, we get a map

Ko(/,b> . K()(B) — Ko(A)

If p € Po(A), then clearly,
[1(A(P))]o = [plo
so Ko(p) o Ko(\) = idgg(a). Similarly, if p € Poo(B), then

Ko(A) Ko(p)([plo) = Ko(A)([plo) = [Plo
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3.2. Now suppose A is non-unital, consider the diagram with split exact rows

0—— Ko(A) — Ko( A) 0

Ko(C)
jKO()\A) lKO(AA) jKO()‘C)

0 — Ko(B) — Ko(B) — Ko(M,(C)) —=0

Since A 7 and A¢ induce isomorphism, A4 also induces an isomorphism by a diagram
chase.
O

4. Example: The Cuntz Algebra
Definition 4.1. Let n > 2 and H = ¢*(N). Decompose N =T} LT, UTy...UT, where
T, ={i,i+n,i+2n,...}

Let P;: H — H be the natural projection onto ¢*(T;) C H. Then, P, is an infinite rank
projection, so P; ~ Iy. Choose si, g, ..., S, € B(H) such that

(Note that these s; are isometries). Define
O, :=C"(s1,82,...,5n)
This is called the Cuntz algebra.

Theorem 4.2. 4.1. O, is a simple C*-algebra (no non-trivial closed two-sided ideals)

4.2. (Universal Property of O,,) Given a unital C*-algebra A and elements ty,ts, ... t, €
A such that ;
tty=1=>Y tit;
i=1

3 a unique *-homomorphism ¢ : O, — A such that p(s;) = t;

Lemma 4.3. /.1. Let u € U(O,), then 3 a unique x-homomorphism ¢, : O, — O,
such that

90u<5j) = usj

Furthermore,
U = Z @u<sj)3;
j=1

4.2. Let o : O, — O, be a unital x-homomorphism, then Ju € U(O,,) such that ¢ = @,
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Proof. 4.1. Follows from the universal property with ¢; = us;. Furthermore,

n n

Z Pu(s5)s] = Zus]s; =u
j=1 j=1
4.2. Given ¢, consider
U= @(‘%)5;
j=1

Then

But the P; are orthogonal projections, and s; = P;s; so $78i = d; ;. Hence,
uu” = zn: p(si)p(si) = (1) =1
i=1
Similarly, v*u = 1. Finally,
pulsi) = uss = 3 pls)sss = plsi)sis = p(s)
j=1
By uniqueness of the universal property, ¢, = ¢.

Lemma 4.4. Let A : O,, — O,, be given by

Azx) = Z 8T8
j=1

Then

4.1. X is an endomorphism of O,
4.2. If u e U(O,,) such that A = @, then u = u*

Proof. 4.1. A\(1) =1 and A(z*) = A(z)*. By orthogonality of the P;
AMz)A\(y) = Z sjx8385ys; = Mxy)
j=1

. .
since s;s; = 1.
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4.2. If u = Y7 A(s;)s}, then X = ¢, and

n n n n
ut = E siA(s}) = E S; E 5i858;| = E 57575585 = E 55
j=1 j=1 —1 j=1

j=1
But

n

* * 2

A(si)si = E $j8iS;Si = 8i8i8;8i = S;
j=1

Hence, u = u*.
m

Lemma 4.5. Let A be a unital C*-algebra and s € A an isometry. Define u: A — A
by p(a) = sas*. Then Ko(u) = idg,(a)

Proof. Note that u, : M,(A) — M,(A) is given by p,(a) = s,as’ where
s, = diag(s,s,...,s)
and s,, is also an isometry. Furthermore, if p € P, (A), then
SnpSn = (5np)(s5np)" ~ (5np)"(snp) = p

Hence, [t,(p)]o = [Plo- O
Theorem 4.6. If g € K¢(O,), then (n — 1)g = 0. In particular, Ko(O3) =0
Proof. Let A : O,, = O,, as above, then A = """ | \; where

\i(z) = s;xs]

Then \;(z)Aj(y) =0 for all z,y € O,, so

Ko(\) = ZKO(Ai)

By the above lemma, it follows that
Ko(Ng=ng Vg€ KO,

However, A = ¢,, where u = u*. In particular, u € Uy(O,,). Let u; be a path of unitaries
from u to 1, then ¢,, is a path of x-homomorphism from

A=, toids = ¢
Hence, Ko(A\) = idg,(0,). Hence the result. O

It is a fact that
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4.1. Ko(Op) = Zy—.
4.2. Furthermore, Ky(O,,) is generated by [1]o.

Definition 4.7. A non-zero projection p € A is said to be properly infinite if 3 projec-
tions e, f € A such that

41. e L f
42. e<p, f<p
43. p~en~ f

A unital C*-algebra A is said to be properly infinite if 1, is properly infinite.

Example 4.8. 4.1. B(H) is properly infinite iff H is infinite dimensional.
4.2. O, is properly infinite

Theorem 4.9. Let A be a properly infinite C*-algebra, then
Ko(A) ={[plo : p € P(A),p # 0}
Proof. 4.1. Since 14 is properly infinite, sy, s isometries such that
5157 L s9585

Define t; := sb's; for i € N, then the {t;} are isometries such that tits L tit*
(Check!). For n € N, define

Un = (t1,ta, ..., ty) € My, (A)

Then v¥v, = 1,. Hence, as in Lemma 4.5, for any p € P,(A),
P ~0 UnpUy,
Note that v,pv} is a projection in A. Hence,
Ko(A) = {[plo — ldlo : p,q € P(A)}
4.2. Let p,q € A projections, then set
ro=tpt] +ta(1 — @)t5 + t3(1 — t1t] — tat3)t5
Then r € P(A) and
[rlo = [plo + [1 — glo + [1 — tat] — tat3]o

But [1 — t1t] — tat3)o = [1o, so [r]o = [plo — [g)o- Hence,

Ko(A) = {[plo : p € P(A),p # 0}
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Definition 4.10. Let A be a simple, unital C*-algebra which is not isomorphic to C.
A is said to be purely infinite if

4.1. Every non-zero projection in A is properly infinite.

4.2. Every non-zero hereditary subalgebra has a non-zero projection.

In fact, [RORDAM, LARSEN, and LAUSTSEN, Exercise 5.7] shows that, if A is purely
infinite simple, then

Ko(A) ={[plp : p € P(A),p # 0}

In other words, Ky(A) coincides with Murray Von Neumann equivalence classes of pro-
jections in A.

It is a fact that O,(A) is purely infinite. Also, if H is infinite dimensional, then the
Calkin Algebra B(H)/K(H) is purely infinite.

(End of Day 8)
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IV. The Ordered Abelian group K(A)

1. Stably Finite C*-algebras

Definition 1.1. An element a € A is said to be left-invertible if 30 € A such that
ba = 1. Right-invertibility is similar.

Note that a is invertible iff it is both left and right invertible.

Definition 1.2. 1.1. A projection p € A is said to be infinite if 3 a projection ¢ such
that p ~ ¢ and ¢ < p. If p is not infinite, then it is said to be finite.

1.2. A unital C*-algebra is said to be infinite if 14 is infinite. A is said to be finite if
14 is finite.

1.3. A is said to be stably finite if M,,(A) is finite for all n € N.

1.4. A non-unital C*-algebra is said to be finite if A is finite.
Note: A projection p € A is finite iff pAp is a finite C*-algebra.
Lemma 1.3. If A is a unital C*-algebra, TFAE:

1.1. A is finite.

1.2. Every isometry is a unitary.
1.8. All projections in A are finite.
1.4. Every left-invertible element is invertible.

1.5. FEvery right-invertible element is invertible.
Proof. We prove (i) = (i1) = (ii7) = (i), and (i1) = (iv) = (v) = (i)

(i)= (ii) : If s is an isometry, then 14 = s*s ~ ss* < 1. Since A is finite, ss* =1 and s is a
unitary.

(ii)= (iil) : Suppose every isometry is a unitary, and p, ¢ € A projections such that
p~qandg<p
Let v € A such that v*v = p and vv* = ¢, and let
s:=v+(1-p)
Since pq = qp = q, we have v*(1 —p) = 0 = (1 — p)v. Hence,
s's=v'v+(1—p)=1land vv"=1—-(p—q)
By hypothesis, s is a unitary, so p —q = 0.
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(iii)= (i) : If every projection is finite, then 1, is finite.
(ii)= (iv) : Suppose every isometry is a unitary, and a € A be left invertible. Then 3b € A
such that ba = 14. Then
1 = (ba)*(ba) = a*b*ba < ||b||*a*a
(by [MURPHY, Theorem 2.2.5]). Hence,

a*a—||b]| 7?14 >0
and so sp(a*a) C [||b]|72,00). In particular, a*a is invertible, so s := a(a*a)~/?
exists. Observe that
s*s = (a*a)Y?a*a(a*a) Y2 =1

Thus, s is an isometry, and hence a unitary by hypothesis. In particular, s is

invertible, so

a=s(a*a)'/?

is invertible too.

(iv)= (v) : If a € A is right-invertible, then a* is left-invertible. By hypothesis, it is invert-
ible, and hence a is invertible too.

(v)= (ii) : If s*s = 1, then s* is right invertible, and hence invertible. It follows by unique-
ness of inverse that ss* = 1.

]

Definition 1.4. A pair (G,G7) is called an ordered abelian group if G is an Abelian
group, GT C G such that

1.1. GT+ Gt Cc G*
1.2. Gt n(-G*") ={0}
13. GT -Gt =G
We define an order relation on G by z < y iff y — 2 € G*. This makes (G, <) a partially

ordered set such that
r<y=z+z<y+z Vzeld

The converse is also true: If G is a partially ordered group satisfying this condition, we
may set G* = {x € G : x > 0}, then it satisfies the above requirements.

Definition 1.5. Define

Ko(A)™ == {[plo : p € Pws(A)}
Proposition 1.6. 1.1. Kyo(A)* + Ko(A)T C Ko(A)+
1.2. If A is unital, Ko(A)T — Ko(A)T = Ko(A)

1.8. If A is stably finite, then Ko(A)™ N (—Ky(A)*) = {0}
Hence, if A is unital and stably finite, then (Ko(A), Ko(A)1) is an ordered Abelian group.
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Proof. 1.1. [plo+ [glo = [P © qlo
1.2. Proved earlier.

1.3. Suppose A is stably finite, and g € Ko(A)" N (= Ky(A)T), then write

Hence, [p @ qlo = 0, so Ir € Py (A) such that
pDLgDr~rT

Choose mutually orthogonal projections p’,¢’,r’ such that p ~¢ p’,q ~o ¢’ and
r ~o " and think of them in M, (A) for some n € N. Now

P +q +r ~7 in M,(A)

But p' +¢ + 7' > " and M, (A) is finite, so p' + ¢ = 0. Hence, p’ = ¢’ = 0, so that
g=1[plo=1[lo=0
]

Definition 1.7. Let (G, G) be an ordered abelian group. An element v € GV is called
an order unit if, for each x € GG, dn € N such that

—nu <z <nu

Note: Not every ordered abelian group has an order unit. For example, C.(R) with the
pointwise order.

Proposition 1.8. If A is unital, then [1]y is an order unit of Ko(A)
Proof. 1t g € Ko(A), write g = [plo — [g]o for some p,q € P,(A). Then

—n[l]o = =)o = —[dqlo + [1n — glo < —[qlo < [plo — [dlo =9

and
9 < [plo < [plo + [1n — plo = [1a)o = n[1]o
O

Definition 1.9. Let (G,G*) and (H, H") be ordered Abelian groups. A positive group
homomorphism is a map « : G — H such that a(G™) C HT. Tt is called an order iso-
morphism if it is an isomorphism such that «(G*) = H*. If G and H have distinguished
order units u and v respectively, « is said to be order unit preserving if a(u) = v

Example 1.10. Let ¢ : A — B be a x-homomorphism, then

Ko()[plo = [¢(®)]o

so Ko(¢p) is a positive homomorphism. Furthermore, if ¢ is unital, then Ky(y) preserves
the order unit.
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2. Traces
Recall: If 7 : A — C be a positive trace, then it induces a map
K()(T) : K()(A) — R

This is a positive group homomorphism from (Ky(A), Ko(A)") to (R,RT). If 7 is a
state, then Ky(7) preserves the order unit.

Example 2.1. Let 7 denote the usual trace on C, then 7, : M,(C) — C is a trace.
Furthermore,
To(1,) =n

So 7, induces an isomorphism
(KO(Mn<(C))7 KO(MR(C))+7 [171]) - (Zu Z+7 n)
Thus, (Ko(A), Ko(A)T,[14]o) is a useful invariant to distinguish C*-algebras.

Definition 2.2. Let (G, G, u) be an ordered Abelian group with order unit u. A state
on this triple is a positive group homomorphism f : (G,G",u) — (R,R",1). We write
S(G) for the set of states on G.

Note: If 7: A — C is a tracial state, then Ky(7) € S(Ko(A))

Theorem 2.3. Let A be a unital, exact C*-algebra, then every state on (Ko(A), Ko(A)T, [1alo)
is of the form Ky(7) for some trace T on A.

(End of Day 9)

In general, we define a quasi-trace to be a function 7 : A — C such that

2.1. 7(z*z) = 7(zx*) > 0 for any v € A

2.2. 7 is linear on commutative subalgebras of A

2.3. If v = a+ ib where a,b € A,,, then 7(x) = 7(a) + i7(b)
2.4. For each n € N, the map 7, : M,(A) — C given by

n

Tal(aig) = Y 7(ais)

i=1
also has these properties.

In other words, a trace is simply a linear quasi-trace. Given a quasi-trace on A, we get
an induced map Koy(7) : Ko(A) — R by the first property. The above theorem is a
special case of the following facts.

Theorem 2.4. Let A be a unital C*-algebra.
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2.1. Every state on Ko(A) is of the form Ko(T) for some quasi-trace T.

2.2. (Haageruup) If A is exact, then every quasi-trace on A is a trace.

Definition 2.5. A trace 7 : A — C is called faithful if 7(a) > 0 whenever a € A, is
1ON-Z€ro.

Theorem 2.6. If A is a unital C*-algebra that admits a faithful positive trace, then A
15 stably finite.

Proof. Let 7 : A — C be a faithful positive trace. Define 7,, : M,,(A) — C as above.
Then if x = (z; ;) € M,(A), then (Check!)

n
To(x*x) = Z (2} ;% 5)

ij=1

Hence, 7, is also a faithful positive trace on M, (A). Therefore, to show A is stably
finite, it suffices to show that A is finite.

Now suppose s € A is an isometry, then

T(1) =7(s"s) =7(ss") = 7(1 —s5") =0
But ss* <1 and 7 is faithful, so ss* = 1. Hence, A is finite. n
We have a partial converse of the above theorem:

Theorem 2.7. 2.1. If A is unital and stably finite, then it admits a quasi-trace.
2.2. Every unital, stably finite, separable, exact C*-algebra admits a faithful trace.

3. Example: The Rotation Algebra

Definition 3.1. Let § € R be fixed, and set w := €™ Let H := L*(T x T) equipped
with a normalized Haar measure. Let (, € H be the unit vector (y(z1, 22) := 1. Define
u,v € B(H) by

(u€) (21, 22) := z1((z1, 22) and (v{)(z1, 22) := 22 (w21, 22)

Then
<U(,77>/ Z1C(21,22>77(21,Z2) :/ C<Z1;Z2>Z_177(Zlaz2)
T2 T2
Hence,
(u™n) (21, 22) = Z1n(21, 22)
Similarly,

(V") (21, 22) = Zan(w™ ' 21, 22)
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Hence, u and v are unitaries. Furthermore,

(vu) (21, 22) = zo(uC) (w21, 22) = zow2z1( (w21, 22)
(wvl)(z1, 22) = z1(vC) (21, 22) = 2120 (w21, 29)

= VU = Wuv

Define
Ap == C*(u,v) C B(H)

is called the rotation C*-algebra associated to the angle 6.
We will need the following properties:

Theorem 3.2. 5.1. If 6 is irrational, then Ay is simple, and has a unique tracial state.

(see below).

3.2.  (Universal property of Ag): If D is a unital C*-algebra and u',v" € D are two
unitaries such that v'u' = wu'v', then 3 a unique x-homomorphism ¢ : Ag — D
such that p(u) = u' and p(v) =v'.

Note: If 0 € Z, then Ay is the universal C*-algebra generated by two commuting uni-
taries. This is C'(T?). If 6 ¢ Z, Ay is called a non-commutative two torus.

Remark 3.3. If 4,6 € R be irrational.

3.1. Suppose § — @' € Z, then €™ = ¢*™ and so

Ag = A@/

3.2. If 0+ 0" € Z, then €™ = (>™%)~1. Hence, there is a surjective *-homomorphism
(o Ag — Ag/ such that

/

o(u) =v" and p(v) =u
Since Ay is simple, it follows that this map is an isomorphism.

We will now (partially) show that if Ay = Ay, then one of the above two conditions
must hold.

Define By to be those elements in Ag of the form

where only finitely many coefficients «, ., are non-zero. One thinks of these as Laurent
polynomials in u and v. Note that By is a x-subalgebra of Ay, and its closure is thus
a C*-algebra containing u and v. Thus, By is dense in Ay and is called the smooth
x-subalgebra of Ag.
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Definition 3.4. Define 7 : Ay — C by

7(a) = (alp, (o)

Then 7 is a positive linear functional on Ay of norm 1. Furthermore,

for elements in By. Hence, it follows that if x € By of the above form, then

T(z*x) =71 [( Z an’mvmu"> ( Z an,munvm>]
nmez n,me”L
= > lawml|* = 7(22")

nmeZ
Since By is dense in Ay, it follows that
T(z*x) = 7(xx*) Vr € Ay

From [R@RDAM, LARSEN, and LAUSTSEN, Exercise 3.6], it follows that 7 is a tracial
state on Ag.

(End of Day 10)

Lemma 3.5. Let ¢ : T — T s the function z — wz. Then, for any h : T — C

continuous,
vh(u) = (ho)(u)v, and v*(hop)(u) = h(u)v*

Proof. Tt suffices to prove the first statement. Note that
wruFy = vu® Yk e Z
Hence, for any h : T — R Laurent polynomial
(h o ©)(u)v = vh(u)
Now approximate any continuous h : T — C by Laurent polynomials. [

If § = 0, then C(T?) = Ay has no projections because T? is connected. We now assume
that 0 € (0,1) is irrational, and show that, in this case, Ay has many projections.

Lemma 3.6. Let f,g: T — R be continuous functions, and define
p = fu)v’ +g(u) +vf(u) € Ag

Then
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3.1. p=p*
3.2. p=p*if and only if

(i) f-(fop)=0
(i) f-(g+gop™')=f
(iii) g =g*>+ f* + (f o ©)?

3.3. Furthermore,

Proof. 3.1. Clearly, p = p* since f and g are real-valued.

3.2. One writes out

3.3.

p* = f(uw)v* f(w)o* + f(u)v*g(u) + fu)v v f(u)
g(w) f(u)v* + g(u)g(u) + g(u)v f(u)

+ v f(u)f(u)v* +vf( )g(u) +vf(u)vf(u)
=f-(fo 1)( W2+ f(goe w4+ f2(u)

+gf(u)v +9%(u) +g- (fop)(uv

+(fop)P(u)+ (fop)-(gop)(uv+ (fop) (fopop)(u’
Note that

p=flw)o 4 g(u) + (f o ) (u

So comparing coefficients, we get

f-(fop™)=0

f-(goe™)+(g-f)=Tf

fPra+(fop)=yg
g-(fop)+(fop) (gop)=(foyp)

~— —
O

(fow)-(fopoyp)=
Since ¢ is a homeomorphism of T, for any function h : T — R, we have
h=0&hop=0&chop =0

So the first and fifth conditions collapse to one, and so do the second and fourth.
These are the three conditions mentioned above.

First we assume that f and ¢ are both Laurent polynomials. Then p is a Laurent
polynomial, so we may use the expression for 7 on Laurent polynomials. Now
approximate f and ¢ by Laurent polynomials, and use the fact that both sides of
the equation represent continuous maps.

]

Theorem 3.7. There exists a projection p € Ag such that T7(p) =0
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Proof. Choose € > 0 such that 0 < e <0 <6+ ¢ < 1. Define

t/e 0<t<e

1 e<t<o
gt) =49 |

et0+e—t) :0<t<O+e¢

0 0+ ¢ 1

and
_JVat) —g(t)? 0<t<0+e
f(t)—{0

: otherwise

Then both f and g define functions on T because f(0) = f(1) =0 = g(0) = g(1). The
corresponding element p as defined above is a projection, and

T(?)Z/Tg(z)dz:%.€+(9_6)+%-6:9

Theorem 3.8. The range of the map
Ko(T) : Ko(Ag) — R
contains (Z + 7.0).

Proof. Since 7(1) = 1, the range of K(7) contains Z. If py is the Rieffel projection from
the previous theorem, then 7(py) = 6, so the range contains Z6. O]

Theorem 3.9 (Pimsner-Voiculescu). If 0 € R is irrational, then the map Ko(T) induces
an isomorphism

Ko(Ag) — 7+ 76

In fact, if we define
(Z+70)" = (Z+7Z0)NRT

Then this is an order isomorphism
(Ko(Ag), Ko(Ag)",[1]) = (Z + Z6,(Z + Z6) ", 1)

Corollary 3.10. Let 8 and 0’ be two irrational numbers. Then Ay = Ay if and only if
either 0 — 0" or 0 + 0’ is an integer.

Proof. If ¢ : Ay — Ay is an isomorphism, and 7’ is the trace on Ay, then by uniqueness
of the trace, 7/ o ¢ must be the trace on Ay. Hence, if py € Ay is the Rieffel projection,
then

Ko(7')([p(po)]o) = Ko(7)[polo = 7(ps) =0
Hence, 0§ € Z + Z#', so Jay, b, € Z such that

0=a;+ b0
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Similarly, 8 = ay + byf for some as, by € Z. Hence,
0 = a1 + bias + b1b20
Since 0 ¢ Q, it follows that b1by = 1, so that b; = by = £1. Hence the result. O
Remark 3.11. Let 6 € (0,1) be irrational and n € N, then
Anog C Ag

Proof. Let a = nf, and let ' = u™ and v' = v, then

Vi = e
Then 3 a surjective x-homomorphism ¢ : A, — C*(u",v) such that

p(u) =u" and p(v) =v

However, « is irrational, so A, is simple, so ¢ is an isomorphism by the first isomorphism

theorem. Hence,
A = C*(u",v) C Ap

]

This implies (see [RORDAM, LARSEN, and LAUSTSEN, Exercise 5.8]) that, for any
number « € (Z + Z6) N [0, 1], 3 a projection e € Ay such that 7(e) = .

(End of Day 11)
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V. Inductive Limit C*-algebras

1. Products and sums of C*-algebras

Let {A;}ier be a family of C*-algebras. Define [ [, ; A; to be the set of all functions

a:]I—>UA,»:a(i)EAi Viel

i€l
such that
lall := sup [la(@)]| < oo
i€l
Define
Z:={ac HAi :a(i) = 0 for all but finitely many i € I}
and define

Lemma 1.1. 1.1. [[ A; is a C*-algebra
1.2. Y7 A; is a closed two-sided ideal of [ A;

Let

be the quotient map.

Lemma 1.2. Let {A,} be a sequence of algebras, and a € [[ A, then
[ (a)[| = lim sup [|a, |
In particular, a € > A; if and only if limsup ||a,| = 0.
Proof. Since 7 is dense in ) A,, we have
I7(a)l] = inf{{la = bl : b € T}
If b= (b,) € Z, then b, is eventually zero, so

|la — b|| = sup ||a, — b,|| > limsup ||a, — b,|| = limsup ||a,||
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Hence, ||7(a)|| > limsup ||a,||.

Conversely, for k € N, define b*) € T by

bgﬂ) :: {an n<k

0 :n>k
Then
< (k) _ 1
Im(a)ll < inf fla = 62| = fnf sup [lan[} = lim sup fja,|

2. Inductive Limits

Let C be a category.

Definition 2.1. An inductive sequence in C is a sequence {A,,} of objects in C together
with morphisms ¢, : A, — A, 1, usually written as

A B Ay B A3 S L
and denoted (A, ¢,). For m > n, define

@m,n:¢m—1090m—20~--0¥7n3An—>Am

and write ¢, , = ida,, Pmn = 0 if m < n. These are called the connecting maps of the
sequence.

Definition 2.2. Given a sequence (4,, ¢,,) in C, and inductive limit is a system (A, {pn})
where A is an object in C and p, : A, — A are morphisms with the following two
properties:

2.1. The following diagram commutes for each n € N

®n
An AnJrl

A

2.2. If (B,{\.}) is another system where B is an object in C and A, : A, — B are
morphisms such that A\, = A\, 41 0 ¢, for all n € N, then there exists a unique
morphism A : A — B such that the following diagram commutes
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Remark 2.3. 2.1. Inductive limits do not always exist. For instance, in the category
of finite sets. We will show that they exist in the category of C*-algebras, of
abelian groups, and of ordered abelian groups.

2.2. If an inductive limit exists, it is unique by the second property above.
Example 2.4. 2.1. Let D be a C*-algebra and A,, C A, ;1 C D be an increasing chain

of subalgebras. If ¢, = v, : A, — A,41, then (A, {j,}) is an inductive limit of
(Ap, tn), where

A= QAn

and p, = j, : A, — A is the inclusion map because
(i) fn = fins1 0ty for all n € N,
(i) If (B,{A\.}) is another system as above, then define A\ : A — B by

AMa) = M\(a) ifa € A,
This is well-defined, because if a € A,, C A, 41, then

Ant1(a) = Mg (n(a)) = An(a)

Then it follows that A o u,, = A, for all n € N. Furthermore, this map A is a
x-homomorphism, and is unique because | J A, is dense in A.

2.2. Let A, = M,,(C) and ¢, : A, — A, 41 is the map

0 (@ 0
0 0
Let K(H) denote the compact operators on H = (?  then fix an ONB {e;} of
H. Define p,, € K(H) to be the canonical rank n projection. If z,y € H, define
r®y e K(H) by
(r®y)(z) = (z,2)y
Then p, =Y 1 e Qe
(i) Define p,, : M,,(C) — K(H) by

n
pnlaig) = Y aijei ®e;
ij=1

Then p, is injective, and the range of p,, is p,JC(H)py.
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Proof. i, is injective because the set {e; ® ¢;} is linearly independent. As for
surjectivity onto p,K(H)p,, note that if u € p,K(H)p,, then

U = PnUPn

=Y (e®@e)ule; ®e))

ij=1

= Z<U(€z’)a ej)e; ® €;
ij=1
= pn(ai;)
where a;; = (u(e;), e;). O
(ii) Check that pi,411 0 @n = iy
(iii) Finally, observe that

K(H) = U Pk (H)pn = U fin (M (C))

(iv) As in the previous example, we see that (JC(H), {u,}) is an inductive limit of

(Mn((c)7 SOn)'

Proposition 2.5 (Inductive Limits of C*-algebras). Given an inductive system (Ay, ¢n)
of C*-algebras, an inductive limit (A, {u,}) ezists.

Proof. Consider the quotient map
T HA” — HAn/ZAn =:Q
and let ¢, , + A, = A,, as above.
2.1. Define v, : A, = [],, Am by
vn(a) = (Pmn(a))

This is well-defined, because ||@nn(a)|| < |la| for all m € N. Furthermore, v, is
clearly a x-homomorphism.

2.2. Let p, : A, — @ by u, = 7o v,, then observe that if a € A,,, then

¢ := Vp(a) — (Vny1 0 @n)(a)

has the form ¢, = a and ¢,, = 0 when m # n. Hence, ¢ € > A;, so that
fin(@) = (fns1 0 n)(a) = m(c) =0

Hence, p, = pin11 0 .
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2.3. Thus, {u,(A,)} is an increasing sequence of C*-subalgebras of (). Define

A= pn(An)

Then A is a C*-algebra, and p, : A, — A is a sequence of *-homomorphisms
satisfying the first condition of Definition 2.2.

2.4. To prove the second condition, suppose (B, {\,}) is another system such that
A = Ans1 © @,. Then
A © P = A VM >n

Hence, |[An(a)]] < ||@mn(a)|. So

[An(@)]| < limsup [[omn(a)l| = [[7(va(a))l] = [ (a)l]

Hence, ker(u,) C ker(\,). By the first isomorphism theorem, 3 a unique *-
homomorphism,

N (Ay,) — B such that X, o p, = A,

By uniqueness, A, |4, (4= A,,. Hence, we get a *-homomorphism
N pn(An) —» B
n=1

which extends /.. X is a contraction, so it extends to a *-homomorphism
AN A= B

such that Ao u, = X, o, = A,. Furthermore, X\ is unique with this property
because

A= U ,un(An)

[
(End of Day 12)

Remark 2.6. We observe the following from the above proof:

2.1.
A= U ,un<An>
n=1

2.2, ||pn(a)|| = limsup,,_, ||@mn(a)|| for all a € A,
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2.3.
ker(u,) = {a € A, : limsup ||@m.(a)| }

m—o0

2.4. If (B,{\,}) is another system as in Definition 2.2, then ker(u,) C ker(\,)

2.5. If each ¢, is injective, then so are the p,.

Lemma 2.7. Let (A,, ¢,) be an inductive system with inductive limit (A, u,). If (B, A\y)
is another system as in Definition 2.2, and X\ : A — B the unique *-homomorphism
guaranteed by Definition 2.2, then

2.1. X is injective iff ker(\,) C ker(u,) for all n € N, which is equivalent to ker(\,) =
ker(p,,) for all n € N.

2.2. X is surjective iff B =J,—; A (An).
Proof. Exercise (See [RORDAM, LARSEN, and LAUSTSEN, Proposition 6.2.4]) ]

Proposition 2.8. Let (G, ay,) be an inductive system of abelian groups, then an induc-
tive limit (G, B,,) exists. Moreover, one has

2.1. .
n=1

2.2. 00
ker(ﬁn) == U ker(a/m,n)

m=n+1

2.8. If (H,~,) is another system and v : G — H the unique group homomorphism as
in Definition 2.2, then

(i) ~v is injective iff ker(vy,) = ker(f,) for alln € N
(ii) v is surjective iff H =~ n(Gn)

Proof. The proof is similar to the one above. We give an outline.

e

to be the set of all infinite sequences (g1, g2, .. .) with g; € G;. Define

e,

to be the set of those sequences which are eventually zero. Note that > G, is a subgroup
of [[ Gn, and these are all abelian groups. Let

W:HGnﬁHGn/ZGn =:Q
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be the quotient map. Now define 3, : G,, — @ exactly as above so that 5, = 5,11 0 ay,

and set -
G = Bu(Gn)
n=1
Check that (G, 3,) is an inductive limit of the system. O

Example 2.9. 2.1. Consider G,, = Z and «,(1) = n + 1. ie. We may picture the

2.2.

system as
72573575 ..

Define v,, : Z — Q by

Then 7, is a group homomorphism such that v, = v,11 0 «,. Hence, (Q, {v,}) is
a system that satisfies (i) in Definition 2.2. Let (G, {f,}) be an inductive limit of
this system, then there is a group homomorphism

v : G — Q such that yoa,, =7,
Since

it follows that ~ is surjective. Also, since

ker(3,) = U ker(tm, )

m=n+1

and each ay, is injective, it follows that (,, is injective for all n. We see that each
v, is also injective. Hence,

ker(~y,) = ker(3,)

for all n € N. Hence, v is injective as well.

Let G,, = Z and «,,(1) = 2 for all n € N. ie. We may picture the system as

Define ~,, : Z — Q by

Then 7, = Yn11 0y, Hence, (Q,{7,}) is a system that satisfies the first condition
of Definition 2.2. Hence, if (G, {3,}) is an inductive limit of the system, then there
is a group homomorphism

~v: G — Q such that yoa,, =7,
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As in the previous example, we may check that

ker(B,) = ker(y,) = {0}

so that v is injective. However, v is not surjective, but does surject onto

1
H = U% ) {n mez,nzo}zzH

This is the inductive limit of the system.

Proposition 2.10 (Inductive Limits of ordered Abelian groups). Let (G, ;) be an
inductive system of ordered abelian groups where o, : G, — G,y1 are positive group
homomorphisms. Let (G, 3,) be an inductive limit of this system, and define

= U ﬁn(GD

Then (G,G™) is an ordered abelian group, B, is a positive group homomorphism, and
(G,GT,{B,}) is an inductive limit in the category of ordered abelian groups.

Proof. There are a few things that need to be checked:

2.1. Gt +G*T C GT: Note that

ﬁn(G:) ﬁnJrl(an(G )) - ﬂnJrl( n+1)

so {B.(G)} is an increasing sequence of subsets of G. Hence, the union of closed
under addition.

2.2. Show that Gt N (—=GT") ={0}: If z € GT N (=G™"), then z € B,(GF) N (=B, (G})
for some n € N. Hence, x = (3, (y1) = —Bn(y2) for some y;,y> € G,F. Now,

Bu(yr +12) =0

Since
o0

ker(8,) = U ker(avn,n)

m=n-+1

Im > n such that a,,,(y1 + y2) = 0. Let 2; = apn(y:) € G}, then
21 = —Z2 € G;; N (_Gjn)

Hence, z; = 20 = 0. Thus, x = §,,(z1) =0
n) for some n. Now

23. Gt —G" =G: If x € G, then = € 3,(G

Bu(Grn) = Bu(Gy — G) C BulGy) = BulGy) C GT = GT



2.4. If (H,~,) is a system where H is an ordered abelian group and v, : G, — H is
a positive group homomorphism, then there is a positive group homomorphism
v : G — H making the required diagram commute: By the universal property in
the category of abelian groups, 3 a group homomorphism

v:G—H
making the required diagram commute. One needs to verify that ~ is positive.
But
NG =~ (U MG,D) =JOeB)(GH) = Jwm(Gy) cHT
n=1 n=1 n=1
0
3. Continuity of K|
Lemma 3.1. Let p be a projection in A and a € Asq. Let § :=||p — al|, then
sp(a) C [—6,0) U1l — 0,1+ 9]
Proof. Note that sp(p) C {0, 1}, so suppose t € R such that
d :=min{|t|,|1 —t|} > ¢
We WTS: ¢ ¢ sp(a). Note that (p — t1) € GL(A) and
I(p — t1)7H| = max{| — |7, [1 —¢|"} =d " <07
Hence,
Ip =) Ha—t1) =1 = [l(p— 1) (a—p) <d'd <1
Thus, (p — t1)"(a — t1) € GL(A), hence
a—tl e GL(A)
so t ¢ sp(a) as required. O

(End of Day 13)

Lemma 3.2. Let p,q € A be projections such that ||p — q|| < 1, then p ~}, q
Proof. Let 6 :=||p —q||/2 < 1/2, and let a; := (1 — t)p + tq, then a; € Ay, and

sp(ay) C K = [—0,0]U[1 = 6,1+ 4]
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Let f: K — C be the map

)
f<t>_{1 t—1] <6

Then f is continuous. Hence by [R@ORDAM, LARSEN, and LAUSTSEN, Lemma 1.2.5],
the induced map

fiQK—>C

is also continuous. Since t +— a; is a path in Qg it follows that

t— f(ay)

is a continuous path of projections. Furthermore,

p=f(p) = flag) ~u fla1) = flq) = ¢

Lemma 3.3. Let A be a C*-algebra.

3.1. Let a € Ay, such that 6 = |la — a®|| < 1/4, then 3 a projection p € A such that
la —pll <20

3.2. Let p,q € A be projections and x € A such that |z*x — p|| < 1/2 and ||xza* —q|| <
1/2, then p ~ q

Proof. 3.1. If t € R such that min{|t|, |1 — |} > 27, then
it — | > 46% > !
4
Hence, if |t — t*| < 6 < 1/4, then
t € [—20,20) U1 —26,1+ 20]
Since a is self-adjoint, we conclude that
sp(a) C [—26,20] U [1 — 24,1+ 26]

Let p = f(a), where

0 :¢+<26
t) = -
f() {1 t>1-20

Then p = p? = p* because f = f2 = f. Furthermore,
- F(B)] <25 Vi < spla)

Hence ||a — p|| <26
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3.2. Let

1 ) ) 1
0 = g max{||e"z — p||, [lz2" — qll} < 5

and set I' := sp(z*z) U sp(xx*), then by the previous lemma,
[' C [—20,+20] U[1 — 26,1+ 20]

Let f as above, and set pg := f(x*x), qo := f(xzz*), then py, gy are projections such
that
[P —poll <46 < 1 and [lg — qof| <46 <1

Hence, p ~ pg and g ~ gy by the above lemma. We now show that py ~ qq.
(i) First, note that z(z*x)z* = (xa*)zz*. Hence, for any polynomial p € C(I'),
zp(z*zr)x” = p(ra™)za®
Thus, the same is true for any p € C(I') by density. Let g € C(I") be the
function
MO t£0
g(t) = ! ?
0 =0
This is continuous because f > 0 and f(¢t) = 0 if ¢ < 20. Observe that
tg(t)> = f(t) VteTl

v:=xg(x*x)

Then
v = g(a*r)r*rg(atr) = ¥ xg(a*x)? = f(2*z) = po

and

*

w* = xg(z*z)g(r*r)r* = xg(v*r)s* = g(za*)?zz* = f(zz*) = qo

Hence, pg ~ qo as required.

Remark 3.4. Given an inductive sequence
A 25 Ay B A 5 L

of C*-algebras, let (A, {u,}) be the limit of the sequence. (ie. the following diagram
commutes

Pn
An An+1

m /nJrl

A
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and A is universal with this property). Then we get an inductive sequence of Abelian

groups

KO(Al) Ko(e1) KO(AQ) Ko(p2) KO(A:}) Ko(ps)

Let (G, {f,}) be the inductive limit of this sequence. ie. the following diagram commutes

Ko(pn)

Ko(An) KO(An-I—l)

h%

0

Theorem 3.5 (Continuity of Ky). Given an inductive system (A, pn) of C*-algebras
with inductive limit A, we have

Ko(A) = lim(Ko(A,), Ko(en))

In fact, there is a unique group isomorphism v : Go — Ky(A) such that the following

diagram commutes
Ko(Ay)
Go = Ko(4)

Proof. Note that the following diagram commutes

Ko(Ay) Ko
Km
Ky

Hence, by the universal property of the inductive limit, there is a group homomorphism

(

o Ko(Au)
Ko(pn+1)

(A)

v GO — K[)(A)

such that v o g, = Ko(u,). We WTS: v is bijective.

3.1. ~y is injective: To prove this, by Proposition 2.8 above, we need to show that
ker(5,) = ker(Ko(un)) Vn eN

Since yof3, = Ko(ua) clearly, ker(5,) C ker(Ko(un)). Sosuppose g € ker(Ko(p)) C
Ky(Ay,), then 3 a projection p € My(A,,) such that

g = [plo = [s(p)]o and fin(p) ~ i (s(p)) in My(A)

Hence, Jv € M (A) such that

n(p) = v*v and fin(s(p)) = 00"
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However,
A=Jni(4))
j=1

Taking unitizations, and matrices, we see that

M(A)) = | /5 (Mi(47))

Hence, 3¢ > n and z; € Mk(;lvg) such that fi;(z,) is close enough to v so that

[ e(zpze) — pn(p)|l < 1/2 and ||fe(zery) — pn(s(p))|| < 1/2 in My(A)
Now note that 1, = fig © ©s, SO
| elzize — pen(p)]ll < 1/2

But by Remark 2.6,
@) = lim [ela)]

Hence, 3m > ¢ such that
[@m.elzzze = PenP)l <1/2
So if z,,, = @me(xe), then
[ Tm = Pma(p)]| < 1/2
Applying the same idea to the second equation above, we can arrange it so that
[my, — Pmn(s(p)] <1/2

(Note that in principle, we get two m’s for the two equations, but the max of the
two will work for both). Hence by the previous lemma,

Pmn(D) ~ Pmn(s(p)) n My(A)

Thus,
KO(SOm,n)(g) =0

But £, = B © Ko(¢@mn), so that £,(g) = 0, whence

ker(Ko(un)) C ker(f,)

(End of Day 14)
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3.2. v is surjective: To prove this, we need to show that

Ko(A) = | Ko(py)(Ko(A;))

=1

Clearly, D holds, so we fix ¢ € Ky(A), and we WTS: In € N such that g €
Ko(un)(Ko(A)). So write

g9 = [plo — [s(p)lo
for some projection p € Mk(Av) Since

Mi(A) = | Mi(4))

3b,, € Mg(A,,) such that ||, (b,) — p|| < 1/5. Let

by + b7
Uy = —— 0"
2
and set a,, := @m.n(a,), then a, is self-adjoint, and

_ _ 1 . . 1

By the above lemma,
sp(pn(an)) C [=1/5,+1/5] U [4/5,6/5]

Hence, by using calculus on the function ¢ + t* — ¢,

7@ — )| = max{|#? 1] £ € sp(7Ta(a)} <
Once again, since
()] = lim {[@mn ()]
it follows that 3m > n such that
laz, — amll < 1/4

By the previous lemma, 3¢ € My(A,,) a projection such that |a,, — ¢l < 1/2.
Now

[m (@) = pll < llg = amll + [[pm(am) — pl <1
SO fim(q) ~p p. Hence,

9 = [plo = [s(P)]o = [#m(@)lo — [s(1m ()]0 = Ko(pm)([glo — [s(q)]o)

Hence,

g € | Kol(u)(Ko(4;))

j=1
as required.
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]

Proposition 3.6. If each (Ky(A,), Ko(A,)") is an ordered abelian group, then so is
(K()(A), Ko(A)+) and

in the category of ordered abelian groups. ie.
Ko(A)" = Ko(uy)(Ko(A))")
j=1
Proof. Since i, is a x-homomorphism, Ko(u,,) is a positive group homomorphism, so
KO(Mn)(KO(An)+) C Ko(A)"

Conversely, suppose g € Ko(A)T, then g = [p|o for some projection p € My (A). As in
the proof of surjectivity above, 3m € N and a projection g € M(A,,) such that

lm(q) — pll <1

Hence, p,(q) ~n p, so

9 = [m(@)]o = Ko(m)([alo) € | Kolpy)(Ko(4;)")

j=1
[l

(End of Day 15)

4. Stabilized C*-algebras

In what follows, ® refers to the minimal tensor product between two C*-algebras.

Theorem 4.1. Let (A,, p,) be an inductive system of C*-algebras, where each p,, is
injective. Let B be any C*-algebra, then

(im(A,, ¢,)) ® B = 1lim(A, ® B, ¢, ® idg)

Proof. Let (A, {u,}) be the inductive limit of (A,,@,). ie. p, = pnr1 © @, holds. Note
that (A, ® B, ¢, ® idp) is an inductive system. Let (C,{\,}) be the inductive limit of
the system, so that A\, = \,11 0 ¢, ®idp for all n € N. Note that

un®idB:An®B—>A®B
has the property that

(kn ®1dp) = (ftnt1 ® 1dp) o (¢, ® idp)
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Hence, by the universal property of C', there is a unique *-homomorphism A : C' - A® B
such that

A, ®B
o e
C : A® B

4.1. A is surjective: To show this, we need to show that

A® B = D(un@)idB)(An@B)

n=1

For this, let e > 0 and 2 € A ®4, B be given by

z:Xm:ai(X)bi
i=1

where a; € A and b; € B. Since A = U;; pi(A;), 3n € N and s; € A, such that

€

lin(s) = all <

Then z:=>"" s, ®b; € A, ® B is such that
[(n @ idp)(x) — 2| <€

Hence,

S G(pn ®idp)(A, ® B)

n=1
This is true for every z € A ®q4 B, and hence for every z € A ® B.

4.2. ) is injective: Since

n=1

it suffices to show that X is isometric on each A, (A4, ® B). But
Ao\, =, ®idp

But u, is injective (see the construction of the inductive limit in Proposition 2.5),
and idp is injective, so u, ® idp is injective on A ® B (See [MURPHY, Theorem
6.5.1]). Hence, A\ must be isometric on A,(A, ® B) as required.

]

Remark 4.2. The same result holds for ®,,,, without the requirement that the maps
©n be injective. To prove this, one needs two things:
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4.1. The universal property of ®,,4.: Given two x-homomorphism n : A — C and
0 : B — C with commuting ranges, there is a unique *-homomorphism 60 : A ®,,4.
B — C such that 6(a ® b) = n(a)d(b).

4.2. ®meB is an exact functor.
We write K := K(¢?)
Proposition 4.3. For any C*-algebra A, define ¢, : My(A) — M,1(A) by a —

a 0
(O 0). Then

Proof. Example 2.4(2) + Theorem 4.3. O

Definition 4.4. Let e € K be the fixed projection of rank one e; ®eq, and kK : A - AQK
be given by a — a ® e. Then & is an injective x-homomorphism, called the canonical
inclusion of A into A ® K

Lemma 4.5. Let p € K be any rank one projection and ¢ : A — A ® K be given by
a— a®p, then Ky(p) = Ko(a)

Proof. Note that p ~eand 1 —p ~ 1 — ¢, so Ju € U(B(H)) such that e = upu*. By
the Borel functional calculus, 3h € B(H) self-adjoint such that u = ¢*. Hence the
path u; := e connects u to the identity. Hence, e = upu* ~j p. Furthermore, if
v A— A® K is given by

a— a® upuy;

Then ¢, is a path of x-homomorphisms such that ¢y = ¢ and ¢; = . Hence, Ky(a) =
Ko(p). o

Theorem 4.6 (Stability of Ky). The map k : A — A ® K induces an isomorphism
K()(/i) : Ko(A) — Ko(A (29 ’C)

Proof. Let ¢, : M, (A) = M,1(A) and p, : M,(A) - A® K be the maps as above
4.1. Ky(k) is surjective:

Ko(A® K) = | Ko(un) (Ko(Mo(A))

j=1
soif g € Ko(A®K),3In € Nand ¢ € Ko(M,(A)) such that

9= Ko(un)(9')

But ¢n1 1 A — M,(A) is the map A, from II1.3.8. Hence, K¢(¢n1) : Ko(A) —
Ko(M,(A)) is an isomorphism, so 3h € K(A) such that ¢’ = Ko(p,1)(h). Hence,

g = Ko(ptn © on1)(h) = Ko(k)(h)

so Ko(k) is surjective.
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4.2. Ky(r) is injective: If h € K(A) is such that Ky(k)(h) = 0, then
Ko(pn) Ko(pn1)(h) =0 VneN

But by Proposition 2.8,

[e.e]

ker(Ko(un)) = | ker(Ko(omn))

m=n+1

hence,
Ko(@mm)(Ko(pn1(h) = 0= Ko(¢ma)(h) in Ko(My(A))

But Ko(¢m,1) is an isomorphism, so h = 0 as required.
[l

This next corollary completes Example I11.3.7 which showed that the functor Ky(-) is
not exact.

Corollary 4.7. There is an isomorphism « : Ko(K) — Z such that
a([Elo) = Tr(E)
for every projection E € IC. This isomorphism is denoted by Ko(T'r)

Proof. Let k : C - C® K = K be the map as above, and a; : K¢(C) — Z the
isomorphism such that

ai([1)o) =1

Define a = a; o Ko(k)™' : Ko(K) — Z. Then « is an isomorphism. Furthermore,
F :=K(1) is a one-dimensional projection in K, and

a([Flo) = ar([to) =1

—_——

If £ € K is any one-dimensional projection, then £ ~ F in K(H) as in Example 1.2.3.
Hence,
a([Ele) =1

If F is any arbitrary n-dimensional projection, then E' is a sum of orthogonal rank one
projections, so

a([Elo) =n=Tr(E)
]

Remark 4.8. 4.1. The stabilization of a C*-algebra A is defined as A ® K. We say
that A is stable if A = A ® K.

4.2. If A and B are two C*-algebras such that A ®@ K = B ® K, then Ky(A) = Ky(B)
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43. If A K =2 B ® K, then we say that A and B are stably isomorphic. Stably
isomorphic algebras share many interesting properties. They have the “same rep-
resentation theory” in the sense that they are strongly Morita equivalent. This
implies that any statement concerning only modules over A holds for any C*-
algebra B stably isomorphic to A.

Theorem 4.9. For any C*-algebra A, A ® K is stable.

Proof. Suppose K were stable, then
(AK)9K=ZAR(K@K)=ZARK

would hold, so it suffices to show that X = K ® K.

Let H := (. and observe that KC(H) is nuclear, so the spatial tensor product may be
realized as

KH)® K(H)=span{a®b:a,be K(H)} =1 E C B(H® H)
where, for a,b € K(H) definea®b € B(H ® H) by
(a®b)(r®y) = a(r) @ by)
We claim that £ = K(H ® H).
4.1. fa =2, ®y1,b = 22 ® Yy, then
a(z) = (z,y1)x1 and b(2) = (2, y2)22

So
(a®b)(z1 ® 22) = (21, 91) (22, Y2) 1 ® X2

Hence, a®b € K(H®H). Hence, if a,b € F(H) (the space of finite rank operators),
then a® b € K(H ® H). Finally, if u,v € B(H), then

lu @ ol = {lull]lv]l
so the map ® : B(H) x B(H) — B(H ® H) is continuous, so

E:=span(a®b:a,be K(H)} C K(H® H)

4.2. Conversely, if T € K(H ® H), then T is the limit of finite rank operators. Hence,
to show the reverse inclusion, it suffices to show that F(H @ H) C E. Every
finite rank operator is a linear combination of rank one operators, so it suffices to
consider rank one operators. So suppose

T=z2zQuw
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for some z,w € H ® H, then z and w are limits of elements in H ® H. Hence, it
suffices to assume that z,w € H ® H. Once again, each z,w € H ® H is a linear
combination of elementary tensors, so it suffices to assume that z = z; ® y; and
w = xy ® Yy for x;,y; € H. But then

T(z1 ® z9) = (21, 41) (22, Y2)T1 ® T2 = (71 @ 72) @ (Y1 @ Y2)(21 @ 22)
Hence, T' = (21 ® 22) ® (y1 ® y2) € E. So we conclude that

E=K(H®H)

]

(End of Day 16)
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VI. Classification of AF-Algebras

1. Finite Dimensional C*-Algebras

Definition 1.1. Define e(n, i, j) € M, (C) to be the matrix whose (i, 7)™ entry is 1 and
other entries are zero. If

A= M, (C)& My(C)&... M, (C)

define
e = (0,0,...,e(n,4,5),0,0,...,0) € A
These are called the matrix units of A, and they satisfy the following identities

k) (k k
1.1. egj)egé) = egg)

1.2. 6§J)mn—01fk7éforlfj7ém

1.3. (eg’j)) —e(k)

1.4. A:span{em 1<kE<nr1<ij<ng}

Definition 1.2. Let B be a C*-algebra and { fi(f;)} be a set of elements in B satisfying
(1), (7i) and (i77) above. Then this is called a system of matrix units in B of type A.

Note: Given a system of matrlx unlts of type A as above, there is a unique x-homomorphism
¢ : A — B such that gp( ) f for all k,4, 7. Furthermore, this map is

1.1. injective if all the fisl;) are nNon-zero.
1.2. surjective if B = Span{fg;)}
Remark 1.3. f A= M, (C)&...® M, (C), then
Ko(A)=7"

In fact, since A is stably finite (since it is finite dimensional) and unital, (Ky(A), Ko(A)*, [14])
is an ordered abelian group with order unit, given by

Ko(A) = 2Z[e!)
Ko(A)* =2+l
1

[1,4]0 = nl[e

2 T)] ~~v T
|+ Z[eg %] .+ Z[egg] ~7
1 2 T ~J T
N+ 246l i] N AICIET2)
] (

1
o+ ng[eg,}]o + ...+ n,q[eﬂ]o
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Lemma 1.4. Suppose that {fz(];) 1 <Ek<r1<i<mng} isa set of mutually orthogonal
projections in a C*-algebra B such that

k k k

for 1 <k <r. Then there is a system of matriz units {fl(l;)} in V that extends {fz(]:)}

Proof. Choose partial isometries ffﬁ-) such that
k) (K k k) oK)\ k
( 1(1)) l(,i) = fi(,i) and fl(z)(fl(z)) = f1(,1)
and define
k k) (K
fi(,j) = ( 1(2)) fl(,j)
Then this system works [Check!] O

Definition 1.5. A C*-subalgebra D C A is called a maximal abelian subalgebra (masa)
if it is abelian, and it is not properly contained in any other abelian C*-subalgebra of A.

By Zorn’s lemma, every Abelian C*-subalgebra is contained in a masa.
Definition 1.6. Let X C A. Define
X' :={a€A:ar=za Vze X}

Note that X’ is a norm-closed subalgebra of A. Furthermore, it is a C*-subalgebra if X
is self-adjoint (ie. if a € X, then a* € X)

Note: B C A is Abelian iff B C B'.

Lemma 1.7. D C A is a masa iff D = D'

Proof. Suppose D = D', then D is Abelian, and if E is Abelian and contains D, then
DCECE cD =D

so £ = D. Hence D is a masa.

Conversely, suppose D is a masa, then D C D’ and D’ is a C*-subalgebra. WTS:
D" C D. Since D' and D are C*-algebras, it suffices to show that (D')s, C D. So fix
a € D' self-adjoint, and set

X :=DU{a}

Since elements in X commute with each other,
X cX’
Since X is self-adjoint, X’ is a C*-subalgebra of A, and so

Cr(X)c X'
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So if y € C*(X) and z € X, then zy = yx. Hence,
X cCorX)
Once again, C*(X)" is a C*-algebra, so
C*(X) c C*(X)

It follows that C*(X) is Abelian. Since D C X C C*(X), and D is a masa, we conclude
that
D = C*(X)

In particular, a € D as required. O

Example 1.8. Let A = M, (C) and D denote the set of all diagonal matrices. Then D
is an Abelian C*-subalgebra of A. Furthermore, if a € D', then

ae;l = €11a

So

er1(aler)) = aer1(e1) = aler)

Hence, a(e;) is an eigen-vector of e;; with eigen-value 1. So a(e;) = Aje;. Thus
continuing, we see that a must be diagonal. Hence, D' = D, so D is a masa.

Lemma 1.9. Let D be a masa in a C*-algebra A.

1.1. If D is unital, then A is unital and 14 = 1p

1.2. If p is a projection in D such that pDp = Cp, then pAp = Cp (Note: A projection
with this property is minimal, in the sense that there is no projection q € A such
that ¢ < p other than ¢ =0)

Proof. 1.1. If a € A, then WTS: a = alp. Let 2z :=a—alp, then zd =0 for all d € D.
Since D is self-adjoint, this implies (zd*)* = dz* = 0 for all d € D. Hence,

d(z*2) =0(z"2)d Vde€ D
Hence, (2*2) € D' = D since D is a masa. Hence,
() (2 2) =0=|z|'=0=2=0
Hence, a = alp for all a € A. Hence,
lpa=(a*lp)*=(a*)"=a Vae€ A

SOlpzlA
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1.2. Let a € pAp, then a = pa = ap. So if d € D, we have pd = dp = pdp = \p for
some \ € C. Hence,
ad = apd = Aap = Aa = da

Hence, a € D' = D, so a € D. In that case, a € pDp. Hence, pAp C pDp = Cp.
]

(End of Day 17)
Theorem 1.10. Any finite dimensional C*-algebra is isomorphic to
My, (C) ® M, (C) & ... & My, (C)

for some positive integers r,ny,ng, ..., n,. € N

Proof. 1.1. Choose a masa D C A. By Gelfand, D = Cy(X) for some space X. Since
D is finite dimensional, it follows that X is finite. In particular, X is compact.
Hence, D is unital, and so A is unital and 14 = 1p by the previous lemma.

1.2. Let X = {xy,x9,...,2x} and let p; € D denote the corresponding characteristic
functions

pi(x;) = di;
Then {p1,p2,...,pn} C D are projections such that

By the previous lemma, p;Ap; = Cp; for all 1 < j < N
1.3. Fix 1 <,j < N such that pjAp; # 0. Choose v € p;Ap; such that [Jv|| = 1, then

v € piAp;
is a positive element of norm 1. But p;Ap; = Cp;. Hence,
v = p;
Similarly, vv* = p;. Hence, we conclude
p;Api = {0} or p; ~ p;

1.4. Now suppose p; ~ p; and a € p;Ap;, then a = ap; = (av*)v. As av* € p;Ap; = Cpj,
so av* = Ap; for some A € C. Furthermore, p;v = v, so

a=av'v = Apjv = \v
Hence, a € Cu, so if p; ~ p;, then
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1.5.

1.6.

1.7.

Partition the set {p1,p2,...,py} into Murray von-Neumann equivalence classes.
Suppose there are r equivalence equivalence classes, and that the k™ class has ny
elements

k k
{f1(,1)7 2(,2)7 et fr(:?nk}

By choice of these projections, we have

") 4 10 _ oy W
fii A = {0} if k£ # ¢ and fiy ~ 1

JJ

By Lemma 1.4, we can extend this collection to a system of matrix units { fz(’;)} in
A.

By Step 4 () 4 () (k)

k k k

fm’ Afj,j - Cf' i

1/7]

1= Z fz(l:)
ik

and by Step 2,

Hence if a € A, then

o (S) o (Ta) - 3 st
ik ik k=1 14,j=1
T ng
= NG
; ZJZ:1 ) J

for some scalars )‘z('? € C. Hence,

A= span{fi(’];)}

Thus the system of matrix units satisfies all conditions (1) - (4). Hence, by the
remark following Definition 1.2,

A=M, (C)e M, (C)a...® M, (C)

2. AF-Algebras

Definition 2.1. An approximately finite dimensional (AF) algebra is an inductive limit
of finite dimensional C*-algebras.

Example 2.2. 2.1. Every finite dimensional C*-algebra is AF

2.2.

KC(¢%) is AF.
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2.3. Fix a sequence {n;} of integers such that ny | ngy1. Define ¢; : M,, (C) —
M, .,(C) to be the unital map

Nk+1

a — diag(a,a,...,a)
—_——

dj, times

where dj, = ny41/nx. The inductive limit is a unital AF-algebra, called a Uniformly
Hyperfinite Algebra (UHF) algebra of type 9% := {n;}

2.4. If n;, = 2% for all k € N, then the corresponding UHF algebra of type 2% is called
the CAR algebra (Canonical Anticommutation relations)

Lemma 2.3. Every AF-algebra is stably finite. Hence, (Ko(A), Ko(A)T) is an ordered
abelian group.

Proof. If A is an AF-algebra, then so is A and M;.(A). Hence it suffices to show that A
is finite when A is unital and AF. We use the characterization from Lemma IV.1.3 and
show that every isometry s € A is a unitary. Suppose s € A is an isometry, then fix
€ > 0 such that

€(3+2¢) <1

(For instance, ¢ = 1/4 works) Now, since A is an AF-algebra, 3 a finite dimensional
C*-subalgebra B C A and z € B such that

|s —z|| <€
It follows that

L=zl = llsll = ll=l[| < l[s =2l <e=llzf <1+

14 —a%z|| = ||s"s — 2"x]]
< lls*s — s"al + 5"z — 2"z
< [[s"Mlls — @[] + [|s" — 2" (|||
<lls =zl +lls —zll(1+¢)
<ete(l+e)=e+2<e(3+2e) <1
Hence, z*z is invertible. Replacing B by B+ C1 4 (which is also finite dimensional), and

using spectral permanence, we can conclude that x*z is invertible in B. Furthermore, if
z = (z*z)~!, then

o 1 1
(1— k— < 1— b <
=2 (-t = e kZOH Sy [ g

Hence, if y = zx*, then yr = 14 and

1+¢

lyll < 1_e_ 9
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Now z is left-invertible in B. Since B is finite dimensional, it follows that z is right
invertible in B (and hence A), and the left and right-inverses coincide. Thus, zy = 14,
SO

e(1+¢)
— 14l = — <lls — < —" <]
lsy = Lall = llsy —ayll < lIs — z[lllyll < 5 s
because €(3 + 2¢) < 1. Hence, sy is invertible, so s is right invertible as required. O

a. Outline of the Classification Theorem

If A is a unital AF-algebras, we consider the triple
E(A) = (Ko(A), Ko(A)™, [La]o)
If there is a unital *-isomorphism ¢ : A — B, then we get an isomorphism of invariants
Ko(p) - £(A) = £(B)
(End of Day 18)

Theorem 2.4 (Elliott). Let A and B be two unital AF-algebras. Given an isomorphism
a: E(A) — E(B), there is a x-isomorphism ¢ : A — B such that a = Ko(p).

Proof. The outline of the proof is as follows:

2.1. Write both A and B as inductive limits of finite dimensional C*-algebras

Alﬂ)AQgAgﬁ—)A

BB 2B Y 5B

A (VLI

An, An, Ap,
N N
Bm1 Bm2 Bmg o

If such an intertwining exists, then there is an isomorphism ¢ : A — B. This
isomorphism will have the property that Ky(p) = o as well.

B
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2.2.

2.3.

Ko(An,) Ko(An,) e Ky(A)
/ &* % & alla
KO(Bml) KO(Bmg) Ko(Bm3)—>—>K0(B)
(VL2)

This requires a lifting property of the groups Ky(A;) and Ko(B;) (which are free
Abelian groups) as follows: Given an inductive limit

Ko(ur)

Ko(Ag)

Ko(A)

Ko(B;

Once can lift the map v to a map 3 : Ko(B;) — Ko(As) for some ¢ > k such that
TFDC:

Ko(pe,k)

Ko(Ar) S22 K0 (Ag) 22 o (A)
e 7
Ko(Bj)

We will apply this inductively to construct an intertwining of K, groups as above
(Equation VI.2)

Given an intertwining of K, groups as above, we would like to construct x-
homomorphisms f; : B,,, —+ A,, and g; : A,, — By, such that

Ko(fi) = a; and Ko(g:) = 5

For this, we need an Existence theorem:

Furthermore, we would like the f; and g; to interact as in Equation VI.1. Hence,
we need a Uniqueness theorem as well:

O




b. Step 1: Some facts about Inductive limits

We now consider Step 1 of the outline described above - to prove that an intertwining
between sequences of C*-algebras produces an isomorphism of inductive limits.

For this, we fix a sequence of C*-algebras
A2 Ay B A 5 L
with inductive limit (A, {x,})

Lemma 2.5. Given a subsequence 1 <ny <mng <mngz <..., set ;= Qn, ,n;- Then the
inductive limit of the sequence (Ay;, ;) is (A, {ttn; })-

Proof. Let (B,{\,}) be the inductive limit of (A,,,;), then we have a commutative
diagram

¥j
Anj+1
A
Hence, by the universal property, 3 a x-homomorphism A : B — A such that TFDC:
Ay,
B A A

We wish to show that A is bijective:

Ap,
“w

2.1. X is injective: This happens iff ker(\;) C ker(u,,) for all j € N. So suppose
a € ker();j) C A,,, then [[A;(a)|| = 0, whence

Tim [ (a)]] = 0
where ¢y ; © An, — Ay, is the connecting map. But it follows by construction
that r; = ©nym,. But {||@n,n,(a)||} is a subsequence of {||¢;,(a)||} which is a
convergent sequence with

16, (@) = T [, ()]

Hence the sequence converges to zero, whence fi,,(a) = 0 as required.

2.2. X is surjective: This happens iff

A= U Hon, (An])
j=1
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Since n; — oo, for any k € N, choose n; > k, so that

e (Ar) = fin; (Okn; (Ax)) C pin; (An;)

Hence

A= U :uk(Ak) C U/’Lnj(Anj) CA
j=1

k=1
[

Lemma 2.6. Set B, := A,/ ker(u,) and let m, : A, — B, be the quotient map. Then
3 injective x-homomorphisms 1, : B, — B,y1 and a *-homomorphism 7 : A — lim B,

such that TEFDC:

A2 A s Ay A
B, - B, . B, lim B,

Furthermore, w is an isomorphism.

Proof. Note that u, = .11 © ¢,. Hence,
tp : By, — By given by a + ker(uy,) — pn(a) + ker(pi, 1)

is well-defined, and is clearly a x-homomorphism. Furthermore, note that

Un(a+ker(p)) = 0= ¢u(a) € ker(pnt1) = pnla) = pnr1(pn(a)) = 0 = a € ker(un)

Hence each 1, is injective.

Now let (B, {\.}) be the inductive limit of (B,,,). Then we have maps a,, : A, — B
given by
Oy, = A\, O T,

and TFDC:

Pn+1

A, ——A
B

n+1

because if a € A,,, then

Q41 © Pn41(@) = A1 © Tpp1 © Ppya(a)
= )‘n+1(90n+1 (a) + ker(:unJrQ))
= Ant1 0 Yny1(ma(a))

=\, omp(a) = ay(a)
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Hence by the universal property, we get a map 7 : A — B such that TFDC:

Ay

>N

A = B

We check that 7 is bijective:

2.1.

2.2.

7 is injective: As before, we need to check if
ker(a,) C ker(py,)

So suppose a € A, is such that a,(a) = 0, then
0= Palmal@)]] = lim_ [ n(ma(@)]

Now note that each v, is injective (see above), and so isometric. Hence it follows
that m,(a) = 0, whence a € ker(u,,) as required.

7 is surjective: It suffices to show that

B=|]a,(A,)

n=

—_

But each 7, is surjective, so

and we know that

B= G An(Bn)

]

Lemma 2.7. Suppose each map ¢, : A, — A1 is injective, then p, : A, — A is also
injective. Suppose further that A is unital, then Ing € N such that, for all n > ng, A,
1s unital and the maps ¢, : A, — Apyq and p, @ A, — A are unital.

Proof. Note that each ¢, is isometric. So if p,(a) = 0, then

= lm_[lpma(0)] = flaf = a=0

Hence each p, is injective. Now suppose A is unital. Since

14 € A= U :un(An)

n=1
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dng € N and a € A,,, such that u,,(a) € GL(A). By spectral permanence,

fing (@) € GL(piny(Any) + Cla)

SO
Hng (a)_l = [ing (D) + Al4
for some b € A,,,. Then
14 = fing(@)[tng (b) + ALa] = ping(ab + a)

Let © = ab + a, then for any y € A,,,, we have
Fing (TY) = g () png (Y) = Lating (y) = pino (y)
Since iy, is injective, zy = y. Similarly, yz =y, so @ = 14, . Note that
fing (1a,,) = 1a
We claim that if n > ng

2.1. A, is unital,

2.2. ¢, is unit-preserving.
Now if n > ng, let z := ‘Pn,no(lAn()), then for any y € A,,, we have
tn(2Y) = pn(2)pin(y) = ping (La, ) in(y) = Lapn(y) = pin(y)
Hence, zy = y. Similarly, yz =y, so 2 = 1,,. Furthermore, observe that
@mno(lfan) - ]‘An
Once again, by injectivity of u, it follows that each ¢, is unital for n > ny. m

Lemma 2.8 (Intertwining Lemma). Given two inductive sequences of C*-algebras (A, {¢n})
and (B, {¢n}) with inductive limits (A, {un}) and (B,{\,}) respectively. Suppose there
are x-homomorphisms «,, : A, — B, and (3, : B, — A,1 such that TFDC:

A, L Ay i As
Bl Y1 B2 P2 B3

Then 3 a *-isomorphism o : A — B such that
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Proof. As usual o : A — B exists by the universal property of A, and it satisfies the
above commuting diagram. Similarly, we get a map §: B — A such that TFDC:

B, B

An
—_—
B
Hn«kloh

A
Observe that
Boaop, =o)X, 00, = ini10 Bn0a, = lni1 O Py = ln
Since

A= U fin(An)

it follows that § o a =id,4. Similarly, a o § = idp. O

c. Step 2: Lifting maps at the level of K,

We now consider Step 2 of the outline of Elliott’s theorem from above - that of con-
structing an intertwining at the level of Ky groups.

Remark 2.9. 2.1. Let G be an Abelian group. Then G is said to be projective if,
whenever one has a surjective map

m: M — N
of Abelian groups and a map ¢ : G — N, then 3 a map @ : G — M such that
TEDC:
G—"~M
Nk
N
0

2.2. G = Z is projective because if ¢ : Z — N, then ¢(1) € N = n(M), so dJx € M
such that 7(z) = ¢(1). Now simply define ¢ : Z — M by

Similarly, any free Abelian group G' = Z™ is projective.

2.3. Now suppose we are given an inductive system of Abelian groups

H 2% Hy %% Hy &5
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with inductive limit (H,{8,}). Suppose we are given a group homomorphism
¢ : G — H, we ask whether In € N and a group homomorphism ¢ : G — H,, such
that TFDC:

G—2+H,

N

Note that each 3, is not necessarily surjective, but
n=1

2.4. G = 7 satisfies this condition: If ¢ : Z — H, then ¢(1) € H, so 3n € N and
x € H, such that p(1) = B,(z). Now define » : Z — H,, such that

p(1) ==

Similarly, G = Z™ also satisfies this condition.

2.5. This kind of lifting property is sometimes called semi-projectivity (this is not
standard usage!).

(End of Day 19)
Lemma 2.10 (Semi-Projectivity Lemma). Let
A 55 Ay B Ay B

be a sequence of finite dimensional C*-algebras with inductive limit (A, {p,}). Let B be a
finite dimensional C*-algebra and assume that there are positive group homomorphisms
a and vy as below

Ko(p)

Ko(Ay) Ko(A)

If each o, is unit preserving and if a([1a,]o0) = [18]o, then B([15]o) = [1a,]o-
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Proof. 2.1. Let {eg?} be the matrix units of B and set xy, := 7([65’?1)]0) € Ko(A)*. By

2.2.

2.3.

2.4.

continuity of Ky(A),

Ko(A)" = | Kolun) (Ko(4a)")

n=1

Hence, I3m € N and 41, v2, . .., yr € Ko(A,,)" such that
v = Ko(ptm(ye) V1< k<r

By Remark 1.3,
Ko(B) 2 Zles & ZeDo & . .. Z[el )]

So, as in the previous remark, 3 a group homomorphism ' : Ko(B) — Ko(An)
such that
Befo) =y VI<Sk<r

Suppose g € Ko(B)", then 3m; € N such that

g =mileo +maleX]o + ... +m, el o

Hence, §'(g) € Ko(An)T. Hence, [ is positive.
Furthermore,
(Ko(pm) © 8)[e))o = Kol () = i = 7([€}]o)

Hence, Ko(pim) 0 8" =~

To ensure that o a = Ky(p,1) still requires some work: Note that Ky(A;) is a
finitely generated abelian group, so choose generators {gi, gs, ..., gs}. Note that

Ko(pim) 0 B o algi) = v o alg:) = Ko(p1)(9i) = Ko(pm) © Ko(@m.1)(9:)

Hence,
hi := B o a(gi) — Ko(pm1)(gi) € ker(Ko(ptm))
But
Ker(Ko(jin)) = | ker(Ko(@um))

n>m

Hence, 3n > m such that h; € ker(Ko(pnm)) for all 1 <i <'s. Define

6 = KO(SOn,m) o 5,

Then
[Boa— Ko(en)](g:) = Ko(pnm)(hi) =0 V1<i<s

Since K((A;) is generated by the {g;} it follows that

ﬁ o = KO(SOn,l)
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2.5.

2.6.

Finally, note that

v = Ko(pim) © g = Ko(pn) © Ko(@nm) o g = Ko(ptn) 0 B

as required.

Now for the final claim: If each ¢, is unit preserving and «([14,]o) = [15]o, then

B([1slo) = B o a([la]o) = Ko(en1)([Lailo) = [14,]o

d. Step 3: Existence and Uniqueness of maps between finite

dimensional C*-algebras

We begin with Step 3 of the outline described above: To construct maps out of finite
dimensional C*-algebras from maps at the level of K-theory, and to determine to what
extent these maps are unique.

Definition 2.11. A C*-algebra A is said to have the cancellation property if, for any
two projections p, q € Ps(A), we have

[plo = [dlo =P ~0 q

Example 2.12. 2.1.

2.2.

2.3.

2.4.

M, (C) has cancellation
Proof. Let A = M,(C). If p,q € Ps(A) are such that [plo = [¢]o, then choose
?,q € Mp(A) such that p ~g p’,q ~o ¢’. Then by Example 11.1.13,
Tr(p') =Tr(q)
Then it follows that p’ ~ ¢'. Hence, p ~q ¢ H

If A, B have cancellation, so does A® B. Hence every finite dimensional C*-algebra
has cancellation.

Proof. Obvious. m

Let (A, ¢n) be an inductive sequence of C*-algebras with inductive limit (A, {1, }).
Suppose each A, has cancellation, then so does A. Hence, every AF-algebra has
cancellation.

Proof. Let p,q € Ps(A) such that [plo = [¢]o. Assume WLOG that p,q € M(A).
As in the proof of Theorem 3.5, I3m € N and p’ € My (A,,) such that p,,(p) ~ p.
Similarly, 3¢’ € My(A,,) such that p,,(¢") ~ g (Note that in principle there might
be two different integers m and ¢, but we may choose the max of them). Hence,

[1m (p/)]O = [Nm(q/)]U
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Since

ker(Ko(pm)) = U ker (Ko(¢n,m))

n=m+1

it follows that 3n > m such that

[(Pn,m(p/)]o = [(Pn,M(q/)]O in Ko(A,)

Since A, has cancellation,
Son,m(p/) ~0 §0n7m<q/)
But then

P~ pm(p) = :un<90n,m(p/)) ~0 Nn(@n,m(q,)) = ptm(q) ~ q
Hence, A has cancellation. n

2.5. B(H) does not have cancellation because for any two projections p,q € B(H), we
have [plo = [q]o, but it is not true that p ~ ¢ in general (See Example 1.2.3, and
I1.1.14)

Lemma 2.13. Let B be a unital C*-algebra with cancellation. Let gi,¢9s,...,9, €

Ko(B)*" satisfy
Zgi < [1B]o

Then 3 mutually orthogonal projections py,pa,...,pn in B such that [p;lo = g; for all
1<j<n

Proof. We proceed by induction.
21. Ifn=1: 0< g1 <[lglo and [1g]o — g1 > 0 so Te, f € P,(B) such that

g9 = [elo and [15] — g = [flo

Then since B has cancellation

le® flo=[1Blo=e® f~o1p

So Jv € M 5,(B) such that
v'v=e® f and vv* = 1p

Define ¢ := v(e @ 0,,)v*, then ¢ € P(B),q < 1 and if w = v(e ® 0,,), then

ww* = q and w'w = (e B 0,)v*'v(e®0,) =(e®0,)(e® f)(e®0,) = (e 0,)

Hence, g = [e]o = [e ® 0,.]0 = [¢]o
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2.2. If n > 2: We have

n—1

n—1
Zgi +gn < [18]o = Zgi < [15o
i—1

i=1
By induction hypothesis, we may choose mutually orthogonal projections py,pa, ..., pn_1 €
P(B) such that g; = [pi]o. Set

pi=p1+p2+...0n1

Then 0 < g, < [15] — [plo, then Je € P,,(B) such that g, = [e]o. Then choose
f € Pu(B) such that [flo = [15]o — [po — [€]o, then

[e® flo = [1slo — [plo = 15 — Plo
Since B has cancellation, e ® f ~¢ 1p — p, so Jv € M j4m(B) such that
e® f=vvand lg —p=ovv"
Put p, := v(e @ 0f)v*, then p, € P(B) and if w = v(e @ 0f), then
ww” = p, and w'w = (e G 0 )v*v(e ® 0x) = (e ® Of)
As before, [p,]o = [€]o = gn. Furthermore,
(1 = p)pn = v0*0(e ® Op)v" = v(e® f)(e ® 0p)v" = v(e ® Op)v" = p,
Hence, p, < 15 — p. Hence, .
sz‘ <lp
i=1
By Exercise 2.4 (below), it follows that the {p;} are mutually orthogonal.
O
(End of Day 20)

We now prove the existence part of Step 3 of the outline of Elliott’s theorem described
above.

Lemma 2.14 (Existence Theorem). Let A be a finite dimensional C*-algebra, and B a
unital C*-algebra with cancellation. Let o : Ko(A) — Ko(B) be a group homomorphism
such that

a([1alo) < [18o

Then 3 a x-homomorphism ¢ : A — B such that Ko(p) = «. Furthermore, if a([14]o) =
[1g]o, then p(14) = 1 must hold.
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Proof. Write
A=M,, (C)® M,,(C)d...M,. (C)

and let {el(»?} be a system of matrix units of A and ¢, := a([e(k)]o). Then

D ik = a(Y " [ef)o) = a([1alo) < [1E)o

ik
So by the previous lemma, 3 mutually orthogonal projections fl(l:) € B such that
k k
O‘([eg,z‘)]o) = [fi(,i)]o
Since B has cancellation, for each 1 < k <r and 1 <14,j5 < ng, we have

(%) (%) (k) (k)

k k k k
€ii ~€; = eii]o = [ej,j]ﬂ = [fi(,i)]o = [f},j)]o = fi(,i) ~ f](,j)

By Lemma 1.4, the system { fl(lf)} extends to a system of matrix units { fl(’;)} in B of
type A. By the note following Definition 1.2, we obtain a x-homomorphism ¢ : A — B
such that

Note that by construction

By Remark 1.3, K((A) is generated by the elements {[eglfl)]o}. Hence, Ky(p) = a.

Now suppose a([14]o) = [15]o. Put
b= Z fz(]:)
ik
Then p € P(B) and ¢(14) = p. Hence,
[15 = plo = [1s)o — [Plo = a([1a]o) — Ko(p)([1a]0) = 0
Since B has cancellation,
lp—pr~o0=1p-—p=0=9¢(la)=p=1p
S0  is unital. O

Definition 2.15. 2.1. Let B be a unital C*-algebra, and v € U(B). Define Ad u :
B — B by b+~ ubu*. Note that Ad u is an automorphism of B.

2.2. Let p,v : A — B be two x-homomorphisms. We say that ¢ and v are unitarily
equivalent (In symbols, ¢ ~, 1) if Ju € U(B) such that ¢ = Ad u o 1.

Remark 2.16. 2.1. If ¢ ~, ¢, then Ky(¢) = Ko().

91



2.2. The converse is not true: Let A = Oy, then we know that Ky(Oz) = 0 (Theorem
I11.4.6). Hence, Ky(0) = Ko(ido,). However, idp, is not unitarily equivalent to 0.

We now prove the uniqueness part of Step 3 of the outline above.

Lemma 2.17 (Uniqueness Theorem). Let A be a finite dimensional C*-algebra and B
be a unital C*-algebra with cancellation. Let @, : A — B be two x-homomorphisms
such that

Ko(p) = Ko(¥)
Then p ~y, .

Proof. Consider the matrix units {eg?} of A. Then

p(ef*Do = Kole)lelN]o = Ko(w)[el]o = (el and
(15 —¢(1a)]o = [1B]o — Ko(®)([14]o) = [1Blo — Ko(¥)([1a)o) = [15 — ¥(14)]o

Since B has cancellation, 3 partial isometries v, vq, ..., v, and w € B such that

vpvf = p(el)), and vop = w(el)) V1 <k <r

w'w =1 — ¢(1,) and ww* = 1 — Y(1,)

Define
wig = (el urp(el?)
Then
wiywi g = (el v (el)) v el yunp(el!))
= (el v (el el up(el?)
= plel (el vep(el)
= (el wivvivrp(el?)
= ple!)p(e)pel?)
= (e
Similarly,
Wi Wy g, = w(e§f§))
Hence,
ww" + sz pWik = 1p —¥(la) + ZM@E?) =1
ik ik
Similarly,
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Hence it follows from Exercise 2.6 (See below - See also Lemma I11.4.3) that

is a unitary. Moreover, we claim that

up(el?) = p(elyu Vs, t,m

Note that
up(el) |2 @ﬁiwwww
= wp(el?) + (el vmp (e (el
= wp(e) + (el )vmp(el)
and

(e )u = (el )w + (e [Zw Yo em]

—ws»w+w< (e omp(el?)
(m)

= 1/)( )w + ¥(eg; )UmSD(eu )
Finally, observe that w = (15 — ¥(14))w = w(lg — ¢(14)). Hence,

Hence,
(el )ur = ()

for all s,t,m. Hence, ¥ ~, ¢ as required. O

e. Elliott’s Classification Theorem

Theorem 2.18 (Elliott). Let A and B be two unital AF-algebras. Suppose
a: Ko(A) = Ky(B)
is a positive group isomorphism such that a([14]o) = [1glo. Then 3 a unital x-isomorphism
p:A—B
such that Ko(p) = .

In other words,

A= B & (Ko(A), Ko(A)T, [1a]o) = (Ko(B), Ko(B)*, [15]0)
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Proof. 2.1. Step la: Write (A, {u,}) as an inductive limit of

2.2.

2.3.

Al A2 A3

where each A, is finite dimensional. By applying Lemma 2.6, we may assume that
each map f, : A, — A, is injective. Since A is unital, by Lemma 2.7, we may
further assume that each f,, is unital. Similarly, we obtain a sequence of finite
dimensional C*-algebras

Bi % By & By

where g, : B,, = B,1 is unital, and whose inductive limit is (B, {A\,}).

Step 2: Let By = C and set gy : By — B be the unique unital map. Similarly,
let 1o : By — A1, Ao : By — B be the unique unital map. Set fy := K(¢)g). Then
we get

aoKo(p1)oBo=Ko(Mo)

Ko(Bo) Ko(B)
k Am)

Ko(Ar)

By the Semi-Projectivity Lemma (2.10), 3m; € N and oy : Ko(A1) — Ko(Bm,)

such that TFDC:

Ko(An)
Ko(Bo) — Ko(Bum,) = Ko(B)

N

o

o(A1)
Now consider the diagram
Ko(Ay) Kol
1 @ LoKo(Am;)
KO Bm1)

By the Semi-Projectivity Lemma 2.10, we get ny € N and a map 1 : Ko(B,,) —
Ky(A,,) with a corresponding commuting diagram. Thus proceeding, we get maps
and diagrams as below

(fnz 1

Ap,) — ... —= Ky(A)

/ \ / " oo

(gm1 0) (gm2 ml)

Step 1b: Consider the subsequences

fn g fn n
A, Ty g DAl
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2.4.

and
9mo,m 9msg,m
By, 2y p, 2t ey

Their inductive limits are A and B respectively by Lemma 2.5. To simplify nota-
tion, we assume n; = m; = j so that f, .. = f; and g, ., ; = g;

Step 3: For each j € N, by the Existence Theorem (Lemma 2.14), 3 maps
@' Aj — Bj and ¢} : Bj — Aj;y such that

Ko(¢;) = a; and Ko(y)) = B;
Note that

Ko(f;) = Bj o aj = Ko(1 o ¢))
Ko(g;) = aj1 0B = Ko(@jy o))

We define unitaries u; € U(A;41) and v; € U(B;) inductively as follows:

(i) Set v; = 1. By the Uniqueness Theorem (Lemma 2.17), Ju; € U(Az) such
that

fi = Ad uy o9y 0 ¢
Set 11 := Ad uy 0 ¢} and ¢ := .
(ii) Note that
Ko(g1) = Ko(h o ¥)) = Kol 0 1)
Hence, by Lemma 2.17, v, € U(Bsy) such that

g1 = Ad vy 0 @y 01y

Set o 1= Ad v 0 ¢),.

(iii) Thus proceeding, we obtain unitaries u; € U(A;41) and v; € U(B;) such that,
if
@; = Ad v; 0 ¢} and ¢; := Ad u; 0 ¢

Then
Ko(¢}) = Koly;) and Ko(¥}) = Ko(v;)
and furthermore, TFDC:

A As As
YN N
BO Bl Bg

By the Intertwining Lemma 2.8, there is an isomorphism ¢ : A — B and
v=p1:B—= A

A

B
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2.5. To show that Ky(¢) = a, note that we have two commuting diagrams

Ko(uy) Ko(z)
Ko(4;) 2 Ko(A) Ko(4;) 2 Ko(A)
Ko(soj)=0<jt LKo(w) O‘fl La
Ko(Bj)m o(B) Ko(Bj)m Ko(B)

Hence, a = Ky(p) on Ko(p;)(Ko(A4;)). By continuity if K,
Ko(A) = ([ Kolp)(Ko(4;))
j=1

Hence, a = Ky(p) on all of Ky(A).
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VIl. The Functor K

1. Definition

Definition 1.1. Let A be a unital C*-algebra. Define
Un(A) == UM, (A)) and U (A) := | | U, (A)
n=1

Define a binary operation & on U (A) by

WY = u 0
N0 w

and an equivalence relation ~; on U, (A) by: If u € U,(A),v € U,,(A), then we say
u ~q v iff 3k > max{m, n} such that

UD Ly ~p VD Lo,
where 1, is the unit in M, (A).
Lemma 1.2. Let A be a unital C*-algebra. Then, for all u,v € U (A)

1.1. ~q is an equivalence relation on Us(A)

1.2. u~1u®1, for all and n € N

1.3 udv~vPu

1.4. If u~ v and v ~1 V', then u ® v~y v/ G v

1.5, If u,v € U, (A) for somen € N, then uv ~y vu ~1 u @ v
1.6. (u@v)dw=ud(vdw)

Proof. (i), (ii) and (vi) are trivial, and (v) follows from Whitehead’s lemma. Now
consider (iii): Let u € U,(A) and v € U,,(A), and set

0 1,

Then by (v),
vhu=zudv) ~ 2" 2(udv)

To prove (iv): It suffices to prove:
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11 (u® 1) @& (v® 1) ~1 (u@v): This follows from (ii), (iii) and (vi).

1.2. If u ~p v and v ~p, V', then (u®v) ~p, (v G v’). But this follows by simply taking
the two paths u; and v; and considering u; & v;.

O

Definition 1.3. Let A be a C*-algebra, then define
Ki(A) 1= Uns(A)/ ~

Write [u]; for the class if u € U (A) in K1(A). Define an addition on K;(A) by
[uly + [v]; == [u® v];

The operation is well-defined by the previous lemma. It is also commutative, associative,
and has a zero element [1]; = [1,,]1. Also, if u € U, (A), then

[u)y + [u']y = [u @ u']y = [un” @ 1,]1 = [1o,)1 = [1]1
Hence, [u*]; = —[u];. Hence, K;(A) is an Abelian group.
The next proposition follows by definition or by the previous lemma.

Proposition 1.4 (Standard picture of Ky). Let A be a C*-algebra, then

Ki(A) = {[u: : u € Un(A))
The map [-]1 : Us(A) = K1(A) has the following properties:
1.1. [u®v]y = [u)y + [v]
1.2. (1, =0
1.3. If u,v € Up(A) and u ~y, v, then [u]; = [v];
1.4. Ifu,v € Uy (A), then [uv]; = [vu)y = [u]y + [v]s

1.5, If u,v € U (A), then [u]; = [v]y if and only if u ~; v.

Proposition 1.5 (Universal Property of K7). Let A be a C*-algebra and G an Abelian

group. Let v : U (A) — G be a map satisfying

1.1. viu®v) =v(u) + v(v)

1.2. v(1) =0

1.3. If u,v € Uy, (A) such that u ~y, v, then v(u) = v(v)
Then 3 a unique homomorphism o : K1(A) — G such that

alu])) =v(u) Yu € Uy(A)
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Proof. Suppose u,v € U (A) are such that u ~; v, then 3k € N such that
uU® lp—p ~p 0O Ly
By properties (i) and (ii), v(1,) = 0 for all » € N. Hence,
v(u) =v(u) + v(lk—n) = v(u® li—p) = V(v B lj_p) = v(v) + v(1km) = v(v)

Thus, the map a : K1(A) — G as desired exists. Uniqueness follows from the fact that

[]1 : Uso(A) — K;(A) is surjective. O
Definition 1.6. Let A be a unital C*-algebra, and let f: =17 —14 € Z, then
A=A+Cf

Define p : A= A by a+af = a. Then p is a unital *-homomorphism, which we extend
to amap pu: M,(A) — M,(A) as usual. This gives a map

W Uso(A) = U (A)
Proposition 1.7. Let A be a unital C*-algebra, then there is an isomorphism
p:Ki(A) = U (A)) ~

such that TFDC: N
Uso(A) ——= U (A)
j[']l]
Ki(A) —5 U (A)) ~

Proof. 1.1. If u,v € U,(A) such that u ~p, v, then p(u) ~, p(v).

1.2. Conversely, suppose p(u) ~p u(v), we write
u = p(u) +ug and v = p(v) + vo
where ug, v € U,(Cf). Now we know that
ug ~p, vo in U (Cf)

Since p(u) ~p, p(v), we may add the paths to obtain a path a; + b; from u to wv.

Note that a; + b; € U,,(A) because

atbt = th: = a:bt = a:b: =0
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Hence, in what follows, if A is unital, we will simply identify
K1 (A) = Uss(A)/ ~1

In particular, it follows that for any C*-algebra A,

Ki(A) = Ki(A)

Example 1.8. 1.1. K;(C) =0= K;(M,(C))

Proof. By the previous proposition,
K1 (M,,(C)) = Use (M (C))/ ~1

However, any two unitaries in M (M, ((C)) are connected, so K;(M,(C)) =0 O
1.2. K1(B(H)) =0 if H is infinite dimensional as well.

Proof. Recall that if u € U, (B(H)) = U(B(H")) is any unitary, then by the Borel
functional calculus,
u=e

for some h € B(H )s,. It follows that u ~, 1,,. Hence the result. O

(End of Day 21)

2. Functoriality of K,

Definition 2.1. Let ¢ : A — B be a *-homomorphism, then ¢ : A %NE is a unital

s-homomorphism, which extends to a unital *-homomorphism ¢ : M, (A) — M,(B).
This gives a map

P Uso(A) = Uso(B)

Define v : Uy (A) — K1(B) by
v(u) = [@(u)y

Then v satisfies the conditions of Proposition 1.5. Hence, we get an induced map
Ki(p) : K1(A) — Ki(B) given by [u]y — [@(u)]s

Note: If A and B are unital and ¢ : A — B is a unital *-homomorphism, then (Exercise)

Proposition 2.2 (Functoriality of K;). Let A, B,C be C*-algebras. Then

2.1. Kq(ida) = idg, (a)
2.2. Ki(yop)=Ki(¢)o Ki(p)
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Hence, K is a contravariant functor.
2.3. K1({0}) = {0}
2.4. K1(0p,4) = Ok, (B),Kk(A)
2.5. If p,v0: A — B are homotopic x-homomorphisms, then Ki(p) = K;()
2.6. If A and B are homotopy equivalent C*-algebras, then Ki(A) = K,(B)

Proof. 2.1. Note that id4 = id ;
2.2. Note that Yo = 1;0 7]

2.3. Recall that K;(A) = K;(A) for any A. In particular,

K1({0}) = K1(C) =0

2.4. 0p 4 factors as A — {0} — B, so it follows that

Ki1(0,4) = K1(0B,103) © K1(0g03,4) =0

2.5. Let ¢; be a path of *-homomorphisms from ¢ to 1. Then ¢; is a path from ¢ to
. Hence if u € U (A), we have

Ki(p)[uly = [p(w)] = [¢(w)] = K1 (¢)[uly

2.6. This follows from part (v)

3. Half and Split Exactness of K,

The proofs here are similar to that of K. Fix a short exact sequence

0515 A% B0
Lemma 3.1. Let ¢ : A — B be a x-homomorphism and g € ker(K;(p)). Then
3.1. Ju € Uso(A) such that g = [uly and @(u) ~p 1
3.2. If ¢ is surjective, then Ju € Uso(A) such that g = [u]; and $(u) = 1.

Proof. 3.1. Let v € Us(A) such that g = [v]y, then [F(v)]; = 0 = [Ln]1, so In > m
such that
@(U) Slpnn~r I @ =1,

so take u=v P 1,,_,
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3.2. By part (i), Jv € U (A) such that g = [v]; and p(u) ~4 1,,. Since @ is surjective,

so is ¢, so Jw € U, (A) such that ¢(w) = ¢(v) and w ~j 1. Then u := w*v has
the property that ¢(u) =1 and g = [v]; = [w*]; + [v]1 = [u];.
[

Recall the following facts we proved earlier (See Lemma I11.3.1): If A is a C*-algebra,
we have a split exact sequence

05ASASC—0
andamapk:@%gthat splits m. We deﬁnes:zzlv—hzlvby
s=MAor

so that s(a+ al) = al for all a« € A,a € C. This induces a map

Sp + Mp(A) — M,(A)
whose image consists of all matrices with scalar entries.
Lemma 3.2. For anyn € N
3.1. &y Mo(I) = M,(A) is injective.
3.2. An element a € M, (A) belongs to the image of By iff Un(a) = sp(Un(a))

Proposition 3.3 (Half-Exactness of K;). Given a short exact sequence

0I5 A% B0

the sequence

Ko (1) 29 gy (a) 29 k(B

18 exact.

Proof. Since K is a covariant functor, K;(¢) o Ki(p) = 0, so it suffices to show that
ker(Ki(¢)) C Im(Ki(p), so fix g € ker(Ki(¢)), then by the previous lemma, Ju €
U (A) such that g = [u]; and ¥ (u) = 1. In particular,

s (V) = ¥ ()

Hence Jv € M, (I) such that u = $(v). Since u is a unitary and @ is injective, it follows
that v is also a unitary. Hence,

g9 = luly = [p(v)]s € Im(K:1(p))
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Remark 3.4. We will show that, for any C*-algebra A,
K (A) =2 Ky(SA)

where SA = Cy(0,1) ® A. The next three results will follow from that fact along with
the corresponding facts for Ky

Proposition 3.5 (Split Exactness of K;). Given a split ezact sequence

0I5 A5 BS0

with splitting X\ : B — A, then the following sequence is also split exact

0 — Ko (1) 29 g a) 9% g B) =0

with splitting K1(\) : K1(B) — K;(A)
Proposition 3.6 (Direct sums).
Ki(A® B) = K,(A)® K(B)
Proposition 3.7 (Continuity of K). Let
A2 Ay B Ay —

be a sequence of C*-algebras with inductive limit (A, {pn}). Let (G,{Bn}) be the inductive
limit of the sequence

MAg%

Ki(Ay) 29 K (4y)
Then there is a group isomorphism v : G — K;(A) such that

vo By =Ki(u,) VYneN

Furthermore,
3.1. oo
K,(A) = U Ky (pn) (K1(AR))
n=1
3.2. For eachn € N,
ker(Kl(,un)) = U ker(K1<§0m,n))
m=n+1

Proposition 3.8 (Stability of K;). Let A be a C*-algebra, n € N and X\, : A — M, (A)
be the map as before. Then

s an isomorphism. Furthermore, if Kk : A — A® K is the map as before, then
Kl(/@') : Kl(A> — Kl(A® ’C)

18 also an isomorphism.
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Example 3.9. 3.1. Let A be any finite dimensional C*-algebra, then K;(A) = 0.
3.2. If A is any AF-algebra, then K;(A) =0
3.3. In particular, K;(K) =0

4. K, and determinants

Let A be a unital C*-algebra, then there is a group homomorphism w such that TFDC:

UA)
j []1
U(A)[Up(A) 5— K1 (A)
which exists because [u]; = 0 for all u € Uy(A). Let (u) denote the class of u in

U(A)/Uy(A), so that

Definition 4.1. Let A be a commutative C*-algebra. For each n € N, define a deter-
minant by D : M, (A) — A by

D((ai;) == Y _ sign(o) H%o(a‘)

G’GSn

Remark 4.2. If A = C, this is the usual determinant. The determinant has the following
properties:

4.1. D(ab) = D(a)D(b) Va,b € M,(A)
4.2.

4.3. D(a*) = D(a)*
44. D(a) =aforallae A
4.5. D : M,(A) — A is continuous for all n € N

4.6. If A is unital and commutative, then D maps U (A) to U(A), and if u,v € U, (A)
such that u ~j v, then D(u) ~;, D(v)

Proof. 1f u, is a path of unitaries such that ug = u and u; = v, then D(u,) is a
path of unitaries such that D(ug) = D(u) and D(u;) = D(v). O

Hence, there is a group homomorphism

A Ky(A) = U(A) /Uy (A) given by [u]; — (D(u))
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and TFDC:

In particular, by property 4.4,

A ow = idM(A)/Z/Io(A)

Proposition 4.3. Let A be a unital commutative C*-algebra. Then there is a split exact
sequence

0 — ker(A) 5 K1 (A) 2 UA) Uy (A) — 0
with splitting w : U(A) JUy(A) — K1 (A). Hence,
Ki(A) ZU(A)Uy(A) @ ker(A)

Corollary 4.4. If A is a unital commutative C*-algebra such that U(A) is not connected,
then K1(A) #0

Proof. w:U(A)/Uy(A) — K1(A) is injective. O
(End of Day 22)

Remark 4.5. If u,v € U(A) such that u ~;, v, then u*v € Uy(A) so (u) = (v).
Conversely, if (u) = (v), then u ~p, v. Hence, U(A)/Uy(A) coincides with the set of path
components of U(A). Furthermore,

lu—v]| <2=u~pv
So U(A) is locally path connected. Hence,
U(A)[Uy(A) = mo(U(A))
the set of connected components of U(A)

Definition 4.6. Let A = C(X), then U(A) = C(X,T). The cohomotopy group 7' (X)
is the group
(X, T] = U(A) [Us(A)

of pointed homotopy classes of pointed continuous maps f : X — T. This is an Abelian
group under the point-wise multiplication of functions.

Example 4.7. 7'(T) & Z. Hence, K,(C(T)) # 0
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Proof. Write F': [0,1] — C by '
F(t) := u(e®™)

Then F(t) # 0 for all t € [0, 1]. Hence, F' € GL(C|0,1]). Set

M = sup |F(t)]™!
tel0,1]

Find a partition 0 = tg < t; < ty... <t, =1 of [0, 1] such that
1
su F(t)— F(ti_1)| < —
_swp|F(0) — F(t)| < gy
Then it follows that if ¢ € [ty_1, ts],
F(ty_q |F(tx—1)| 2M|F(tp—1)| — 2

On the domain €2 := {z € C : |1 — z| < 1}, let log(z) be the principal branch of the
logarithm,

1—

10g(Z> _ _Z (1 —nz)n

Then log is holomorphic, and satisfies log(1) = 0 and
e8?) = 2 VzeQ

Now define
Gi(t) :=1log(F(t)/F(tg—1)) on tj—1 <t <ty

Then Gy, is continuous and Gy (tx_1) = 0 and G (tx) = log(F (tx)/F (tx—1)). Furthermore,
F(t) = F(tp_1)e™ WVt € [ty_1, ts]
Define G : [0,1] — C as follows
Gt)=Gi(t)onty <t <t

and
G(t) = G1 (tl) -+ Gg(tg) + ...+ kal(tkfl) -+ Gk(t) on [tkfl, tk]

Then it follows that
F(t) = F(0)ef®

Write F(0) € C* as F(0) = e, we obtain f € C|0, 1] as
f{t) = G(t) + 2

which satisfies ' '
F(t) — u(eZﬂ'zt) — e27rzf(t)

If f,g:[0,1] — R are continuous and satisfy the above equation, then f—g is a constant
integer. Define o : C(T, T) — Z by

a(u) = f(1) = f(0)

This is well-defined, and is called the winding number of u. « is surjective, and
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4.1. a(uw) = a(u) + a(v)

Proof. Write u(e?™*) = ¢?™/®) and v(e?™") = 279", Then

2mity e2mi(f(t)+9(t)

uv(e

Hence

a(uw) = f(1) +g(1) = (f(0) +9(0)) = a(u) + a(v)

4.2, a(u*) = —a(u)
Proof. If u(€2m't) _ 62m’f(t)7 then u*(e%it) — 62m’(—f(zt)) 0
4.3. u ~p v iff a(u) = a(v)

Proof. (i) Suppose u ~j, v, then w := wv* ~;, 1. Hence, 3hy, hy, ..., by € C(T)g,

(i)

such that .

w = Helh]'

j=1
To show that a(w) = 0, it suffices to assume that k = 1 by part (i), so assume

wzezh

for some h : T — R continuous. Then

1 , A .
f(t) — %h(e%mt) = w(e2mt) — 627rzf(t)

Hence,

Conversely, suppose a(u) = «a(v), then for w := u*v, we have a(w) = 0 by
part (i) and (ii). So write
w(627rit) — e27rif(t)

such that f(1) — f(0) = 0. Now recall that T = [0, 1]/ ~ via the quotient
map ‘
t > e* from [0,1] — T

Since F(0) = F(1), it induces a function h € C(T) by the formula
h(e*™) = f(t)

Hence,
u*v = w = exp(2mih) € Up(A)

Thus, u ~p v

All these properties combine to produce an isomorphism

a: 7 (T) — Z given by {(u) — a(u)

where (u) denotes the class of w in [T, T]. O
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Remark 4.8. In fact, we will show later that
A : K1(C(T)) — 7'(T)
is an isomorphism. Hence, K;(C(T)) = Z

Definition 4.9. A unital C*-algebra A is said to be Kj-injective (resp. K;j-surjective/ K-
bijective) if w is injective (resp. surjective/bijective). If A is non-unital, we require that
A have this property.

Example 4.10. 4.1. If A = M, (C) or B(H), then U(A) = Uy(A) and K;(A) =0, so
A is Ki-bijective.
4.2. If A is a unital, commutative C*-algebra, then it is Kj-injective.
4.3. C(T) is K;-bijective, but C'(T?) is not. (to be proved later)
4.4. Also, the irrational rotation algebra Ay is Kj-bijective [due to Rieffel]

4.5. Every purely infinite, simple, unital C*-algebra is K;-bijective [R@RDAM, LARSEN,
and LAUSTSEN, Exercise 8.13]. In particular, O,, and Q(H) are K;-bijective.

4.6. For a unital C*-algebra A, A® K is K;-bijective [RORDAM, LARSEN, and LAUST-
SEN, Exercise 8.17]
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VIll. The Index Map

Given a short exact sequence of C*-algebras
0=-1I—-A—-DB—=0
we have obtained two sequences
K;(I) = K;(A) — K;(B)
We now wish to define a map
d: Ki1(B) = Ko(I)
which connects the two sequences, giving a long exact sequence

Ki(I) = K1 (A) = K (B) % Ko(I) = Ko(A) = Ko(B)

1. The Fredholm Index

To motivate this, consider the exact sequence

0—K—BH)S QH) -0
Theorem 1.1 (Atkinson). The following conditions are equivalent for an operator T €
B(H):

1.1. ker(T) and coker(T) = ker(T™) are both finite dimensional.
1.2. 3S € B(H) such that 1 — ST and 1 — TS are compact.
1.3. w(T) is invertible in Q(H)

Proof. [MuUrpPHY, Theorem 1.4.15] O

Definition 1.2. 1.1. If T' € B(H) satisfies one, and hence all, of the above conditions,
then T is said to be Fredholm. Write ®(H) for the set of all Fredholm operators
in B(H). Note that

®(H) =7 (GL(Q(H))

Hence, ®(H) is an open subset of B(H). Furthermore, note that if 7', S € ®(H),
then ST € ®(H) as well.
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1.2. To each T' € ®(H), we define the index of T" as

index(T") := dim(ker(7)) — dim(ker(7™)) € Z

Example 1.3. Let S € B(£?) denote the left shift operator
S((z,)) = (x2,3,...)
and let T" denote the right shift
T((xn)) = (0,21, 22, ...)

Then S =T*,ST =1and TS =1— P,,,so T is Fredholm. Also,

ker(T) = {0} and ker(7™) = span(e;)

Hence,
index(7) = —1

Theorem 1.4. ( [MurrHY, Section 1.4]) The map index: ®(H) — 7Z has the following
properties:

1.1. index(T + K) = index(T) for all T € ®(H) and K € K(H)
1.2. index(TS) = index(T)index(S) for all S,T € ®(H)
1.8. The index map is locally constant on ®(H), and continuous in the norm.

1.4. Two Fredholm operators are homotopic in ®(H) iff they have the same indez.

Remark 1.5. If T denotes the right-shift operator, then index(7") = —1, and index(7™) =
1. By taking powers, it follows from the previous theorem, that

index(T") = —n and index((T*)™) = m

Hence index : ®(H) — Z is surjective. Furthermore, observe that 7" is an isometry for
each n € N.

Theorem 1.6. The index map induces an isomorphism
ind: K1(Q(H)) = Ko(K)
Hence, K1(Q(H)) = Z.

Proof. 1.1. Let w € U(Q(H)), and let T' € B(H) such that 7(7") = u. Write the polar
decomposition
T=V|T|

Then V is a partial isometry. Furthermore,
(T"'T)=v'u=1=n(T]) = W((T*T)l/Z) =1

Hence, (V) =n(T) = u

110



1.2.

1.3.

1.4.

1.5.

1.6.

Now note that (check!)
ker(V)) = range(1 — V*V)

and similarly, ker(V*) = range(1 — V'V*). Hence,
index(V) = rank(1 — V*V) — rank(1 — VV™)
Furthermore, if W is any other partial isometry such that 7(W) = u, then W—-V €

K(H), so
index(W) = index(V)

Recall that Ky(K) = Z via the map [p|o — rank(p) = Ko(Tr)([plo). Hence, the
map

v:UQ(H)) — Ko(K) given by u — [1 = V*V]o —[1 = VV7]y

is well-defined. Furthermore, if u € Uy(Q(H)), then we may choose V' to be a
unitary, in which case the RHS is zero. Hence, v descends to a map

ind: U(Q(H))/Uy(Q(H)) = Ko(K)
Since Q(H) is purely infinite,
K1(Q(H)) = U(QH)) /U (Q(H))
Hence, we get a map
ind : K1(Q(H)) = Ko(K) given by [u]; — [1 =V*V]o —[1 = VV7]

where V' € B(H) is any partial isometry such that 7(V) = u.

We claim that ind is an isomorphism. Since Ko(T'r) : Ko(K) — Z is an isomor-
phism, it suffices to show that

p = Ko(Tr) oind

i is a homomorphism: If uy,us € U(Q(H)) and Vi, Vo € B(H) are partial isome-
tries such that m(V;) = u;. Then

7T(V1V2) = U1U2

Let W be any partial isometry such that 7(W) = wjug, then W — ViV5 € K(H),
SO
index(W) = index(V;V5)

Hence,

w(ug) + p(uz) = index(V7) + index(V3) = index(V;V5) = index(W) = p(uqus)
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1.7. w is injective: Suppose p([u];) = 0, then
index(V) =0 =index(!) = V ~p, [ in ®(H)

Hence, u = w(V) ~p, I in GL(Q(H)). Since U(Q(H)) is a deformation retract of
1 =

GL(Q(H)), it follows that u € Uy(Q(H)), whence [u]
1.8. p is surjective: If x € Ko(K), then write

©

n = Ko(Tr)(x)

By Remark 1.5, 37 € ®(H) such that index(7) = n. Since p is a group homo-
morphism, it suffices to assume n < 0. In which case, we may choose T to be an

isometry. Hence,
T"T=1and TT" -1 € K(H)

Hence,

u:=n(T) e U(Q(H))

and by definition
p([u]y) = index(T') = n

]

(End of Day 23)

2. Definition of the Index Map

Fix a short exact sequence
015 A% B0

Recall the following facts we proved earlier (See Lemma II1.3.1): If A is a C*-algebra,
we have a split exact sequence

03ASA5C—0
andamap/\:(C—>Zthat splits w. We deﬁnes:;l—);lby
s=Aom

so that s(a+ al) = al for all a € A,a € C. This induces a map

Sp : My (A) — M, (A)
whose image consists of all matrices with scalar entries.

Lemma 2.1. For anyn € N

2.1. ¢n: M,(I) — M,(A) is injective.
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2.2. An element a € Mn(g) belongs to the image of @, iff Jn(a) = sn(zzn(a))
In what follows, write
1, 0 =

Lemma 2.2. Let u € U, (B), then
2.1. v € Unn(A) and a projection p € Pan(I) such that

0= (5 ) B =, s =

2.2. Ifv,p are as in (i) and w € Us,(A) and q € Pan(I) also satisfy the same equation,
then

s(q) = qn and p ~y q in Pan(I)
Proof. 2.1. By Whitehead’s lemma,

0 . ~
(g u*) ~p 12n 1m I/{2n<B>

Hence, v exists as required. Also,

{E ('UQnU*) = (n

Hence, by the previous lemma, Ip € Ms, (1) such that

P(p) = vgnv”

Since the RHS is a projection and ¢ is injective, p € Pa,(I). Now,
V(@(p) = an

Hence,
S (p) =d(qn

2.2. Suppose w, q also satisfy the same equations, then the same argument as above
shows that

s(q) = an
Note that J(w*v) = 1y,. Hence, by the previous lemma, 3z € Mzn(f) such that
o(z) =w'v
Since ¢ is injective, it follows that z is a unitary. Furthermore,
p(zpz") = ¢(q)
Since ¢ is injective, we conclude that

zpzt =q

Hence, p ~, q in Py, (I) as required.
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Definition 2.3. Define p : U, (B) — Ko(I) by

u(u) = [plo — [s(p)]o = [vgxv"]o — [gno

where v € Uy, (A) and p € Pay, (1) satisfy the previous lemma. Then, y is a well-defined
function.

Lemma 2.4. The map p : Us(B) — Ko(I) has the following properties:
2.1 plur @ uz) = puur) + p(uz)

2.2. u(1)=0

2.8. If uy,uq € Z/ln(é) are such that uy ~p, ug, then p(uy) = p(ug)
Proof. 2.1. Technical. Skipped.

2.2. If u =1, then the recipe from Lemma 2.2 gives

v =15 and p = diag(1,0) = s(p)

Hence, v(1) = [plo — [s(p)lo = 0

2.3. If uy ~y, ug, choose vy € Us,(A) and p; € Po,(I) such that

{/fv(Ul) = (%1 1?»1‘) ;o @(p1) = w1 (1071 8) vy

Then pu(u1) = [piJo — [s(p1)]o- Since

UTUg ~p 1y ~op U Uy

there are unitaries a,b € M,(A) such that

J(a) = ujuy and {/;(b) = ujuy

Set vy := vidiag(a, b) € Us,(A), then

Je = (1 ) and o (g Q)3 =50

Hence, p1(uz) = [p1lo — [s(p1)]o = p(wr). B

Definition 2.5. The map p : Us(B) — Ko(I) satisfies all the conditions of Proposition
VII.1.5. Hence by the universal property of K, we obtain a group homomorphism

(51 . K1<B> — Ko(]>

such that 01([ul1) = p(u) for all u € U(B). ie. If u € Uy(B), choose a unitary
v € Us,(A) such that 1 (v) = diag(u, u*). Then

51([“]1) = [UQnU*] - [Qn]
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Proposition 2.6 (Naturality of the Index Map). Let

0—=7T-—2oA- Y. B .9

LRI

0 | ANy Ny 0

be a commutative diagram with short exact rows of C*-algebras. Let
51 : Kl(B) — K()(I) and 5/1 : Kl(B/) — K()(I,)
be the index maps associated to the two sequences. Then TFDC:
5
K1(B) —— Ko(I)

Ko(ﬁ)l LKo('Y)

Kl(B/) T> KQ([/)
1

Proof. Let g € Ki(B) and u € Uy(B) be such that g = [u];. Then choose v € Up,(A)
and p € Py, (I) such that

o= o) @ =
Set v/ := a(v) € Upn (A" and p' := F(p) € Pan(I’), then
W) = ea) = o0 =5 (§ ) = (ﬁg‘) Y )

and similarly,

¢ (p') = Vg, (V)

Hence by definition of the index map,

*

01 (Ko(B)(9)) = 01([B(w)]1) = [P'lo — [s(2)]o = [#(P)]o — [#(s(p)]o = Ko(p)(d1(g))
Hence the result. [l

Consider the short exact sequence 0 — I — A = A/I — 0, where A (and hence A/.J)
is unital.

Proposition 2.7. Let u € U,(A/J), then there is a partial isometry x € Mo, (A) such
that
O ([u)r) =1 —a"z)o— [1 —zx"]p
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Proof. Let v € ugn(AV) and p € Py, (I) be such that
~ u 0\ ~ N -
30 = () 20) = v 5(6) =
Write x := (1 — ¢,,)v*, then
'z =v(l — q,)v" =1—vg,v*
and xz* =1 — ¢,. Hence,

[1— a2zl — [1 = z2™]o = [vgnv™]o = [gnlo = 01([u]1)

[
Proposition 2.8. Let u € U,(A/J) and suppose u lifts to a partial isometry v € M, (A).
Then
O ([u)y) =1 —a"z]o— [1 —zx™]o
Proof. Let

w::( v 1_fx)€M2n(A)

11—z x
Then w is a unitary and 7(w) = diag(u, u*). Hence,
d1([ul1) = [wgaw*lo — [gnlo

However,
r =z(xz"z) and z* = z"zz”

Hence,

= wg,w* + diag(l — zz*,0) =

*

= 51([“]1) = [IUan*}O - [C]n]o = [1 —x x]o — [1 — :m:*]o
Corollary 2.9. For the exact sequence

0— K(H)— B(H)— QH)—0
The map ind : K1(Q(H)) — Ko(K(H)) constructed earlier coincides with &
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3. Exact Sequence of K-groups

Let
0I5 A% B0

be a short exact sequence of C*-algebras.
Theorem 3.1. The sequence

Ki(p)

Ky(I) Ki(A) —

Ko(B) 222 io(4) 229 ko)

18 exact.

Proof. We show two out of four steps and omit the rest, because they are too technical.

3.1. 610 Ki(¢)) = 0: Let u € Uy(A) and let 2 := Ky (¢)([u]y) = [(u)];. We WTS:

d1(x) = 0. Now set
u 0
v = (0 u*) and p ;= g,

Then p = s(p) and

Hence,
o1(z) = [plo — [s(p)]o =0

3.2. Ko(p)ody =0: If [u]; € K1(B), then let v and p as above. Then

Ko(¢)(01([ulr)) = [(p)]o — [#(s(p))]o

But by construction,
$(p) = vguv” and $(s(p)) = gn
Hence, 3(p) ~u #(p), and so

Ko(p) 0 01([u]1) =0

O

Example 3.2 (The Toeplitz Algebra). Let H = (*> and s € B(H) be the right shift
operator. Then s is an isometry,

s*s=1and ss* =1— pe,

Let 7 := C*(S). This is called the Toeplitz algebra.
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3.1.

3.2.

3.3.

3.4.

We claim that K(H) C T: First define e; ; to be the map

e;.j(x) == (x,e;)e;

and set .
Jn = Z €j,j
j=1
to be the projection onto span{es, e, ..., e,}. Observe that

fi=1l—ss*e€T ande;; =s""f(s*) !

Hence, e;; € T for all 7,5 € N. Together, they span all finite rank operators.
Hence,
K(H) =span{e; ;} C T

Consider the quotient map 7 : 7 — Q(H). Then n(s) € Q(H) is a unitary and
[w(s)]1 # 0 in K1 (Q(H))
because index(s) = —1. Hence, 7(s) ¢ Uy(Q(H)), so it follows that
sp(m(s)) =T
Hence, 7(T) = C*(n(s)) = C(T).
Thus, we get a short exact sequence
0—-KH)—=-T—=C(T)—=0
and hence a long exact sequence of K-groups with
01 : K (C(T)) = Ko(K(H))
Let u:= w(s) € U(C(T)), then since s is an isometry, we have
01([ul1) = [1 = s"s]o — [1 = s5™]o = —[f1]o
Furthermore, in Ko(K), —[f1]o is a generator. Hence,
81 ¢ G (C(T)) = Ko(K(H))
is surjective.

Now consider the long exact sequence of K-groups

Ko(v)

Em— K()(T)

2@, Ko(C(T))

K\(K) = Ka(T) = Ki(O(T)) 5 Ko(K)
Since ¢; is surjective,
ker(Ko(t)) = im(0y) = Ko(K) = Ko(t) =0
Hence, this reduces to

o1

0= Ki(T) = Ko (C(T)) 2 2 % Ko (T) 22

Ko(C(T))

where Ky(7) is injective.
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Remark 3.3. We will show that Ko(7) = Z and that K;(7T) = {0}.

Example 3.4. Consider the short exact sequence
0 — Cy(R?*) — C(D) — C(T) =0
Since D is contractible, C'(D) ~j, C. Hence, K((C(D)) = Z and K,(C(D)) = 0. Hence,

the long exact sequence of K-groups gives

Ko(y)
LN

K1 (Co(R?)) — 0 — K,(C(T)) — Ko(Co(R?)) — Z Ko(C(T))

Hence, the map
Ki(O(T)) = Ko(Co(R?))

is injective. Since K;(C(T)) # 0 by Example 4.7, it follows that Ky(Co(R?)) # 0.

4. Higher K-functors

Corollary 4.1. For any C*-algebra A, there is a natural isomorphism
Ki(A) = Ky(SA)

Proof. Note that SA = Cy(0,1) ® A. Define the cone of A to be CA = Cy[0,1) ® A,
then we have a short exact sequence

0>SA—=CA—=-A—=0

Since CA ~p, {0}, we have Ko(CA) = K;(CA) = 0. So by exactness, we get an
isomorphism

ay = 51 : Kl(A) — Ko(SA)

To see that this is natural, note that if ¢ : A — B is a *-homomorphism, we get a map
of exact sequences

0 SA CA A 0

S
0 SB CB B 0

where S¢ = idgy0,1) ® ¢ and Cp = idgyjo,1) ® ¢. Now the naturality of a4 follows from
the naturality of the index map. O]

Note: This completes all the proofs we had left unfinished from Chapter VII.

Definition 4.2. For each n > 2, define the functor K, inductively as
K,(A) =K, 1(SA)
Given a #-homomorphism ¢ : A — B, we have a x-homomorphism

Sp:SA— SA

119



By induction, it follows that we get a map
Kn(p) « Kn(A) = K (B)
which satisfies all the required properties so that K, is a covariant functor.

Lemma 4.3. For each n > 2, the functor K, is a half-exact, split exact, homotopy
invariant, continuous functor from the category of C*-algebras to the category of Abelian
groups.

Proof. Given a short exact sequence

0—-1—-A—-B—=0

the induced sequence
0—SI—-SA—SB—0

Hence, the functor S from the category of C*-algebras to itself is exact, split exact and
continuous (See [RORDAM, LARSEN, and LAUSTSEN, Exercise 10.2]). Furthermore, if
A~ B, then SA ~ SB. Hence, by induction, if K,,_; satisfies any of these properties,
then K,, would too. ]

(End of Day 24)

Definition 4.4. Given a short exact sequence

0=-1I—-A—-DB—=0
we have an induced exact sequence

0—=+S8—SA—SB—=0
The index map of this sequence is a map
9y := K (SB) = Ko(SI) = 3 := Ky(B) = Ki(I)
This allows us to extend the long exact sequence one step further
.= Ko(B) 2 Ki(I) = K (A) = Ki(B) 2 Ko(I) = ...

Proceeding inductively, we define

on : Kn(B) = K1 (1)

which gives a long exact sequence in K-theory.

677,—1

o Kn(B) 2 Ky (1) = Kpo1(A) = Ky 1(B) 225 K, (1) = ...
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IX. Bott Periodicity

1. Cuntz’ Proof of Bott Periodicity

We wish to prove the following theorem
Theorem 1.1 (Bott). For any C*-algebra A, there is a natural isomorphism
Ba: Kn(A) = Kni2(A)
Consider the Toeplitz algebra 7 defined earlier. Note that
T =C"(s)
where s € B((?) is the right shift operator. Then there is a short exact sequence
0— K(H) =TS C(T)—0
We will need the following

Theorem 1.2 (Universal Property of T). If v is an isometry in a unital C*-algebra B,
then there is a unique *-homomorphism ¢ : T — B such that ¢(s) = v.

Definition 1.3. Define ¢ : T — C by
q:=evioT
Then ¢ is a x-homomomorphism such that ¢(s) = 1.
Theorem 1.4 (Cuntz). For any C*-algebra A and any n € N, the map
K,(ida®q): K,(A®T) — K,(A)
18 an isomorphism.

Proof. Fix A and n € N. For simplicity of notation, for any C*-algebras C and D and
any *x-homomorphism ¢ : C' — D, we write

C'"=C®Aand ¢ :C"— D' for ¢ ®idy
Let j : C — T be the unique unital *-homomorphism. Then
goj=idc = ¢ oj =ids

Hence,
Ko(q) o Ku(j') = idg, (a)

WTS: K, (j') o Kn(¢') = idk, (7).
We will show that there are maps o and [ such that
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e K,(«) is injective and

o K.(8)+ Kn(a) o Kn(j') o Kn(q') = Kn(B) + Kn(a)

1.1. Step 1 (Finding «):

(i)

(i)

(iii)

Let e := 1 — ss* € T be the rank one projection. Let ¢ : T — K ® T be the
map
a—re@a

Consider € : T ® A — (K®T)® A. There is an isomorphism
7:(K@T) A= (T®A QK
such that y((a ® b) ® ¢) = (b ® ¢) @ a for all elementary tensors. Hence,
Ai=K,(7) o Ku(€) : K (T ® A) » K, (T ® A) @ K)

is the natural isomorphism from Theorem V.4.6 (Note that Lemma V.4.5
applies to K, not just Ky). Furthermore, K, (7) is an isomorphism. Hence,

K, () : K,(T") — K,(T' ® K)

is an isomorphism.

Inside the algebra 7 @ 7, we have a subalgebra
T®l={a®l:acT}
and a closed ideal K ® A. So define a subalgebra
B=Tl+KeT

Let m: B — B/(K ® T) be the quotient map and let § : 7 — B be the map
a — a® 1. Define the pullback

C:={(b,a)e B&T :n(b)=mo06b(a)}

Define t : K® T — C by
x+— (z,0)
Then this is a well-defined *-homomorphism. Also define p: C'— T by

(b,a) — a

Note that im(¢) C ker(p) by definition. Furthermore, if p((b,a)) = 0, then
a =20, so
b)) =0=>beK®T = (b,a) € im(v)
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Hence we have an exact sequence
0—-KT —-C—-T—=0

Define o : 7 — C by
a— (a®1,a)

Then « is a well-defined *-homomorphism because

a®1l—0(a)=0€eKT

and clearly p o a(a) = a. Hence, this exact sequence splits.

(iv) Hence, the exact sequence
05 KeT) S =T =0
also splits, and so does the sequence

0= Ko (KoT) XY k(0 = K (T') = 0

In particular,

K,(/): K,(K®T'") — K,(C"
is injective. Define ¢ : T — C by ¢ = 1o €. Then

K,(") : K,(T") = K,(C")
is injective. We show that
Ko (') 0 K (5') 0 Kn(q') = Kn(Y)

1.2. Step 2 (Finding 5):

(i) Let v := s?s*. Then v is an isometry. Furthermore,
11 -0(s)=v®1-s®1=s(ss"—1)®1)ekRT

Hence, (v® 1,s) € C. Furthermore, this element is an isometry in C'. Thus,
by the universal property of 7, there is a unique *-homomorphism ¢ : 7 — C
such that

p(s) = (v@ L s)

(ii) Recall: ¥ : T — C is given by

¥(a) = (e®a,0)

2 2 2

Now ev = (1 — s5)s°s* = s°s* — ss*s°s* = 0. Hence,

U(s)p(s) = ((e®s)(v©1),0) = (0,0)
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(iii)

Similarly,
U(s)"p(s) = p(s)i(s) = @(s)¥(s)” =0
Hence, ¢(z)¢(y) = 0 for all x,y € T. Therefore,
o+
is a *-homomorphism. Similarly, ¢ L ¢ o j o ¢, and so
p+iojogq
is a *-homomorphism. We show that
ptyY~pptpojoq

Define

2=5(s)®1+es Rs+se@s" +e®e

21 =85 R1+es @1 +se®1

Then 2,21 € B. Furthermore, they are both unitaries (Check!). Define a
path
up = —iexp(im(l —t)z0/2) exp(intz,/2)

Then t — wu; is a path of unitaries in B such that ug = 2y and u; = 2.
Furthermore, there is an identification [MURPHY, Remark 3.3]

B/(K@T)=KeT+T®1)/(KT)
XTI/ (KQTNT ®1)
>~ T/K = C(T)

And under this isomorphism, we have a commuting diagram

T — "= C(T)
T
B——=B/K&T

Hence, it is clear that

m(z0) =m(z1) =1
and so 7(ug) = 1 for all ¢ € [0,1].
For each ¢ € [0, 1], the element

w = (y(s®1),s) e C
is an isometry. Hence, it defines an isometry

weC0,1]eC
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By the universal property of T, there is a *-homomorphism ¢ : 7 — C[0, 1]®
C such that

p(s) = w
This gives a *-homomorphism ¢’ : 7" — ([0, 1] ® C" which we think of as a
path of x-homomorphism ¢} : T — C".

(v) Note that,
(e+u)(s) =w(s) +U(s) = (1®1,5) + (e®5,0) = (u(s ®1),5)
Hence, ¢ + 19 = ¢y by uniqueness. Similarly,
pF+pojoqg=¢
Tensoring with A, we get
'+ o oq =gy and ¢ +9) = ¢
1.3. Step 3 (Completing the proof): By homotopy invariance, we have
Ku(¢) + Kn(') = Kn(¢) + Kn(¥') 0 K (') 0 Ku(d')

Hence,
Kn(¥') = Kn(¥') 0 Ki(j") 0 Ka(d)

Since K,(¢') is injective, we have

K,(j") o Kn(¢') = idk, (1)

as required.

Example 1.5. We conclude that
Ko(T) =2 Ko(C) =2 Z and K4(T) =0
This completes Example VIIIL.3.2.
Remark 1.6. 1.1. The reduced Toeplitz Algebra is defined as
To = ker(q)
1.2. Note that K(H) C Ty and
m(To) ={f € C(T) : f(1) = 0}
Hence, we have a short exact sequence
0—K(H)— To— Co(R) -0
Since all the C*-algebras are nuclear, for any C*-algebra A, we have

0> ARK ATy —SA—0
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1.3. Furthermore, we have a split exact sequence
0=To—=T—=-C—=0
Once again, this induces a split exact sequence
0—>ARTy—ART - A—0
Theorem 1.7. For any C*-algebra A, there is a natural isomorphism
Ba: Ky(A) = Kyi2(A) = K,11(SA)
This map is called the Bott map.

Proof. Since K, is split exact, we have a split exact sequence

idA®q)

0= Ky (A®To) — Kn(Ae T) 2208, 10 4y g
By the previous theorem, K, (id4 ® ¢) is an isomorphism. Hence,
Ky(A®Ty) =0

Now consider the long exact sequence in K-theory arising from the second short exact
sequence from the previous remark

Kn+1(A ® K) - n+l(A ® 76) - n+1(SA)

6n+1L

K,(A®T)) ~— K, (A K)

K,(SA)
Since K,(A® To) =0 = K,11(A® Ty), it follows by exactness that
On+1 : K1 (SA) = K, (A® K)
is an isomorphism. Let A : Ky(A) = Ko(A ® K) be the isomorphism from earlier, then
Bai=A"00,11

is an isomorphism. It is also natural because both A and ¢,,.1 are natural. O]

2. The Six Term Exact Sequence

Definition 2.1. Given a short exact sequence

01545 B0
we define the exponential map as the map g : Ko(B) — K;(I) by
do =60 fp: Ko(B) = Ky(B) — Ki(I)
where 65 is the index map associated to the sequence

0— ST 2% 542% 5B 0
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Note that dg is natural in the sense described earlier. Given another short exact sequence
and maps as below

| J— Ay [y Y
be a commutative diagram with short exact rows of C*-algebras. Then TFDC:

This is because both Sz and J, are natural.
Theorem 2.2. The six term sequence

K Koy
Ko(1) 222 ko (A4) 22 ko (B)

61 60
Ki(»)

Ki(B) =— Ki(A) =— Ki(1)
18 exact.

Proof. Tt suffices to show exactness at Ky(B) and K;(I). To see this, consider the
diagram

Ko(A4) Y Ky (B) -2 Ky (1) 2 K, (4)

SN NN

KO(A> mKO(B) 5—0>K1(I) mK1(A)

The diagram commutes by naturality of the Bott map. The top row is exact, so the
bottom row must be. O

3. Examples and Calculations

Example 3.1. For the exact sequence
0—K(H)—BH)—QH)—0

we had seen that the map
51 : Kl(Q(H)) — K()(IC)

was an isomorphism (The Fredholm index). We may now conclude, from the six-term
exact sequence and the fact that Ko(B(H)) = K1(B(H)) = 0 that

Ko(Q(H)) = Ky(K) =0

as well.
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Example 3.2. For any n € N

Ko(C)=Z :neven
Ki(C)=0 :nodd

and similarly,

0 :m even

K (Go(R™)) = {Z :n odd

Example 3.3 (C(T")). 3.1. For any C*-algebra A, we have a split exact sequence

3.2.

3.3.

3.4.

3.5.

0—SA—C(T,A) - A—0
so we get
K, (C(T,A)) = K,(A) @ K,(SA) = K,,(A) @ K,+1(A)
If A=C, we have
Ko(C(T)) = Ko(C)a K1(C)=Z

and similarly, K (C(T)) = Z. We had shown (Example VII.4.7) that there was an
injective map

w: U(C(T)) /Up(C(T)) — K1 (C(T))
and we had shown that U(C(T))/Uy(C(T)) = [T, T] = Z. We now conclude that

this map is an isomorphism.
If A= C(T" '), then C(T") = C(T, A), so by induction, we have
Ko(C(T") = Ky (C(T) = 2"
If n = 3, we observe that
K,(C(T?)) = 7*
However, by [RoORDAM, LARSEN, and LAUSTSEN, Exercise 8.15],
U(C(T?)) /Up(C(T?)) = Z°

so the map w (which is always injective for commutative C*-algebras) is not sur-
jective in this case.

Hence, if A= C(T?), then 3z € K;(A) such that
r# v Yvel(A)

Choose k£ € N minimal such that Ju € Us,(A) such that = [u];. Then, if
B = Mj,(A), then we have found a unitary u € U(M(B)) such that

v 0

for any v € U(B). This completes Example 1.2.9, where we needed such a C*-
algebra to show that, for projections, p ~, ¢ does not necessarily imply p ~y, q.
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3.6. Note: In fact, we may take £ = 1. To prove this, we need to understand homo-
topical stable ranks for C*-algebras.

(End of Day 25)
Example 3.4 (Dimension Drop Algebras). For n € N, define the dimension drop algebra
D= {£: 10,1 = M,(©) : £(0) =0, f(1) € CL,}
We have a short exact sequence
0— SM,(C) & D, 5 C—0

where m(f) = f(1). So we get a six-term exact sequence

Ko(SM,(C)) s Ky(D,) o Ky (C)
&T lao
K (C) < Ky (D,) <YK, (M, (C))

Now K (SM,(C)) = K,1+1(C), so we get

0% (D, S0 7,

e
Ki(m 1(2)

0~—"K(D,)~>—7Z

so it suffices to understand the map dy : Ko(C) — K;1(SM,(C)). There is an explicit
description of the map dqy, which allows us to compute that dqy is the map

l—n

from Z +— 7Z. Hence,
Ko(D,) =0 and K,(D,) = Z/nZ

Hence, we have the following K-groups:

K, | K
D, 0 |Z/nZ

SD, | Z/nZ | 0

CoR) | 0 v/
C Z 0

Corollary 3.5. Let Gy and Gy be any finitely generated Abelian group, then 3 a C*-
algebra A such that
KO(A) = Go and Ko(A) = Gl

Proof. Simply take direct sums of the above C*-algebras. m
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X. Exercises

1. Chapter 1
2. Chapter 2

2.1. Assume A is unital by replacing it with A", and note that p — ¢ is a self-adjoint
element.

2.2.
2.3.
2.4.

(i) = (ii): If pg = 0, then gp = ¢*p* = (pq)* = 0, so
(p+a)=p"+¢" +pa+ap=p+q
and clearly p + ¢ is self-adjoint.

(i) = (iii): If p+ ¢ is a projection, then p + ¢ < 1 must hold.

(i) = (i): If p+q <1, then p(p+q)p < pby [MurpPHY, Theorem 2.2.5]. So p+pgp < p,
so pgp = 0. Hence, (pg)? =0, so pq =0

The second part follows by induction.
2.5.
2.6. Let p; := vjv;, ¢; = vjvj, then by the previous statement, the p; L p; and ¢; L g;,
if © £ 5. So if 1 # j, then
viv; = (qivi)" qv; = v; qiqv; = 0
Hence if u = )", v;, then

n

n
uu—g vivz—kg vivj—g v;v; =14
i=1

i=1 i#j
Similarly, uu* = 14 as well.
2.7.
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2.8. If a were invertible, then u := w(a) would be a candidate for the required unitary.
Furthermore, we would need ||ja — w(a)|| < e. To ensure this, let K = [0,2] and
Q the set of all self-adjoint elements of A with spectrum contained in K. Then
the square root function h — h'/2 is continuous on Qg, so 36 > 0 such that, for
any h € Qg
|h=1|| <6 =|h"?—1| <e

In particular, if a € A such that ||a*a — 1|| < 0, then |||a] — 1|| < €, whence
la = w(a)| = llw(a)lal —wla)| <la] =1 <€

So now we need to ensure that a is invertible, but this follows if 6 < 1 (which can,
of course, be arranged), so that a*a and aa* are both invertible (so a is both left
and right invertible, hence invertible).

For the second part of the problem: Fix € > 0, and choose d; > 0 such that
I1—z||<dé = |1—-27<¢/3

This is possible because the inverse map is continuous at 1. Using (2 as above,
choose 05 > 0 such that, for any h € By, such that sp(h) C [0, 2]

11— Al <dy= |1 —hY? <&

In particular, if b € B such that [|b|| < v/2, then h := b*b has the property that
sp(h) C [0,2] so
|1 —bb]| < 0o = ||1—[0]|| < o1

Now define

2’
Then if ||u — b|| < &, then ||b]| < [Ju —b|| +1 < /2, and

1) —mln{(;2 ¢ \/5—1}

1= 6"0]| = [lu*u = 070
< Jlutu = w*bfl + [Ju"o — 0%b|
< flu = bl + [lu” = b = 2[ju = b]| < &2

Hence, ||1 — [b]|| < &1, so |1 — |b|7Y|| < €/3. Hence,
lu = w®)|| = [lu— b6 7| < [lu— bl + 1o — b[p|~"|

€ _
< g F Bl = ol

<Saluls s S+ s

Finally, note that ||u —b|| < 1=
in B.

Hu 7> S0 b is invertible, whence w(b) is a unitary
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3. Chapter 3

3.1.
3.2.
3.3.

3.4. Let X be compact Hausdorff

(i)

(iii)

As in Example 3.3.5, for each x € X, there is a map
vy + Ko(C(X)) — Z given by [plo — Tr(p(x))
For p € P,(C(X)) fixed, the map = +— Tr(p(x)) is continuous from X to Z.
Thus, we get a map
dim : Ko(C(X)) —» C(X,Z)

This map is surjective: If X = | |, C;, where each C; is a connected compo-
nent of X, then any f € C(X,Z) can be expressed uniquely in the form

f= Z fixe,
i=1

where f; € Z the common value taken by f on C;. Hence, it suffices to show
that x¢, € Im(dim). But if p; € P(C(X)) is the projection x¢,, then

dim(p;) = xc,

If there is such a v, € M, ,(C(X)), then it follows that p(z) ~¢ ¢(x), so
that Tr(p(x)) = Tr(q(x)) for all x € X. Conversely, if Tr(p(z)) = Tr(q(x)),
then Jv, € M,,,,(C) such that 0,0, = p(z) and v,0," = ¢(x). However, the
evaluation map

My (C(X)) = My (C)
is surjective, so Jv, € M, ,(C(X)) such that v,(x) = v,, which solves the
problem.
Suppose dim([plo) = dim([g]o), then for each x € X,3Jv, € M,,,.(C(X))
such that vi(x)v,(x) = p(z) and v.(z)vi(z) = ¢(x). By continuity, 3 a
neighbourhood U, of x such that

o3 )va(y) — p)] < 5 and oew)vi) — aw)l < 5

2
for all y € U,. Choose a refinement of {U, : + € X} made up of mutually
disjoint sets, and choose a finite subcover { X7, Xs, ..., X, } such that, for each

1 <i<r Jvu € Mp,,(C(X)) such that

o7 ()oily) — p)] < 5 and o) () — aw)] < 5

It follows that ||p(y) — q(y)|| < 1 for all y € X, so that ||p — ¢|]| < 1. Hence,
p ~p q as required.
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3.5.
3.6.

4. Chapter 4

5. Chapter 5

6. Chapter 6

6.1.
6.2.
6.3.
6.4.
6.5.

6.6. Let A be a C*-algebra, ande define p : Poo(A) — P(ARK) as follows: If p € P, (A),
then p(p) := Kk,(p). Then p induces a bijection

p:D(A)) ~y = PARK)/ ~

Proof. (i) Let p € P,(A), then k,(p) € P(A®K) since k,, is a *-homomorphism.

Furthermore, if p € P,,(A),q € P,(A) such that p ~q ¢, then choose ¢ >
max{n,m} and p' = ©rm(p),qd = @en(q) € Pi(A) such that p ~y p’ and
q ~o ¢ so that

p'~q in My(A)

Then
Km(P) = ke 0 Qem(p) = /‘66(?’) ~ Hz(q/) = ke 0 Yrn(q) = Kn(q)

Hence, p induces a map p as required.
To show that p is a bijection, it would suffice to prove two things:

If p,q € Pso(A) such that p(p) ~ p(q), then p ~g g

Proof. The proof proceeds along the lines of the injectivity part of Theorem
3.5: If ky(p) ~ Km(q), then Fv € A ® K such that

v*'v = K, (p) and Vv = K, (q)
Choose ¢ € N and = € M,(A) such that k() is close enough to v so that

[5e(x"x) = kn(p)ll < 1/2 and ||ke(z27) — fm(q)]] < 1/2
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Once again, 3k > max{¢,n,m} and y € M(A) such that

ly"y — wen(p)ll < 1/2 and [lyy" — @rm(@)|| < 1/2

Hence,

But @i n(p) ~o p and @r.m(q) ~o ¢ in P (A). O

(iii) If p € P(A® K) then Jg € Py (A) such that p(q) ~ p: The proof proceeds
along the same lines as the surjectivity part of Theorem 3.5: Since

A K =1m(M,(A),p,)
Jk € N and b € My (A) such that
[l (b) = pll < 1/5
Let a = (b+ b%)/2, then a is self-adjoint and
l(a) —pll <1/5
As in that proof, this implies that
Is(a® — a)|| < 1/4

Since
Il = lim_ s

dm > k and ¢ := ¢, k(a) such that
| —¢| < 1/4

By Lemma 3.3, 3 a projection ¢ € M,,(A) such that
le—qll < 1/2

Hence,
[rm(q) —pll <1

SO P ~p Km(q)

For any C*-algebra A,
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Proof. Let A be any C*-algebra (not necessarily stable), and consider P(ARK)/ ~,
which we make into an Abelian semigroup as follows: Given p, ¢ € P(A®K), choose
n,m € N and p’ € P,(A),q € P,(A) such that

p~ p(p') and q ~ p(q')

/. p O "no.__ On O
p = (0 Om) and ¢ .—(0 q)

p~ pp") and g ~ p(q")

Let £ =n + m and set

Then p” L ¢"” and

Define
[p] + [q] := [P" + ¢"]

Then (Check!) that this is a well-defined operation, and that P(A ® K)/ ~ is an
Abelian semi-group under this operation. Furthermore, the map

5 D(A)/ ~o = PABK)/ ~
is an isomorphism of Abelian semi-groups. Hence,

Ko(A) = GP(ARK)/ ~) ={lp] =4 : p,a e P(AR K)}

7. Chapter 7
8. Chapter 8

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

Let A be a unital C*-algebra.
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(i) Let u € U(A) and s an isometry, ie. s*s = 1. Let w := sus* + (1 — ss*), then

ww* = sus*su*s* + sus*(1 — ss*) + (1 — ss™)su™s" + (1 — s8")(1 — ss7)
= suu*s* + sus* — sus*ss* + su's"t — ss*suts* + 1 — 55" — 55" + s55%s5"
= 55" + sus™ — sus* + su's" — su's* + 1+ ss*

=s5"4+1—-55" =1

Similarly, w*w = 1. Now set

then

« (s 1—ss" s* 0\ [ss"+1—ss" 0 (10
=1 s* 1—ss* s) | s*—s*ss* s—ss*'s) \0 1
Similarly, v*v = 1, so v is a unitary. Furthermore,

u 0\ , (s 1—ss" u 0
“lo 1) “\o & 0 1)"
_ (su 1—ss* s* 0
~\0 s* 1—s5" s
_ (sus"+1—s5" s—s55"s\  [(w 0
o s* — s*ss* 5*s N0 1

(ii) Define v; := s;usf + (1 — s;sf), then each v; is a unitary by part (i). Since
s7sj = 0;;, we have

Hence, [u]; = [w];

v1vg = (s1us] + 1 — s157)(S2usy + 1 — s955)

= s1us] + sausy + 1 — 985 — s15]

By induction, it follows that u = [];_, v, so the result follows.

(iii) Let ¢ as in the question, then

ST 0 0 S1 So Sn
ss 0 ...0|lfo o ... 0
st 0 0 0 O 0

n

Hence, t is an isometry. Now if u € U,,(A), then by part (i),

w = tut* + (1, — tt*) € U,(A)
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Observe that if u = (a; ), then

S1 S22 ... S, a1 a2 ... Qip ST 0 ... 0
0 0 ... 0 21 Q29 ... QAgp S; 0 ... 0
0O 0 ... 0 Apl QAp2 .+ .. Gpp s) 0 ... 0
Z?:l S; i1 Z?:l S;Qi2 ... Z?:l S;iQin ST O Ce O
0 0 . 0 s5 0 ... 0
- | | | N R
0 0 . 0 &0 ... 0
Z?:l Z:-L:l Si(liJS; 0 ... 0 1-— Z?:l S,’S;f< 0 ... 0
0 0 ... 0 0 1 ... 0
= : N ey : S
0 0 0 0 0 1
So if L .
vi= Z Zsiai,jsj +1— Zsisj
j=1 i=1 i=1
Then w=v® 1, 1, and
vt = seay, o5y, + 1 Z SiS;
k=1 (=1 =1

so one can check (hopefully) that v is a unitary using the fact that sjs; = 0, ;.

(iv) If A is properly infinite, then for each n € N, there exist (by [RoRDAM,
LARSEN, and LAUSTSEN, Exercise 4.6]) isometries {si, s2,...,8,} such that
sjs; L sis; when i # j. The result now follows from the previous steps.

8.10.
8.11. Let A be a unital C*-algebra, p a projection in A, and let ug € U((1 —p)A(1—p)).
ie.
uouy = 1 —p = ugug
Set u = ug+p

(i) Then uy € (1 —p)A(1 —p) implies that ug = (1 —p)uo(1l —p), so ugp = puy =
puy = ugp = 0. Hence,

wu® = upuy +p=1=u"u
(ii) If u ~ 1, then [u]; = 0. Conversely, if [u]; = 0, then there is a natural number

n € N such that u®1,, ~;, 1,,41. Let t — w; be a path of unitaries in U, 1(A)
such that wy = 1,11 and w; = u@® 1,,. Since p is property infinite and full, by

137



[RORDAM, LARSEN, and LAUSTSEN, Exercise 4.9(1)], vy € Mi »4+1(A) such
that vivy = p @ 1,, and vov§ < p. Set

v=(1-p0 ... 0)+vy € My,1(A)
and set z; ;= vww* + (1 — vv*). Then
v'o=(1-p0 ... 0)"4+v3)((1=pO0 ... 0)4wvy) = (1—p)®0,+v5v0 = (1—p)B0,+pB1, = 1,41
and
= ((1=p0 ... 0)4+v)(1=p0 ... 0)*+v) =(1—p)+voug

Thus, v*(1 —vv*) =0 = (1 — vv*)v, so

2z iz = (vwyv* + (1 — ov") (vwew™ + (1 — vv™)) = vwyww™ + (1 —vv*) =1
and

2z = (vwpv™ 4+ (1 — vu")) (vw;v* + (1 — ") = vwwv* +1 —vv* =1
Hence, each z; is a unitary. Furthermore,
Zg=vv" + (1 —wv") =1
and (this needs to be checked)
21 =0udl,)v"+ (1 —w")=u

Hence, u ~y, 1 iff [u]; = 0.
8.12.

8.13. If A is a purely infinite, simple, unital C*-algebra, then we want to show that
w:U(A)Uy(A) — K1(A)

is an isomorphism.

(i) w is surjective: This follows directly from [R@RDAM, LARSEN, and LAUST-
SEN, Exercise 8.9(iv)]

(ii) w is injective: Suppose u € U(A) is such that [u]; = 0, then by [R@ORDAM,
LARSEN, and LAUSTSEN, Exercise 8.12|, 3 a non-zero projection p € A such
that u ~j, p+uy for some ug € U((1—p)A(1—p)). Since [u]; = 0, we conclude
from [R@rRDAM, LARSEN, and LAUSTSEN, Exercise 8.11] that u ~, 1. Hence,
u € Up(A). Thus, w is injective.
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