
Rokhlin Dimension and Equivariant Bundles

Prahlad Vaidyanathan

Department of Mathematics

IISER Bhopal

February 21, 2023

1/28



Contents

Preliminaries

Group Actions on Spaces

Rokhlin Dimension

Equivariant Bundles

2/28



Preliminaries



Assumptions

Unless stated otherwise,

� All C*-algebras will be unital and separable (denoted

A,B,C , . . .)

� All topological spaces will be compact and Hausdorff (denoted

X ,Y ,Z , . . .)

� All groups will be finite (denoted G ,H, . . .)
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Motivation

A group action of G on A is a group homomorphism

α : G → Aut(A)

Given such an action, one constructs a crossed product

C*-algebra

A⋊α G

Question: Permanence

Suppose A satisfies a property (P), then can we impose

conditions on α so that A⋊α G also satisfies property (P)?
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Motivation

Examples of (P) include

1. Finite nuclear dimension/decomposition rank

2. Finite stable rank/real rank

3. Being separable, nuclear and satisfying the UCT.

4. Being simple

5. Stability (A⊗K ∼= A)

6. Z-stability (A⊗Z ∼= A)

The motivation comes from the commutative case.
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Group Actions on Spaces



Covering Dimension of a Space

Definition

Let n ∈ N. A finite open cover U of X is said to be

n-decomposable if there is a decomposition

U = U0 ⊔ U1 ⊔ . . . ⊔ Un such that each Ui consists of mutually

disjoint sets.

The following cover of S1 is 1-decomposable.
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Covering Dimension of a Space

One thinks of an n-decomposable cover as a way of covering the

space with (n + 1) colours, where each colour corresponds to a

single Ui .

Definition

The Lebesgue covering dimension of X is the least integer n

such that every finite open cover U of X has a finite refinement

V which is n-decomposable. We denote this number by

dim(X )

All spaces in this talk will be assumed to have finite dimension.
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Group Actions on Spaces

A group action of G on X is a group homomorphism

G → Homeo(X )

Given such an action, we get an induced action of

α : G → Aut(C (X )) by

αg (f )(x) := f (g−1 · x)

Furthermore, every action of G on C (X ) arises this way.

Definition

An action G ↷ X is said to be free if, for any x ∈ X and g ∈ G ,

(g · x = x) ⇒ (g = e)
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Free Group Actions on Spaces

Definition

Let G ↷ X , U be a finite open cover of X , and n ∈ N. We say

that U is n-decomposable with respect to G if we can write

U = U0 ⊔ U1 ⊔ . . . ⊔ Un where, for each 0 ≤ i ≤ n, each Ui

consists of |G | mutually disjoint sets

Ui = {V g
i : g ∈ G}

such that

g · V h
i = V gh

i

In other words, such a cover of X corresponds to a colouring of X ,

where each colour respects the action of G .
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Free Group Actions on Spaces

Theorem (Gardella, 2017)

An action G ↷ X is free if and only if there exists n ∈ N and an

open cover U of X that is n-decomposable with respect to G .

Indeed, we may take n := dim(X/G ).
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Rokhlin Dimension



Order Zero Maps

Two elements a, b ∈ A are said to be orthogonal (in symbols,

a ⊥ b) if

ab = a∗b = ab∗ = ba = 0

Definition

A contractive, completely positive (c.c.p.) map φ : A → B is said

to have order zero if, for any a, b ∈ A,

a ⊥ b ⇒ φ(a) ⊥ φ(b)
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Approximately Decomposable Actions

Definition

Let n ∈ N. An action α : G → Aut(A) is said to be

approximately n-decomposable if for every F ⊂ A finite,

M ⊂ C (G ) finite and every ϵ > 0, there are (n + 1) c.c.p. order

zero linear maps

φ0, φ1, . . . , φn : C (G ) → A

satisfying the following conditions:
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Approximately Decomposable Actions

1. Each φi is ‘approximately equivariant’.

∥αg (φi (f ))− φi (λg (f ))∥ < ϵ ∀g ∈ G , f ∈ M

where λg (f )(s) := f (g−1s).

2. Each φi is ‘approximately central’

2.1

∥φi (f )a− aφi (f )∥ < ϵ ∀a ∈ F and f ∈ M

2.2

∥φi (f1)φj(f2)−φj(f2)φi (f1)∥ < ϵ ∀f1, f2 ∈ M and 0 ≤ i , j ≤ n

3. The {φi} are an ‘approximate partition of unity’.

∥
n∑

i=0

φi (1C(G))− 1A∥ < ϵ
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Rokhlin Dimension

Definition (Hirshberg, Winter, and Zacharias, 2015)

The Rokhlin dimension (with commuting towers) of an action

α : G → Aut(A) is the least value of n ∈ N such that α is

approximately n-decomposable. We denote the integer by

dimc
Rok(α)
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Comments on the Definition

1. If dimc
Rok(α) = 0, then α has the Rokhlin property .

2. If condition (2.2) is dropped, we get Rokhlin dimension

(without commuting towers). This number is denoted by

dimRok(α).

3. Analogous definitions exist for compact groups, and for

residually finite discrete groups.
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Example 1 (Izumi, 2004)

Let A :=
⊗∞

n=1M2(C) be the UHF algebra of type 2∞ and

α ∈ Aut(A) be the order two automorphism given by

α =
∞⊗
n=1

Ad

(
0 1

1 0

)

Then α induces an action of Z2 on A such that

dimc
Rok(α) = 0.
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Example 2 (Hirshberg and Phillips, 2015)

Let θ ∈ R be irrational, and A = Aθ be the corresponding irrational

rotation algebra generated by unitaries {u, v} such that

uv = e2πiθvu

Let α ∈ Aut(A) be the order two automorphism satisfying

α(v) = v and α(u) = −u

Then, α induces an action of Z2 with the property that

dimc
Rok(α) = 1.
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Example 3 (Gardella, 2017)

However, if G ↷α̃ X is a group action and α : G → Aut(C (X )) is

the induced action, then the following are equivalent:

� dimc
Rok(α) ≤ n.

� α is n-decomposable in the sense of Definition 1.

� α̃ is free and dim(X/G ) ≤ n.
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Consequences of Finite Rokhlin Dimension

Theorem (Gardella, Hirshberg, and Santiago, 2021)

Let (P) denote one of the following properties:

1. Finite nuclear dimension/decomposition rank

2. Finite stable rank/real rank

3. Being separable, nuclear and satisfying the UCT.

4. Stability (A⊗K ∼= A)

5. Z-stability (A⊗Z ∼= A)

6. ... etc.

If A satisfies property (P) and dimc
Rok(α) < ∞, then A⋊α G also

satisfies property (P).
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Equivariant Bundles



Vector Bundles

In what follows,

� X will denote a compact metric space with finite covering

dimension.

� p : E → X will be a locally trivial, complex vector bundle,

endowed with a fixed hermitian metric.
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Vector Bundles

We write

Γ(E ) := {ξ : X → E continuous, such that p ◦ ξ = idX}

for the continuous sections of (E , p,X ).

Given ξ ∈ Γ(E ) and f ∈ C (X ), we may write

(f · ξ)(x) := f (x)ξ(x) = (ξ · f )(x)

This gives a central action of C (X ) on Γ(E ), so Γ(E ) is a

C (X )-module. Moreover, the hermitian metric on E gives Γ(E )

the structure of a Hilbert C (X )-bimodule .
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Group Actions on Bundles

An action of a group G on a vector bundle (E , p,X ) is a pair

α̃ : G → Homeo(X ) and γ̃ : G → Homeo(E )

such that

� p : E → X is G -equivariant.

� For each s ∈ G , the map Ex → Eα̃s(x) is a linear map of

vector spaces that preserves the inner product.
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The Cuntz-Pimsner Algebra of a Vector Bundle

Using the Hilbert C (X )-bimodule Γ(E ), one can associate a

C*-algebra,

OE

called the Cuntz-Pimsner algebra associated to the vector bundle

(E , p,X ).

Theorem

Given a group action (α̃, γ̃) of G on (E , p,X ), there is an

induced action

β : G → Aut(OE )

satisfying certain natural properties.
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Main Result

Theorem (Vaidyanathan, 2022)

Let (α̃, γ̃) be an action of G on (E , p,X ) and let

β : G → Aut(OE )

be the induced action on the corresponding Cuntz-Pimsner

algebra.

� If α̃ is free, then

dimc
Rok(β) ≤ dim(X/G ).

� If α̃ is trivial and the action on each fiber is faithful, then

dimRok(β) ≤ 2 dim(X ) + 1.
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Consequences

Suppose that dim(X ) < ∞ and the action α̃ is free, then

� OE ⋊β G has finite nuclear dimension.

� OE ⋊β G has finite stable rank, real rank, etc.

� OE ⋊β G absorbs Z tensorially.

� OE ⋊β G satisfies the UCT.
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Some comments on the proof

The main technical tool in the following theorem

Theorem (Vaidyanathan, 2022)

Let A be a nuclear C (X )-algebra and α : G → Aut(A) be an

action where G acts by C (X )-linear automorphisms. Then

dimRok(α) + 1 ≤ (dim(X ) + 1)(sup
x∈X

dim(A(x)) + 1)

These theorems works for compact, second countable groups and

non-unital C*-algebras as well. The assumption that X is compact,

metrizable and finite dimensional is needed in the proof.
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Thank you!
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