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1 Review of Last Week

Let A be a unital C*-algebra.

Definition 1.1. Define P, (A) to be the set of projections in M,,(A), and write P (A) :=
U,—, Pn(A) (this is an abuse of notation). For p,q € Ps(A), write p ~y ¢ if Jv €
M, n(A) such that p = v*v and ¢ = vo*. Write

D(A) := Poo(A)/ ~o

On D(A), define an operation

Then D(A) is an Abelian semi-group.
Definition 1.2. Let (S, +) be an Abelian semi-group, then 3 a pair (G(5),~), where

1.1. G(9) is an Abelian group
1.2. v: S — G(9) is a semi-group homomorphism.

1.3. (Universal Property) If H is an Abelian group and 7 : S — H is a homomorphism
of Abelian semi-groups, then 3 a unique group homomorphism 7 : G(S) — H such
that

-~

noy=mn

This last property implies that the pair (G(S), 7) is unique, and is called the Grothendieck
completion of S.



Definition 1.3. Let A be a unital C*-algebra, then

and v : D(A) — Ky(A) is denoted [p|p — [plo-

Theorem 1.4 (Standard picture of K - unital case). If A is a unital C*-algebra, then

Ko(A) =A{lplo — [glo : p.q € Pc(A)}

Theorem 1.5 (Universal Property of Ky). Let G be an Abelian group and v : Poo(A) —
G be a function such that

1.1. v(p® q) = v(p) + v(q)
1.2. v(0) =0

1.3. If p ~y, q, then v(p) = v(q)

Then there is a unique group homomorphism o : Ko(A) — G such that

The proof follows from the universal property of the Grothendieck construction.

If o : A — B is a unital *-homomorphism between unital C*-algebras, then ¢ induces
a *-homomorphism ¢, : M,,(A) — M,(B) given by (a;;) — (¢(a;;)). Hence, we get a
map P (A) — P (B) satisfying the above properties, so we get a map

K()(gO) : Ko(A) — KQ(B)

Definition 1.6. Let ¢, : A — B be two s-homomorphisms. We say that ¢ ~, ¢ if
there is a path t — ; such that

1.1. Each ¢; : A — B is a x-homomorphism
1.2. g = ¢ and p; =

1.3. For each a € A, the map t — ¢;(a) is a continuous function [0, 1] — B.

Theorem 1.7 (Homotopy Invariance). If p, 1 : A — B are two homotopic x-homorphisms,
then Ko(p) = Ko(¥).



2 The Cuntz Algebra

Definition 2.1. Let n > 2 and H = EZ(N). Decompose N =T UT, UT, ... UT, where
T, ={i,i+n,i+2n,...}

Let P;: H — H be the natural projection onto ¢*(T;) C H. Then, P; is an infinite rank
projection, so P; ~ Iy. Furthermore,

P+P+.. P, =1y

Choose sy, Sa, ..., S, € B(H) such that

* *
s;s; =1 and s;8; = P,

Then

n

Zsisf =1

=1

(Note that these s; are isometries). Define
O, = C"(81,52,..,5n)
This is called the Cuntz algebra.
Example 2.2.
s1((zy)) := (21,0, 29,0, 23,0, ...) and so((z,)) := (0,21,0,29,0, 23, ...)
Then S; are both isometries, and (check!)
5181 = Pipan{esnsy and 8550 = Pipanfesn}
So Oy := C*(s1, $2).
Note: An element s in a unital C*-algebra is called an isometry if s*s = 1.

Theorem 2.3. 2.1. O, is a simple C*-algebra (no non-trivial closed two-sided ideals)

2.2. (Universal Property of O,,) Given a unital C*-algebra A and elementsty,to, ... t, €

A such that .
ity =1=Y tit]
=1

3 a unique *-homomorphism ¢ : O,, — A such that p(s;) = t;

Lemma 2.4. 2.1. Let u € U(O,,), then 3 a unique *-homomorphism ¢, : O, — O,
such that

Sou(sj) = usj

Furthermore,

U = Z QOU(SJ')S;
j=1



2.2. Let v : O, — O, be a unital x-homomorphism, then Ju € U(O,,) such that p = @,

Proof. 2.1. Follows from the universal property with ¢; = us;. Furthermore,
Z Pu(sj)s; = Zusjs; =u
J=1 Jj=1

2.2. Given ¢, consider

3

Then

But the P; are orthogonal projections, and s; = P;s; so S;fsi = 0;;. Hence,
w = pls)pls) = p(1) = 1
i=1
Similarly, u*u = 1. Finally,
Pu(si) = us; = z": @(Sj)s;si = @(si)s7si = p(si)
j=1
By uniqueness of the universal property, ¢, = ¢.

Lemma 2.5. Let \: O,, — O, be given by

n

AMz) = Z T8}

j=1
Then

2.1. X\ is an endomorphism of O,
2.2. If u e U(O,,) such that X\ = ¢, then u = u*
Proof. 2.1. A\(1) =1 and A(z*) = A(z)*. By orthogonality of the P;

n

M@)A(y) =Y sjas)sys; = Awy)

j=1

. .
since s;s; = 1.



2.2. Ifu=73"", A(s;)s}, then A = ¢, and
ut = Zsj)\(s;) = Z S; [Z sisjsi] = Z 57575585 = Zs?
j=1 j=1 =1 j=1 =1
But

n

* * 2

A(si)si = E $j8iS;Si = 8i8i8;8i = S;
j=1

Hence, u = u*.
m

Lemma 2.6. Let A be a unital C*-algebra and s € A an isometry. Define u: A — A
by p(a) = sas*. Then Ko(u) = idg,(a)

Proof. Note that u, : M,(A) — M,(A) is given by p,(a) = s,as’ where
s, = diag(s,s,...,s)
and s,, is also an isometry. Furthermore, if p € P, (A), then
SnpSn = (5np)(s5np)" ~ (5np)"(snp) = p
Hence, [1n(p)lo = [plo- 0
Theorem 2.7. If g € Ko(O,,), then (n —1)g = 0. In particular, Ko(Os) =0
Proof. Let A : O,, = O,, as above, then A = """ | \; where
\i(z) = s;xs]

Then \;(z)Aj(y) =0 for all z,y € O,, so

Ko(\) = ZKO(Ai)

By the above lemma, it follows that
Ko(Ng=ng Vg€ KO,

However, A = ¢,, where u = u*. In particular, u € Uy(O,,). Let u; be a path of unitaries
from u to 1, then ¢,, is a path of x-homomorphism from

A=, toids = ¢
Hence, Ko(A\) = idg,(0,). Hence the result. O
In fact, Ko(O,) = Z,_1, generated by [1]o.



3 The Irrational Rotation Algebra

Definition 3.1. Let § € R be fixed, and set w := €™, Let H := L?(T x T) equipped
with a normalized Haar measure. Let (5 € H be the unit vector (y(z1, 22) := 1. Define

u,v € B(H) by

(u€) (21, 22) = 21(¢(21, 22) and (v()(z1, 22) = 29( (w21, 22)

Then
(WG = [ 2€Cer e = [ Gl a)nten
T T
Hence,
(u™n)(z1, 22) = Z0(21, 22)
Similarly,

(v'n) (21, 22) = Zan(w™ 21, 22)
Hence, u and v are unitaries. Furthermore,
(vul)(z1, 22) = zo(ul)(wz1, 22) = w21 (w21, 22)

(uvQ) (21, 22) = 21(v() (21, 22) = 21220 (W21, 22)

= VU = Wuv

Define
Ay = C*(u,v) C B(H)

is called the rotation C*-algebra associated to the angle 6.
(End of Day 1)

We will need the following properties:

Theorem 3.2. 3.1. If 0 is irrational, then Ay is simple, and has a unique tracial state.
(see below).

3.2.  (Universal property of Ag): If D is a unital C*-algebra and v',v" € D are two

unitaries such that v'u' = wu'v', then 3 a unique x-homomorphism ¢ : Ag — D

such that p(u) = u' and p(v) =v'.
Note: If 8 € Z, then Ay is the universal C*-algebra generated by two commuting uni-
taries. This is C'(T?). If § ¢ Z, Ay is called a non-commutative two torus.

Remark 3.3. If 0,0 € R be irrational.

3.1. Suppose 0 — ¢’ € Z, then €™ = 2™ and so

Ag = Ag/



3.2. If  + 6 € Z, then > = (¢>™)~1. Hence, there is a surjective *-homomorphism
@ Ay — Ay such that

o(u) =" and p(v) =’
Since Ay is simple, it follows that this map is an isomorphism.

We will now (partially) show that if Ay = Ay, then one of the above two conditions
must hold.

Define By to be those elements in Ay of the form

where only finitely many coefficients «, ,,, are non-zero. One thinks of these as Laurent
polynomials in u and v. Note that By is a x-subalgebra of Ay, and its closure is thus
a C*-algebra containing u and v. Thus, By is dense in Ay and is called the smooth
x-subalgebra of Ay.

Remark 3.4. 3.1. A map 7 : A — C is called a trace if 7 is bounded, linear and
7(ab) = 7(ba). Such a map induces a trace M,(A) — C by (a;;) — > 7(ai;)
[Check!].

3.2. This restricts to a map 7 : Po)(A) = C such that 7(p®q) = 7(p) +7(¢), 7(0) =0,
and if p ~, ¢, then p ~ ¢, so 7(p) = 7(q). So we get a map

Ko(1) : Ko(A) = C

3.3. If 7 is a positive trace (ie. 7(z*z) > 0 for all z € A), then 7(p) € R, for all
P € Pao(A), so we get a map

K()(T) : K()(A) — R
3.4. If 7 is a tracial state (ie. 7 is positive and 7(14) = 1), then Ko(7)([1]o) =1

We will now construct a trace on Ay.

Definition 3.5. Define 7: Ay — C by

7(a) := {(aly, (o)

Then 7 is a positive linear functional on Ay of norm 1. Furthermore,



for elements in By. Hence, it follows that if x € By of the above form, then

T(z*z) =T [( Z ammv_mu_”) ( Z ammu”vm)]
n,me”z n,mez
= Z |t m|? = T(z2*)

n,mez
Since By is dense in Ay, it follows that
T(z*x) = 1(xa™) Vr € Ay
The exercise from last week implies that 7 is a tracial state on Ay.
We now wish to construct a projection p € Ay such that 7(p) = 6.

Lemma 3.6. Let ¢ : T — T s the function z — wz. Then, for any h : T — C
continuous,

vh(u) = (hoy)(u)v, and v*(ho¢)(u) = h(u)v*
Proof. 1t suffices to prove the first statement. Note that

uFv =vu Vk e Z

Hence, for any h : T — R Laurent polynomial

(ho@)(u)v = vh(u)
Now approximate any continuous h : T — C by Laurent polynomials. O

If # = 0, then C'(T?) = Ay has no projections because T? is connected. We now assume
that 6 € (0,1) is irrational, and show that, in this case, Ay has many projections.

Lemma 3.7. Let f,g: T — R be continuous functions, and define

p= fw)v” +g(u) +vf(u) € A
Then
3.1. p=p*
3.2. p=p? if and only if
(i) f-(fop)=0
(i) f-(g+gop)=f
(iii) g =g> + f*+ (fop)?

3.3. Furthermore,



Proof. 3.1. Clearly, p = p* since f and ¢ are real-valued.

3.2. One writes out

3.3.

p2=f(U)v*f(u}v*+f(U) g(u) + fu)v™v f(u)
+ g(u) f(w)v™ + g(u)g(u) + g(u)v f(u)
+ v f(u)f(u)v” +vf( )g(u) +vf(u)vf(u)
=f-(fo 1)( W2+ fe(goe (w4 f2(u)
+gﬂ) +g() g-(fop)(uo
+(fop)*(w)+ (fow)-(gop)(wv+ (fop)-(fopop)(up’
Note that
p=fuwo 4+ g(u) + (f o @) (u

So comparing coefficients, we get

f-(foe™)
flgop™)+(g-f)
P4+ (fop)
g-(fop)+(fop)-(gop) =
(fop) (fopop)=

0
f
g
( %)

Since ¢ is a homeomorphism of T, for any function h : T — R, we have
h=0&hop=0&hop =0

So the first and fifth conditions collapse to one, and so do the second and fourth.
These are the three conditions mentioned above.

First we assume that f and g are both Laurent polynomials. Then p is a Laurent
polynomial, so we may use the expression for 7 on Laurent polynomials. Now
approximate f and g by Laurent polynomials, and use the fact that both sides of
the equation represent continuous maps.

]

Theorem 3.8. There exists a projection p € Ay such that T(p) = 0

Proof. Choose € > 0 such that 0 < e <0 <0+ € < 1. Define

and

t/e 0<t<e
o(t) = 1 e<t<@
TO+e—t) 0<t<O0+e¢
0 0+e<t<l1
f(t):{ 9(0) — g(1)2 59§t§‘0+e
0 : otherwise

10



Then both f and g define functions on T because f(0) = f(1) =0 = g(0) = g(1). The
corresponding element p as defined above is a projection, and

T(p)Z/Tg(z)dz:%.GJF(Q_E)JF%-EZQ

Theorem 3.9. The range of the map
Ko(T) : Ko(Ag) — R
contains (Z + 7.6).

Proof. Since 7(1) = 1, the range of K(7) contains Z. If py is the Rieffel projection from
the previous theorem, then 7(py) = 6, so the range contains Z6. O

Theorem 3.10 (Pimsner-Voiculescu). If6 € R is irrational, then the map Ko(7) induces
an isomorphism

Corollary 3.11. Let 8 and 0" be two irrational numbers. Then Ay = Ag if and only if
either 0 — 0" or 0 + 0’ is an integer.

Proof. If ¢ : Ay — Ay is an isomorphism, and 7’ is the trace on Ay, then by uniqueness
of the trace, 7/ o  must be the trace on Ay. Hence, if py € Ay is the Rieffel projection,
then

Ko(7')([p(po)]o) = Ko(7)[polo = 7(ps) =0
Hence, 0 € Z + Z0', so Jay, b, € Z such that

0=a; +00
Similarly, 8 = ay + bof for some ao, by € Z. Hence,
0 = a1 + bias + b1by6
Since 0 ¢ Q, it follows that byby = 1, so that by = by = £1. Hence the result. O

(End of Day 2)

4 The order structure on K(A)

Definition 4.1. 4.1. A projection p € A is said to be infinite if 9 a projection ¢ such
that p ~ ¢ and g < p. If p is not infinite, then it is said to be finite.

4.2. A unital C*-algebra A is said to be finite if 14 is finite.
4.3. A is said to be stably finite if M, (A) is finite for all n € N.

11



4.4. A non-unital C*-algebra is said to be finite if A is finite.
Lemma 4.2. If A is a unital C*-algebra, TFAE:
4.1. A is finite.

4.2. Every isometry is a unitary.

4.8. All projections in A are finite.
Proof. We prove (1) = (i1) = (ii1) = (1)

(i)= (ii) : If s is an isometry, then 14 = s*s ~ ss* < 1. Since A is finite, ss* =1 and s is a
unitary.

(ii)= (iil) : Suppose every isometry is a unitary, and p,q € A projections such that
p~qandg<p
Let v € A such that v*v = p and vv* = ¢, and let
s=v+(1—-p)
Since pq = qp = ¢, we have v*(1 —p) = 0 = (1 — p)v. Hence,
s's=vv+(1—p)=landw =1—-(p—q)
By hypothesis, s is a unitary, so p — ¢ = 0.
(iii)= (i) : If every projection is finite, then 1, is finite.
0

Definition 4.3. A pair (G, G") is called an ordered abelian group if G is an Abelian
group, GT C G such that

41 GF GG
42. G* N (—GY) = {0}
13. G -Gt =G

We define an order relation on G by z < y iff y — 2 € G*. This makes (G, <) a partially
ordered set such that
r<y=z+z<y+z Vzeq

The converse is also true: If G is a partially ordered group satisfying this condition, we
may set G* = {x € G : x > 0}, then it satisfies the above requirements.

Definition 4.4. Define
Ko(A)" == {[plo : p € Pwc(A)}

Proposition 4.5. 4.1. Ko(A)" + Ko(A)T C Ko(A)+

12



4.2. If A is unital, Ko(A)T — Ko(A)T = Ky(A)

4.8. If A is stably finite, then Ko(A)T N (—Ky(A)*) = {0}
Hence, if A is unital and stably finite, then (Ko(A), Ko(A)1) is an ordered Abelian group.

Proof. 4.1 [plo+ [qlo = [p ® dlo
4.2. This is the standard picture of Ky(A) in the unital case.
4.3. Suppose A is stably finite, and g € Ko(A)T N (—=Ky(A)"), then write

9= [plo = —ldlo
Hence, [p @ glo = 0, so Ir € Ps(A) such that
pDgDr~or

Choose mutually orthogonal projections p’,q’,r’ such that p ~¢ p’,q ~o ¢’ and
r ~q 1’ and think of them in M,,(A) for some n € N. Now

P+ q + 7~ in M,(A)
But p' +¢ + 1" > r and MH(Z) is finite, so p' + ¢ = 0. Hence, p’ = ¢’ =0, so that
9= 1[plo=1[lo=0
0

Definition 4.6. Let (G, G1) be an ordered abelian group. An element v € GV is called
an order unit if, for each x € G, dn € N such that

—nu <z <nu

Note: Not every ordered abelian group has an order unit. For example, C.(R) with the
pointwise order.

Proposition 4.7. If A is unital, then [1]y is an order unit of Ko(A)
Proof. If g € Ko(A), write g = [plo — [g]o for some p,q € P,(A). Then
—n[l]o = —[1a]o = —[dqlo + [1n — glo < —[qlo < [plo — [dlo =g

and
9 < [plo < [plo + [1n — plo = [1n]o = n[l]o

13



Example 4.8. If A= M,,(C)& ... & M,, (C), then
Ko(A)=7Z"

In fact, since A is stably finite (since it is finite dimensional) and unital, (Ky(A), Ko(A)™, [14])
is an ordered abelian group with order unit, given by

Ko(A) = z[e)] + Z[eP) + ...+ Z]el)) = 2"
Ko(A)" =2z*[e)] + 2+ {eﬁ] N AIC T vAn Y
[Lalo = naleflo + naleo + ...+ n.lel o

Definition 4.9. Let (G,G") and (H, H") be ordered Abelian groups. A positive group
homomorphism is a map a : G — H such that a(GT) C HT. Tt is called an order iso-
morphism if it is an isomorphism such that «(G") = H*. If G and H have distinguished
order units u and v respectively, « is said to be order unit preserving if a(u) = v

Example 4.10. Let ¢ : A — B be a x-homomorphism, then

Ko(o)[plo = [¢(p)]o

so Ko(p) is a positive homomorphism. Furthermore, if ¢ is unital, then Ky(y) preserves
the order unit.

Example 4.11. Let 7 denote the usual trace on C, then 7, : M,(C) — C is a trace.
Furthermore,
To(1,) =n

So 7, induces an isomorphism
(Ko(M(C)), Ko(Mn(C)) ™, [1n]) = (Z,Z7,n)

Thus, (Ko(A), Ko(A)T, [14]o) is a useful invariant to distinguish C*-algebras.

5 Inductive Limits

Let C be a category.

Definition 5.1. An inductive sequence in C is a sequence {A,} of objects in C together
with morphisms ¢, : A, — A, 11, usually written as

Ay 5 Ay = Ay 5
and denoted (A,, ¢,). For m > n, define
@m,n:@mfloﬁpmeO---ogpn:An_>Am

and write ¢, , =ida,, Pmn = 0 if m < n. These are called the connecting maps of the
sequence.

14



Definition 5.2. Given a sequence (A, ¢,,) in C, and inductive limit is a system (A, { g, })
where A is an object in C and p, : A, — A are morphisms with the following two
properties:

5.1. The following diagram commutes for each n € N

Pn
An An+1

m /Ml

A

5.2. If (B, {\.}) is another system where B is an object in C and A, : A, — B are
morphisms such that A\, = A\, 1 0 ¢, for all n € N, then there exists a unique
morphism A : A — B such that the following diagram commutes

Remark 5.3. 5.1. Inductive limits do not always exist. For instance, in the category
of finite sets. We will show that they exist in the category of C*-algebras, of
abelian groups, and of ordered abelian groups.

5.2. If an inductive limit exists, it is unique by the second property above.

Example 5.4. 5.1. Let D be a C*-algebra and A,, C A, ;1 C D be an increasing chain
of subalgebras. If ¢, = ¢, : A, — A,41, then (A, {j,}) is an inductive limit of

(Ap, tn), where
A=A,
n=1

and u, = j, : A, — A is the inclusion map because

(i) pn = fins1 0ty for all n € N,
(i) If (B,{A\.}) is another system as above, then define A\ : A — B by

AMa) = M\(a) ifa € A,
This is well-defined, because if a € A,, C A, 1, then
Ant1(a) = Anga(tn(a)) = An(a)

Then it follows that A o u,, = A, for all n € N. Furthermore, this map A is a
x-homomorphism, and is unique because | J A, is dense in A.

15



5.2. Let A, = M,,(C) and ¢, : A, — A1 is the map

a a0
0 0
Let K(H) denote the compact operators on H = (2  then fix an ONB {e;} of
H. Define p, € K(H) to be the canonical rank n projection. If z,y € H, define
r®y € K(H) by
(z®y)(2) = (z,2)y
Then p, =Y 1 e Qe
(i) Define pu, : M,(C) — K(H) by

pnlaig) = Y aijei ®e;

ij=1
Then p, is injective, and the range of p, is p,(H)p,.

Proof. p, is injective because the set {e; ® e;} is linearly independent. As for
surjectivity onto p,/C(H)p,, note that if u € p,K(H)p,, then

U = PnUPn

=Y (e®@e)ule; ®e))

3,j=1

= Z<U(€i)a ej)e; ® €;
ij=1
= tin(ai ;)
where a; ; = (u(e;), €;). O
(ii) Check that pi,41 0 @n = pn
(iii) Finally, observe that

K(H) = U P (H)pn = U fin (M (C))

(iv) As in the previous example, we see that (JC(H), {u,}) is an inductive limit of
(M (C), ¢n).
(End of Day 3)

Proposition 5.5 (Inductive Limits of C*-algebras). Given an inductive system (A, ¢n)
of C*-algebras, an inductive limit (A, {u,}) exists.

16



Proof. Consider the quotient map

m: [[4n = []A/D An=@Q
and let ¢, , : A, = A,, as above.
5.1. Define v, : A, = [[,, An by
vn(a) = (pman(a))

This is well-defined, because ||pmn(a)|| < |la| for all m € N. Furthermore, v, is
clearly a x-homomorphism.

5.2. Let p, : A, — Q by u, = 7o v,, then observe that if a € A,, then
¢ = vn(a) = (Vnt1 0 ¢n)(a)
has the form ¢, = a and ¢,, = 0 when m # n. Hence, ¢ € >_ A;, so that
fin(@) = (fint1 © on)(a) = 7(c) =0

Hence, p, = pfin11 0 .
5.3. Thus, {u,(A,)} is an increasing sequence of C*-subalgebras of Q). Define

A= U fin(An)

Then A is a C*-algebra, and u, : A, — A is a sequence of *-homomorphisms
satisfying the first condition of Definition 2.2.

5.4. To prove the second condition, suppose (B,{\,}) is another system such that
An = A1 © @, Then
Am © Pmn = A VM >n

Hence, [[An(a)ll < [l¢mn(a)]l. So

[An(@) || < limsup [[@mn(a)l] = [Im(vnla)[] = ()]

Hence, ker(u,) C ker(MA,). By the first isomorphism theorem, 3 a unique *-
homomorphism,

A (Ay,) — B such that X, o p, = A,

By uniqueness, A/, |..4.)= A,. Hence, we get a *-homomorphism

N [j pn(A,) — B
n=1

17



which extends A. A is a contraction, so it extends to a *-homomorphism
AN A—B

such that Ao u, = X, o u, = A\,. Furthermore, \ is unique with this property
because

A= U fin(An)

[]

Proposition 5.6. Let (G, o) be an inductive system of abelian groups, then an induc-
tive limit (G, B,,) exists. Moreover, one has

5.1 -
G = B.(Gn)
n=1

5.2. -
ker(8,) = | J ker(amn)

m=n+1

5.3. If (H,~y,) is another system and v : G — H the unique group homomorphism as
in Definition 2.2, then

(i) =y is injective iff ker(v,) = ker(f3,,) for alln € N

(ii) ~v is surjective iff H =~ 7n(Gp)
Proof. The proof is similar to the one above. [
Example 5.7. 5.1. Consider G,, = Z and «,(1) = n+ 1. ie. We may picture the

system as

Define ~,, : Z — Q by

Then 7, is a group homomorphism such that v, = v,11 o «,,. Hence, (Q, {7,}) is
a system that satisfies (i) in Definition 2.2. Let (G, {#,}) be an inductive limit of
this system, then there is a group homomorphism

v:G — Q such that yo oy, =7,

Since
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5.2.

it follows that ~ is surjective. Also, since

o)

ker(8,) = U ker (v, n)

m=n+1

and each ay, is injective, it follows that [, is injective for all n. We see that each
v, is also injective. Hence,

ker(v,) = ker(5,)

for all n € N. Hence, 7 is injective as well.

Let G, = 7Z and a,(1) = 2 for all n € N. ie. We may picture the system as

Define v, : Z — Q by

Then 7,, = Vn11 0 ay,. Hence, (Q, {7,}) is a system that satisfies the first condition
of Definition 2.2. Hence, if (G, {8,}) is an inductive limit of the system, then there
is a group homomorphism

v : G — Q such that yo o, = 7,
As in the previous example, we may check that

ker(3,) = ker(y,) = {0}

so that v is injective. However, v is not surjective, but does surject onto

> ~ [m ~ 1
H:H'yn(Gn):{Q—n.mGZ,nEO}:Z[ﬁ}

This is the inductive limit of the system.

Proposition 5.8 (Inductive Limits of ordered Abelian groups). Let (G, ;) be an
inductive system of ordered abelian groups where o, : G, — G,y1 are positive group
homomorphisms. Let (G, 3,) be an inductive limit of this system, and define

G+ = G Bn(G:L_)
n=1

Then (G,G%) is an ordered abelian group, 5, is a positive group homomorphism, and
(G,GT,{B,}) is an inductive limit in the category of ordered abelian groups.

Proof. Omitted. n
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Remark 5.9. Given an inductive sequence
AP A, B A5 L

of C*-algebras, let (A, {u,}) be the limit of the sequence. (ie. the following diagram
commutes

An o An+1
A

and A is universal with this property). Then we get an inductive sequence of Abelian
groups

KO(Al) Ko(p1) KO(AQ) Ko(p2) KO(A:S) Ko(ps)

Let (G, {5,}) be the inductive limit of this sequence. ie. the following diagram commutes

Ko(pn)

K()(An) KO(An-i-l)

_—
k%

0

Theorem 5.10 (Continuity of Ky). Given an inductive system (A,, @,) of C*-algebras
with inductive limit A, we have

Ko(A) = lim(Ko(A,), Ko(en))

In fact, there is a unique group isomorphism v : Gy — Ko(A) such that the following

diagram commutes
Ko(Ay)
Go 5 Ko (A)

In particular,

Ko(A) = | Ko(pn)(Ko(An))

n=1

and

ker(Ko(u,)) = U ker(Ko(Pmn))

m=n+1

Proof. Note that the following diagram commutes

Ko(pn)

K0<An) KO(An—H)
Ko(pn) A%(Hnﬂ)
Ko(A)
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Hence, by the universal property of the inductive limit, there is a group homomorphism
v GO — K()(A)

such that v o 8, = Ko(p,). The proof that ~ is bijective is long and technical, so we
omit it. O

Definition 5.11. Given a C*-algebra A, consider the inductive sequence A — My(A) —
M3(A) — ... where the connecting maps are given by the inclusion

a +— a 0
0 0
The inductive limit of this sequence is A ® K.
Definition 5.12. Let e € K be the fixed projection of rank one

e((x,)) == (21,0,0,...)

and Kk : A - A® K be given by a — a ® e. Then k is an injective *-homomorphism,
called the canonical inclusion of A into A ® K

Lemma 5.13. Let p € K be any rank one projection and ¢ : A — A ® K be given by
ar— a®p, then Ko(p) = Ko(a)

Proof. Note that p ~ e and 1 —p ~ 1 — e, so Ju € U(B(H)) such that e = upu*. By
the Borel functional calculus, 3h € B(H) self-adjoint such that u = e*. Hence the
path u; := ™" connects u to the identity. Hence, e = upu* ~j, p. Furthermore, if
v A— A® K is given by

a+— a @ upuy

Then ¢, is a path of *-homomorphisms such that ¢q = ¢ and ¢; = a. Hence, Ky(«) =
Ko(e)- u

Theorem 5.14 (Stability of Ky). The map k : A — A ® K induces an isomorphism
K()(/i) : Ko(A) — Ko(A (059 ’C)

Proof. Let ¢, : M,(A) = M,1(A) and p,, : M,,(A) - A® K be the maps as above
5.1. Koy(k) is surjective:

Ko(A® K) = | Ko(un) (Ko(Mo(A))

j=1
soif g€ Ko(A® K),3In € N and ¢’ € Ko(M,(A)) such that

9= Ko(un)(9)

But ¢, : A — M,(A) is the map A\, from the theorem proved last week. Hence,
Ko(n1) + Ko(A) — Ko(M,(A)) is an isomorphism, so 3h € Ky(A) such that
g = Ko(¢n,1)(h). Hence,

9 = Ko(pin © pn1)(h) = Ko(r)(h)

so Ko(k) is surjective.
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5.2. Ko(k) is injective: If h € Ky(A) is such that Ky(x)(h) = 0, then
Ko(pn)Ko(pni1)(h) =0 VneN

But by the earlier remark,

[e.o]

ker(Ko(un)) = | ker(Ko(omn))

m=n+1

hence,
Ko(@mm)(Ko(pn1(h)) = 0= Ko(¢m,a)(h) in Ko(My(A))

But Ko(¢m,1) is an isomorphism, so h = 0 as required.

Corollary 5.15. There is an isomorphism « : Ko(K) — Z such that
a([Elo) = Tr(E)
for every projection E € IC. This isomorphism is denoted by Ko(Tr)

Proof. Let k : C - C® K = K be the map as above, and oy : Ko(C) — Z the
isomorphism such that

ai([1)o) =1

Define o = a; o Ko(k)™' : Ko(K) — Z. Then « is an isomorphism. Furthermore,
F :=K(1) is a one-dimensional projection in I, and

If £ € K is any one-dimensional projection, then £ ~ F'in IC(H) as in the case of B(H).
Hence,
a[Elo) =1

If £ is any arbitrary n-dimensional projection, then E is a sum of orthogonal rank one
projections, so
a([Elo) =n=Tr(E)

Example 5.16. Consider the short exact sequence
0— K(H) S B(H) = Q(H) =0
where H = (?. Then Ky(B(H)) =0, and Ko(K(H)) = Z, so the map
Ko(e) - Ko(K(H)) = Ko(B(H))
is not injective. Therefore, the functor K is not exact.

(End of Day 4)
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6 Finite Dimensional C*-Algebras

Definition 6.1. Define e(n, i, j) € M,(C) to be the matrix whose (i, 7)™ entry is 1 and
other entries are zero. If

A= M, (C)® M, (C)®...M, (C)

define
egﬁ) = (0,0,...,e(nk,1,5),0,0,...,0) € A
These are called the matrix units of A, and they satisfy the following identities

6.1. egf’})eﬁ) = el(-i,)
6.2. eMel —0ifk#£Corifj#m

%, “m,n

k) k
6.3. (6;]-)) :egﬂ-)

6.4. A:Span{eg? 1<kE<nr1<ij<ng}

Definition 6.2. Let B be a C*-algebra and {fz(];)} be a set of elements in B satisfying
(1), (7i) and (i77) above. Then this is called a system of matrix units in B of type A.

Note: Given a system of matrix units of type A as above, there is a unique *-homomorphism
¢ : A — B such that go(egi-)) = fZ(I;) for all k,4,j. Furthermore, this map is

6.1. injective if all the fl(];) are non-zero.
6.2. surjective if B = Span{fg;)}

Lemma 6.3. Suppose that {fl(lf) 1 <Ek<r1<i<mng} isaset of mutually orthogonal
projections in a C*-algebra B such that

k k
f1(,1) ~ f2(,2) ~ o~ fR)

N Nk
for 1 <k <r. Then there is a system of matriz units {fl(];)} in V' that extends {fi(f)}.

Proof. Choose partial isometries fl(i-) such that
k) (K k k) oK)\ k
( l(z)) 1(,1') = fi(,i) and ffz)(ffb = fl(,l)
and define
k k) (K
fi(,j) = ( 1(1)) fl(,j)
Then this system works [Check!] O

Definition 6.4. A C*-subalgebra D C A is called a maximal abelian subalgebra (masa)
if it is abelian, and it is not properly contained in any other abelian C*-subalgebra of A.

By Zorn’s lemma, every Abelian C*-subalgebra is contained in a masa.
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Definition 6.5. Let X C A. Define
X ={a€A:ar=1za Vre X}

Note that X’ is a norm-closed subalgebra of A. Furthermore, it is a C*-subalgebra if X
is self-adjoint (ie. if a € X, then a* € X)

Note: B C A is Abelian iff B C B'.

Lemma 6.6. D C A is a masa iff D = D'

Proof. Suppose D = D', then D is Abelian, and if E' is Abelian and contains D, then
DCECFE cD =D

so ¥ = D. Hence D is a masa.

Conversely, suppose D is a masa, then D C D’ and D’ is a C*-subalgebra. WTS:

D" C D. Since D" and D are C*-algebras, it suffices to show that (D')s, C D. So fix

a € D' self-adjoint, and set
X :=DU{a}

Since elements in X commute with each other,
XcXx

Since X is self-adjoint, X’ is a C*-subalgebra of A, and so

Cr(X)c X'
So if y € C*(X) and z € X, then zy = yx. Hence,

X cCov(X)
Once again, C*(X)' is a C*-algebra, so

C*(X) c C*(X)

It follows that C*(.X) is Abelian. Since D C X C C*(X), and D is a masa, we conclude
that
D = C*(X)

In particular, a € D as required. O

Example 6.7. Let A = M, (C) and D denote the set of all diagonal matrices. Then D
is an Abelian C*-subalgebra of A. Furthermore, if a € D', then

a€1,1 = €1,1a
So
er1(aler)) = aey1(er) = aler)

Hence, a(e;) is an eigen-vector of e;; with eigen-value 1. So a(e;) = Aje;. Thus
continuing, we see that a must be diagonal. Hence, D' = D, so D is a masa.
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Lemma 6.8. Let D be a masa in a C*-algebra A.

6.1. If D is unital, then A is unital and 14 = 1p

6.2. If p is a projection in D such that pDp = Cp, then pAp = Cp (Note: A projection
with this property is minimal, in the sense that there is no projection q € A such
that ¢ < p other than ¢ =0)

Proof. 6.1. If a € A, then WTS: a = alp. Let z := a—alp, then zd =0 for all d € D.
Since D is self-adjoint, this implies (zd*)* = dz* = 0 for all d € D. Hence,

d(z*z) =0=(2"2)d Vde D
Hence, (2*z) € D' = D since D is a masa. Hence,
(Z*2)(z2) =0=|z|'=0=2=0
Hence, a = alp for all a € A. Hence,
lpa=(a*lp)*=(a")"=a VYa€ A

SOlD:1A

6.2. Let a € pAp, then a = pa = ap. So if d € D, we have pd = dp = pdp = A\p for
some A € C. Hence,
ad = apd = Aap = \a = da

Hence, a € D' = D, so a € D. In that case, a € pDp. Hence, pAp C pDp = Cp.
]

Theorem 6.9. Any finite dimensional C*-algebra is isomorphic to
My, (C) & My, (C) & ... & M, (C)
for some positive integers r,ny,na,...,n,. € N

Proof. 6.1. Choose a masa D C A. By Gelfand, D = Cy(X) for some space X. Since
D is finite dimensional, it follows that X is finite. In particular, X is compact.
Hence, D is unital, and so A is unital and 14 = 1p by the previous lemma.

6.2. Let X = {x1,29,...,2x} and let p; € D denote the corresponding characteristic
functions

pi(x;) = di;
Then {p1,p2,...,pn} C D are projections such that

p1+p2+...+pn =1p and p;Dp; = Cp;

By the previous lemma, p;Ap; = Cp; for all 1 < j < N
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6.3.

6.4.

6.5.

6.6.

6.7.

Fix 1 <i,j < N such that p;Ap;, # 0. Choose v € p;Ap; such that ||v|| = 1, then
v € piAp;
is a positive element of norm 1. But p; Ap; = Cp;. Hence,
v = p;
Similarly, vv* = p;. Hence, we conclude
pjApi = {0} or p; ~ p;

Now suppose p; ~ p; and a € p;Ap;, then a = ap; = (av*)v. Asav* € p;Ap; = Cp;,
so av* = Ap; for some A € C. Furthermore, p;v = v, so

a=av'v = Apjv = v
Hence, a € Cu, so if p; ~ p;, then

Partition the set {p1,p2,...,py} into Murray von-Neumann equivalence classes.
Suppose there are r equivalence equivalence classes, and that the k™ class has ny,
elements

k k
{fl(,l)v 2(,2)7 ctt fé?nk}

By choice of these projections, we have
k ¢ . % k
FOAFY = {0} if kA £ and B ~ fO

By the earlier lemma, we can extend this collection to a system of matrix units
{f Z(I;)} in A.
By Step 4,

ALS =<1

1= Z fz(l:)
ik

and by Step 2,

Hence if a € A, then

a= fi(l;)>a( fz'(l;)> = 3 fi(];)af;l;)
>z > a) -3 5 s

ik k=1 i,j=1

- i nf: )‘E?fi(,];‘)

k=11i,j=1
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for some scalars )\E? € C. Hence,

A= Span{fi(,];)}

Thus the system of matrix units satisfies all conditions (1) - (4). Hence, by the
remark following Definition 1.2,

A= M, (C)e M, (C)d ... M, (C)
[l

(End of Day 5)

7 Classification of AF-Algebras

Definition 7.1. An approximately finite dimensional (AF) algebra is an inductive limit
of finite dimensional C*-algebras.

Example 7.2. 7.1. Every finite dimensional C*-algebra is AF
7.2. K(£?) is AF.

7.3. Fix a sequence {n;} of integers such that ny | ngy1. Define ¢y : M,, (C) —

M,,..,(C) to be the unital map
a — diag(a,a,...,a)
d
1 times

where dj, = njy1/nx. The inductive limit is a unital AF-algebra, called a Uniformly
Hyperfinite Algebra (UHF) algebra of type 0 := {n;}

7.4. If ny, = 2% for all k € N, then the corresponding UHF algebra of type 2% is called
the CAR algebra (Canonical Anticommutation relations)

Lemma 7.3. Every AF-algebra is stably finite. Hence, (Ko(A), Ko(A)T) is an ordered
abelian group.

Proof. If A is an AF-algebra, then so is A and M;(A). Hence it suffices to show that
A is finite when A is unital and AF. We show that every isometry s € A is a unitary.
Suppose s € A is an isometry, then fix ¢ = 1/4. Since A is an AF-algebra, 3 a finite
dimensional C*-subalgebra B C A and = € B such that

I|s —z|| <€
It follows that

L=zl =llsll = ll=ll| < [ls =2l < e =zl <1+
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14 —a%z|| = ||s"s — z"x]]
<||s*s = s*z|| + ||s*z — z"x]|
< [[s"Mlls =[] + [Is* — 2" (|||
<ls—zl+lls —zll(1+¢)
<ete(lde)=e2+2<e(3+2) <1
Hence, x*x is invertible. Replacing B by B+ C1,4 (which is also finite dimensional), and

using spectral permanence, we can conclude that z*z is invertible in B. Furthermore, if
z = (z*x)7!, then

0 1 1
(1— ks < 1-— F <
;; v*)t = ||| ’;H i il gy g

Hence, if y = zx*, then yr = 14 and

1+¢
lyll < T

2e
Now x is left-invertible in B. Since B is finite dimensional, it follows that z is right
invertible in B (and hence A), and the left and right-inverses coincide. Thus, xy = 14,
SO

e(1+e)
lsy = 1all = llsy —zyll < lIs —2llllyll < ;=55 <1
€2 — 2¢
because €(3 + 2¢) < 1. Hence, sy is invertible, so s is right invertible as required. O

If A is a unital AF-algebras, we consider the triple
E(A) = (Ko(A), Ko(A)™, [Lao)
If there is a unital *-isomorphism ¢ : A — B, then we get an isomorphism of invariants
Ko(p) : £(A) = E(B)

Theorem 7.4 (Elliott). Let A and B be two unital AF-algebras. Given an isomorphism
a: E(A) — E(B), there is a x-isomorphism ¢ : A — B such that « = Ko(p).

Proof. The outline of the proof is as follows:

7.1. Write both A and B as inductive limits of finite dimensional C*-algebras
A A, B A5 o A

Bl B2—>Bg ...— B

This gives an inductive sequence of Ky-groups.
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7.2. Given an isomorphism « : £(A) — £(B), we construct an intertwining at the level
of Ky groups.

Ky(Ay,) Ko(A,,) . Ky(A)
SN it
Ko(Bm,) Ko(Bm,) Ko(Bpy) — ... — Ko(B)

(-1)
This requires a lifting property of the groups Ky(A;) and Ky(B;) (which are free
Abelian groups) as follows: Given an inductive limit

KO(Ak) Ko(pk) KO(A)
X /
Ko(B))

Once can lift the map v to a map 3 : Ko(B;) = Ko(A,) for some ¢ > k such that
TFDC:

Ko(ee,k) Ko
Ko(An) 22250 (40) 2 Ky (A)

Ko(B;)
We will apply this inductively to construct an intertwining of Ky groups as above
(Equation .1)
7.3. Given an intertwining of K, groups as above, we would like to construct -

homomorphisms f; : B,,, =+ A,, and g; : A,, = B such that

Kﬂ(fi) = «; and KO(gi) = i

For this, we need an Existence/Uniqueness theorems:

(i) Given finite dimensional C*-algebras A and B, and a morphism 7 : Ky(A) —
Ko(B), we need to find a x-homomorphism f : A — B such that Ky(f) =n.

(ii) Furthermore, we would like the f; and g; to interact as in Equation .2. Hence,
we need a Uniqueness theorem as well: Given finite dimensional C*-algebras
A and B and two morphisms f,g : A — B. Suppose Ko(f) = Ko(g), then
how are f and g related to each other?

7.4. Finally, we construct an intertwining: two subsequences (4,,) and (B,,;) and maps
between them as below

An, An, An,
2N N
B, B, B,

A (2
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If such an intertwining exists, then there is an isomorphism ¢ : A — B (by yester-
day’s tutorial problem). This isomorphism will have the property that Ky(¢) = «
as well.

]

Example 7.5. Consider the inductive sequence of C*-algebras
C — My(C) = My(C) = ... = Myn(C) &% Mynsi(C) — ...

where ¢,, : Mon(C) — Man+1(C) is given by

a +— a 0
0 a
Let (A, {u,}) denote the inductive limit of this system. For each n € N, define a trace
1
(aij) on Z Qi
i=1
Note that 7,41 0 ¢, = 7,. By the universal property of the inductive limit, there is a

map 7 : A — C such that
TOol, =T, Vné€eN

Since each 7, is linear, so is 7. Since each 7 is bounded (norm-decreasing), it follows
that 7 is bounded (Why?). Furthermore, for any a € p,(A),b € pm(Ay), we write
a = pp(a),b = pnp(t'). If m > n, then u, = pm © thy_1 0 ... 1y, SO We may assume
m = n, then

7(ab) = 7,(a't') = 7, (b'd") = 7(ba)

Hence, 7 is a trace on A. Similarly, one can check that 7 is a positive tracial state. We
get a map
K()(T) : Ko(A) — R

Note that -
KO(A) = U Ko(ﬂn)(KO(An))

Now, i
Ko(m) (o)) (Fo(An)) = Kol(m) (Ko(Au) = { 37 s a € 2}

Hence, the range of Ky(7) is

1 a
Finally, if g € K¢(A) is such that Ky(7)(g) = 0, then In € Nsuch that g € Ko(pn)(Ko(A4,)).

So write
9= Ko()(9)
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for some ¢’ € Ky(A,). Then
Ko(ma)(g") =0

But Ko(7,) : Ko(A,) — 27"Z is an isomorphism. Hence, ¢’ = 0, so g = 0. Hence,

Ko(7) : Ko(A) > Z H

is an isomorphism. Furthermore, it is clear that Ky(7) maps the positive elements of
Ky(A) to the set

{%:aENU{O},neN}

So the ordered triple
(Ko(A), Ko(A)™, [1o)

is completely determined.

Remark 7.6. Given a UHF algebra A of type M := {n;}, A has a trace 7 : A — C.
Furthermore,

Ko(7) : Ko(A) = | Jn,'Z

Furthermore, we can completely determine the triple £(A) using Ko(7).

8 The Higher K-groups
Definition 8.1. Let A be a C*-algebra. The suspension of A is defined as
SA:={feC([0,1],A4): f(0) = f(1) = 0}
For n > 1, we define inductively,
S"(A) == S(S"tA)
Note that S™(A) is a C*-algebra by the point-wise operations; and it is non-unital.
Definition 8.2. For n > 1, define
Koul(A) = Ko(S"(4))

Remark 8.3. 8.1. Given a *-homomorphism ¢ : A — B, we get a *-homomorphism
Sy : SA — SB given by
(Se)(f)(t) := (f(1))
Hence, we get a map Ko(S¢) : K1(A) — K1(B). We denote this map by K;(p).

8.2. More generally, we see that K, is a covariant functor.
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83. If ¢, : A — B are two x-homomorphisms such that ¢ ~j ¥, then S ~p Su.
Therefore, K; (and more generally, each K,,) is a homotopy invariant functor as
well.

8.4. Given a short exact sequence

075 A% B0

of C*-algebras, the induced sequence

0 SJ 25 945 5B 0
is also exact. Hence, the sequence

is exact at K1(A). Hence, K; (and hence K,,) is half-exact.
8.5. Similarly, each K, is a split-exact functor.

8.6. Similarly, all the other properties (continuity, stability, etc.) all carry over from
K() to Kn

Definition 8.4. Given a short exact sequence
057545 B0
of C*-algebras, define the mapping cone to be
C(A,B) :={(a,f) :a€ A, f € C([0,1], B) such that f(0) =0, f(1) =(a)}
Define j : J — C(A, B) by a +— (a,0).
Theorem 8.5. The map K(j) : Ko(J) = Ko(C(A, B)) is an isomorphism.
Proof. 8.1. Let C'B denote the cone of B, ie. the C*-algebra

CB:={feC([0,1],B) : f(0) = 0}
and define 7 : C(A, B) — CB by (a, f) — f. Then the sequence
0= JLC(A,B) S CB—0
is exact. We thus get a half-exact sequence
Ko(J) =2 Ko(C(A, B)) =5 Ko(CB)

But C'B is contractible, to Ky(m) is the zero map. Hence, Ky(j) is surjective.
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8.2.

8.3.

For injectivity, define

Q= {fEC([Oal]vA)f«)) GJ}

We now have maps 0 : J — @ given by a — @, the constant function; and define
v: @ — J given by evaluation at 0. We now have a split exact sequence

0= ker(y) = QL J—0

We thus obtain a split exact sequence

0 — Ko(ker(7)) — Ko(Q) 227 Ky(J) — 0
Now observe that
ker(y) = {f € C([0,1], A) : f(0) = 0} = CA

This is once again contractible, so Ky(9) : Ko(J) — Ko(Q) is an isomorphism.
Now, we have a map 1 : Q@ — C(A, B) given by

= (f(1), 4o f)
This is a surjective *-homomorphism, and
ker(n) = CJ
Hence, ker(n) is contractible, so 7 is induces an injective map
Ko(n) : Ko(Q) — Ko(C(A, B))
Now observe that the composition
Ko(n) o Ko(6) = Ko(j)

which is thus injective.

Definition 8.6. Consider a short exact sequence

05J5 A5 BS0

of C*-algebras, and the short exact sequence

0SB C(A,B) S A0

where a(f) := (0, f) and S(a, f) := a (Observe that this is exact). Therefore, we get a

map

K()(Oé) : Kg(SB) — KU(C(A,B))

Composing with the map Ky(7)7!, we get a map

0 : Kl(B) — KQ(J)

This is called the boundary map or index map.
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Theorem 8.7. Given a short exact sequence

05J5 A5 BS0

the sequence
0

K1 KO
Ky (A) 2 1(B) & Ko(7) 229 Ky (4)
15 exact.

Theorem 8.8. Given a short exact sequence of C*-algebras
0=+J—>A—=>B-—-0

there is a natural long exact sequence of K-groups given by

o Ko(J) = Ka(A) = Kn(B) S Ky (J) = K1 (A) = K1 (B) = . ..

which ends in Ky(B).
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9 Exercises for 9/7/19

9.1.

9.2.

9.3.

9.4.

Let X and Y be compact Hausdorff spaces and o, : X — Y be two continuous
functions. We say o ~y, B if there is a continuous function

ko[0,1]x X =Y
such that £(0,z) = a(z) and k(1,z) = f(z) for all x € X. Define A :=C(Y), B :=
C(X), and
p: A — B given by ¢(f)(z) := f(a(z))

and 1 : A — B by ¥(f)(x) := g(8(x)). Use k to construct a homotopy from ¢ to
1. Check all the conditions.

Let p,1 : A — B be two x-homomorphisms such that ¢(z)y(y) = 0forall z,y € A
(If this happens, we say that ¢ is orthogonal to v). Show that ¢ + ¢ : A — B is
a *-homomorphism, and

Ko(p + 1) = Ko(p) + Ko(¥)

Let p and ¢ be two projections in a C*-algebra A. Write p < ¢ if (¢ — p) is a
positive element in A, and write p L ¢ if pg = 0.

A non-zero projection p in a C*-algebra A is said to be properly infinite if there exist
mutually orthogonal projections e, f € Asuch thate <p,f <pandp~e~ f. A
unital C*-algebra is said to be properly infinite if 1 4 is a properly infinite projection.

Show that the Cuntz algebra O,, is properly infinite, and show that B(H) is prop-
erly infinite if and only if H is infinite dimensional.

Let A be a properly infinite unital C*-algebra.
(i) Show that A contains isometries sy, so such that s;s] L sos5.

(ii) Show that A contains a sequence of isometries {t;}32, such that ¢;t; L tt;
when i # j. [Hint: Look at s, s951, 8351, - - .

(iii) For each n € N, let v,, € M; ,(A) be the row matrix with entries 1, s, ..., t,,
where {t;} is as in (ii). Show that v}v, = 1, the unit in M, (A).

(iv) Let p € P,(A) be given, and let v, be as in (iii). Show that v,pv is a
projection in A, and that p ~q v,pv’.

(v) Let p,q be projections in A. Put
ri=tipt] + to(1 — q)t5 + t3(1 — t1t] — tat5)ts

Show that r is a projection in A and that [r]o = [plo — [¢]o-

(vi) Show that
Ko(A) ={[plo:p e P(A)}
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9.5. A trace 7 on a C*-algebra A is said to be faithful if 7(a) > 0 for all non-zero,
positive elements a € A.

Let 7: A — C be a positive trace on A, and let 7,, : M,,(A) — C be given by

n

Ta((aiy)) = ZT(@M)

i=1

(i) Let z = (a;;) € M,(A). Show that

(ii) Show that 7, is positive.
(iii) If 7 is faithful, show that 7, is faithful.

(iv) If A is a unital C*-algebra which admits a faithful positive trace, then show
that A is stably finite. [Hint: For any projection p € A,;p < 14.]

(v) Conclude that the rotation algebra Ay is stably finite.

9.6. Let {A;}ien be a sequence of C*-algebras. Define [], . A; to be the set of all
sequences (a;):2, where a; € A; and

[al| := sup [la;|| < oo
€N
Define
Z:={ac HAZ' :a; = 0 for all but finitely many i € N}
and define B
iEN
Show that

(i) J]A; is a C*-algebra
(i) >  A; is a closed two-sided ideal of [] A;

9.7. Let
be the quotient map. For a € [] A;, show that
(i) llm(a)|l = limsup [[a,|]

(ii) Conclude that a € > A; if and only if limsup ||a,|| = 0.
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10

10.1.

10.2.

10.3.

10.4.

Exercises for 12/7/19

Let
AlﬁAgﬁAg...

be an inductive sequence of C*-algebras with inductive limit (A, {u,}).
(i) Suppose that 1 < n; < ny < ng..., and put ¥; := @, n;- Show that
(A, {tn,; }) is the inductive limit of the sequence
A, 5 Ap, 2 A,

(ii) Put B, := A/ker(u,), and let m, : A, — B, be the quotient map. Jus-
tify that there are injective x-homomorphisms v, : B, — B,;; and a *-
homomorphism 7 : A — lim B,, making the diagram

A -2 Ay 22 A A
I
B, -2~ B, . B, B

commutative. Show that 7 is a *-isomorphism.

(iii) Suppose that each ¢, : A, — A, 41 is injective. Show that each p, : A, — A
is also injective.

(iv) Suppose that A is unital. Show that there exists a natural number ny € N
such that, for all integers n > ng, A,, is unital and the maps ¢, : A, = A1
and p, : A, — A are unit preserving.

Given an inductive sequence of Abelian groups

G5 G, %G, ..
follow the proof given for C*-algebras, and construct an inductive limit for this
sequence.

Let GGy and G5 be the inductive limits of the following two sequences of Abelian
groups

ZH5257— .. andZ 5257 ...
where the homomorphism n : Z — Z is defined by 1 +— n. Show that G; = QQ and
determine (5.

Let
AlgAQﬁAg... andBlngng...

be two inductive systems of C*-algebras. Suppose there are x-homomorphisms
a, A, = B, and 3, : B, — A, .1 such that the following diagram commutes

A, L A 2 A . lim A,
b1 B2 Al
Bl o BQ V2 Bg e lim Bn
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Show that there are x-isomorphisms « and 3 as shown in the diagram, making the
entire diagram commutative. In particular, A and B are isomorphic.

10.5. Consider the inductive sequence of C*-algebras
C — My(C) = My(C) = ... = Ma(C) £% Mynta (C) — ...

where ¢, 1 Mon(C) — Man+1(C) is given by

Let (A, {pn}) denote the inductive limit of this system. For each n € N, define a
trace 7, : Mon(C) — C by

(i) Show that there is a positive tracial state 7 : A — C such that

TO W, =T, VnéeN
(ii) Show that the range of the map Ko(7) : Ko(A) — R is
7|1 = {5z a€zZneN]
5| = \gn i 0€Lm

(iii) Show that one cannot find pairwise orthogonal projections {pi, ps,p3} € A
such that p; ~ ps ~ p3 and p; + ps + p3 = 1.

Note: The algebra A in this problem is denoted by My, the UHF algebra of
type 2°°.
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