K-theory for C^{*}-Algebras

Dr. Prahlad Vaidyanathan

July 13, 2019

Contents

1 Review of Last Week 2
2 The Cuntz Algebra 4
3 The Irrational Rotation Algebra 7
4 The order structure on $K_{0}(A)$ 11
5 Inductive Limits 14
6 Finite Dimensional C*-Algebras 23
7 Classification of AF-Algebras 27
8 The Higher K-groups 31
9 Exercises for $9 / 7 / 19$ 35
10 Exercises for $12 / 7 / 19$ 37

1 Review of Last Week

Let A be a unital C^{*}-algebra.
Definition 1.1. Define $\mathcal{P}_{n}(A)$ to be the set of projections in $M_{n}(A)$, and write $\mathcal{P}_{\infty}(A):=$ $\bigcup_{n=1}^{\infty} \mathcal{P}_{n}(A)$ (this is an abuse of notation). For $p, q \in \mathcal{P}_{\infty}(A)$, write $p \sim_{0} q$ if $\exists v \in$ $M_{m, n}(A)$ such that $p=v^{*} v$ and $q=v v^{*}$. Write

$$
\mathbb{D}(A):=\mathcal{P}_{\infty}(A) / \sim_{0}
$$

On $\mathbb{D}(A)$, define an operation

$$
p \oplus q:=\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)
$$

Then $\mathbb{D}(A)$ is an Abelian semi-group.
Definition 1.2. Let $(S,+)$ be an Abelian semi-group, then \exists a pair $(G(S), \gamma)$, where

1.1. $G(S)$ is an Abelian group

1.2. $\gamma: S \rightarrow G(S)$ is a semi-group homomorphism.
1.3. (Universal Property) If H is an Abelian group and $\eta: S \rightarrow H$ is a homomorphism of Abelian semi-groups, then \exists a unique group homomorphism $\widehat{\eta}: G(S) \rightarrow H$ such that

$$
\widehat{\eta} \circ \gamma=\eta
$$

This last property implies that the pair $(G(S), \gamma)$ is unique, and is called the Grothendieck completion of S.

Definition 1.3. Let A be a unital C*-algebra, then

$$
K_{0}(A):=G(\mathbb{D}(A))
$$

and $\gamma: \mathbb{D}(A) \rightarrow K_{0}(A)$ is denoted $[p]_{\mathbb{D}} \mapsto[p]_{0}$.
Theorem 1.4 (Standard picture of K_{0} - unital case). If A is a unital C^{*}-algebra, then

$$
K_{0}(A)=\left\{[p]_{0}-[q]_{0}: p, q \in \mathcal{P}_{\infty}(A)\right\}
$$

Theorem 1.5 (Universal Property of K_{0}). Let G be an Abelian group and $\nu: \mathcal{P}_{\infty}(A) \rightarrow$ G be a function such that
1.1. $\nu(p \oplus q)=\nu(p)+\nu(q)$
1.2. $\nu(0)=0$
1.3. If $p \sim_{h} q$, then $\nu(p)=\nu(q)$

Then there is a unique group homomorphism $\alpha: K_{0}(A) \rightarrow G$ such that

$$
\alpha\left([p]_{0}\right)=\nu(p)
$$

The proof follows from the universal property of the Grothendieck construction.
If $\varphi: A \rightarrow B$ is a unital $*$-homomorphism between unital C^{*}-algebras, then φ induces a $*$-homomorphism $\varphi_{n}: M_{n}(A) \rightarrow M_{n}(B)$ given by $\left(a_{i, j}\right) \mapsto\left(\varphi\left(a_{i, j}\right)\right)$. Hence, we get a map $\mathcal{P}_{\infty}(A) \rightarrow \mathcal{P}_{\infty}(B)$ satisfying the above properties, so we get a map

$$
K_{0}(\varphi): K_{0}(A) \rightarrow K_{0}(B)
$$

Definition 1.6. Let $\varphi, \psi: A \rightarrow B$ be two $*$-homomorphisms. We say that $\varphi \sim_{h} \psi$ if there is a path $t \mapsto \varphi_{t}$ such that
1.1. Each $\varphi_{t}: A \rightarrow B$ is a $*$-homomorphism
1.2. $\varphi_{0}=\varphi$ and $\varphi_{1}=\psi$
1.3. For each $a \in A$, the map $t \mapsto \varphi_{t}(a)$ is a continuous function $[0,1] \rightarrow B$.

Theorem 1.7 (Homotopy Invariance). If $\varphi, \psi: A \rightarrow B$ are two homotopic $*$-homorphisms, then $K_{0}(\varphi)=K_{0}(\psi)$.

2 The Cuntz Algebra

Definition 2.1. Let $n \geq 2$ and $H=\ell^{2}(\mathbb{N})$. Decompose $\mathbb{N}=T_{1} \sqcup T_{2} \sqcup T_{2} \ldots \sqcup T_{n}$ where

$$
T_{i}=\{i, i+n, i+2 n, \ldots\}
$$

Let $P_{i}: H \rightarrow H$ be the natural projection onto $\ell^{2}\left(T_{i}\right) \subset H$. Then, P_{i} is an infinite rank projection, so $P_{i} \sim I_{H}$. Furthermore,

$$
P_{1}+P_{2}+\ldots P_{n}=I_{H}
$$

Choose $s_{1}, s_{2}, \ldots, s_{n} \in \mathcal{B}(H)$ such that

$$
s_{i}^{*} s_{i}=1 \text { and } s_{i} s_{i}^{*}=P_{i}
$$

Then

$$
\sum_{i=1}^{n} s_{i} s_{i}^{*}=1
$$

(Note that these s_{i} are isometries). Define

$$
\mathcal{O}_{n}:=C^{*}\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

This is called the Cuntz algebra.

Example 2.2.

$$
s_{1}\left(\left(x_{n}\right)\right):=\left(x_{1}, 0, x_{2}, 0, x_{3}, 0, \ldots\right) \text { and } s_{2}\left(\left(x_{n}\right)\right):=\left(0, x_{1}, 0, x_{2}, 0, x_{3}, \ldots\right)
$$

Then S_{i} are both isometries, and (check!)

$$
s_{1}^{*} s_{1}=P_{\text {span }\left\{e_{2 n+1}\right\}} \text { and } s_{2}^{*} s_{2}=P_{\text {span }\left\{e_{2 n}\right\}}
$$

So $\mathcal{O}_{2}:=C^{*}\left(s_{1}, s_{2}\right)$.
Note: An element s in a unital C^{*}-algebra is called an isometry if $s^{*} s=1$.
Theorem 2.3. 2.1. \mathcal{O}_{n} is a simple C^{*}-algebra (no non-trivial closed two-sided ideals)
2.2. (Universal Property of \mathcal{O}_{n}) Given a unital C^{*}-algebra A and elements $t_{1}, t_{2}, \ldots, t_{n} \in$ A such that

$$
t_{j}^{*} t_{j}=1=\sum_{i=1}^{n} t_{i} t_{i}^{*}
$$

\exists a unique $*$-homomorphism $\varphi: \mathcal{O}_{n} \rightarrow A$ such that $\varphi\left(s_{j}\right)=t_{j}$
Lemma 2.4. 2.1. Let $u \in \mathcal{U}\left(\mathcal{O}_{n}\right)$, then \exists a unique $*$-homomorphism $\varphi_{u}: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$ such that

$$
\varphi_{u}\left(s_{j}\right)=u s_{j}
$$

Furthermore,

$$
u=\sum_{j=1}^{n} \varphi_{u}\left(s_{j}\right) s_{j}^{*}
$$

2.2. Let $\varphi: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$ be a unital $*$-homomorphism, then $\exists u \in \mathcal{U}\left(\mathcal{O}_{n}\right)$ such that $\varphi=\varphi_{u}$ Proof. 2.1. Follows from the universal property with $t_{j}=u s_{j}$. Furthermore,

$$
\sum_{j=1}^{n} \varphi_{u}\left(s_{j}\right) s_{j}^{*}=\sum_{j=1}^{n} u s_{j} s_{j}^{*}=u
$$

2.2. Given φ, consider

$$
u:=\sum_{j=1}^{n} \varphi\left(s_{j}\right) s_{j}^{*}
$$

Then

$$
u u^{*}=\sum_{i, j=1}^{n} \varphi\left(s_{i}\right) s_{i}^{*} s_{j} \varphi\left(s_{j}\right)^{*}
$$

But the P_{i} are orthogonal projections, and $s_{i}=P_{i} s_{i}$ so $s_{j}^{*} s_{i}=\delta_{i, j}$. Hence,

$$
u u^{*}=\sum_{i=1}^{n} \varphi\left(s_{i}\right) \varphi\left(s_{i}\right)^{*}=\varphi(1)=1
$$

Similarly, $u^{*} u=1$. Finally,

$$
\varphi_{u}\left(s_{i}\right)=u s_{i}=\sum_{j=1}^{n} \varphi\left(s_{j}\right) s_{j}^{*} s_{i}=\varphi\left(s_{i}\right) s_{i}^{*} s_{i}=\varphi\left(s_{i}\right)
$$

By uniqueness of the universal property, $\varphi_{u}=\varphi$.

Lemma 2.5. Let $\lambda: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$ be given by

$$
\lambda(x)=\sum_{j=1}^{n} s_{j} x s_{j}^{*}
$$

Then
2.1. λ is an endomorphism of \mathcal{O}_{n}
2.2. If $u \in \mathcal{U}\left(\mathcal{O}_{n}\right)$ such that $\lambda=\varphi_{u}$, then $u=u^{*}$

Proof. 2.1. $\lambda(1)=1$ and $\lambda\left(x^{*}\right)=\lambda(x)^{*}$. By orthogonality of the P_{i}

$$
\lambda(x) \lambda(y)=\sum_{j=1}^{n} s_{j} x s_{j}^{*} s_{j} y s_{j}^{*}=\lambda(x y)
$$

since $s_{j}^{*} s_{j}=1$.
2.2. If $u=\sum_{j=1}^{n} \lambda\left(s_{j}\right) s_{j}^{*}$, then $\lambda=\varphi_{u}$ and

$$
u^{*}=\sum_{j=1}^{n} s_{j} \lambda\left(s_{j}^{*}\right)=\sum_{j=1}^{n} s_{j}\left[\sum_{i=1}^{n} s_{i} s_{j}^{*} s_{i}\right]=\sum_{j=1}^{n} s_{j} s_{j} s_{j}^{*} s_{j}=\sum_{j=1}^{n} s_{j}^{2}
$$

But

$$
\lambda\left(s_{i}\right) s_{i}=\sum_{j=1}^{n} s_{j} s_{i} s_{j}^{*} s_{i}=s_{i} s_{i} s_{i}^{*} s_{i}=s_{i}^{2}
$$

Hence, $u=u^{*}$.

Lemma 2.6. Let A be a unital C^{*}-algebra and $s \in A$ an isometry. Define $\mu: A \rightarrow A$ by $\mu(a)=s a s^{*}$. Then $K_{0}(\mu)=i d_{K_{0}(A)}$
Proof. Note that $\mu_{n}: M_{n}(A) \rightarrow M_{n}(A)$ is given by $\mu_{n}(a)=s_{n} a s_{n}^{*}$ where

$$
s_{n}=\operatorname{diag}(s, s, \ldots, s)
$$

and s_{n} is also an isometry. Furthermore, if $p \in \mathcal{P}_{n}(A)$, then

$$
s_{n} p s_{n}=\left(s_{n} p\right)\left(s_{n} p\right)^{*} \sim\left(s_{n} p\right)^{*}\left(s_{n} p\right)=p
$$

Hence, $\left[\mu_{n}(p)\right]_{0}=[p]_{0}$.
Theorem 2.7. If $g \in K_{0}\left(\mathcal{O}_{n}\right)$, then $(n-1) g=0$. In particular, $K_{0}\left(\mathcal{O}_{2}\right)=0$
Proof. Let $\lambda: \mathcal{O}_{n} \rightarrow \mathcal{O}_{n}$ as above, then $\lambda=\sum_{i=1}^{n} \lambda_{i}$ where

$$
\lambda_{i}(x)=s_{i} x s_{i}^{*}
$$

Then $\lambda_{i}(x) \lambda_{j}(y)=0$ for all $x, y \in \mathcal{O}_{n}$, so

$$
K_{0}(\lambda)=\sum_{i=1}^{n} K_{0}\left(\lambda_{i}\right)
$$

By the above lemma, it follows that

$$
K_{0}(\lambda) g=n g \quad \forall g \in K_{0}\left(\mathcal{O}_{n}\right)
$$

However, $\lambda=\varphi_{u}$, where $u=u^{*}$. In particular, $u \in \mathcal{U}_{0}\left(\mathcal{O}_{n}\right)$. Let u_{t} be a path of unitaries from u to 1 , then $\varphi_{u_{t}}$ is a path of $*$-homomorphism from

$$
\lambda=\varphi_{u} \text { to } \operatorname{id}_{A}=\varphi_{1}
$$

Hence, $K_{0}(\lambda)=\operatorname{id}_{K_{0}\left(\mathcal{O}_{n}\right)}$. Hence the result.
In fact, $K_{0}\left(\mathcal{O}_{n}\right) \cong \mathbb{Z}_{n-1}$, generated by $[1]_{0}$.

3 The Irrational Rotation Algebra

Definition 3.1. Let $\theta \in \mathbb{R}$ be fixed, and set $\omega:=e^{2 \pi i \theta}$. Let $H:=L^{2}(\mathbb{T} \times \mathbb{T})$ equipped with a normalized Haar measure. Let $\zeta_{0} \in H$ be the unit vector $\zeta_{0}\left(z_{1}, z_{2}\right):=1$. Define $u, v \in \mathcal{B}(H)$ by

$$
(u \zeta)\left(z_{1}, z_{2}\right):=z_{1} \zeta\left(z_{1}, z_{2}\right) \text { and }(v \zeta)\left(z_{1}, z_{2}\right):=z_{2} \zeta\left(\omega z_{1}, z_{2}\right)
$$

Then

$$
\langle u \zeta, \eta\rangle=\int_{\mathbb{T}^{2}} z_{1} \zeta\left(z_{1}, z_{2}\right) \overline{\eta\left(z_{1}, z_{2}\right)}=\int_{\mathbb{T}^{2}} \zeta\left(z_{1}, z_{2}\right) \overline{\overline{z_{1}} \eta\left(z_{1}, z_{2}\right)}
$$

Hence,

$$
\left(u^{*} \eta\right)\left(z_{1}, z_{2}\right)=\overline{z_{1}} \eta\left(z_{1}, z_{2}\right)
$$

Similarly,

$$
\left(v^{*} \eta\right)\left(z_{1}, z_{2}\right)=\overline{z_{2}} \eta\left(\omega^{-1} z_{1}, z_{2}\right)
$$

Hence, u and v are unitaries. Furthermore,

$$
\begin{aligned}
(v u \zeta)\left(z_{1}, z_{2}\right) & =z_{2}(u \zeta)\left(\omega z_{1}, z_{2}\right)=z_{2} \omega z_{1} \zeta\left(\omega z_{1}, z_{2}\right) \\
(u v \zeta)\left(z_{1}, z_{2}\right) & =z_{1}(v \zeta)\left(z_{1}, z_{2}\right)=z_{1} z_{2} \zeta\left(\omega z_{1}, z_{2}\right) \\
\Rightarrow v u & =\omega u v
\end{aligned}
$$

Define

$$
A_{\theta}:=C^{*}(u, v) \subset \mathcal{B}(H)
$$

is called the rotation C^{*}-algebra associated to the angle θ.

We will need the following properties:
Theorem 3.2. 3.1. If θ is irrational, then A_{θ} is simple, and has a unique tracial state. (see below).
3.2. (Universal property of A_{θ}): If D is a unital C^{*}-algebra and $u^{\prime}, v^{\prime} \in D$ are two unitaries such that $v^{\prime} u^{\prime}=\omega u^{\prime} v^{\prime}$, then \exists a unique $*$-homomorphism $\varphi: A_{\theta} \rightarrow D$ such that $\varphi(u)=u^{\prime}$ and $\varphi(v)=v^{\prime}$.

Note: If $\theta \in \mathbb{Z}$, then A_{θ} is the universal C*-algebra generated by two commuting unitaries. This is $C\left(\mathbb{T}^{2}\right)$. If $\theta \notin \mathbb{Z}, A_{\theta}$ is called a non-commutative two torus.

Remark 3.3. If $\theta, \theta^{\prime} \in \mathbb{R}$ be irrational.
3.1. Suppose $\theta-\theta^{\prime} \in \mathbb{Z}$, then $e^{2 \pi i \theta}=e^{2 \pi i \theta^{\prime}}$, and so

$$
A_{\theta} \cong A_{\theta^{\prime}}
$$

3.2. If $\theta+\theta^{\prime} \in \mathbb{Z}$, then $e^{2 \pi i \theta}=\left(e^{2 \pi i \theta^{\prime}}\right)^{-1}$. Hence, there is a surjective $*$-homomorphism $\varphi: A_{\theta} \rightarrow A_{\theta^{\prime}}$ such that

$$
\varphi(u)=v^{\prime} \text { and } \varphi(v)=u^{\prime}
$$

Since A_{θ} is simple, it follows that this map is an isomorphism.
We will now (partially) show that if $A_{\theta} \cong A_{\theta^{\prime}}$, then one of the above two conditions must hold.

Define B_{θ} to be those elements in A_{θ} of the form

$$
\sum_{n, m \in \mathbb{Z}} \alpha_{n, m} u^{n} v^{m}
$$

where only finitely many coefficients $\alpha_{n, m}$ are non-zero. One thinks of these as Laurent polynomials in u and v. Note that B_{θ} is a $*$-subalgebra of A_{θ}, and its closure is thus a C^{*}-algebra containing u and v. Thus, B_{θ} is dense in A_{θ} and is called the smooth *-subalgebra of A_{θ}.

Remark 3.4. 3.1. A map $\tau: A \rightarrow \mathbb{C}$ is called a trace if τ is bounded, linear and $\tau(a b)=\tau(b a)$. Such a map induces a trace $M_{n}(A) \rightarrow \mathbb{C}$ by $\left(a_{i, j}\right) \mapsto \sum \tau\left(a_{i, i}\right)$ [Check!].
3.2. This restricts to a map $\left.\tau: \mathcal{P}_{\infty}\right)(A) \rightarrow \mathbb{C}$ such that $\tau(p \oplus q)=\tau(p)+\tau(q), \tau(0)=0$, and if $p \sim_{h} q$, then $p \sim q$, so $\tau(p)=\tau(q)$. So we get a map

$$
K_{0}(\tau): K_{0}(A) \rightarrow \mathbb{C}
$$

3.3. If τ is a positive trace (ie. $\tau\left(x^{*} x\right) \geq 0$ for all $x \in A$), then $\tau(p) \in \mathbb{R}_{+}$for all $p \in \mathcal{P}_{\infty}(A)$, so we get a map

$$
K_{0}(\tau): K_{0}(A) \rightarrow \mathbb{R}
$$

3.4. If τ is a tracial state (ie. τ is positive and $\tau\left(1_{A}\right)=1$), then $K_{0}(\tau)\left([1]_{0}\right)=1$

We will now construct a trace on A_{θ}.
Definition 3.5. Define $\tau: A_{\theta} \rightarrow \mathbb{C}$ by

$$
\tau(a):=\left\langle a \zeta_{0}, \zeta_{0}\right\rangle
$$

Then τ is a positive linear functional on A_{θ} of norm 1. Furthermore,

$$
\tau\left(\sum_{n, m \in \mathbb{Z}} \alpha_{n, m} u^{n} v^{m}\right)=\alpha_{0,0}
$$

for elements in B_{θ}. Hence, it follows that if $x \in B_{\theta}$ of the above form, then

$$
\begin{aligned}
\tau\left(x^{*} x\right) & =\tau\left[\left(\sum_{n, m \in \mathbb{Z}} \overline{\alpha_{n, m}} v^{-m} u^{-n}\right)\left(\sum_{n, m \in \mathbb{Z}} \alpha_{n, m} u^{n} v^{m}\right)\right] \\
& =\sum_{n, m \in \mathbb{Z}}\left|\alpha_{n, m}\right|^{2}=\tau\left(x x^{*}\right)
\end{aligned}
$$

Since B_{θ} is dense in A_{θ}, it follows that

$$
\tau\left(x^{*} x\right)=\tau\left(x x^{*}\right) \quad \forall x \in A_{\theta}
$$

The exercise from last week implies that τ is a tracial state on A_{θ}.
We now wish to construct a projection $p \in A_{\theta}$ such that $\tau(p)=\theta$.
Lemma 3.6. Let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ is the function $z \mapsto \omega z$. Then, for any $h: \mathbb{T} \rightarrow \mathbb{C}$ continuous,

$$
v h(u)=(h \circ \varphi)(u) v, \text { and } v^{*}(h \circ \varphi)(u)=h(u) v^{*}
$$

Proof. It suffices to prove the first statement. Note that

$$
\omega^{k} u^{k} v=v u^{k} \quad \forall k \in \mathbb{Z}
$$

Hence, for any $h: \mathbb{T} \rightarrow \mathbb{R}$ Laurent polynomial

$$
(h \circ \varphi)(u) v=v h(u)
$$

Now approximate any continuous $h: \mathbb{T} \rightarrow \mathbb{C}$ by Laurent polynomials.
If $\theta=0$, then $C\left(\mathbb{T}^{2}\right)=A_{\theta}$ has no projections because \mathbb{T}^{2} is connected. We now assume that $\theta \in(0,1)$ is irrational, and show that, in this case, A_{θ} has many projections.

Lemma 3.7. Let $f, g: \mathbb{T} \rightarrow \mathbb{R}$ be continuous functions, and define

$$
p:=f(u) v^{*}+g(u)+v f(u) \in A_{\theta}
$$

Then
3.1. $p=p^{*}$
3.2. $p=p^{2}$ if and only if
(i) $f \cdot(f \circ \varphi)=0$
(ii) $f \cdot\left(g+g \circ \varphi^{-1}\right)=f$
(iii) $g=g^{2}+f^{2}+(f \circ \varphi)^{2}$
3.3. Furthermore,

$$
\tau(p)=\int_{\mathbb{T}} g(z) d z
$$

Proof. 3.1. Clearly, $p=p^{*}$ since f and g are real-valued.
3.2. One writes out

$$
\begin{array}{rl}
p^{2}= & f(u) v^{*} f(u) v^{*}+f(u) v^{*} g(u)+f(u) v^{*} v f(u) \\
& +g(u) f(u) v^{*}+g(u) g(u)+g(u) v f(u) \\
& +v f(u) f(u) v^{*}+v f(u) g(u)+v f(u) v f(u) \\
=f & f\left(f \circ \varphi^{-1}\right)(u) v^{-2}+f \cdot\left(g \circ \varphi^{-1}\right)(u) v^{-1}+f^{2}(u) \\
& +g f(u) v^{-1}+g^{2}(u)+g \cdot(f \circ \varphi)(u) v \\
& +(f \circ \varphi)^{2}(u)+(f \circ \varphi) \cdot(g \circ \varphi)(u) v+(f \circ \varphi) \cdot(f \circ \varphi \circ \varphi)(u) v^{2}
\end{array}
$$

Note that

$$
p=f(u) v^{-1}+g(u)+(f \circ \varphi)(u) v
$$

So comparing coefficients, we get

$$
\begin{aligned}
f \cdot\left(f \circ \varphi^{-1}\right) & =0 \\
f \cdot\left(g \circ \varphi^{-1}\right)+(g \cdot f) & =f \\
f^{2}+g^{2}+(f \circ \varphi)^{2} & =g \\
g \cdot(f \circ \varphi)+(f \circ \varphi) \cdot(g \circ \varphi) & =(f \circ \varphi) \\
(f \circ \varphi) \cdot(f \circ \varphi \circ \varphi) & =0
\end{aligned}
$$

Since φ is a homeomorphism of \mathbb{T}, for any function $h: \mathbb{T} \rightarrow \mathbb{R}$, we have

$$
h=0 \Leftrightarrow h \circ \varphi=0 \Leftrightarrow h \circ \varphi^{-1}=0
$$

So the first and fifth conditions collapse to one, and so do the second and fourth. These are the three conditions mentioned above.
3.3. First we assume that f and g are both Laurent polynomials. Then p is a Laurent polynomial, so we may use the expression for τ on Laurent polynomials. Now approximate f and g by Laurent polynomials, and use the fact that both sides of the equation represent continuous maps.

Theorem 3.8. There exists a projection $p \in A_{\theta}$ such that $\tau(p)=\theta$
Proof. Choose $\epsilon>0$ such that $0<\epsilon \leq \theta<\theta+\epsilon \leq 1$. Define

$$
g(t):= \begin{cases}t / \epsilon & : 0 \leq t \leq \epsilon \\ 1 & : \epsilon \leq t \leq \theta \\ \epsilon^{-1}(\theta+\epsilon-t) & : \theta \leq t \leq \theta+\epsilon \\ 0 & : \theta+\epsilon \leq t \leq 1\end{cases}
$$

and

$$
f(t)= \begin{cases}\sqrt{g(t)-g(t)^{2}} & : \theta \leq t \leq \theta+\epsilon \\ 0 & : \text { otherwise }\end{cases}
$$

Then both f and g define functions on \mathbb{T} because $f(0)=f(1)=0=g(0)=g(1)$. The corresponding element p as defined above is a projection, and

$$
\tau(p)=\int_{\mathbb{T}} g(z) d z=\frac{1}{2} \cdot \epsilon+(\theta-\epsilon)+\frac{1}{2} \cdot \epsilon=\theta
$$

Theorem 3.9. The range of the map

$$
K_{0}(\tau): K_{0}\left(A_{\theta}\right) \rightarrow \mathbb{R}
$$

contains $(\mathbb{Z}+\mathbb{Z} \theta)$.
Proof. Since $\tau(1)=1$, the range of $K_{0}(\tau)$ contains \mathbb{Z}. If p_{θ} is the Rieffel projection from the previous theorem, then $\tau\left(p_{\theta}\right)=\theta$, so the range contains $\mathbb{Z} \theta$.

Theorem 3.10 (Pimsner-Voiculescu). If $\theta \in \mathbb{R}$ is irrational, then the map $K_{0}(\tau)$ induces an isomorphism

$$
K_{0}\left(A_{\theta}\right) \rightarrow \mathbb{Z}+\mathbb{Z} \theta
$$

Corollary 3.11. Let θ and θ^{\prime} be two irrational numbers. Then $A_{\theta} \cong A_{\theta^{\prime}}$ if and only if either $\theta-\theta^{\prime}$ or $\theta+\theta^{\prime}$ is an integer.

Proof. If $\varphi: A_{\theta} \rightarrow A_{\theta^{\prime}}$ is an isomorphism, and τ^{\prime} is the trace on $A_{\theta^{\prime}}$, then by uniqueness of the trace, $\tau^{\prime} \circ \varphi$ must be the trace on A_{θ}. Hence, if $p_{\theta} \in A_{\theta}$ is the Rieffel projection, then

$$
K_{0}\left(\tau^{\prime}\right)\left(\left[\varphi\left(p_{\theta}\right)\right]_{0}\right)=K_{0}(\tau)\left[p_{\theta}\right]_{0}=\tau\left(p_{\theta}\right)=\theta
$$

Hence, $\theta \in \mathbb{Z}+\mathbb{Z} \theta^{\prime}$, so $\exists a_{1}, b_{1} \in \mathbb{Z}$ such that

$$
\theta=a_{1}+b_{1} \theta^{\prime}
$$

Similarly, $\theta^{\prime}=a_{2}+b_{2} \theta$ for some $a_{2}, b_{2} \in \mathbb{Z}$. Hence,

$$
\theta=a_{1}+b_{1} a_{2}+b_{1} b_{2} \theta
$$

Since $\theta \notin \mathbb{Q}$, it follows that $b_{1} b_{2}=1$, so that $b_{1}=b_{2}= \pm 1$. Hence the result.
(End of Day 2)

4 The order structure on $K_{0}(A)$

Definition 4.1. 4.1. A projection $p \in A$ is said to be infinite if \exists a projection q such that $p \sim q$ and $q<p$. If p is not infinite, then it is said to be finite.
4.2. A unital C^{*}-algebra A is said to be finite if 1_{A} is finite.
4.3. A is said to be stably finite if $M_{n}(A)$ is finite for all $n \in \mathbb{N}$.
4.4. A non-unital C^{*}-algebra is said to be finite if \widetilde{A} is finite.

Lemma 4.2. If A is a unital C^{*}-algebra, TFAE:

4.1. A is finite.

4.2. Every isometry is a unitary.
4.3. All projections in A are finite.

Proof. We prove $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$
$(\mathrm{i}) \Rightarrow$ (ii) : If s is an isometry, then $1_{A}=s^{*} s \sim s s^{*} \leq 1$. Since A is finite, $s s^{*}=1$ and s is a unitary.
(ii) \Rightarrow (iii) : Suppose every isometry is a unitary, and $p, q \in A$ projections such that

$$
p \sim q \text { and } q \leq p
$$

Let $v \in A$ such that $v^{*} v=p$ and $v v^{*}=q$, and let

$$
s:=v+(1-p)
$$

Since $p q=q p=q$, we have $v^{*}(1-p)=0=(1-p) v$. Hence,

$$
s^{*} s=v^{*} v+(1-p)=1 \text { and } v v^{*}=1-(p-q)
$$

By hypothesis, s is a unitary, so $p-q=0$.
$($ iii $) \Rightarrow$ (i) : If every projection is finite, then 1_{A} is finite.

Definition 4.3. A pair $\left(G, G^{+}\right)$is called an ordered abelian group if G is an Abelian group, $G^{+} \subset G$ such that
4.1. $G^{+}+G^{+} \subset G^{+}$
4.2. $G^{+} \cap\left(-G^{+}\right)=\{0\}$
4.3. $G^{+}-G^{+}=G$

We define an order relation on G by $x \leq y$ iff $y-x \in G^{+}$. This makes (G, \leq) a partially ordered set such that

$$
x \leq y \Rightarrow x+z \leq y+z \quad \forall z \in G
$$

The converse is also true: If G is a partially ordered group satisfying this condition, we may set $G^{+}=\{x \in G: x \geq 0\}$, then it satisfies the above requirements.

Definition 4.4. Define

$$
K_{0}(A)^{+}:=\left\{[p]_{0}: p \in \mathcal{P}_{\infty}(A)\right\}
$$

Proposition 4.5. 4.1. $K_{0}(A)^{+}+K_{0}(A)^{+} \subset K_{0}(A)+$
4.2. If A is unital, $K_{0}(A)^{+}-K_{0}(A)^{+}=K_{0}(A)$
4.3. If A is stably finite, then $K_{0}(A)^{+} \cap\left(-K_{0}(A)^{+}\right)=\{0\}$

Hence, if A is unital and stably finite, then $\left(K_{0}(A), K_{0}(A)^{+}\right)$is an ordered Abelian group.
Proof. 4.1. $[p]_{0}+[q]_{0}=[p \oplus q]_{0}$
4.2. This is the standard picture of $K_{0}(A)$ in the unital case.
4.3. Suppose A is stably finite, and $g \in K_{0}(A)^{+} \cap\left(-K_{0}(A)^{+}\right)$, then write

$$
g=[p]_{0}=-[q]_{0}
$$

Hence, $[p \oplus q]_{0}=0$, so $\exists r \in \mathcal{P}_{\infty}(\widetilde{A})$ such that

$$
p \oplus q \oplus r \sim_{0} r
$$

Choose mutually orthogonal projections $p^{\prime}, q^{\prime}, r^{\prime}$ such that $p \sim_{0} p^{\prime}, q \sim_{0} q^{\prime}$ and $r \sim_{0} r^{\prime}$ and think of them in $M_{n}(\widetilde{A})$ for some $n \in \mathbb{N}$. Now

$$
p^{\prime}+q^{\prime}+r^{\prime} \sim r^{\prime} \text { in } M_{n}(\widetilde{A})
$$

But $p^{\prime}+q^{\prime}+r^{\prime} \geq r^{\prime}$ and $M_{n}(\widetilde{A})$ is finite, so $p^{\prime}+q^{\prime}=0$. Hence, $p^{\prime}=q^{\prime}=0$, so that

$$
g=[p]_{0}=\left[p^{\prime}\right]_{0}=0
$$

Definition 4.6. Let $\left(G, G^{+}\right)$be an ordered abelian group. An element $u \in G^{+}$is called an order unit if, for each $x \in G, \exists n \in \mathbb{N}$ such that

$$
-n u \leq x \leq n u
$$

Note: Not every ordered abelian group has an order unit. For example, $C_{c}(\mathbb{R})$ with the pointwise order.

Proposition 4.7. If A is unital, then $[1]_{0}$ is an order unit of $K_{0}(A)$
Proof. If $g \in K_{0}(A)$, write $g=[p]_{0}-[q]_{0}$ for some $p, q \in \mathcal{P}_{n}(A)$. Then

$$
-n[1]_{0}=-\left[1_{n}\right]_{0}=-[q]_{0}+\left[1_{n}-q\right]_{0} \leq-[q]_{0} \leq[p]_{0}-[q]_{0}=g
$$

and

$$
g \leq[p]_{0} \leq[p]_{0}+\left[1_{n}-p\right]_{0}=\left[1_{n}\right]_{0}=n[1]_{0}
$$

Example 4.8. If $A=M_{n_{1}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{r}}(\mathbb{C})$, then

$$
K_{0}(A) \cong \mathbb{Z}^{r}
$$

In fact, since A is stably finite (since it is finite dimensional) and unital, $\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right]\right)$ is an ordered abelian group with order unit, given by

$$
\begin{aligned}
K_{0}(A) & =\mathbb{Z}\left[e_{1,1}^{(1)}\right]+\mathbb{Z}\left[e_{1,1}^{(2)}\right]+\ldots+\mathbb{Z}\left[e_{1,1}^{(r)}\right] \cong \mathbb{Z}^{r} \\
K_{0}(A)^{+} & =\mathbb{Z}^{+}\left[e_{1,1}^{(1)}\right]+\mathbb{Z}^{+}\left[e_{1,1}^{(2)}\right]+\ldots+\mathbb{Z}^{+}\left[e_{1,1}^{(r)}\right] \cong\left(\mathbb{Z}^{+}\right)^{r} \\
{\left[1_{A}\right]_{0} } & =n_{1}\left[e_{1,1}^{(1)}\right]_{0}+n_{2}\left[e_{1,1}^{(2)}\right]_{0}+\ldots+n_{r}\left[e_{1,1}^{(r)}\right]_{0}
\end{aligned}
$$

Definition 4.9. Let $\left(G, G^{+}\right)$and $\left(H, H^{+}\right)$be ordered Abelian groups. A positive group homomorphism is a map $\alpha: G \rightarrow H$ such that $\alpha\left(G^{+}\right) \subset H^{+}$. It is called an order isomorphism if it is an isomorphism such that $\alpha\left(G^{+}\right)=H^{+}$. If G and H have distinguished order units u and v respectively, α is said to be order unit preserving if $\alpha(u)=v$

Example 4.10. Let $\varphi: A \rightarrow B$ be a $*$-homomorphism, then

$$
K_{0}(\varphi)[p]_{0}=[\varphi(p)]_{0}
$$

so $K_{0}(\varphi)$ is a positive homomorphism. Furthermore, if φ is unital, then $K_{0}(\varphi)$ preserves the order unit.

Example 4.11. Let τ denote the usual trace on \mathbb{C}, then $\tau_{n}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ is a trace. Furthermore,

$$
\tau_{n}\left(1_{n}\right)=n
$$

So τ_{n} induces an isomorphism

$$
\left(K_{0}\left(M_{n}(\mathbb{C})\right), K_{0}\left(M_{n}(\mathbb{C})\right)^{+},\left[1_{n}\right]\right) \rightarrow\left(\mathbb{Z}, \mathbb{Z}^{+}, n\right)
$$

Thus, $\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right]_{0}\right)$ is a useful invariant to distinguish C^{*}-algebras.

5 Inductive Limits

Let \mathcal{C} be a category.
Definition 5.1. An inductive sequence in \mathcal{C} is a sequence $\left\{A_{n}\right\}$ of objects in \mathcal{C} together with morphisms $\varphi_{n}: A_{n} \rightarrow A_{n+1}$, usually written as

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \ldots
$$

and denoted $\left(A_{n}, \varphi_{n}\right)$. For $m>n$, define

$$
\varphi_{m, n}=\varphi_{m-1} \circ \varphi_{m-2} \circ \ldots \circ \varphi_{n}: A_{n} \rightarrow A_{m}
$$

and write $\varphi_{n, n}=\operatorname{id}_{A_{n}}, \varphi_{m, n}=0$ if $m<n$. These are called the connecting maps of the sequence.

Definition 5.2. Given a sequence $\left(A_{n}, \varphi_{n}\right)$ in \mathcal{C}, and inductive limit is a system $\left(A,\left\{\mu_{n}\right\}\right)$ where A is an object in \mathcal{C} and $\mu_{n}: A_{n} \rightarrow A$ are morphisms with the following two properties:
5.1. The following diagram commutes for each $n \in \mathbb{N}$

5.2. If $\left(B,\left\{\lambda_{n}\right\}\right)$ is another system where B is an object in \mathcal{C} and $\lambda_{n}: A_{n} \rightarrow B$ are morphisms such that $\lambda_{n}=\lambda_{n+1} \circ \varphi_{n}$ for all $n \in \mathbb{N}$, then there exists a unique morphism $\lambda: A \rightarrow B$ such that the following diagram commutes

Remark 5.3. 5.1. Inductive limits do not always exist. For instance, in the category of finite sets. We will show that they exist in the category of C^{*}-algebras, of abelian groups, and of ordered abelian groups.
5.2. If an inductive limit exists, it is unique by the second property above.

Example 5.4. 5.1. Let D be a C^{*}-algebra and $A_{n} \subset A_{n+1} \subset D$ be an increasing chain of subalgebras. If $\varphi_{n}=\iota_{n}: A_{n} \hookrightarrow A_{n+1}$, then $\left(A,\left\{j_{n}\right\}\right)$ is an inductive limit of $\left(A_{n}, \iota_{n}\right)$, where

$$
A:=\overline{\bigcup_{n=1}^{\infty} A_{n}}
$$

and $\mu_{n}=j_{n}: A_{n} \hookrightarrow A$ is the inclusion map because
(i) $\mu_{n}=\mu_{n+1} \circ \iota_{n}$ for all $n \in \mathbb{N}$.
(ii) If $\left(B,\left\{\lambda_{n}\right\}\right)$ is another system as above, then define $\lambda: A \rightarrow B$ by

$$
\lambda(a)=\lambda_{n}(a) \text { if } a \in A_{n}
$$

This is well-defined, because if $a \in A_{n} \subset A_{n+1}$, then

$$
\lambda_{n+1}(a)=\lambda_{n+1}\left(\iota_{n}(a)\right)=\lambda_{n}(a)
$$

Then it follows that $\lambda \circ \mu_{n}=\lambda_{n}$ for all $n \in \mathbb{N}$. Furthermore, this map λ is a *-homomorphism, and is unique because $\bigcup A_{n}$ is dense in A.
5.2. Let $A_{n}=M_{n}(\mathbb{C})$ and $\varphi_{n}: A_{n} \rightarrow A_{n+1}$ is the map

$$
a \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)
$$

Let $\mathcal{K}(H)$ denote the compact operators on $H=\ell^{2}$, then fix an ONB $\left\{e_{i}\right\}$ of H. Define $p_{n} \in \mathcal{K}(H)$ to be the canonical rank n projection. If $x, y \in H$, define $x \otimes y \in \mathcal{K}(H)$ by

$$
(x \otimes y)(z)=\langle z, x\rangle y
$$

Then $p_{n}=\sum_{i=1}^{n} e_{i} \otimes e_{i}$.
(i) Define $\mu_{n}: M_{n}(\mathbb{C}) \rightarrow \mathcal{K}(H)$ by

$$
\mu_{n}\left(a_{i, j}\right)=\sum_{i, j=1}^{n} a_{i, j} e_{i} \otimes e_{j}
$$

Then μ_{n} is injective, and the range of μ_{n} is $p_{n} \mathcal{K}(H) p_{n}$.
Proof. μ_{n} is injective because the set $\left\{e_{i} \otimes e_{j}\right\}$ is linearly independent. As for surjectivity onto $p_{n} \mathcal{K}(H) p_{n}$, note that if $u \in p_{n} \mathcal{K}(H) p_{n}$, then

$$
\begin{aligned}
u & =p_{n} u p_{n} \\
& =\sum_{i, j=1}^{n}\left(e_{i} \otimes e_{i}\right) u\left(e_{j} \otimes e_{j}\right) \\
& =\sum_{i, j=1}^{n}\left\langle u\left(e_{i}\right), e_{j}\right\rangle e_{i} \otimes e_{j} \\
& =\mu_{n}\left(a_{i, j}\right)
\end{aligned}
$$

where $a_{i, j}=\left\langle u\left(e_{i}\right), e_{j}\right\rangle$.
(ii) Check that $\mu_{n+1} \circ \varphi_{n}=\mu_{n}$
(iii) Finally, observe that

$$
\mathcal{K}(H)=\overline{\bigcup_{n=1}^{\infty} p_{n} \mathcal{K}(H) p_{n}}=\overline{\bigcup_{n=1}^{\infty} \mu_{n}\left(M_{n}(\mathbb{C})\right)}
$$

(iv) As in the previous example, we see that $\left(\mathcal{K}(H),\left\{\mu_{n}\right\}\right)$ is an inductive limit of $\left(M_{n}(\mathbb{C}), \varphi_{n}\right)$.

Proposition 5.5 (Inductive Limits of C^{*}-algebras). Given an inductive system $\left(A_{n}, \varphi_{n}\right)$ of C^{*}-algebras, an inductive limit $\left(A,\left\{\mu_{n}\right\}\right)$ exists.

Proof. Consider the quotient map

$$
\pi: \prod A_{n} \rightarrow \prod A_{n} / \sum A_{n}=: Q
$$

and let $\varphi_{m, n}: A_{n} \rightarrow A_{m}$ as above.
5.1. Define $\nu_{n}: A_{n} \rightarrow \prod_{m} A_{m}$ by

$$
\nu_{n}(a)=\left(\varphi_{m, n}(a)\right)
$$

This is well-defined, because $\left\|\varphi_{m, n}(a)\right\| \leq\|a\|$ for all $m \in \mathbb{N}$. Furthermore, ν_{n} is clearly a $*$-homomorphism.
5.2. Let $\mu_{n}: A_{n} \rightarrow Q$ by $\mu_{n}=\pi \circ \nu_{n}$, then observe that if $a \in A_{n}$, then

$$
c:=\nu_{n}(a)-\left(\nu_{n+1} \circ \varphi_{n}\right)(a)
$$

has the form $c_{n}=a$ and $c_{m}=0$ when $m \neq n$. Hence, $c \in \sum A_{i}$, so that

$$
\mu_{n}(a)-\left(\mu_{n+1} \circ \varphi_{n}\right)(a)=\pi(c)=0
$$

Hence, $\mu_{n}=\mu_{n+1} \circ \varphi$.
5.3. Thus, $\left\{\mu_{n}\left(A_{n}\right)\right\}$ is an increasing sequence of C^{*}-subalgebras of Q. Define

$$
A:=\overline{\bigcup_{n=1}^{\infty} \mu_{n}\left(A_{n}\right)}
$$

Then A is a C^{*}-algebra, and $\mu_{n}: A_{n} \rightarrow A$ is a sequence of $*$-homomorphisms satisfying the first condition of Definition 2.2.
5.4. To prove the second condition, suppose $\left(B,\left\{\lambda_{n}\right\}\right)$ is another system such that $\lambda_{n}=\lambda_{n+1} \circ \varphi_{n}$. Then

$$
\lambda_{m} \circ \varphi_{m, n}=\lambda_{n} \quad \forall m>n
$$

Hence, $\left\|\lambda_{n}(a)\right\| \leq\left\|\varphi_{m, n}(a)\right\|$. So

$$
\left\|\lambda_{n}(a)\right\| \leq \lim \sup \left\|\varphi_{m, n}(a)\right\|=\left\|\pi\left(\nu_{n}(a)\right)\right\|=\left\|\mu_{n}(a)\right\|
$$

Hence, $\operatorname{ker}\left(\mu_{n}\right) \subset \operatorname{ker}\left(\lambda_{n}\right)$. By the first isomorphism theorem, \exists a unique $*-$ homomorphism,

$$
\lambda_{n}^{\prime}: \mu_{n}\left(A_{n}\right) \rightarrow B \text { such that } \lambda_{n}^{\prime} \circ \mu_{n}=\lambda_{n}
$$

By uniqueness, $\left.\lambda_{n+1}^{\prime}\right|_{\mu_{n}\left(A_{n}\right)}=\lambda_{n}^{\prime}$. Hence, we get a $*$-homomorphism

$$
\lambda^{\prime}: \bigcup_{n=1}^{\infty} \mu_{n}\left(A_{n}\right) \rightarrow B
$$

which extends λ_{n}^{\prime}. λ is a contraction, so it extends to a $*$-homomorphism

$$
\lambda: A \rightarrow B
$$

such that $\lambda \circ \mu_{n}=\lambda_{n}^{\prime} \circ \mu_{n}=\lambda_{n}$. Furthermore, λ is unique with this property because

$$
A=\overline{\bigcup_{n=1}^{\infty} \mu_{n}\left(A_{n}\right)}
$$

Proposition 5.6. Let $\left(G_{n}, \alpha_{n}\right)$ be an inductive system of abelian groups, then an inductive limit (G, β_{n}) exists. Moreover, one has
5.1.

$$
G=\bigcup_{n=1}^{\infty} \beta_{n}\left(G_{n}\right)
$$

5.2.

$$
\operatorname{ker}\left(\beta_{n}\right)=\bigcup_{m=n+1}^{\infty} \operatorname{ker}\left(\alpha_{m, n}\right)
$$

5.3. If $\left(H, \gamma_{n}\right)$ is another system and $\gamma: G \rightarrow H$ the unique group homomorphism as in Definition 2.2, then
(i) γ is injective iff $\operatorname{ker}\left(\gamma_{n}\right)=\operatorname{ker}\left(\beta_{n}\right)$ for all $n \in \mathbb{N}$
(ii) γ is surjective iff $H=\bigcup_{n=1}^{\infty} \gamma_{n}\left(G_{n}\right)$

Proof. The proof is similar to the one above.
Example 5.7. 5.1. Consider $G_{n}=\mathbb{Z}$ and $\alpha_{n}(1)=n+1$. ie. We may picture the system as

$$
\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{3} \mathbb{Z} \xrightarrow{4} \ldots
$$

Define $\gamma_{n}: \mathbb{Z} \rightarrow \mathbb{Q}$ by

$$
\gamma_{n}(1)=\frac{1}{n!}
$$

Then γ_{n} is a group homomorphism such that $\gamma_{n}=\gamma_{n+1} \circ \alpha_{n}$. Hence, $\left(\mathbb{Q},\left\{\gamma_{n}\right\}\right)$ is a system that satisfies (i) in Definition 2.2. Let $\left(G,\left\{\beta_{n}\right\}\right)$ be an inductive limit of this system, then there is a group homomorphism

$$
\gamma: G \rightarrow \mathbb{Q} \text { such that } \gamma \circ \alpha_{n}=\gamma_{n}
$$

Since

$$
\mathbb{Q}=\bigcup_{n=1}^{\infty} \gamma_{n}\left(G_{n}\right)
$$

it follows that γ is surjective. Also, since

$$
\operatorname{ker}\left(\beta_{n}\right)=\bigcup_{m=n+1}^{\infty} \operatorname{ker}\left(\alpha_{m, n}\right)
$$

and each α_{n} is injective, it follows that β_{n} is injective for all n. We see that each γ_{n} is also injective. Hence,

$$
\operatorname{ker}\left(\gamma_{n}\right)=\operatorname{ker}\left(\beta_{n}\right)
$$

for all $n \in \mathbb{N}$. Hence, γ is injective as well.
5.2. Let $G_{n}=\mathbb{Z}$ and $\alpha_{n}(1)=2$ for all $n \in \mathbb{N}$. ie. We may picture the system as

$$
\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \ldots
$$

Define $\gamma_{n}: \mathbb{Z} \rightarrow \mathbb{Q}$ by

$$
\gamma_{n}(1)=\frac{1}{2^{n}}
$$

Then $\gamma_{n}=\gamma_{n+1} \circ \alpha_{n}$. Hence, $\left(\mathbb{Q},\left\{\gamma_{n}\right\}\right)$ is a system that satisfies the first condition of Definition 2.2. Hence, if $\left(G,\left\{\beta_{n}\right\}\right)$ is an inductive limit of the system, then there is a group homomorphism

$$
\gamma: G \rightarrow \mathbb{Q} \text { such that } \gamma \circ \alpha_{n}=\gamma_{n}
$$

As in the previous example, we may check that

$$
\operatorname{ker}\left(\beta_{n}\right)=\operatorname{ker}\left(\gamma_{n}\right)=\{0\}
$$

so that γ is injective. However, γ is not surjective, but does surject onto

$$
H=\bigcup_{n=1}^{\infty} \gamma_{n}\left(G_{n}\right) \cong\left\{\frac{m}{2^{n}}: m \in \mathbb{Z}, n \geq 0\right\} \cong \mathbb{Z}\left[\frac{1}{2}\right]
$$

This is the inductive limit of the system.
Proposition 5.8 (Inductive Limits of ordered Abelian groups). Let $\left(G_{n}, \alpha_{n}\right)$ be an inductive system of ordered abelian groups where $\alpha_{n}: G_{n} \rightarrow G_{n+1}$ are positive group homomorphisms. Let $\left(G, \beta_{n}\right)$ be an inductive limit of this system, and define

$$
G^{+}=\bigcup_{n=1}^{\infty} \beta_{n}\left(G_{n}^{+}\right)
$$

Then $\left(G, G^{+}\right)$is an ordered abelian group, β_{n} is a positive group homomorphism, and $\left(G, G^{+},\left\{\beta_{n}\right\}\right)$ is an inductive limit in the category of ordered abelian groups.

Proof. Omitted.

Remark 5.9. Given an inductive sequence

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \ldots
$$

of C^{*}-algebras, let $\left(A,\left\{\mu_{n}\right\}\right)$ be the limit of the sequence. (ie. the following diagram commutes

and A is universal with this property). Then we get an inductive sequence of Abelian groups

$$
K_{0}\left(A_{1}\right) \xrightarrow{K_{0}\left(\varphi_{1}\right)} K_{0}\left(A_{2}\right) \xrightarrow{K_{0}\left(\varphi_{2}\right)} K_{0}\left(A_{3}\right) \xrightarrow{K_{0}\left(\varphi_{3}\right)} \ldots
$$

Let $\left(G,\left\{\beta_{n}\right\}\right)$ be the inductive limit of this sequence. ie. the following diagram commutes

Theorem 5.10 (Continuity of $\left.K_{0}\right)$. Given an inductive system $\left(A_{n}, \varphi_{n}\right)$ of C^{*}-algebras with inductive limit A, we have

$$
K_{0}(A) \cong \lim \left(K_{0}\left(A_{n}\right), K_{0}\left(\varphi_{n}\right)\right)
$$

In fact, there is a unique group isomorphism $\gamma: G_{0} \rightarrow K_{0}(A)$ such that the following diagram commutes

In particular,

$$
K_{0}(A)=\bigcup_{n=1}^{\infty} K_{0}\left(\mu_{n}\right)\left(K_{0}\left(A_{n}\right)\right)
$$

and

$$
\operatorname{ker}\left(K_{0}\left(\mu_{n}\right)\right)=\bigcup_{m=n+1}^{\infty} \operatorname{ker}\left(K_{0}\left(\varphi_{m, n}\right)\right)
$$

Proof. Note that the following diagram commutes

Hence, by the universal property of the inductive limit, there is a group homomorphism

$$
\gamma: G_{0} \rightarrow K_{0}(A)
$$

such that $\gamma \circ \beta_{n}=K_{0}\left(\mu_{n}\right)$. The proof that γ is bijective is long and technical, so we omit it.
Definition 5.11. Given a C*-algebra A, consider the inductive sequence $A \rightarrow M_{2}(A) \rightarrow$ $M_{3}(A) \rightarrow \ldots$ where the connecting maps are given by the inclusion

$$
a \mapsto\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)
$$

The inductive limit of this sequence is $A \otimes \mathcal{K}$.
Definition 5.12. Let $e \in \mathcal{K}$ be the fixed projection of rank one

$$
e\left(\left(x_{n}\right)\right):=\left(x_{1}, 0,0, \ldots\right)
$$

and $\kappa: A \rightarrow A \otimes \mathcal{K}$ be given by $a \mapsto a \otimes e$. Then κ is an injective $*$-homomorphism, called the canonical inclusion of A into $A \otimes \mathcal{K}$
Lemma 5.13. Let $p \in \mathcal{K}$ be any rank one projection and $\varphi: A \rightarrow A \otimes \mathcal{K}$ be given by $a \mapsto a \otimes p$, then $K_{0}(\varphi)=K_{0}(\alpha)$
Proof. Note that $p \sim e$ and $1-p \sim 1-e$, so $\exists u \in \mathcal{U}(\mathcal{B}(H))$ such that $e=u p u^{*}$. By the Borel functional calculus, $\exists h \in \mathcal{B}(H)$ self-adjoint such that $u=e^{i h}$. Hence the path $u_{t}:=e^{i t h}$ connects u to the identity. Hence, $e=u p u^{*} \sim_{h} p$. Furthermore, if $\varphi_{t}: A \rightarrow A \otimes \mathcal{K}$ is given by

$$
a \mapsto a \otimes u_{t} p u_{t}^{*}
$$

Then φ_{t} is a path of $*$-homomorphisms such that $\varphi_{0}=\varphi$ and $\varphi_{1}=\alpha$. Hence, $K_{0}(\alpha)=$ $K_{0}(\varphi)$.
Theorem 5.14 (Stability of K_{0}). The map $\kappa: A \rightarrow A \otimes \mathcal{K}$ induces an isomorphism $K_{0}(\kappa): K_{0}(A) \rightarrow K_{0}(A \otimes \mathcal{K})$
Proof. Let $\varphi_{n}: M_{n}(A) \rightarrow M_{n+1}(A)$ and $\mu_{n}: M_{n}(A) \rightarrow A \otimes \mathcal{K}$ be the maps as above 5.1. $K_{0}(\kappa)$ is surjective:

$$
K_{0}(A \otimes \mathcal{K})=\bigcup_{j=1}^{\infty} K_{0}\left(\mu_{n}\right)\left(K_{0}\left(M_{n}(A)\right)\right.
$$

so if $g \in K_{0}(A \otimes \mathcal{K}), \exists n \in \mathbb{N}$ and $g^{\prime} \in K_{0}\left(M_{n}(A)\right)$ such that

$$
g=K_{0}\left(\mu_{n}\right)\left(g^{\prime}\right)
$$

But $\varphi_{n, 1}: A \rightarrow M_{n}(A)$ is the map λ_{n} from the theorem proved last week. Hence, $K_{0}\left(\varphi_{n, 1}\right): K_{0}(A) \rightarrow K_{0}\left(M_{n}(A)\right)$ is an isomorphism, so $\exists h \in K_{0}(A)$ such that $g^{\prime}=K_{0}\left(\varphi_{n, 1}\right)(h)$. Hence,

$$
g=K_{0}\left(\mu_{n} \circ \varphi_{n, 1}\right)(h)=K_{0}(\kappa)(h)
$$

so $K_{0}(\kappa)$ is surjective.
5.2. $K_{0}(\kappa)$ is injective: If $h \in K_{0}(A)$ is such that $K_{0}(\kappa)(h)=0$, then

$$
K_{0}\left(\mu_{n}\right) K_{0}\left(\varphi_{n, 1}\right)(h)=0 \quad \forall n \in \mathbb{N}
$$

But by the earlier remark,

$$
\operatorname{ker}\left(K_{0}\left(\mu_{n}\right)\right)=\bigcup_{m=n+1}^{\infty} \operatorname{ker}\left(K_{0}\left(\varphi_{m, n}\right)\right)
$$

hence,

$$
K_{0}\left(\varphi_{m, n}\right)\left(K_{0}\left(\varphi_{n, 1}(h)\right)=0=K_{0}\left(\varphi_{m, 1}\right)(h) \text { in } K_{0}\left(M_{m}(A)\right)\right.
$$

But $K_{0}\left(\varphi_{m, 1}\right)$ is an isomorphism, so $h=0$ as required.

Corollary 5.15. There is an isomorphism $\alpha: K_{0}(\mathcal{K}) \rightarrow \mathbb{Z}$ such that

$$
\alpha\left([E]_{0}\right)=\operatorname{Tr}(E)
$$

for every projection $E \in \mathcal{K}$. This isomorphism is denoted by $K_{0}(T r)$
Proof. Let $\kappa: \mathbb{C} \rightarrow \mathbb{C} \otimes \mathcal{K} \cong \mathcal{K}$ be the map as above, and $\alpha_{1}: K_{0}(\mathbb{C}) \rightarrow \mathbb{Z}$ the isomorphism such that

$$
\alpha_{1}\left([1]_{0}\right)=1
$$

Define $\alpha=\alpha_{1} \circ K_{0}(\kappa)^{-1}: K_{0}(\mathcal{K}) \rightarrow \mathbb{Z}$. Then α is an isomorphism. Furthermore, $F:=\mathcal{K}(1)$ is a one-dimensional projection in \mathcal{K}, and

$$
\alpha\left([F]_{0}\right)=\alpha_{1}\left([1]_{0}\right)=1
$$

If $E \in \mathcal{K}$ is any one-dimensional projection, then $E \sim F$ in $\widetilde{\mathcal{K}(H)}$ as in the case of $\mathcal{B}(H)$. Hence,

$$
\alpha\left([E]_{0}\right)=1
$$

If E is any arbitrary n-dimensional projection, then E is a sum of orthogonal rank one projections, so

$$
\alpha\left([E]_{0}\right)=n=\operatorname{Tr}(E)
$$

Example 5.16. Consider the short exact sequence

$$
0 \rightarrow \mathcal{K}(H) \xrightarrow{\iota} \mathcal{B}(H) \rightarrow \mathcal{Q}(H) \rightarrow 0
$$

where $H=\ell^{2}$. Then $K_{0}(\mathcal{B}(H))=0$, and $K_{0}(\mathcal{K}(H)) \cong \mathbb{Z}$, so the map

$$
K_{0}(\iota): K_{0}(\mathcal{K}(H)) \rightarrow K_{0}(\mathcal{B}(H))
$$

is not injective. Therefore, the functor K_{0} is not exact.

6 Finite Dimensional C*-Algebras

Definition 6.1. Define $e(n, i, j) \in M_{n}(\mathbb{C})$ to be the matrix whose $(i, j)^{t h}$ entry is 1 and other entries are zero. If

$$
A=M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \ldots M_{n_{r}}(\mathbb{C})
$$

define

$$
e_{i, j}^{(k)}:=\left(0,0, \ldots, e\left(n_{k}, i, j\right), 0,0, \ldots, 0\right) \in A
$$

These are called the matrix units of A, and they satisfy the following identities
6.1. $e_{i, j}^{(k)} e_{j, \ell}^{(k)}=e_{i, \ell}^{(k)}$
6.2. $e_{i, j}^{(k)} e_{m, n}^{\ell}=0$ if $k \neq \ell$ or if $j \neq m$
6.3. $\left(e_{i, j}^{(k)}\right)^{*}=e_{j, i}^{(k)}$
6.4. $A=\operatorname{span}\left\{e_{i, j}^{(k)}: 1 \leq k \leq r, 1 \leq i, j \leq n_{k}\right\}$

Definition 6.2. Let B be a C^{*}-algebra and $\left\{f_{i, j}^{(k)}\right\}$ be a set of elements in B satisfying (i), (ii) and (iii) above. Then this is called a system of matrix units in B of type A.

Note: Given a system of matrix units of type A as above, there is a unique $*$-homomorphism $\varphi: A \rightarrow B$ such that $\varphi\left(e_{i, j}^{(k)}\right)=f_{i, j}^{(k)}$ for all k, i, j. Furthermore, this map is
6.1. injective if all the $f_{i, j}^{(k)}$ are non-zero.
6.2. surjective if $B=\operatorname{span}\left\{f_{i, j}^{(k)}\right\}$

Lemma 6.3. Suppose that $\left\{f_{i, i}^{(k)}: 1 \leq k \leq r, 1 \leq i \leq n_{k}\right\}$ is a set of mutually orthogonal projections in a C^{*}-algebra B such that

$$
f_{1,1}^{(k)} \sim f_{2,2}^{(k)} \sim \ldots \sim f_{n_{k}, n_{k}}^{(k)}
$$

for $1 \leq k \leq r$. Then there is a system of matrix units $\left\{f_{i, j}^{(k)}\right\}$ in V that extends $\left\{f_{i, i}^{(k)}\right\}$.
Proof. Choose partial isometries $f_{1, i}^{(k)}$ such that

$$
\left(f_{1, i}^{(k)}\right)^{*} f_{1, i}^{(k)}=f_{i, i}^{(k)} \text { and } f_{1, i}^{(k)}\left(f_{1, i}^{(k)}\right)^{*}=f_{1,1}^{(k)}
$$

and define

$$
f_{i, j}^{(k)}=\left(f_{1, i}^{(k)}\right)^{*} f_{1, j}^{(k)}
$$

Then this system works [Check!]
Definition 6.4. A C^{*}-subalgebra $D \subset A$ is called a maximal abelian subalgebra (masa) if it is abelian, and it is not properly contained in any other abelian C^{*}-subalgebra of A.

By Zorn's lemma, every Abelian C*-subalgebra is contained in a masa.

Definition 6.5. Let $X \subset A$. Define

$$
X^{\prime}:=\{a \in A: a x=x a \quad \forall x \in X\}
$$

Note that X^{\prime} is a norm-closed subalgebra of A. Furthermore, it is a C^{*}-subalgebra if X is self-adjoint (ie. if $a \in X$, then $a^{*} \in X$)

Note: $B \subset A$ is Abelian iff $B \subset B^{\prime}$.
Lemma 6.6. $D \subset A$ is a masa iff $D=D^{\prime}$
Proof. Suppose $D=D^{\prime}$, then D is Abelian, and if E is Abelian and contains D, then

$$
D \subset E \subset E^{\prime} \subset D^{\prime}=D
$$

so $E=D$. Hence D is a masa.
Conversely, suppose D is a masa, then $D \subset D^{\prime}$ and D^{\prime} is a C^{*}-subalgebra. WTS: $D^{\prime} \subset D$. Since D^{\prime} and D are C^{*}-algebras, it suffices to show that $\left(D^{\prime}\right)_{s a} \subset D$. So fix $a \in D^{\prime}$ self-adjoint, and set

$$
X:=D \cup\{a\}
$$

Since elements in X commute with each other,

$$
X \subset X^{\prime}
$$

Since X is self-adjoint, X^{\prime} is a C^{*}-subalgebra of A, and so

$$
C^{*}(X) \subset X^{\prime}
$$

So if $y \in C^{*}(X)$ and $x \in X$, then $x y=y x$. Hence,

$$
X \subset C^{*}(X)^{\prime}
$$

Once again, $C^{*}(X)^{\prime}$ is a C^{*}-algebra, so

$$
C^{*}(X) \subset C^{*}(X)^{\prime}
$$

It follows that $C^{*}(X)$ is Abelian. Since $D \subset X \subset C^{*}(X)$, and D is a masa, we conclude that

$$
D=C^{*}(X)
$$

In particular, $a \in D$ as required.
Example 6.7. Let $A=M_{n}(\mathbb{C})$ and D denote the set of all diagonal matrices. Then D is an Abelian C^{*}-subalgebra of A. Furthermore, if $a \in D^{\prime}$, then

$$
a e_{1,1}=e_{1,1} a
$$

So

$$
e_{1,1}\left(a\left(e_{1}\right)\right)=a e_{1,1}\left(e_{1}\right)=a\left(e_{1}\right)
$$

Hence, $a\left(e_{1}\right)$ is an eigen-vector of $e_{1,1}$ with eigen-value 1 . So $a\left(e_{1}\right)=\lambda_{1} e_{1}$. Thus continuing, we see that a must be diagonal. Hence, $D^{\prime}=D$, so D is a masa.

Lemma 6.8. Let D be a masa in a C^{*}-algebra A.
6.1. If D is unital, then A is unital and $1_{A}=1_{D}$
6.2. If p is a projection in D such that $p D p=\mathbb{C} p$, then $p A p=\mathbb{C} p$ (Note: A projection with this property is minimal, in the sense that there is no projection $q \in A$ such that $q<p$ other than $q=0$)

Proof. 6.1. If $a \in A$, then WTS: $a=a 1_{D}$. Let $z:=a-a 1_{D}$, then $z d=0$ for all $d \in D$. Since D is self-adjoint, this implies $\left(z d^{*}\right)^{*}=d z^{*}=0$ for all $d \in D$. Hence,

$$
d\left(z^{*} z\right)=0=\left(z^{*} z\right) d \quad \forall d \in D
$$

Hence, $\left(z^{*} z\right) \in D^{\prime}=D$ since D is a masa. Hence,

$$
\left(z^{*} z\right)\left(z^{*} z\right)=0 \Rightarrow\|z\|^{4}=0 \Rightarrow z=0
$$

Hence, $a=a 1_{D}$ for all $a \in A$. Hence,

$$
1_{D} a=\left(a^{*} 1_{D}\right)^{*}=\left(a^{*}\right)^{*}=a \quad \forall a \in A
$$

So $1_{D}=1_{A}$
6.2. Let $a \in p A p$, then $a=p a=a p$. So if $d \in D$, we have $p d=d p=p d p=\lambda p$ for some $\lambda \in \mathbb{C}$. Hence,

$$
a d=a p d=\lambda a p=\lambda a=d a
$$

Hence, $a \in D^{\prime}=D$, so $a \in D$. In that case, $a \in p D p$. Hence, $p A p \subset p D p=\mathbb{C} p$.

Theorem 6.9. Any finite dimensional C^{*}-algebra is isomorphic to

$$
M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{r}}(\mathbb{C})
$$

for some positive integers $r, n_{1}, n_{2}, \ldots, n_{r} \in \mathbb{N}$
Proof. 6.1. Choose a masa $D \subset A$. By Gelfand, $D \cong C_{0}(X)$ for some space X. Since D is finite dimensional, it follows that X is finite. In particular, X is compact. Hence, D is unital, and so A is unital and $1_{A}=1_{D}$ by the previous lemma.
6.2. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ and let $p_{i} \in D$ denote the corresponding characteristic functions

$$
p_{i}\left(x_{j}\right)=\delta_{i, j}
$$

Then $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\} \subset D$ are projections such that

$$
p_{1}+p_{2}+\ldots+p_{N}=1_{D} \text { and } p_{j} D p_{j}=\mathbb{C} p_{j}
$$

By the previous lemma, $p_{j} A p_{j}=\mathbb{C} p_{j}$ for all $1 \leq j \leq N$
6.3. Fix $1 \leq i, j \leq N$ such that $p_{j} A p_{i} \neq 0$. Choose $v \in p_{j} A p_{i}$ such that $\|v\|=1$, then

$$
v^{*} v \in p_{i} A p_{i}
$$

is a positive element of norm 1 . But $p_{i} A p_{i}=\mathbb{C} p_{i}$. Hence,

$$
v^{*} v=p_{i}
$$

Similarly, $v v^{*}=p_{j}$. Hence, we conclude

$$
p_{j} A p_{i}=\{0\} \text { or } p_{i} \sim p_{j}
$$

6.4. Now suppose $p_{i} \sim p_{j}$ and $a \in p_{j} A p_{i}$, then $a=a p_{i}=\left(a v^{*}\right) v$. As $a v^{*} \in p_{j} A p_{j}=\mathbb{C} p_{j}$, so $a v^{*}=\lambda p_{j}$ for some $\lambda \in \mathbb{C}$. Furthermore, $p_{j} v=v$, so

$$
a=a v^{*} v=\lambda p_{j} v=\lambda v
$$

Hence, $a \in \mathbb{C} v$, so if $p_{i} \sim p_{j}$, then

$$
p_{j} A p_{i}=\mathbb{C} v
$$

6.5. Partition the set $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ into Murray von-Neumann equivalence classes. Suppose there are r equivalence equivalence classes, and that the $k^{t h}$ class has n_{k} elements

$$
\left\{f_{1,1}^{(k)}, f_{2,2}^{(k)}, \ldots, f_{n_{k}, n_{k}}^{(k)}\right\}
$$

By choice of these projections, we have

$$
f_{i, i}^{(k)} A f_{j, j}^{(\ell)}=\{0\} \text { if } k \neq \ell \text { and } f_{i, j}^{(k)} \sim f_{j, j}^{(k)}
$$

By the earlier lemma, we can extend this collection to a system of matrix units $\left\{f_{i, j}^{(k)}\right\}$ in A.
6.6. By Step 4,

$$
f_{i, i}^{(k)} A f_{j, j}^{(k)}=\mathbb{C} f_{i, j}^{(k)}
$$

and by Step 2,

$$
1=\sum_{i, k} f_{i, i}^{(k)}
$$

6.7. Hence if $a \in A$, then

$$
\begin{aligned}
a & =\left(\sum_{i, k} f_{i, i}^{(k)}\right) a\left(\sum_{i, k} f_{i, i}^{(k)}\right)=\sum_{k=1}^{r} \sum_{i, j=1}^{n_{k}} f_{i, i}^{(k)} a f_{j, j}^{(k)} \\
& =\sum_{k=1}^{r} \sum_{i, j=1}^{n_{k}} \lambda_{i, j}^{(k)} f_{i, j}^{(k)}
\end{aligned}
$$

for some scalars $\lambda_{i, j}^{(k)} \in \mathbb{C}$. Hence,

$$
A=\operatorname{span}\left\{f_{i, j}^{(k)}\right\}
$$

Thus the system of matrix units satisfies all conditions (1) - (4). Hence, by the remark following Definition 1.2,

$$
A \cong M_{n_{1}}(\mathbb{C}) \oplus M_{n_{2}}(\mathbb{C}) \oplus \ldots \oplus M_{n_{r}}(\mathbb{C})
$$

7 Classification of AF-Algebras

Definition 7.1. An approximately finite dimensional (AF) algebra is an inductive limit of finite dimensional C*-algebras.

Example 7.2. 7.1. Every finite dimensional C*-algebra is AF
7.2. $\mathcal{K}\left(\ell^{2}\right)$ is AF .
7.3. Fix a sequence $\left\{n_{k}\right\}$ of integers such that $n_{k} \mid n_{k+1}$. Define $\varphi_{k}: M_{n_{k}}(\mathbb{C}) \rightarrow$ $M_{n_{k+1}}(\mathbb{C})$ to be the unital map

$$
a \mapsto \operatorname{diag}(\underbrace{a, a, \ldots, a}_{d_{k} \text { times }})
$$

where $d_{k}=n_{k+1} / n_{k}$. The inductive limit is a unital AF-algebra, called a Uniformly Hyperfinite Algebra (UHF) algebra of type $\mathfrak{N}:=\left\{n_{k}\right\}$
7.4. If $n_{k}=2^{k}$ for all $k \in \mathbb{N}$, then the corresponding UHF algebra of type 2^{∞} is called the CAR algebra (Canonical Anticommutation relations)

Lemma 7.3. Every AF-algebra is stably finite. Hence, $\left(K_{0}(A), K_{0}(A)^{+}\right)$is an ordered abelian group.

Proof. If A is an AF-algebra, then so is \widetilde{A} and $M_{k}(A)$. Hence it suffices to show that A is finite when A is unital and AF. We show that every isometry $s \in A$ is a unitary. Suppose $s \in A$ is an isometry, then fix $\epsilon=1 / 4$. Since A is an AF-algebra, \exists a finite dimensional C^{*}-subalgebra $B \subset A$ and $x \in B$ such that

$$
\|s-x\|<\epsilon
$$

It follows that

$$
|1-\|x\||=|\|s\|-\|x\|| \leq\|s-x\|<\epsilon \Rightarrow\|x\| \leq 1+\epsilon
$$

$$
\begin{aligned}
\left\|1_{A}-x^{*} x\right\| & =\left\|s^{*} s-x^{*} x\right\| \\
& \leq\left\|s^{*} s-s^{*} x\right\|+\left\|s^{*} x-x^{*} x\right\| \\
& \leq\left\|s^{*}\right\|\|s-x\|+\left\|s^{*}-x^{*}\right\|\|x\| \\
& \leq\|s-x\|+\|s-x\|(1+\epsilon) \\
& \leq \epsilon+\epsilon(1+\epsilon)=\epsilon^{2}+2 \epsilon \leq \epsilon(3+2 \epsilon)<1
\end{aligned}
$$

Hence, $x^{*} x$ is invertible. Replacing B by $B+\mathbb{C} 1_{A}$ (which is also finite dimensional), and using spectral permanence, we can conclude that $x^{*} x$ is invertible in B. Furthermore, if $z=\left(x^{*} x\right)^{-1}$, then

$$
z=\sum_{k=0}^{\infty}\left(1-x^{*} x\right)^{k} \Rightarrow\|z\| \leq \sum_{k=0}^{\infty}\left\|1-x^{*} x\right\|^{k}=\frac{1}{1-\left\|1-x^{*} x\right\|} \leq \frac{1}{1-\epsilon^{2}-2 \epsilon}
$$

Hence, if $y=z x^{*}$, then $y x=1_{A}$ and

$$
\|y\|<\frac{1+\epsilon}{1-\epsilon^{2}-2 \epsilon}
$$

Now x is left-invertible in B. Since B is finite dimensional, it follows that x is right invertible in B (and hence A), and the left and right-inverses coincide. Thus, $x y=1_{A}$, so

$$
\left\|s y-1_{A}\right\|=\|s y-x y\| \leq\|s-x\|\|y\|<\frac{\epsilon(1+\epsilon)}{1-\epsilon^{2}-2 \epsilon}<1
$$

because $\epsilon(3+2 \epsilon)<1$. Hence, sy is invertible, so s is right invertible as required.
If A is a unital AF-algebras, we consider the triple

$$
\mathcal{E}(A):=\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right]_{0}\right)
$$

If there is a unital $*$-isomorphism $\varphi: A \rightarrow B$, then we get an isomorphism of invariants

$$
K_{0}(\varphi): \mathcal{E}(A) \rightarrow \mathcal{E}(B)
$$

Theorem 7.4 (Elliott). Let A and B be two unital $A F$-algebras. Given an isomorphism $\alpha: \mathcal{E}(A) \rightarrow \mathcal{E}(B)$, there is a $*$-isomorphism $\varphi: A \rightarrow B$ such that $\alpha=K_{0}(\varphi)$.

Proof. The outline of the proof is as follows:
7.1. Write both A and B as inductive limits of finite dimensional C^{*}-algebras

$$
\begin{aligned}
& A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \ldots \rightarrow A \\
& B_{1} \xrightarrow{\psi_{1}} B_{2} \xrightarrow{\psi_{2}} B_{3} \xrightarrow{\psi_{3}} \ldots \rightarrow B
\end{aligned}
$$

This gives an inductive sequence of K_{0}-groups.
7.2. Given an isomorphism $\alpha: \mathcal{E}(A) \rightarrow \mathcal{E}(B)$, we construct an intertwining at the level of K_{0} groups.

This requires a lifting property of the groups $K_{0}\left(A_{j}\right)$ and $K_{0}\left(B_{j}\right)$ (which are free Abelian groups) as follows: Given an inductive limit

Once can lift the map γ to a map $\beta: K_{0}\left(B_{j}\right) \rightarrow K_{0}\left(A_{\ell}\right)$ for some $\ell \geq k$ such that TFDC:

$$
K_{0}\left(A_{k}\right) \xrightarrow{K_{0}\left(\varphi_{\ell, k}\right)} K_{0}\left(A_{\ell}\right) \xrightarrow{K_{0}\left(\mu_{\ell}\right)} K_{0}(A)
$$

We will apply this inductively to construct an intertwining of K_{0} groups as above (Equation .1)
7.3. Given an intertwining of K_{0} groups as above, we would like to construct *homomorphisms $f_{i}: B_{m_{i}} \rightarrow A_{n_{i}}$ and $g_{i}: A_{n_{i}} \rightarrow B_{m_{i+1}}$ such that

$$
K_{0}\left(f_{i}\right)=\alpha_{i} \text { and } K_{0}\left(g_{i}\right)=\beta_{i}
$$

For this, we need an Existence/Uniqueness theorems:
(i) Given finite dimensional C^{*}-algebras A and B, and a morphism $\eta: K_{0}(A) \rightarrow$ $K_{0}(B)$, we need to find a $*$-homomorphism $f: A \rightarrow B$ such that $K_{0}(f)=\eta$.
(ii) Furthermore, we would like the f_{i} and g_{i} to interact as in Equation .2. Hence, we need a Uniqueness theorem as well: Given finite dimensional C*-algebras A and B and two morphisms $f, g: A \rightarrow B$. Suppose $K_{0}(f)=K_{0}(g)$, then how are f and g related to each other?
7.4. Finally, we construct an intertwining: two subsequences $\left(A_{n_{j}}\right)$ and $\left(B_{m_{j}}\right)$ and maps between them as below

If such an intertwining exists, then there is an isomorphism $\varphi: A \rightarrow B$ (by yesterday's tutorial problem). This isomorphism will have the property that $K_{0}(\varphi)=\alpha$ as well.

Example 7.5. Consider the inductive sequence of C^{*}-algebras

$$
\mathbb{C} \rightarrow M_{2}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C}) \rightarrow \ldots \rightarrow M_{2^{n}}(\mathbb{C}) \xrightarrow{\varphi_{n}} M_{2^{n+1}}(\mathbb{C}) \rightarrow \ldots
$$

where $\varphi_{n}: M_{2^{n}}(\mathbb{C}) \rightarrow M_{2^{n+1}}(\mathbb{C})$ is given by

$$
a \mapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

Let $\left(A,\left\{\mu_{n}\right\}\right)$ denote the inductive limit of this system. For each $n \in \mathbb{N}$, define a trace $\tau_{n}: M_{2^{n}}(\mathbb{C}) \rightarrow \mathbb{C}$ by

$$
\left(a_{i, j}\right) \mapsto \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} a_{i, i}
$$

Note that $\tau_{n+1} \circ \varphi_{n}=\tau_{n}$. By the universal property of the inductive limit, there is a $\operatorname{map} \tau: A \rightarrow \mathbb{C}$ such that

$$
\tau \circ \mu_{n}=\tau_{n} \quad \forall n \in \mathbb{N}
$$

Since each τ_{n} is linear, so is τ. Since each τ is bounded (norm-decreasing), it follows that τ is bounded (Why?). Furthermore, for any $a \in \mu_{n}\left(A_{n}\right), b \in \mu_{m}\left(A_{m}\right)$, we write $a=\mu_{n}\left(a^{\prime}\right), b=\mu_{m}\left(b^{\prime}\right)$. If $m>n$, then $\mu_{n}=\mu_{m} \circ \mu_{m-1} \circ \ldots \mu_{n}$, so we may assume $m=n$, then

$$
\tau(a b)=\tau_{n}\left(a^{\prime} b^{\prime}\right)=\tau_{n}^{\prime}\left(b^{\prime} a^{\prime}\right)=\tau(b a)
$$

Hence, τ is a trace on A. Similarly, one can check that τ is a positive tracial state. We get a map

$$
K_{0}(\tau): K_{0}(A) \rightarrow \mathbb{R}
$$

Note that

$$
K_{0}(A)=\bigcup_{n=1}^{\infty} K_{0}\left(\mu_{n}\right)\left(K_{0}\left(A_{n}\right)\right)
$$

Now,

$$
K_{0}(\tau)\left(K_{0}\left(\mu_{n}\right)\right)\left(K_{0}\left(A_{n}\right)\right)=K_{0}\left(\tau_{n}\right)\left(K_{0}\left(A_{n}\right)\right)=\left\{\frac{a}{2^{n}}: a \in \mathbb{Z}\right\}
$$

Hence, the range of $K_{0}(\tau)$ is

$$
\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{a}{2^{n}}: a \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

Finally, if $g \in K_{0}(A)$ is such that $K_{0}(\tau)(g)=0$, then $\exists n \in \mathbb{N}$ such that $g \in K_{0}\left(\mu_{n}\right)\left(K_{0}\left(A_{n}\right)\right)$. So write

$$
g=K_{0}\left(\mu_{n}\right)\left(g^{\prime}\right)
$$

for some $g^{\prime} \in K_{0}\left(A_{n}\right)$. Then

$$
K_{0}\left(\tau_{n}\right)\left(g^{\prime}\right)=0
$$

But $K_{0}\left(\tau_{n}\right): K_{0}\left(A_{n}\right) \rightarrow 2^{-n} \mathbb{Z}$ is an isomorphism. Hence, $g^{\prime}=0$, so $g=0$. Hence,

$$
K_{0}(\tau): K_{0}(A) \rightarrow \mathbb{Z}\left[\frac{1}{2}\right]
$$

is an isomorphism. Furthermore, it is clear that $K_{0}(\tau)$ maps the positive elements of $K_{0}(A)$ to the set

$$
\left\{\frac{a}{2^{n}}: a \in \mathbb{N} \cup\{0\}, n \in \mathbb{N}\right\}
$$

So the ordered triple

$$
\left(K_{0}(A), K_{0}(A)^{+},[1]_{0}\right)
$$

is completely determined.
Remark 7.6. Given a UHF algebra A of type $\mathfrak{N}:=\left\{n_{k}\right\}, A$ has a trace $\tau: A \rightarrow \mathbb{C}$. Furthermore,

$$
K_{0}(\tau): K_{0}(A) \cong \bigcup_{k=1}^{\infty} n_{k}^{-1} \mathbb{Z}
$$

Furthermore, we can completely determine the triple $\mathcal{E}(A)$ using $K_{0}(\tau)$.

8 The Higher K-groups

Definition 8.1. Let A be a C^{*}-algebra. The suspension of A is defined as

$$
S A:=\{f \in C([0,1], A): f(0)=f(1)=0\}
$$

For $n>1$, we define inductively,

$$
S^{n}(A):=S\left(S^{n-1} A\right)
$$

Note that $S^{n}(A)$ is a C^{*}-algebra by the point-wise operations; and it is non-unital.
Definition 8.2. For $n \geq 1$, define

$$
K_{n}(A):=K_{0}\left(S^{n}(A)\right)
$$

Remark 8.3. 8.1. Given a $*$-homomorphism $\varphi: A \rightarrow B$, we get a $*$-homomorphism $S \varphi: S A \rightarrow S B$ given by

$$
(S \varphi)(f)(t):=\varphi(f(t))
$$

Hence, we get a map $K_{0}(S \varphi): K_{1}(A) \rightarrow K_{1}(B)$. We denote this map by $K_{1}(\varphi)$.
8.2. More generally, we see that K_{n} is a covariant functor.
8.3. If $\varphi, \psi: A \rightarrow B$ are two $*$-homomorphisms such that $\varphi \sim_{h} \psi$, then $S \varphi \sim_{h} S \psi$. Therefore, K_{1} (and more generally, each K_{n}) is a homotopy invariant functor as well.
8.4. Given a short exact sequence

$$
0 \rightarrow J \xrightarrow{\varphi} A \xrightarrow{\psi} B \rightarrow 0
$$

of C^{*}-algebras, the induced sequence

$$
0 \rightarrow S J \xrightarrow{S \varphi} S A \xrightarrow{S \psi} S B \rightarrow 0
$$

is also exact. Hence, the sequence

$$
K_{1}(J) \rightarrow K_{1}(A) \rightarrow K_{1}(B)
$$

is exact at $K_{1}(A)$. Hence, K_{1} (and hence K_{n}) is half-exact.
8.5. Similarly, each K_{n} is a split-exact functor.
8.6. Similarly, all the other properties (continuity, stability, etc.) all carry over from K_{0} to K_{n}.

Definition 8.4. Given a short exact sequence

$$
0 \rightarrow J \xrightarrow{\varphi} A \xrightarrow{\psi} B \rightarrow 0
$$

of C^{*}-algebras, define the mapping cone to be
$C(A, B):=\{(a, f): a \in A, f \in C([0,1], B)$ such that $f(0)=0, f(1)=\psi(a)\}$
Define $j: J \rightarrow C(A, B)$ by $a \mapsto(a, 0)$.
Theorem 8.5. The map $K_{0}(j): K_{0}(J) \rightarrow K_{0}(C(A, B))$ is an isomorphism.
Proof. 8.1. Let $C B$ denote the cone of B, ie. the C^{*}-algebra

$$
C B:=\{f \in C([0,1], B): f(0)=0\}
$$

and define $\pi: C(A, B) \rightarrow C B$ by $(a, f) \mapsto f$. Then the sequence

$$
0 \rightarrow J \xrightarrow{j} C(A, B) \xrightarrow{\pi} C B \rightarrow 0
$$

is exact. We thus get a half-exact sequence

$$
K_{0}(J) \xrightarrow{K_{0}(j)} K_{0}(C(A, B)) \xrightarrow{K_{0}(\pi)} K_{0}(C B)
$$

But $C B$ is contractible, to $K_{0}(\pi)$ is the zero map. Hence, $K_{0}(j)$ is surjective.
8.2. For injectivity, define

$$
Q:=\{f \in C([0,1], A): f(0) \in J\}
$$

We now have maps $\delta: J \rightarrow Q$ given by $a \mapsto \bar{a}$, the constant function; and define $\gamma: Q \rightarrow J$ given by evaluation at 0 . We now have a split exact sequence

$$
0 \rightarrow \operatorname{ker}(\gamma) \rightarrow Q \xrightarrow{\gamma} J \rightarrow 0
$$

We thus obtain a split exact sequence

$$
0 \rightarrow K_{0}(\operatorname{ker}(\gamma)) \rightarrow K_{0}(Q) \xrightarrow{K_{0}(\gamma)} K_{0}(J) \rightarrow 0
$$

Now observe that

$$
\operatorname{ker}(\gamma)=\{f \in C([0,1], A): f(0)=0\}=C A
$$

This is once again contractible, so $K_{0}(\delta): K_{0}(J) \rightarrow K_{0}(Q)$ is an isomorphism.
8.3. Now, we have a map $\eta: Q \rightarrow C(A, B)$ given by

$$
f \mapsto(f(1), \psi \circ f)
$$

This is a surjective $*$-homomorphism, and

$$
\operatorname{ker}(\eta)=C J
$$

Hence, $\operatorname{ker}(\eta)$ is contractible, so η is induces an injective map

$$
K_{0}(\eta): K_{0}(Q) \rightarrow K_{0}(C(A, B))
$$

Now observe that the composition

$$
K_{0}(\eta) \circ K_{0}(\delta)=K_{0}(j)
$$

which is thus injective.

Definition 8.6. Consider a short exact sequence

$$
0 \rightarrow J \xrightarrow{\varphi} A \xrightarrow{\psi} B \rightarrow 0
$$

of C^{*}-algebras, and the short exact sequence

$$
0 \rightarrow S B \xrightarrow{\alpha} C(A, B) \xrightarrow{\beta} A \rightarrow 0
$$

where $\alpha(f):=(0, f)$ and $\beta(a, f):=a$ (Observe that this is exact). Therefore, we get a map

$$
K_{0}(\alpha): K_{0}(S B) \rightarrow K_{0}(C(A, B))
$$

Composing with the map $K_{0}(j)^{-1}$, we get a map

$$
\partial: K_{1}(B) \rightarrow K_{0}(J)
$$

This is called the boundary map or index map.

Theorem 8.7. Given a short exact sequence

$$
0 \rightarrow J \xrightarrow{\varphi} A \xrightarrow{\psi} B \rightarrow 0
$$

the sequence

$$
K_{1}(A) \xrightarrow{K_{1}(\psi)} K_{1}(B) \xrightarrow{\partial} K_{0}(J) \xrightarrow{K_{0}(\varphi)} K_{0}(A)
$$

is exact.
Theorem 8.8. Given a short exact sequence of C^{*}-algebras

$$
0 \rightarrow J \rightarrow A \rightarrow B \rightarrow 0
$$

there is a natural long exact sequence of K-groups given by

$$
\ldots \rightarrow K_{n}(J) \rightarrow K_{n}(A) \rightarrow K_{n}(B) \xrightarrow{\partial} K_{n-1}(J) \rightarrow K_{n-1}(A) \rightarrow K_{n-1}(B) \rightarrow \ldots
$$

which ends in $K_{0}(B)$.

9 Exercises for 9/7/19

9.1. Let X and Y be compact Hausdorff spaces and $\alpha, \beta: X \rightarrow Y$ be two continuous functions. We say $\alpha \sim_{h} \beta$ if there is a continuous function

$$
k:[0,1] \times X \rightarrow Y
$$

such that $k(0, x)=\alpha(x)$ and $k(1, x)=\beta(x)$ for all $x \in X$. Define $A:=C(Y), B:=$ $C(X)$, and

$$
\varphi: A \rightarrow B \text { given by } \varphi(f)(x):=f(\alpha(x))
$$

and $\psi: A \rightarrow B$ by $\psi(f)(x):=g(\beta(x))$. Use k to construct a homotopy from φ to ψ. Check all the conditions.
9.2. Let $\varphi, \psi: A \rightarrow B$ be two $*$-homomorphisms such that $\varphi(x) \psi(y)=0$ for all $x, y \in A$ (If this happens, we say that φ is orthogonal to ψ). Show that $\varphi+\psi: A \rightarrow B$ is a *-homomorphism, and

$$
K_{0}(\varphi+\psi)=K_{0}(\varphi)+K_{0}(\psi)
$$

9.3. Let p and q be two projections in a C^{*}-algebra A. Write $p \leq q$ if $(q-p)$ is a positive element in A, and write $p \perp q$ if $p q=0$.
A non-zero projection p in a C^{*}-algebra A is said to be properly infinite if there exist mutually orthogonal projections $e, f \in A$ such that $e \leq p, f \leq p$ and $p \sim e \sim f$. A unital C*-algebra is said to be properly infinite if 1_{A} is a properly infinite projection.
Show that the Cuntz algebra \mathcal{O}_{n} is properly infinite, and show that $\mathcal{B}(H)$ is properly infinite if and only if H is infinite dimensional.
9.4. Let A be a properly infinite unital C^{*}-algebra.
(i) Show that A contains isometries s_{1}, s_{2} such that $s_{1} s_{1}^{*} \perp s_{2} s_{2}^{*}$.
(ii) Show that A contains a sequence of isometries $\left\{t_{j}\right\}_{j=1}^{\infty}$ such that $t_{j} t_{j}^{*} \perp t_{i} t_{i}^{*}$ when $i \neq j$. [Hint: Look at $s_{1}, s_{2} s_{1}, s_{2}^{2} s_{1}, \ldots$]
(iii) For each $n \in \mathbb{N}$, let $v_{n} \in M_{1, n}(A)$ be the row matrix with entries $t_{1}, t_{2}, \ldots, t_{n}$, where $\left\{t_{i}\right\}$ is as in (ii). Show that $v_{n}^{*} v_{n}=1$, the unit in $M_{n}(A)$.
(iv) Let $p \in \mathcal{P}_{n}(A)$ be given, and let v_{n} be as in (iii). Show that $v_{n} p v_{n}^{*}$ is a projection in A, and that $p \sim_{0} v_{n} p v_{n}^{*}$.
(v) Let p, q be projections in A. Put

$$
r:=t_{1} p t_{1}^{*}+t_{2}(1-q) t_{2}^{*}+t_{3}\left(1-t_{1} t_{1}^{*}-t_{2} t_{2}^{*}\right) t_{3}^{*}
$$

Show that r is a projection in A and that $[r]_{0}=[p]_{0}-[q]_{0}$.
(vi) Show that

$$
K_{0}(A)=\left\{[p]_{0}: p \in \mathcal{P}(A)\right\}
$$

9.5. A trace τ on a C^{*}-algebra A is said to be faithful if $\tau(a)>0$ for all non-zero, positive elements $a \in A$.
Let $\tau: A \rightarrow \mathbb{C}$ be a positive trace on A, and let $\tau_{n}: M_{n}(A) \rightarrow \mathbb{C}$ be given by

$$
\tau_{n}\left(\left(a_{i, j}\right)\right):=\sum_{i=1}^{n} \tau\left(a_{i, i}\right)
$$

(i) Let $x=\left(a_{i, j}\right) \in M_{n}(A)$. Show that

$$
\tau_{n}\left(x^{*} x\right)=\sum_{i, j=1}^{n} \tau\left(a_{i, j}^{*} a_{i, j}\right)
$$

(ii) Show that τ_{n} is positive.
(iii) If τ is faithful, show that τ_{n} is faithful.
(iv) If A is a unital C^{*}-algebra which admits a faithful positive trace, then show that A is stably finite. [Hint: For any projection $p \in A, p \leq 1_{A}$.]
(v) Conclude that the rotation algebra A_{θ} is stably finite.
9.6. Let $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of C^{*}-algebras. Define $\prod_{i \in \mathbb{N}} A_{i}$ to be the set of all sequences $\left(a_{i}\right)_{i=1}^{\infty}$ where $a_{i} \in A_{i}$ and

$$
\|a\|:=\sup _{i \in \mathbb{N}}\left\|a_{i}\right\|<\infty
$$

Define

$$
\mathcal{I}:=\left\{a \in \prod A_{i}: a_{i}=0 \text { for all but finitely many } i \in \mathbb{N}\right\}
$$

and define

$$
\sum_{i \in \mathbb{N}} A_{i}:=\overline{\mathcal{I}}
$$

Show that
(i) $\prod A_{i}$ is a C C^{*}-algebra
(ii) $\sum A_{i}$ is a closed two-sided ideal of $\prod A_{i}$
9.7. Let

$$
\pi: \prod A_{i} \rightarrow \prod A_{i} / \sum A_{i}
$$

be the quotient map. For $a \in \prod A_{i}$, show that
(i) $\|\pi(a)\|=\lim \sup \left\|a_{n}\right\|$
(ii) Conclude that $a \in \sum A_{i}$ if and only if $\limsup \left\|a_{n}\right\|=0$.

10 Exercises for 12/7/19

10.1. Let

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \ldots
$$

be an inductive sequence of C^{*}-algebras with inductive limit $\left(A,\left\{\mu_{n}\right\}\right)$.
(i) Suppose that $1 \leq n_{1}<n_{2}<n_{3} \ldots$, and put $\psi_{j}:=\varphi_{n_{j+1}, n_{j}}$. Show that $\left(A,\left\{\mu_{n_{j}}\right\}\right)$ is the inductive limit of the sequence

$$
A_{n_{1}} \xrightarrow{\psi_{1}} A_{n_{2}} \xrightarrow{\psi_{2}} A_{n_{3}} \ldots
$$

(ii) Put $B_{n}:=A / \operatorname{ker}\left(\mu_{n}\right)$, and let $\pi_{n}: A_{n} \rightarrow B_{n}$ be the quotient map. Justify that there are injective $*$-homomorphisms $\psi_{n}: B_{n} \rightarrow B_{n+1}$ and a *homomorphism $\pi: A \rightarrow \lim B_{n}$ making the diagram

commutative. Show that π is a $*$-isomorphism.
(iii) Suppose that each $\varphi_{n}: A_{n} \rightarrow A_{n+1}$ is injective. Show that each $\mu_{n}: A_{n} \rightarrow A$ is also injective.
(iv) Suppose that A is unital. Show that there exists a natural number $n_{0} \in \mathbb{N}$ such that, for all integers $n \geq n_{0}, A_{n}$ is unital and the maps $\varphi_{n}: A_{n} \rightarrow A_{n+1}$ and $\mu_{n}: A_{n} \rightarrow A$ are unit preserving.
10.2. Given an inductive sequence of Abelian groups

$$
G_{1} \xrightarrow{\alpha_{1}} G_{2} \xrightarrow{\alpha_{2}} G_{3} \ldots
$$

follow the proof given for C^{*}-algebras, and construct an inductive limit for this sequence.
10.3. Let G_{1} and G_{2} be the inductive limits of the following two sequences of Abelian groups

$$
\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \ldots \text { and } \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \ldots
$$

where the homomorphism $n: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $1 \mapsto n$. Show that $G_{1} \cong \mathbb{Q}$ and determine G_{2}.
10.4. Let

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \ldots \text { and } B_{1} \xrightarrow{\psi_{1}} B_{2} \xrightarrow{\psi_{2}} B_{3} \ldots
$$

be two inductive systems of C^{*}-algebras. Suppose there are $*$-homomorphisms $\alpha_{n}: A_{n} \rightarrow B_{n}$ and $\beta_{n}: B_{n} \rightarrow A_{n+1}$ such that the following diagram commutes

Show that there are $*$-isomorphisms α and β as shown in the diagram, making the entire diagram commutative. In particular, A and B are isomorphic.
10.5. Consider the inductive sequence of C^{*}-algebras

$$
\mathbb{C} \rightarrow M_{2}(\mathbb{C}) \rightarrow M_{4}(\mathbb{C}) \rightarrow \ldots \rightarrow M_{2^{n}}(\mathbb{C}) \xrightarrow{\varphi_{n}} M_{2^{n+1}}(\mathbb{C}) \rightarrow \ldots
$$

where $\varphi_{n}: M_{2^{n}}(\mathbb{C}) \rightarrow M_{2^{n+1}}(\mathbb{C})$ is given by

$$
a \mapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

Let $\left(A,\left\{\mu_{n}\right\}\right)$ denote the inductive limit of this system. For each $n \in \mathbb{N}$, define a trace $\tau_{n}: M_{2^{n}}(\mathbb{C}) \rightarrow \mathbb{C}$ by

$$
\left(a_{i, j}\right) \mapsto \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} a_{i, i}
$$

(i) Show that there is a positive tracial state $\tau: A \rightarrow \mathbb{C}$ such that

$$
\tau \circ \mu_{n}=\tau_{n} \quad \forall n \in \mathbb{N}
$$

(ii) Show that the range of the map $K_{0}(\tau): K_{0}(A) \rightarrow \mathbb{R}$ is

$$
\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\frac{a}{2^{n}}: a \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

(iii) Show that one cannot find pairwise orthogonal projections $\left\{p_{1}, p_{2}, p_{3}\right\} \in A$ such that $p_{1} \sim p_{2} \sim p_{3}$ and $p_{1}+p_{2}+p_{3}=1$.

Note: The algebra A in this problem is denoted by $M_{2^{\infty}}$, the UHF algebra of type 2^{∞}.

Bibliography

[Rordam] Rordam, Larsen, Laustsen, An Introduction to the K-theory of C^{*}-algebras

