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1 Review of Last Week

Let A be a unital C*-algebra.

Definition 1.1. Define Pn(A) to be the set of projections in Mn(A), and write P∞(A) :=⋃∞
n=1Pn(A) (this is an abuse of notation). For p, q ∈ P∞(A), write p ∼0 q if ∃v ∈

Mm,n(A) such that p = v∗v and q = vv∗. Write

D(A) := P∞(A)/ ∼0

On D(A), define an operation

p⊕ q :=

(
p 0
0 q

)
Then D(A) is an Abelian semi-group.

Definition 1.2. Let (S,+) be an Abelian semi-group, then ∃ a pair (G(S), γ), where

1.1. G(S) is an Abelian group

1.2. γ : S → G(S) is a semi-group homomorphism.

1.3. (Universal Property) If H is an Abelian group and η : S → H is a homomorphism
of Abelian semi-groups, then ∃ a unique group homomorphism η̂ : G(S)→ H such
that

η̂ ◦ γ = η

This last property implies that the pair (G(S), γ) is unique, and is called the Grothendieck
completion of S.
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Definition 1.3. Let A be a unital C*-algebra, then

K0(A) := G(D(A))

and γ : D(A)→ K0(A) is denoted [p]D 7→ [p]0.

Theorem 1.4 (Standard picture of K0 - unital case). If A is a unital C*-algebra, then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)}

Theorem 1.5 (Universal Property of K0). Let G be an Abelian group and ν : P∞(A)→
G be a function such that

1.1. ν(p⊕ q) = ν(p) + ν(q)

1.2. ν(0) = 0

1.3. If p ∼h q, then ν(p) = ν(q)

Then there is a unique group homomorphism α : K0(A)→ G such that

α([p]0) = ν(p)

The proof follows from the universal property of the Grothendieck construction.

If ϕ : A → B is a unital ∗-homomorphism between unital C*-algebras, then ϕ induces
a ∗-homomorphism ϕn : Mn(A) → Mn(B) given by (ai,j) 7→ (ϕ(ai,j)). Hence, we get a
map P∞(A)→ P∞(B) satisfying the above properties, so we get a map

K0(ϕ) : K0(A)→ K0(B)

Definition 1.6. Let ϕ, ψ : A → B be two ∗-homomorphisms. We say that ϕ ∼h ψ if
there is a path t 7→ ϕt such that

1.1. Each ϕt : A→ B is a ∗-homomorphism

1.2. ϕ0 = ϕ and ϕ1 = ψ

1.3. For each a ∈ A, the map t 7→ ϕt(a) is a continuous function [0, 1]→ B.

Theorem 1.7 (Homotopy Invariance). If ϕ, ψ : A→ B are two homotopic ∗-homorphisms,
then K0(ϕ) = K0(ψ).
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2 The Cuntz Algebra

Definition 2.1. Let n ≥ 2 and H = `2(N). Decompose N = T1 t T2 t T2 . . .t Tn where

Ti = {i, i+ n, i+ 2n, . . .}

Let Pi : H → H be the natural projection onto `2(Ti) ⊂ H. Then, Pi is an infinite rank
projection, so Pi ∼ IH . Furthermore,

P1 + P2 + . . . Pn = IH

Choose s1, s2, . . . , sn ∈ B(H) such that

s∗i si = 1 and sis
∗
i = Pi

Then
n∑
i=1

sis
∗
i = 1

(Note that these si are isometries). Define

On := C∗(s1, s2, . . . , sn)

This is called the Cuntz algebra.

Example 2.2.

s1((xn)) := (x1, 0, x2, 0, x3, 0, . . .) and s2((xn)) := (0, x1, 0, x2, 0, x3, . . .)

Then Si are both isometries, and (check!)

s∗1s1 = Pspan{e2n+1} and s∗2s2 = Pspan{e2n}

So O2 := C∗(s1, s2).

Note: An element s in a unital C*-algebra is called an isometry if s∗s = 1.

Theorem 2.3. 2.1. On is a simple C*-algebra (no non-trivial closed two-sided ideals)

2.2. (Universal Property of On) Given a unital C*-algebra A and elements t1, t2, . . . , tn ∈
A such that

t∗j tj = 1 =
n∑
i=1

tit
∗
i

∃ a unique ∗-homomorphism ϕ : On → A such that ϕ(sj) = tj

Lemma 2.4. 2.1. Let u ∈ U(On), then ∃ a unique ∗-homomorphism ϕu : On → On
such that

ϕu(sj) = usj

Furthermore,

u =
n∑
j=1

ϕu(sj)s
∗
j
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2.2. Let ϕ : On → On be a unital ∗-homomorphism, then ∃u ∈ U(On) such that ϕ = ϕu

Proof. 2.1. Follows from the universal property with tj = usj. Furthermore,

n∑
j=1

ϕu(sj)s
∗
j =

n∑
j=1

usjs
∗
j = u

2.2. Given ϕ, consider

u :=
n∑
j=1

ϕ(sj)s
∗
j

Then

uu∗ =
n∑

i,j=1

ϕ(si)s
∗
i sjϕ(sj)

∗

But the Pi are orthogonal projections, and si = Pisi so s∗jsi = δi,j. Hence,

uu∗ =
n∑
i=1

ϕ(si)ϕ(si)
∗ = ϕ(1) = 1

Similarly, u∗u = 1. Finally,

ϕu(si) = usi =
n∑
j=1

ϕ(sj)s
∗
jsi = ϕ(si)s

∗
i si = ϕ(si)

By uniqueness of the universal property, ϕu = ϕ.

Lemma 2.5. Let λ : On → On be given by

λ(x) =
n∑
j=1

sjxs
∗
j

Then

2.1. λ is an endomorphism of On
2.2. If u ∈ U(On) such that λ = ϕu, then u = u∗

Proof. 2.1. λ(1) = 1 and λ(x∗) = λ(x)∗. By orthogonality of the Pi

λ(x)λ(y) =
n∑
j=1

sjxs
∗
jsjys

∗
j = λ(xy)

since s∗jsj = 1.
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2.2. If u =
∑n

j=1 λ(sj)s
∗
j , then λ = ϕu and

u∗ =
n∑
j=1

sjλ(s∗j) =
n∑
j=1

sj

[
n∑
i=1

sis
∗
jsi

]
=

n∑
j=1

sjsjs
∗
jsj =

n∑
j=1

s2j

But

λ(si)si =
n∑
j=1

sjsis
∗
jsi = sisis

∗
i si = s2i

Hence, u = u∗.

Lemma 2.6. Let A be a unital C*-algebra and s ∈ A an isometry. Define µ : A → A
by µ(a) = sas∗. Then K0(µ) = idK0(A)

Proof. Note that µn : Mn(A)→Mn(A) is given by µn(a) = snas
∗
n where

sn = diag(s, s, . . . , s)

and sn is also an isometry. Furthermore, if p ∈ Pn(A), then

snpsn = (snp)(snp)
∗ ∼ (snp)

∗(snp) = p

Hence, [µn(p)]0 = [p]0.

Theorem 2.7. If g ∈ K0(On), then (n− 1)g = 0. In particular, K0(O2) = 0

Proof. Let λ : On → On as above, then λ =
∑n

i=1 λi where

λi(x) = sixs
∗
i

Then λi(x)λj(y) = 0 for all x, y ∈ On, so

K0(λ) =
n∑
i=1

K0(λi)

By the above lemma, it follows that

K0(λ)g = ng ∀g ∈ K0(On)

However, λ = ϕu, where u = u∗. In particular, u ∈ U0(On). Let ut be a path of unitaries
from u to 1, then ϕut is a path of ∗-homomorphism from

λ = ϕu to idA = ϕ1

Hence, K0(λ) = idK0(On). Hence the result.

In fact, K0(On) ∼= Zn−1, generated by [1]0.
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3 The Irrational Rotation Algebra

Definition 3.1. Let θ ∈ R be fixed, and set ω := e2πiθ. Let H := L2(T× T) equipped
with a normalized Haar measure. Let ζ0 ∈ H be the unit vector ζ0(z1, z2) := 1. Define
u, v ∈ B(H) by

(uζ)(z1, z2) := z1ζ(z1, z2) and (vζ)(z1, z2) := z2ζ(ωz1, z2)

Then

〈uζ, η〉 =

∫
T2

z1ζ(z1, z2)η(z1, z2) =

∫
T2

ζ(z1, z2)z1η(z1, z2)

Hence,
(u∗η)(z1, z2) = z1η(z1, z2)

Similarly,
(v∗η)(z1, z2) = z2η(ω−1z1, z2)

Hence, u and v are unitaries. Furthermore,

(vuζ)(z1, z2) = z2(uζ)(ωz1, z2) = z2ωz1ζ(ωz1, z2)

(uvζ)(z1, z2) = z1(vζ)(z1, z2) = z1z2ζ(ωz1, z2)

⇒ vu = ωuv

Define
Aθ := C∗(u, v) ⊂ B(H)

is called the rotation C*-algebra associated to the angle θ.

(End of Day 1)

We will need the following properties:

Theorem 3.2. 3.1. If θ is irrational, then Aθ is simple, and has a unique tracial state.
(see below).

3.2. (Universal property of Aθ): If D is a unital C*-algebra and u′, v′ ∈ D are two
unitaries such that v′u′ = ωu′v′, then ∃ a unique ∗-homomorphism ϕ : Aθ → D
such that ϕ(u) = u′ and ϕ(v) = v′.

Note: If θ ∈ Z, then Aθ is the universal C*-algebra generated by two commuting uni-
taries. This is C(T2). If θ /∈ Z, Aθ is called a non-commutative two torus.

Remark 3.3. If θ, θ′ ∈ R be irrational.

3.1. Suppose θ − θ′ ∈ Z, then e2πiθ = e2πiθ
′
, and so

Aθ ∼= Aθ′
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3.2. If θ+ θ′ ∈ Z, then e2πiθ = (e2πiθ
′
)−1. Hence, there is a surjective ∗-homomorphism

ϕ : Aθ → Aθ′ such that
ϕ(u) = v′ and ϕ(v) = u′

Since Aθ is simple, it follows that this map is an isomorphism.

We will now (partially) show that if Aθ ∼= Aθ′ , then one of the above two conditions
must hold.

Define Bθ to be those elements in Aθ of the form∑
n,m∈Z

αn,mu
nvm

where only finitely many coefficients αn,m are non-zero. One thinks of these as Laurent
polynomials in u and v. Note that Bθ is a ∗-subalgebra of Aθ, and its closure is thus
a C*-algebra containing u and v. Thus, Bθ is dense in Aθ and is called the smooth
∗-subalgebra of Aθ.

Remark 3.4. 3.1. A map τ : A → C is called a trace if τ is bounded, linear and
τ(ab) = τ(ba). Such a map induces a trace Mn(A) → C by (ai,j) 7→

∑
τ(ai,i)

[Check!].

3.2. This restricts to a map τ : P∞)(A)→ C such that τ(p⊕q) = τ(p)+τ(q), τ(0) = 0,
and if p ∼h q, then p ∼ q, so τ(p) = τ(q). So we get a map

K0(τ) : K0(A)→ C

3.3. If τ is a positive trace (ie. τ(x∗x) ≥ 0 for all x ∈ A), then τ(p) ∈ R+ for all
p ∈ P∞(A), so we get a map

K0(τ) : K0(A)→ R

3.4. If τ is a tracial state (ie. τ is positive and τ(1A) = 1), then K0(τ)([1]0) = 1

We will now construct a trace on Aθ.

Definition 3.5. Define τ : Aθ → C by

τ(a) := 〈aζ0, ζ0〉

Then τ is a positive linear functional on Aθ of norm 1. Furthermore,

τ

( ∑
n,m∈Z

αn,mu
nvm

)
= α0,0
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for elements in Bθ. Hence, it follows that if x ∈ Bθ of the above form, then

τ(x∗x) = τ

[( ∑
n,m∈Z

αn,mv
−mu−n

)( ∑
n,m∈Z

αn,mu
nvm

)]
=
∑
n,m∈Z

|αn,m|2 = τ(xx∗)

Since Bθ is dense in Aθ, it follows that

τ(x∗x) = τ(xx∗) ∀x ∈ Aθ

The exercise from last week implies that τ is a tracial state on Aθ.

We now wish to construct a projection p ∈ Aθ such that τ(p) = θ.

Lemma 3.6. Let ϕ : T → T is the function z 7→ ωz. Then, for any h : T → C
continuous,

vh(u) = (h ◦ ϕ)(u)v, and v∗(h ◦ ϕ)(u) = h(u)v∗

Proof. It suffices to prove the first statement. Note that

ωkukv = vuk ∀k ∈ Z

Hence, for any h : T→ R Laurent polynomial

(h ◦ ϕ)(u)v = vh(u)

Now approximate any continuous h : T→ C by Laurent polynomials.

If θ = 0, then C(T2) = Aθ has no projections because T2 is connected. We now assume
that θ ∈ (0, 1) is irrational, and show that, in this case, Aθ has many projections.

Lemma 3.7. Let f, g : T→ R be continuous functions, and define

p := f(u)v∗ + g(u) + vf(u) ∈ Aθ

Then

3.1. p = p∗

3.2. p = p2 if and only if

(i) f · (f ◦ ϕ) = 0

(ii) f · (g + g ◦ ϕ−1) = f

(iii) g = g2 + f 2 + (f ◦ ϕ)2

3.3. Furthermore,

τ(p) =

∫
T
g(z)dz
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Proof. 3.1. Clearly, p = p∗ since f and g are real-valued.

3.2. One writes out

p2 = f(u)v∗f(u)v∗ + f(u)v∗g(u) + f(u)v∗vf(u)

+ g(u)f(u)v∗ + g(u)g(u) + g(u)vf(u)

+ vf(u)f(u)v∗ + vf(u)g(u) + vf(u)vf(u)

= f · (f ◦ ϕ−1)(u)v−2 + f · (g ◦ ϕ−1)(u)v−1 + f 2(u)

+ gf(u)v−1 + g2(u) + g · (f ◦ ϕ)(u)v

+ (f ◦ ϕ)2(u) + (f ◦ ϕ) · (g ◦ ϕ)(u)v + (f ◦ ϕ) · (f ◦ ϕ ◦ ϕ)(u)v2

Note that
p = f(u)v−1 + g(u) + (f ◦ ϕ)(u)v

So comparing coefficients, we get

f · (f ◦ ϕ−1) = 0

f · (g ◦ ϕ−1) + (g · f) = f

f 2 + g2 + (f ◦ ϕ)2 = g

g · (f ◦ ϕ) + (f ◦ ϕ) · (g ◦ ϕ) = (f ◦ ϕ)

(f ◦ ϕ) · (f ◦ ϕ ◦ ϕ) = 0

Since ϕ is a homeomorphism of T, for any function h : T→ R, we have

h = 0⇔ h ◦ ϕ = 0⇔ h ◦ ϕ−1 = 0

So the first and fifth conditions collapse to one, and so do the second and fourth.
These are the three conditions mentioned above.

3.3. First we assume that f and g are both Laurent polynomials. Then p is a Laurent
polynomial, so we may use the expression for τ on Laurent polynomials. Now
approximate f and g by Laurent polynomials, and use the fact that both sides of
the equation represent continuous maps.

Theorem 3.8. There exists a projection p ∈ Aθ such that τ(p) = θ

Proof. Choose ε > 0 such that 0 < ε ≤ θ < θ + ε ≤ 1. Define

g(t) :=


t/ε : 0 ≤ t ≤ ε

1 : ε ≤ t ≤ θ

ε−1(θ + ε− t) : θ ≤ t ≤ θ + ε

0 : θ + ε ≤ t ≤ 1

and

f(t) =

{√
g(t)− g(t)2 : θ ≤ t ≤ θ + ε

0 : otherwise
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Then both f and g define functions on T because f(0) = f(1) = 0 = g(0) = g(1). The
corresponding element p as defined above is a projection, and

τ(p) =

∫
T
g(z)dz =

1

2
· ε+ (θ − ε) +

1

2
· ε = θ

Theorem 3.9. The range of the map

K0(τ) : K0(Aθ)→ R

contains (Z + Zθ).

Proof. Since τ(1) = 1, the range of K0(τ) contains Z. If pθ is the Rieffel projection from
the previous theorem, then τ(pθ) = θ, so the range contains Zθ.

Theorem 3.10 (Pimsner-Voiculescu). If θ ∈ R is irrational, then the map K0(τ) induces
an isomorphism

K0(Aθ)→ Z + Zθ

Corollary 3.11. Let θ and θ′ be two irrational numbers. Then Aθ ∼= Aθ′ if and only if
either θ − θ′ or θ + θ′ is an integer.

Proof. If ϕ : Aθ → Aθ′ is an isomorphism, and τ ′ is the trace on Aθ′ , then by uniqueness
of the trace, τ ′ ◦ ϕ must be the trace on Aθ. Hence, if pθ ∈ Aθ is the Rieffel projection,
then

K0(τ
′)([ϕ(pθ)]0) = K0(τ)[pθ]0 = τ(pθ) = θ

Hence, θ ∈ Z + Zθ′, so ∃a1, b1 ∈ Z such that

θ = a1 + b1θ
′

Similarly, θ′ = a2 + b2θ for some a2, b2 ∈ Z. Hence,

θ = a1 + b1a2 + b1b2θ

Since θ /∈ Q, it follows that b1b2 = 1, so that b1 = b2 = ±1. Hence the result.

(End of Day 2)

4 The order structure on K0(A)

Definition 4.1. 4.1. A projection p ∈ A is said to be infinite if ∃ a projection q such
that p ∼ q and q < p. If p is not infinite, then it is said to be finite.

4.2. A unital C*-algebra A is said to be finite if 1A is finite.

4.3. A is said to be stably finite if Mn(A) is finite for all n ∈ N.
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4.4. A non-unital C*-algebra is said to be finite if Ã is finite.

Lemma 4.2. If A is a unital C*-algebra, TFAE:

4.1. A is finite.

4.2. Every isometry is a unitary.

4.3. All projections in A are finite.

Proof. We prove (i)⇒ (ii)⇒ (iii)⇒ (i)

(i)⇒ (ii) : If s is an isometry, then 1A = s∗s ∼ ss∗ ≤ 1. Since A is finite, ss∗ = 1 and s is a
unitary.

(ii)⇒ (iii) : Suppose every isometry is a unitary, and p, q ∈ A projections such that

p ∼ q and q ≤ p

Let v ∈ A such that v∗v = p and vv∗ = q, and let

s := v + (1− p)

Since pq = qp = q, we have v∗(1− p) = 0 = (1− p)v. Hence,

s∗s = v∗v + (1− p) = 1 and vv∗ = 1− (p− q)

By hypothesis, s is a unitary, so p− q = 0.

(iii)⇒ (i) : If every projection is finite, then 1A is finite.

Definition 4.3. A pair (G,G+) is called an ordered abelian group if G is an Abelian
group, G+ ⊂ G such that

4.1. G+ +G+ ⊂ G+

4.2. G+ ∩ (−G+) = {0}
4.3. G+ −G+ = G

We define an order relation on G by x ≤ y iff y−x ∈ G+. This makes (G,≤) a partially
ordered set such that

x ≤ y ⇒ x+ z ≤ y + z ∀z ∈ G

The converse is also true: If G is a partially ordered group satisfying this condition, we
may set G+ = {x ∈ G : x ≥ 0}, then it satisfies the above requirements.

Definition 4.4. Define
K0(A)+ := {[p]0 : p ∈ P∞(A)}

Proposition 4.5. 4.1. K0(A)+ +K0(A)+ ⊂ K0(A)+
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4.2. If A is unital, K0(A)+ −K0(A)+ = K0(A)

4.3. If A is stably finite, then K0(A)+ ∩ (−K0(A)+) = {0}
Hence, if A is unital and stably finite, then (K0(A), K0(A)+) is an ordered Abelian group.

Proof. 4.1. [p]0 + [q]0 = [p⊕ q]0
4.2. This is the standard picture of K0(A) in the unital case.

4.3. Suppose A is stably finite, and g ∈ K0(A)+ ∩ (−K0(A)+), then write

g = [p]0 = −[q]0

Hence, [p⊕ q]0 = 0, so ∃r ∈ P∞(Ã) such that

p⊕ q ⊕ r ∼0 r

Choose mutually orthogonal projections p′, q′, r′ such that p ∼0 p
′, q ∼0 q

′ and
r ∼0 r

′ and think of them in Mn(Ã) for some n ∈ N. Now

p′ + q′ + r′ ∼ r′ in Mn(Ã)

But p′+ q′+ r′ ≥ r′ and Mn(Ã) is finite, so p′+ q′ = 0. Hence, p′ = q′ = 0, so that

g = [p]0 = [p′]0 = 0

Definition 4.6. Let (G,G+) be an ordered abelian group. An element u ∈ G+ is called
an order unit if, for each x ∈ G,∃n ∈ N such that

−nu ≤ x ≤ nu

Note: Not every ordered abelian group has an order unit. For example, Cc(R) with the
pointwise order.

Proposition 4.7. If A is unital, then [1]0 is an order unit of K0(A)

Proof. If g ∈ K0(A), write g = [p]0 − [q]0 for some p, q ∈ Pn(A). Then

−n[1]0 = −[1n]0 = −[q]0 + [1n − q]0 ≤ −[q]0 ≤ [p]0 − [q]0 = g

and
g ≤ [p]0 ≤ [p]0 + [1n − p]0 = [1n]0 = n[1]0
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Example 4.8. If A = Mn1(C)⊕ . . .⊕Mnr(C), then

K0(A) ∼= Zr

In fact, sinceA is stably finite (since it is finite dimensional) and unital, (K0(A), K0(A)+, [1A])
is an ordered abelian group with order unit, given by

K0(A) = Z[e
(1)
1,1] + Z[e

(2)
1,1] + . . .+ Z[e

(r)
1,1]
∼= Zr

K0(A)+ = Z+[e
(1)
1,1] + Z+[e

(2)
1,1] + . . .+ Z+[e

(r)
1,1]
∼= (Z+)r

[1A]0 = n1[e
(1)
1,1]0 + n2[e

(2)
1,1]0 + . . .+ nr[e

(r)
1,1]0

Definition 4.9. Let (G,G+) and (H,H+) be ordered Abelian groups. A positive group
homomorphism is a map α : G → H such that α(G+) ⊂ H+. It is called an order iso-
morphism if it is an isomorphism such that α(G+) = H+. If G and H have distinguished
order units u and v respectively, α is said to be order unit preserving if α(u) = v

Example 4.10. Let ϕ : A→ B be a ∗-homomorphism, then

K0(ϕ)[p]0 = [ϕ(p)]0

so K0(ϕ) is a positive homomorphism. Furthermore, if ϕ is unital, then K0(ϕ) preserves
the order unit.

Example 4.11. Let τ denote the usual trace on C, then τn : Mn(C) → C is a trace.
Furthermore,

τn(1n) = n

So τn induces an isomorphism

(K0(Mn(C)), K0(Mn(C))+, [1n])→ (Z,Z+, n)

Thus, (K0(A), K0(A)+, [1A]0) is a useful invariant to distinguish C*-algebras.

5 Inductive Limits

Let C be a category.

Definition 5.1. An inductive sequence in C is a sequence {An} of objects in C together
with morphisms ϕn : An → An+1, usually written as

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

and denoted (An, ϕn). For m > n, define

ϕm,n = ϕm−1 ◦ ϕm−2 ◦ . . . ◦ ϕn : An → Am

and write ϕn,n = idAn , ϕm,n = 0 if m < n. These are called the connecting maps of the
sequence.
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Definition 5.2. Given a sequence (An, ϕn) in C, and inductive limit is a system (A, {µn})
where A is an object in C and µn : An → A are morphisms with the following two
properties:

5.1. The following diagram commutes for each n ∈ N

An
ϕn //

µn   

An+1

µn+1
||

A

5.2. If (B, {λn}) is another system where B is an object in C and λn : An → B are
morphisms such that λn = λn+1 ◦ ϕn for all n ∈ N, then there exists a unique
morphism λ : A→ B such that the following diagram commutes

An
µn

~~

λn

  
A

λ
// B

Remark 5.3. 5.1. Inductive limits do not always exist. For instance, in the category
of finite sets. We will show that they exist in the category of C*-algebras, of
abelian groups, and of ordered abelian groups.

5.2. If an inductive limit exists, it is unique by the second property above.

Example 5.4. 5.1. Let D be a C*-algebra and An ⊂ An+1 ⊂ D be an increasing chain
of subalgebras. If ϕn = ιn : An ↪→ An+1, then (A, {jn}) is an inductive limit of
(An, ιn), where

A :=
∞⋃
n=1

An

and µn = jn : An ↪→ A is the inclusion map because

(i) µn = µn+1 ◦ ιn for all n ∈ N.

(ii) If (B, {λn}) is another system as above, then define λ : A→ B by

λ(a) = λn(a) if a ∈ An

This is well-defined, because if a ∈ An ⊂ An+1, then

λn+1(a) = λn+1(ιn(a)) = λn(a)

Then it follows that λ ◦ µn = λn for all n ∈ N. Furthermore, this map λ is a
∗-homomorphism, and is unique because

⋃
An is dense in A.
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5.2. Let An = Mn(C) and ϕn : An → An+1 is the map

a 7→
(
a 0
0 0

)
Let K(H) denote the compact operators on H = `2, then fix an ONB {ei} of
H. Define pn ∈ K(H) to be the canonical rank n projection. If x, y ∈ H, define
x⊗ y ∈ K(H) by

(x⊗ y)(z) = 〈z, x〉y

Then pn =
∑n

i=1 ei ⊗ ei.
(i) Define µn : Mn(C)→ K(H) by

µn(ai,j) =
n∑

i,j=1

ai,jei ⊗ ej

Then µn is injective, and the range of µn is pnK(H)pn.

Proof. µn is injective because the set {ei⊗ ej} is linearly independent. As for
surjectivity onto pnK(H)pn, note that if u ∈ pnK(H)pn, then

u = pnupn

=
n∑

i,j=1

(ei ⊗ ei)u(ej ⊗ ej)

=
n∑

i,j=1

〈u(ei), ej〉ei ⊗ ej

= µn(ai,j)

where ai,j = 〈u(ei), ej〉.

(ii) Check that µn+1 ◦ ϕn = µn

(iii) Finally, observe that

K(H) =
∞⋃
n=1

pnK(H)pn =
∞⋃
n=1

µn(Mn(C))

(iv) As in the previous example, we see that (K(H), {µn}) is an inductive limit of
(Mn(C), ϕn).

(End of Day 3)

Proposition 5.5 (Inductive Limits of C*-algebras). Given an inductive system (An, ϕn)
of C*-algebras, an inductive limit (A, {µn}) exists.
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Proof. Consider the quotient map

π :
∏

An →
∏

An/
∑

An =: Q

and let ϕm,n : An → Am as above.

5.1. Define νn : An →
∏

mAm by

νn(a) = (ϕm,n(a))

This is well-defined, because ‖ϕm,n(a)‖ ≤ ‖a‖ for all m ∈ N. Furthermore, νn is
clearly a ∗-homomorphism.

5.2. Let µn : An → Q by µn = π ◦ νn, then observe that if a ∈ An, then

c := νn(a)− (νn+1 ◦ ϕn)(a)

has the form cn = a and cm = 0 when m 6= n. Hence, c ∈
∑
Ai, so that

µn(a)− (µn+1 ◦ ϕn)(a) = π(c) = 0

Hence, µn = µn+1 ◦ ϕ.

5.3. Thus, {µn(An)} is an increasing sequence of C*-subalgebras of Q. Define

A :=
∞⋃
n=1

µn(An)

Then A is a C*-algebra, and µn : An → A is a sequence of ∗-homomorphisms
satisfying the first condition of Definition 2.2.

5.4. To prove the second condition, suppose (B, {λn}) is another system such that
λn = λn+1 ◦ ϕn. Then

λm ◦ ϕm,n = λn ∀m > n

Hence, ‖λn(a)‖ ≤ ‖ϕm,n(a)‖. So

‖λn(a)‖ ≤ lim sup ‖ϕm,n(a)‖ = ‖π(νn(a))‖ = ‖µn(a)‖

Hence, ker(µn) ⊂ ker(λn). By the first isomorphism theorem, ∃ a unique ∗-
homomorphism,

λ′n : µn(An)→ B such that λ′n ◦ µn = λn

By uniqueness, λ′n+1|µn(An)= λ′n. Hence, we get a ∗-homomorphism

λ′ :
∞⋃
n=1

µn(An)→ B

17



which extends λ′n. λ is a contraction, so it extends to a ∗-homomorphism

λ : A→ B

such that λ ◦ µn = λ′n ◦ µn = λn. Furthermore, λ is unique with this property
because

A =
∞⋃
n=1

µn(An)

Proposition 5.6. Let (Gn, αn) be an inductive system of abelian groups, then an induc-
tive limit (G, βn) exists. Moreover, one has

5.1.

G =
∞⋃
n=1

βn(Gn)

5.2.

ker(βn) =
∞⋃

m=n+1

ker(αm,n)

5.3. If (H, γn) is another system and γ : G → H the unique group homomorphism as
in Definition 2.2, then

(i) γ is injective iff ker(γn) = ker(βn) for all n ∈ N
(ii) γ is surjective iff H =

⋃∞
n=1 γn(Gn)

Proof. The proof is similar to the one above.

Example 5.7. 5.1. Consider Gn = Z and αn(1) = n + 1. ie. We may picture the
system as

Z 2−→ Z 3−→ Z 4−→ . . .

Define γn : Z→ Q by

γn(1) =
1

n!

Then γn is a group homomorphism such that γn = γn+1 ◦ αn. Hence, (Q, {γn}) is
a system that satisfies (i) in Definition 2.2. Let (G, {βn}) be an inductive limit of
this system, then there is a group homomorphism

γ : G→ Q such that γ ◦ αn = γn

Since

Q =
∞⋃
n=1

γn(Gn)
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it follows that γ is surjective. Also, since

ker(βn) =
∞⋃

m=n+1

ker(αm,n)

and each αn is injective, it follows that βn is injective for all n. We see that each
γn is also injective. Hence,

ker(γn) = ker(βn)

for all n ∈ N. Hence, γ is injective as well.

5.2. Let Gn = Z and αn(1) = 2 for all n ∈ N. ie. We may picture the system as

Z 2−→ Z 2−→ Z 2−→ . . .

Define γn : Z→ Q by

γn(1) =
1

2n

Then γn = γn+1 ◦αn. Hence, (Q, {γn}) is a system that satisfies the first condition
of Definition 2.2. Hence, if (G, {βn}) is an inductive limit of the system, then there
is a group homomorphism

γ : G→ Q such that γ ◦ αn = γn

As in the previous example, we may check that

ker(βn) = ker(γn) = {0}

so that γ is injective. However, γ is not surjective, but does surject onto

H =
∞⋃
n=1

γn(Gn) ∼=
{m

2n
: m ∈ Z, n ≥ 0

}
∼= Z

[
1

2

]
This is the inductive limit of the system.

Proposition 5.8 (Inductive Limits of ordered Abelian groups). Let (Gn, αn) be an
inductive system of ordered abelian groups where αn : Gn → Gn+1 are positive group
homomorphisms. Let (G, βn) be an inductive limit of this system, and define

G+ =
∞⋃
n=1

βn(G+
n )

Then (G,G+) is an ordered abelian group, βn is a positive group homomorphism, and
(G,G+, {βn}) is an inductive limit in the category of ordered abelian groups.

Proof. Omitted.

19



Remark 5.9. Given an inductive sequence

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .

of C*-algebras, let (A, {µn}) be the limit of the sequence. (ie. the following diagram
commutes

An
ϕn //

µn   

An+1

µn+1
||

A

and A is universal with this property). Then we get an inductive sequence of Abelian
groups

K0(A1)
K0(ϕ1)−−−−→ K0(A2)

K0(ϕ2)−−−−→ K0(A3)
K0(ϕ3)−−−−→ . . .

Let (G, {βn}) be the inductive limit of this sequence. ie. the following diagram commutes

K0(An)
K0(ϕn) //

βn ##

K0(An+1)

βn+1zz
G0

Theorem 5.10 (Continuity of K0). Given an inductive system (An, ϕn) of C*-algebras
with inductive limit A, we have

K0(A) ∼= lim(K0(An), K0(ϕn))

In fact, there is a unique group isomorphism γ : G0 → K0(A) such that the following
diagram commutes

K0(An)
βn

{{

K0(µn)

%%
G0 γ

// K0(A)

In particular,

K0(A) =
∞⋃
n=1

K0(µn)(K0(An))

and

ker(K0(µn)) =
∞⋃

m=n+1

ker(K0(ϕm,n))

Proof. Note that the following diagram commutes

K0(An)
K0(ϕn) //

K0(µn) %%

K0(An+1)

K0(µn+1)xx
K0(A)
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Hence, by the universal property of the inductive limit, there is a group homomorphism

γ : G0 → K0(A)

such that γ ◦ βn = K0(µn). The proof that γ is bijective is long and technical, so we
omit it.

Definition 5.11. Given a C*-algebra A, consider the inductive sequence A→M2(A)→
M3(A)→ . . . where the connecting maps are given by the inclusion

a 7→
(
a 0
0 0

)
The inductive limit of this sequence is A⊗K.

Definition 5.12. Let e ∈ K be the fixed projection of rank one

e((xn)) := (x1, 0, 0, . . .)

and κ : A → A ⊗ K be given by a 7→ a ⊗ e. Then κ is an injective ∗-homomorphism,
called the canonical inclusion of A into A⊗K
Lemma 5.13. Let p ∈ K be any rank one projection and ϕ : A → A ⊗ K be given by
a 7→ a⊗ p, then K0(ϕ) = K0(α)

Proof. Note that p ∼ e and 1 − p ∼ 1 − e, so ∃u ∈ U(B(H)) such that e = upu∗. By
the Borel functional calculus, ∃h ∈ B(H) self-adjoint such that u = eih. Hence the
path ut := eith connects u to the identity. Hence, e = upu∗ ∼h p. Furthermore, if
ϕt : A→ A⊗K is given by

a 7→ a⊗ utpu∗t
Then ϕt is a path of ∗-homomorphisms such that ϕ0 = ϕ and ϕ1 = α. Hence, K0(α) =
K0(ϕ).

Theorem 5.14 (Stability of K0). The map κ : A → A ⊗ K induces an isomorphism
K0(κ) : K0(A)→ K0(A⊗K)

Proof. Let ϕn : Mn(A)→Mn+1(A) and µn : Mn(A)→ A⊗K be the maps as above

5.1. K0(κ) is surjective:

K0(A⊗K) =
∞⋃
j=1

K0(µn)(K0(Mn(A))

so if g ∈ K0(A⊗K),∃n ∈ N and g′ ∈ K0(Mn(A)) such that

g = K0(µn)(g′)

But ϕn,1 : A→ Mn(A) is the map λn from the theorem proved last week. Hence,
K0(ϕn,1) : K0(A) → K0(Mn(A)) is an isomorphism, so ∃h ∈ K0(A) such that
g′ = K0(ϕn,1)(h). Hence,

g = K0(µn ◦ ϕn,1)(h) = K0(κ)(h)

so K0(κ) is surjective.
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5.2. K0(κ) is injective: If h ∈ K0(A) is such that K0(κ)(h) = 0, then

K0(µn)K0(ϕn,1)(h) = 0 ∀n ∈ N

But by the earlier remark,

ker(K0(µn)) =
∞⋃

m=n+1

ker(K0(ϕm,n))

hence,
K0(ϕm,n)(K0(ϕn,1(h)) = 0 = K0(ϕm,1)(h) in K0(Mm(A))

But K0(ϕm,1) is an isomorphism, so h = 0 as required.

Corollary 5.15. There is an isomorphism α : K0(K)→ Z such that

α([E]0) = Tr(E)

for every projection E ∈ K. This isomorphism is denoted by K0(Tr)

Proof. Let κ : C → C ⊗ K ∼= K be the map as above, and α1 : K0(C) → Z the
isomorphism such that

α1([1]0) = 1

Define α = α1 ◦ K0(κ)−1 : K0(K) → Z. Then α is an isomorphism. Furthermore,
F := K(1) is a one-dimensional projection in K, and

α([F ]0) = α1([1]0) = 1

If E ∈ K is any one-dimensional projection, then E ∼ F in K̃(H) as in the case of B(H).
Hence,

α([E]0) = 1

If E is any arbitrary n-dimensional projection, then E is a sum of orthogonal rank one
projections, so

α([E]0) = n = Tr(E)

Example 5.16. Consider the short exact sequence

0→ K(H)
ι−→ B(H)→ Q(H)→ 0

where H = `2. Then K0(B(H)) = 0, and K0(K(H)) ∼= Z, so the map

K0(ι) : K0(K(H))→ K0(B(H))

is not injective. Therefore, the functor K0 is not exact.

(End of Day 4)
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6 Finite Dimensional C*-Algebras

Definition 6.1. Define e(n, i, j) ∈Mn(C) to be the matrix whose (i, j)th entry is 1 and
other entries are zero. If

A = Mn1(C)⊕Mn2(C)⊕ . . .Mnr(C)

define
e
(k)
i,j := (0, 0, . . . , e(nk, i, j), 0, 0, . . . , 0) ∈ A

These are called the matrix units of A, and they satisfy the following identities

6.1. e
(k)
i,j e

(k)
j,` = e

(k)
i,`

6.2. e
(k)
i,j e

`
m,n = 0 if k 6= ` or if j 6= m

6.3. (e
(k)
i,j )∗ = e

(k)
j,i

6.4. A = span{e(k)i,j : 1 ≤ k ≤ r, 1 ≤ i, j ≤ nk}

Definition 6.2. Let B be a C*-algebra and {f (k)
i,j } be a set of elements in B satisfying

(i), (ii) and (iii) above. Then this is called a system of matrix units in B of type A.

Note: Given a system of matrix units of typeA as above, there is a unique ∗-homomorphism
ϕ : A→ B such that ϕ(e

(k)
i,j ) = f

(k)
i,j for all k, i, j. Furthermore, this map is

6.1. injective if all the f
(k)
i,j are non-zero.

6.2. surjective if B = span{f (k)
i,j }

Lemma 6.3. Suppose that {f (k)
i,i : 1 ≤ k ≤ r, 1 ≤ i ≤ nk} is a set of mutually orthogonal

projections in a C*-algebra B such that

f
(k)
1,1 ∼ f

(k)
2,2 ∼ . . . ∼ f (k)

nk,nk

for 1 ≤ k ≤ r. Then there is a system of matrix units {f (k)
i,j } in V that extends {f (k)

i,i }.

Proof. Choose partial isometries f
(k)
1,i such that

(f
(k)
1,i )∗f

(k)
1,i = f

(k)
i,i and f

(k)
1,i (f

(k)
1,i )∗ = f

(k)
1,1

and define
f
(k)
i,j = (f

(k)
1,i )∗f

(k)
1,j

Then this system works [Check!]

Definition 6.4. A C*-subalgebra D ⊂ A is called a maximal abelian subalgebra (masa)
if it is abelian, and it is not properly contained in any other abelian C*-subalgebra of A.

By Zorn’s lemma, every Abelian C*-subalgebra is contained in a masa.
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Definition 6.5. Let X ⊂ A. Define

X ′ := {a ∈ A : ax = xa ∀x ∈ X}

Note that X ′ is a norm-closed subalgebra of A. Furthermore, it is a C*-subalgebra if X
is self-adjoint (ie. if a ∈ X, then a∗ ∈ X)

Note: B ⊂ A is Abelian iff B ⊂ B′.

Lemma 6.6. D ⊂ A is a masa iff D = D′

Proof. Suppose D = D′, then D is Abelian, and if E is Abelian and contains D, then

D ⊂ E ⊂ E ′ ⊂ D′ = D

so E = D. Hence D is a masa.

Conversely, suppose D is a masa, then D ⊂ D′ and D′ is a C*-subalgebra. WTS:
D′ ⊂ D. Since D′ and D are C*-algebras, it suffices to show that (D′)sa ⊂ D. So fix
a ∈ D′ self-adjoint, and set

X := D ∪ {a}
Since elements in X commute with each other,

X ⊂ X ′

Since X is self-adjoint, X ′ is a C*-subalgebra of A, and so

C∗(X) ⊂ X ′

So if y ∈ C∗(X) and x ∈ X, then xy = yx. Hence,

X ⊂ C∗(X)′

Once again, C∗(X)′ is a C*-algebra, so

C∗(X) ⊂ C∗(X)′

It follows that C∗(X) is Abelian. Since D ⊂ X ⊂ C∗(X), and D is a masa, we conclude
that

D = C∗(X)

In particular, a ∈ D as required.

Example 6.7. Let A = Mn(C) and D denote the set of all diagonal matrices. Then D
is an Abelian C*-subalgebra of A. Furthermore, if a ∈ D′, then

ae1,1 = e1,1a

So
e1,1(a(e1)) = ae1,1(e1) = a(e1)

Hence, a(e1) is an eigen-vector of e1,1 with eigen-value 1. So a(e1) = λ1e1. Thus
continuing, we see that a must be diagonal. Hence, D′ = D, so D is a masa.
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Lemma 6.8. Let D be a masa in a C*-algebra A.

6.1. If D is unital, then A is unital and 1A = 1D

6.2. If p is a projection in D such that pDp = Cp, then pAp = Cp (Note: A projection
with this property is minimal, in the sense that there is no projection q ∈ A such
that q < p other than q = 0)

Proof. 6.1. If a ∈ A, then WTS: a = a1D. Let z := a− a1D, then zd = 0 for all d ∈ D.
Since D is self-adjoint, this implies (zd∗)∗ = dz∗ = 0 for all d ∈ D. Hence,

d(z∗z) = 0 = (z∗z)d ∀d ∈ D

Hence, (z∗z) ∈ D′ = D since D is a masa. Hence,

(z∗z)(z∗z) = 0⇒ ‖z‖4 = 0⇒ z = 0

Hence, a = a1D for all a ∈ A. Hence,

1Da = (a∗1D)∗ = (a∗)∗ = a ∀a ∈ A

So 1D = 1A

6.2. Let a ∈ pAp, then a = pa = ap. So if d ∈ D, we have pd = dp = pdp = λp for
some λ ∈ C. Hence,

ad = apd = λap = λa = da

Hence, a ∈ D′ = D, so a ∈ D. In that case, a ∈ pDp. Hence, pAp ⊂ pDp = Cp.

Theorem 6.9. Any finite dimensional C*-algebra is isomorphic to

Mn1(C)⊕Mn2(C)⊕ . . .⊕Mnr(C)

for some positive integers r, n1, n2, . . . , nr ∈ N

Proof. 6.1. Choose a masa D ⊂ A. By Gelfand, D ∼= C0(X) for some space X. Since
D is finite dimensional, it follows that X is finite. In particular, X is compact.
Hence, D is unital, and so A is unital and 1A = 1D by the previous lemma.

6.2. Let X = {x1, x2, . . . , xN} and let pi ∈ D denote the corresponding characteristic
functions

pi(xj) = δi,j

Then {p1, p2, . . . , pN} ⊂ D are projections such that

p1 + p2 + . . .+ pN = 1D and pjDpj = Cpj

By the previous lemma, pjApj = Cpj for all 1 ≤ j ≤ N
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6.3. Fix 1 ≤ i, j ≤ N such that pjApi 6= 0. Choose v ∈ pjApi such that ‖v‖ = 1, then

v∗v ∈ piApi

is a positive element of norm 1. But piApi = Cpi. Hence,

v∗v = pi

Similarly, vv∗ = pj. Hence, we conclude

pjApi = {0} or pi ∼ pj

6.4. Now suppose pi ∼ pj and a ∈ pjApi, then a = api = (av∗)v. As av∗ ∈ pjApj = Cpj,
so av∗ = λpj for some λ ∈ C. Furthermore, pjv = v, so

a = av∗v = λpjv = λv

Hence, a ∈ Cv, so if pi ∼ pj, then

pjApi = Cv

6.5. Partition the set {p1, p2, . . . , pN} into Murray von-Neumann equivalence classes.
Suppose there are r equivalence equivalence classes, and that the kth class has nk
elements

{f (k)
1,1 , f

(k)
2,2 , . . . , f

(k)
nk,nk
}

By choice of these projections, we have

f
(k)
i,i Af

(`)
j,j = {0} if k 6= ` and f

(k)
i,j ∼ f

(k)
j,j

By the earlier lemma, we can extend this collection to a system of matrix units
{f (k)

i,j } in A.

6.6. By Step 4,
f
(k)
i,i Af

(k)
j,j = Cf (k)

i,j

and by Step 2,

1 =
∑
i,k

f
(k)
i,i

6.7. Hence if a ∈ A, then

a =

(∑
i,k

f
(k)
i,i

)
a

(∑
i,k

f
(k)
i,i

)
=

r∑
k=1

nk∑
i,j=1

f
(k)
i,i af

(k)
j,j

=
r∑

k=1

nk∑
i,j=1

λ
(k)
i,j f

(k)
i,j
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for some scalars λ
(k)
i,j ∈ C. Hence,

A = span{f (k)
i,j }

Thus the system of matrix units satisfies all conditions (1) - (4). Hence, by the
remark following Definition 1.2,

A ∼= Mn1(C)⊕Mn2(C)⊕ . . .⊕Mnr(C)

(End of Day 5)

7 Classification of AF-Algebras

Definition 7.1. An approximately finite dimensional (AF) algebra is an inductive limit
of finite dimensional C*-algebras.

Example 7.2. 7.1. Every finite dimensional C*-algebra is AF

7.2. K(`2) is AF.

7.3. Fix a sequence {nk} of integers such that nk | nk+1. Define ϕk : Mnk
(C) →

Mnk+1
(C) to be the unital map

a 7→ diag(a, a, . . . , a︸ ︷︷ ︸
dk times

)

where dk = nk+1/nk. The inductive limit is a unital AF-algebra, called a Uniformly
Hyperfinite Algebra (UHF) algebra of type N := {nk}

7.4. If nk = 2k for all k ∈ N, then the corresponding UHF algebra of type 2∞ is called
the CAR algebra (Canonical Anticommutation relations)

Lemma 7.3. Every AF-algebra is stably finite. Hence, (K0(A), K0(A)+) is an ordered
abelian group.

Proof. If A is an AF-algebra, then so is Ã and Mk(A). Hence it suffices to show that
A is finite when A is unital and AF. We show that every isometry s ∈ A is a unitary.
Suppose s ∈ A is an isometry, then fix ε = 1/4. Since A is an AF-algebra, ∃ a finite
dimensional C*-subalgebra B ⊂ A and x ∈ B such that

‖s− x‖ < ε

It follows that

|1− ‖x‖| = |‖s‖ − ‖x‖| ≤ ‖s− x‖ < ε⇒ ‖x‖ ≤ 1 + ε
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‖1A − x∗x‖ = ‖s∗s− x∗x‖
≤ ‖s∗s− s∗x‖+ ‖s∗x− x∗x‖
≤ ‖s∗‖‖s− x‖+ ‖s∗ − x∗‖‖x‖
≤ ‖s− x‖+ ‖s− x‖(1 + ε)

≤ ε+ ε(1 + ε) = ε2 + 2ε ≤ ε(3 + 2ε) < 1

Hence, x∗x is invertible. Replacing B by B+C1A (which is also finite dimensional), and
using spectral permanence, we can conclude that x∗x is invertible in B. Furthermore, if
z = (x∗x)−1, then

z =
∞∑
k=0

(1− x∗x)k ⇒ ‖z‖ ≤
∞∑
k=0

‖1− x∗x‖k =
1

1− ‖1− x∗x‖
≤ 1

1− ε2 − 2ε

Hence, if y = zx∗, then yx = 1A and

‖y‖ < 1 + ε

1− ε2 − 2ε

Now x is left-invertible in B. Since B is finite dimensional, it follows that x is right
invertible in B (and hence A), and the left and right-inverses coincide. Thus, xy = 1A,
so

‖sy − 1A‖ = ‖sy − xy‖ ≤ ‖s− x‖‖y‖ < ε(1 + ε)

1− ε2 − 2ε
< 1

because ε(3 + 2ε) < 1. Hence, sy is invertible, so s is right invertible as required.

If A is a unital AF-algebras, we consider the triple

E(A) := (K0(A), K0(A)+, [1A]0)

If there is a unital ∗-isomorphism ϕ : A→ B, then we get an isomorphism of invariants

K0(ϕ) : E(A)→ E(B)

Theorem 7.4 (Elliott). Let A and B be two unital AF-algebras. Given an isomorphism
α : E(A)→ E(B), there is a ∗-isomorphism ϕ : A→ B such that α = K0(ϕ).

Proof. The outline of the proof is as follows:

7.1. Write both A and B as inductive limits of finite dimensional C*-algebras

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ . . .→ A

B1
ψ1−→ B2

ψ2−→ B3
ψ3−→ . . .→ B

This gives an inductive sequence of K0-groups.
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7.2. Given an isomorphism α : E(A)→ E(B), we construct an intertwining at the level
of K0 groups.

K0(An1) //

β1

&&

K0(An2) //

β2

&&

. . . // K0(A)

α

��
K0(Bm1)

α1

88

// K0(Bm2) //

α2

88

K0(Bm3) // . . . // K0(B)

α−1

OO

(.1)
This requires a lifting property of the groups K0(Aj) and K0(Bj) (which are free
Abelian groups) as follows: Given an inductive limit

K0(Ak)
K0(µk) //

α
%%

K0(A)

K0(Bj)

γ
99

Once can lift the map γ to a map β : K0(Bj)→ K0(A`) for some ` ≥ k such that
TFDC:

K0(Ak)
K0(ϕ`,k)//

α

%%

K0(A`)
K0(µ`)// K0(A)

K0(Bj)

β

OO
γ

99

We will apply this inductively to construct an intertwining of K0 groups as above
(Equation .1)

7.3. Given an intertwining of K0 groups as above, we would like to construct ∗-
homomorphisms fi : Bmi

→ Ani
and gi : Ani

→ Bmi+1
such that

K0(fi) = αi and K0(gi) = βi

For this, we need an Existence/Uniqueness theorems:

(i) Given finite dimensional C*-algebras A and B, and a morphism η : K0(A)→
K0(B), we need to find a ∗-homomorphism f : A→ B such that K0(f) = η.

(ii) Furthermore, we would like the fi and gi to interact as in Equation .2. Hence,
we need a Uniqueness theorem as well: Given finite dimensional C*-algebras
A and B and two morphisms f, g : A → B. Suppose K0(f) = K0(g), then
how are f and g related to each other?

7.4. Finally, we construct an intertwining: two subsequences (Anj
) and (Bmj

) and maps
between them as below

An1
//

g1

""

An2
//

g2

""

An3
// . . . // A

Bm1

f1
<<

// Bm2
//

f2
<<

Bm3

f3
<<

// . . . // B

(.2)
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If such an intertwining exists, then there is an isomorphism ϕ : A→ B (by yester-
day’s tutorial problem). This isomorphism will have the property that K0(ϕ) = α
as well.

Example 7.5. Consider the inductive sequence of C*-algebras

C→M2(C)→M4(C)→ . . .→M2n(C)
ϕn−→M2n+1(C)→ . . .

where ϕn : M2n(C)→M2n+1(C) is given by

a 7→
(
a 0
0 a

)
Let (A, {µn}) denote the inductive limit of this system. For each n ∈ N, define a trace
τn : M2n(C)→ C by

(ai,j) 7→
1

2n

2n∑
i=1

ai,i

Note that τn+1 ◦ ϕn = τn. By the universal property of the inductive limit, there is a
map τ : A→ C such that

τ ◦ µn = τn ∀n ∈ N

Since each τn is linear, so is τ . Since each τ is bounded (norm-decreasing), it follows
that τ is bounded (Why?). Furthermore, for any a ∈ µn(An), b ∈ µm(Am), we write
a = µn(a′), b = µm(b′). If m > n, then µn = µm ◦ µm−1 ◦ . . . µn, so we may assume
m = n, then

τ(ab) = τn(a′b′) = τ ′n(b′a′) = τ(ba)

Hence, τ is a trace on A. Similarly, one can check that τ is a positive tracial state. We
get a map

K0(τ) : K0(A)→ R

Note that

K0(A) =
∞⋃
n=1

K0(µn)(K0(An))

Now,

K0(τ)(K0(µn))(K0(An)) = K0(τn)(K0(An)) =
{ a

2n
: a ∈ Z

}
Hence, the range of K0(τ) is

Z
[

1

2

]
=
{ a

2n
: a ∈ Z, n ∈ N

}
Finally, if g ∈ K0(A) is such thatK0(τ)(g) = 0, then ∃n ∈ N such that g ∈ K0(µn)(K0(An)).
So write

g = K0(µn)(g′)
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for some g′ ∈ K0(An). Then
K0(τn)(g′) = 0

But K0(τn) : K0(An)→ 2−nZ is an isomorphism. Hence, g′ = 0, so g = 0. Hence,

K0(τ) : K0(A)→ Z
[

1

2

]
is an isomorphism. Furthermore, it is clear that K0(τ) maps the positive elements of
K0(A) to the set { a

2n
: a ∈ N ∪ {0}, n ∈ N

}
So the ordered triple

(K0(A), K0(A)+, [1]0)

is completely determined.

Remark 7.6. Given a UHF algebra A of type N := {nk}, A has a trace τ : A → C.
Furthermore,

K0(τ) : K0(A) ∼=
∞⋃
k=1

n−1k Z

Furthermore, we can completely determine the triple E(A) using K0(τ).

8 The Higher K-groups

Definition 8.1. Let A be a C*-algebra. The suspension of A is defined as

SA := {f ∈ C([0, 1], A) : f(0) = f(1) = 0}

For n > 1, we define inductively,

Sn(A) := S(Sn−1A)

Note that Sn(A) is a C*-algebra by the point-wise operations; and it is non-unital.

Definition 8.2. For n ≥ 1, define

Kn(A) := K0(S
n(A))

Remark 8.3. 8.1. Given a ∗-homomorphism ϕ : A → B, we get a ∗-homomorphism
Sϕ : SA→ SB given by

(Sϕ)(f)(t) := ϕ(f(t))

Hence, we get a map K0(Sϕ) : K1(A)→ K1(B). We denote this map by K1(ϕ).

8.2. More generally, we see that Kn is a covariant functor.
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8.3. If ϕ, ψ : A → B are two ∗-homomorphisms such that ϕ ∼h ψ, then Sϕ ∼h Sψ.
Therefore, K1 (and more generally, each Kn) is a homotopy invariant functor as
well.

8.4. Given a short exact sequence

0→ J
ϕ−→ A

ψ−→ B → 0

of C*-algebras, the induced sequence

0→ SJ
Sϕ−→ SA

Sψ−→ SB → 0

is also exact. Hence, the sequence

K1(J)→ K1(A)→ K1(B)

is exact at K1(A). Hence, K1 (and hence Kn) is half-exact.

8.5. Similarly, each Kn is a split-exact functor.

8.6. Similarly, all the other properties (continuity, stability, etc.) all carry over from
K0 to Kn.

Definition 8.4. Given a short exact sequence

0→ J
ϕ−→ A

ψ−→ B → 0

of C*-algebras, define the mapping cone to be

C(A,B) := {(a, f) : a ∈ A, f ∈ C([0, 1], B) such that f(0) = 0, f(1) = ψ(a)}

Define j : J → C(A,B) by a 7→ (a, 0).

Theorem 8.5. The map K0(j) : K0(J)→ K0(C(A,B)) is an isomorphism.

Proof. 8.1. Let CB denote the cone of B, ie. the C*-algebra

CB := {f ∈ C([0, 1], B) : f(0) = 0}

and define π : C(A,B)→ CB by (a, f) 7→ f . Then the sequence

0→ J
j−→ C(A,B)

π−→ CB → 0

is exact. We thus get a half-exact sequence

K0(J)
K0(j)−−−→ K0(C(A,B))

K0(π)−−−→ K0(CB)

But CB is contractible, to K0(π) is the zero map. Hence, K0(j) is surjective.
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8.2. For injectivity, define

Q := {f ∈ C([0, 1], A) : f(0) ∈ J}

We now have maps δ : J → Q given by a 7→ a, the constant function; and define
γ : Q→ J given by evaluation at 0. We now have a split exact sequence

0→ ker(γ)→ Q
γ−→ J → 0

We thus obtain a split exact sequence

0→ K0(ker(γ))→ K0(Q)
K0(γ)−−−→ K0(J)→ 0

Now observe that

ker(γ) = {f ∈ C([0, 1], A) : f(0) = 0} = CA

This is once again contractible, so K0(δ) : K0(J)→ K0(Q) is an isomorphism.

8.3. Now, we have a map η : Q→ C(A,B) given by

f 7→ (f(1), ψ ◦ f)

This is a surjective ∗-homomorphism, and

ker(η) = CJ

Hence, ker(η) is contractible, so η is induces an injective map

K0(η) : K0(Q)→ K0(C(A,B))

Now observe that the composition

K0(η) ◦K0(δ) = K0(j)

which is thus injective.

Definition 8.6. Consider a short exact sequence

0→ J
ϕ−→ A

ψ−→ B → 0

of C*-algebras, and the short exact sequence

0→ SB
α−→ C(A,B)

β−→ A→ 0

where α(f) := (0, f) and β(a, f) := a (Observe that this is exact). Therefore, we get a
map

K0(α) : K0(SB)→ K0(C(A,B))

Composing with the map K0(j)
−1, we get a map

∂ : K1(B)→ K0(J)

This is called the boundary map or index map.
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Theorem 8.7. Given a short exact sequence

0→ J
ϕ−→ A

ψ−→ B → 0

the sequence

K1(A)
K1(ψ)−−−→ K1(B)

∂−→ K0(J)
K0(ϕ)−−−→ K0(A)

is exact.

Theorem 8.8. Given a short exact sequence of C*-algebras

0→ J → A→ B → 0

there is a natural long exact sequence of K-groups given by

. . .→ Kn(J)→ Kn(A)→ Kn(B)
∂−→ Kn−1(J)→ Kn−1(A)→ Kn−1(B)→ . . .

which ends in K0(B).
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9 Exercises for 9/7/19

9.1. Let X and Y be compact Hausdorff spaces and α, β : X → Y be two continuous
functions. We say α ∼h β if there is a continuous function

k : [0, 1]×X → Y

such that k(0, x) = α(x) and k(1, x) = β(x) for all x ∈ X. Define A := C(Y ), B :=
C(X), and

ϕ : A→ B given by ϕ(f)(x) := f(α(x))

and ψ : A→ B by ψ(f)(x) := g(β(x)). Use k to construct a homotopy from ϕ to
ψ. Check all the conditions.

9.2. Let ϕ, ψ : A→ B be two ∗-homomorphisms such that ϕ(x)ψ(y) = 0 for all x, y ∈ A
(If this happens, we say that ϕ is orthogonal to ψ). Show that ϕ + ψ : A → B is
a ∗-homomorphism, and

K0(ϕ+ ψ) = K0(ϕ) +K0(ψ)

9.3. Let p and q be two projections in a C*-algebra A. Write p ≤ q if (q − p) is a
positive element in A, and write p ⊥ q if pq = 0.

A non-zero projection p in a C*-algebra A is said to be properly infinite if there exist
mutually orthogonal projections e, f ∈ A such that e ≤ p, f ≤ p and p ∼ e ∼ f . A
unital C*-algebra is said to be properly infinite if 1A is a properly infinite projection.

Show that the Cuntz algebra On is properly infinite, and show that B(H) is prop-
erly infinite if and only if H is infinite dimensional.

9.4. Let A be a properly infinite unital C*-algebra.

(i) Show that A contains isometries s1, s2 such that s1s
∗
1 ⊥ s2s

∗
2.

(ii) Show that A contains a sequence of isometries {tj}∞j=1 such that tjt
∗
j ⊥ tit

∗
i

when i 6= j. [Hint: Look at s1, s2s1, s
2
2s1, . . .]

(iii) For each n ∈ N, let vn ∈M1,n(A) be the row matrix with entries t1, t2, . . . , tn,
where {ti} is as in (ii). Show that v∗nvn = 1, the unit in Mn(A).

(iv) Let p ∈ Pn(A) be given, and let vn be as in (iii). Show that vnpv
∗
n is a

projection in A, and that p ∼0 vnpv
∗
n.

(v) Let p, q be projections in A. Put

r := t1pt
∗
1 + t2(1− q)t∗2 + t3(1− t1t∗1 − t2t∗2)t∗3

Show that r is a projection in A and that [r]0 = [p]0 − [q]0.

(vi) Show that
K0(A) = {[p]0 : p ∈ P(A)}
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9.5. A trace τ on a C*-algebra A is said to be faithful if τ(a) > 0 for all non-zero,
positive elements a ∈ A.

Let τ : A→ C be a positive trace on A, and let τn : Mn(A)→ C be given by

τn((ai,j)) :=
n∑
i=1

τ(ai,i)

(i) Let x = (ai,j) ∈Mn(A). Show that

τn(x∗x) =
n∑

i,j=1

τ(a∗i,jai,j)

(ii) Show that τn is positive.

(iii) If τ is faithful, show that τn is faithful.

(iv) If A is a unital C*-algebra which admits a faithful positive trace, then show
that A is stably finite. [Hint: For any projection p ∈ A, p ≤ 1A.]

(v) Conclude that the rotation algebra Aθ is stably finite.

9.6. Let {Ai}i∈N be a sequence of C*-algebras. Define
∏

i∈NAi to be the set of all
sequences (ai)

∞
i=1 where ai ∈ Ai and

‖a‖ := sup
i∈N
‖ai‖ <∞

Define
I := {a ∈

∏
Ai : ai = 0 for all but finitely many i ∈ N}

and define ∑
i∈N

Ai := I

Show that

(i)
∏
Ai is a C*-algebra

(ii)
∑
Ai is a closed two-sided ideal of

∏
Ai

9.7. Let
π :
∏

Ai →
∏

Ai/
∑

Ai

be the quotient map. For a ∈
∏
Ai, show that

(i) ‖π(a)‖ = lim sup ‖an‖
(ii) Conclude that a ∈

∑
Ai if and only if lim sup ‖an‖ = 0.
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10 Exercises for 12/7/19

10.1. Let
A1

ϕ1−→ A2
ϕ2−→ A3 . . .

be an inductive sequence of C*-algebras with inductive limit (A, {µn}).
(i) Suppose that 1 ≤ n1 < n2 < n3 . . ., and put ψj := ϕnj+1,nj

. Show that
(A, {µnj

}) is the inductive limit of the sequence

An1

ψ1−→ An2

ψ2−→ An3 . . .

(ii) Put Bn := A/ ker(µn), and let πn : An → Bn be the quotient map. Jus-
tify that there are injective ∗-homomorphisms ψn : Bn → Bn+1 and a ∗-
homomorphism π : A→ limBn making the diagram

A1
ϕ1 //

π1
��

A2
ϕ2 //

π2
��

A3
//

π3
��

. . . // A

π

��
B1

ψ1 // B2
ψ2 // B3

// . . . // B

commutative. Show that π is a ∗-isomorphism.

(iii) Suppose that each ϕn : An → An+1 is injective. Show that each µn : An → A
is also injective.

(iv) Suppose that A is unital. Show that there exists a natural number n0 ∈ N
such that, for all integers n ≥ n0, An is unital and the maps ϕn : An → An+1

and µn : An → A are unit preserving.

10.2. Given an inductive sequence of Abelian groups

G1
α1−→ G2

α2−→ G3 . . .

follow the proof given for C*-algebras, and construct an inductive limit for this
sequence.

10.3. Let G1 and G2 be the inductive limits of the following two sequences of Abelian
groups

Z 1−→ Z 2−→ Z→ . . . and Z 2−→ Z 2−→ Z→ . . .

where the homomorphism n : Z→ Z is defined by 1 7→ n. Show that G1
∼= Q and

determine G2.

10.4. Let
A1

ϕ1−→ A2
ϕ2−→ A3 . . . and B1

ψ1−→ B2
ψ2−→ B3 . . .

be two inductive systems of C*-algebras. Suppose there are ∗-homomorphisms
αn : An → Bn and βn : Bn → An+1 such that the following diagram commutes

A1
ϕ1 //

α1   

A2
ϕ2 //

α2   

A3
//

α3   

. . . // limAn

α

��
B1 ψ1

//

β1
>>

B2 ψ2

//

β2
>>

B3
// . . . // limBn

β

OO
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Show that there are ∗-isomorphisms α and β as shown in the diagram, making the
entire diagram commutative. In particular, A and B are isomorphic.

10.5. Consider the inductive sequence of C*-algebras

C→M2(C)→M4(C)→ . . .→M2n(C)
ϕn−→M2n+1(C)→ . . .

where ϕn : M2n(C)→M2n+1(C) is given by

a 7→
(
a 0
0 a

)
Let (A, {µn}) denote the inductive limit of this system. For each n ∈ N, define a
trace τn : M2n(C)→ C by

(ai,j) 7→
1

2n

2n∑
i=1

ai,i

(i) Show that there is a positive tracial state τ : A→ C such that

τ ◦ µn = τn ∀n ∈ N

(ii) Show that the range of the map K0(τ) : K0(A)→ R is

Z
[

1

2

]
=
{ a

2n
: a ∈ Z, n ∈ N

}
(iii) Show that one cannot find pairwise orthogonal projections {p1, p2, p3} ∈ A

such that p1 ∼ p2 ∼ p3 and p1 + p2 + p3 = 1.

Note: The algebra A in this problem is denoted by M2∞ , the UHF algebra of
type 2∞.
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