Rokhlin Dimension and Equivariant Bundles

Prahlad Vaidyanathan

Department of Mathematics IISER Bhopal

February 21, 2023

Preliminaries

Group Actions on Spaces

Rokhlin Dimension

Equivariant Bundles

Preliminaries

Unless stated otherwise,

- All C*-algebras will be unital and separable (denoted A, B, C, . . .)
- All topological spaces will be compact and Hausdorff (denoted X, Y, Z, ...)
- All groups will be finite (denoted *G*, *H*,...)

A group action of G on A is a group homomorphism

 $\alpha: G \to \operatorname{Aut}(A)$

Given such an action, one constructs a $\begin{tabular}{c} crossed product\\ C^*-algebra \end{tabular}$

 $A \rtimes_{\alpha} G$

Question: Permanence

Suppose A satisfies a property (P), then can we impose conditions on α so that $A \rtimes_{\alpha} G$ also satisfies property (P)?

Examples of (P) include

- 1. Finite nuclear dimension/decomposition rank
- 2. Finite stable rank/real rank
- 3. Being separable, nuclear and satisfying the UCT.
- 4. Being simple
- 5. Stability $(A \otimes \mathcal{K} \cong A)$
- 6. \mathcal{Z} -stability ($A \otimes \mathcal{Z} \cong A$)

The motivation comes from the commutative case.

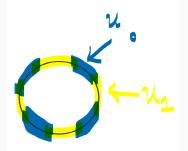
Group Actions on Spaces

Covering Dimension of a Space

Definition

Let $n \in \mathbb{N}$. A finite open cover \mathcal{U} of X is said to be <u>n-decomposable</u> if there is a decomposition $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \ldots \sqcup \mathcal{U}_n$ such that each \mathcal{U}_i consists of mutually disjoint sets.

The following cover of S^1 is 1-decomposable.



One thinks of an *n*-decomposable cover as a way of covering the space with (n + 1) colours, where each colour corresponds to a single U_i .

Definition

The Lebesgue covering dimension of X is the least integer n such that every finite open cover \mathcal{U} of X has a finite refinement \mathcal{V} which is *n*-decomposable. We denote this number by

$\dim(X)$

All spaces in this talk will be assumed to have finite dimension.

A group action of G on X is a group homomorphism

 $G \rightarrow \operatorname{Homeo}(X)$

Given such an action, we get an induced action of $\alpha : G \rightarrow Aut(C(X))$ by

$$\alpha_g(f)(x) := f(g^{-1} \cdot x)$$

Furthermore, every action of G on C(X) arises this way.

Definition

An action $G \curvearrowright X$ is said to be <u>free</u> if, for any $x \in X$ and $g \in G$,

$$(g \cdot x = x) \Rightarrow (g = e)$$

Free Group Actions on Spaces

Definition

Let $G \cap X$, \mathcal{U} be a finite open cover of X, and $n \in \mathbb{N}$. We say that \mathcal{U} is <u>n-decomposable with respect to G</u> if we can write $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \ldots \sqcup \mathcal{U}_n$ where, for each $0 \le i \le n$, each \mathcal{U}_i consists of |G| mutually disjoint sets

$$\mathcal{U}_i = \{V_i^g : g \in G\}$$

such that

$$g \cdot V_i^h = V_i^{gh}$$

In other words, such a cover of X corresponds to a colouring of X, where each colour respects the action of G.

Theorem (Gardella, 2017)

An action $G \curvearrowright X$ is free if and only if there exists $n \in \mathbb{N}$ and an open cover \mathcal{U} of X that is *n*-decomposable with respect to G.

Indeed, we may take $n := \dim(X/G)$.

Rokhlin Dimension

Two elements $a, b \in A$ are said to be <u>orthogonal</u> (in symbols, $a \perp b$) if

$$ab = a^*b = ab^* = ba = 0$$

Definition

A contractive, completely positive (c.c.p.) map $\varphi : A \rightarrow B$ is said to have <u>order zero</u> if, for any $a, b \in A$,

 $a \perp b \Rightarrow \varphi(a) \perp \varphi(b)$

Definition

Let $n \in \mathbb{N}$. An action $\alpha : G \to \operatorname{Aut}(A)$ is said to be approximately *n*-decomposable if for every $F \subset A$ finite, $M \subset C(G)$ finite and every $\epsilon > 0$, there are (n + 1) c.c.p. order zero linear maps

$$\varphi_0, \varphi_1, \ldots, \varphi_n : C(G) \to A$$

satisfying the following conditions:

Approximately Decomposable Actions

1. Each φ_i is 'approximately equivariant'.

 $\|\alpha_{g}(\varphi_{i}(f)) - \varphi_{i}(\lambda_{g}(f))\| < \epsilon \quad \forall g \in G, f \in M$

where $\lambda_g(f)(s) := f(g^{-1}s)$.

2. Each φ_i is 'approximately central'

2.1

$$\|\varphi_i(f)a - a\varphi_i(f)\| < \epsilon \quad \forall a \in F \text{ and } f \in M$$

2.2

 $\|\varphi_i(f_1)\varphi_j(f_2) - \varphi_j(f_2)\varphi_i(f_1)\| < \epsilon \quad \forall f_1, f_2 \in M \text{ and } 0 \le i,j \le n$

3. The $\{\varphi_i\}$ are an 'approximate partition of unity'.

$$\|\sum_{i=0}^n \varphi_i(1_{\mathcal{C}(G)}) - 1_A\| < \epsilon$$

Definition (Hirshberg, Winter, and Zacharias, 2015)

The Rokhlin dimension (with commuting towers) of an action $\alpha : G \to \operatorname{Aut}(A)$ is the least value of $n \in \mathbb{N}$ such that α is approximately *n*-decomposable. We denote the integer by

 $\dim^{c}_{\textit{Rok}}(\alpha)$

- 1. If dim^c_{Rok}(α) = 0, then α has the Rokhlin property .
- 2. If condition (2.2) is dropped, we get <u>Rokhlin dimension</u> (without commuting towers). This number is denoted by

 $\dim_{Rok}(\alpha).$

3. Analogous definitions exist for compact groups, and for residually finite discrete groups.

Let $A := \bigotimes_{n=1}^{\infty} M_2(\mathbb{C})$ be the UHF algebra of type 2^{∞} and $\alpha \in Aut(A)$ be the order two automorphism given by

$$\alpha = \bigotimes_{n=1}^{\infty} \operatorname{Ad} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then α induces an action of \mathbb{Z}_2 on A such that

 $\dim_{Rok}^{c}(\alpha) = 0.$

Let $\theta \in \mathbb{R}$ be irrational, and $A = A_{\theta}$ be the corresponding irrational rotation algebra generated by unitaries $\{u, v\}$ such that

$$uv = e^{2\pi i\theta}vu$$

Let $\alpha \in Aut(A)$ be the order two automorphism satisfying

$$\alpha(v) = v \text{ and } \alpha(u) = -u$$

Then, α induces an action of \mathbb{Z}_2 with the property that

 $\dim_{Rok}^{c}(\alpha) = 1.$

However, if $G \curvearrowright_{\widetilde{\alpha}} X$ is a group action and $\alpha : G \to Aut(C(X))$ is the induced action, then the following are equivalent:

- $\dim_{Rok}^{c}(\alpha) \leq n$.
- α is *n*-decomposable in the sense of Definition 1.
- $\widetilde{\alpha}$ is free and dim $(X/G) \leq n$.

Consequences of Finite Rokhlin Dimension

Theorem (Gardella, Hirshberg, and Santiago, 2021)

Let (P) denote one of the following properties:

- 1. Finite nuclear dimension/decomposition rank
- 2. Finite stable rank/real rank
- 3. Being separable, nuclear and satisfying the UCT.
- 4. Stability $(A \otimes \mathcal{K} \cong A)$
- 5. \mathcal{Z} -stability ($A \otimes \mathcal{Z} \cong A$)
- 6. ... etc.

If A satisfies property (P) and $\dim_{Rok}^{c}(\alpha) < \infty$, then $A \rtimes_{\alpha} G$ also satisfies property (P).

Equivariant Bundles

In what follows,

- X will denote a compact metric space with finite covering dimension.
- p: E → X will be a locally trivial, complex vector bundle, endowed with a fixed hermitian metric.

We write

 $\Gamma(E) := \{\xi : X \to E \text{ continuous, such that } p \circ \xi = \mathrm{id}_X \}$

for the continuous sections of (E, p, X).

Given $\xi \in \Gamma(E)$ and $f \in C(X)$, we may write

$$(f \cdot \xi)(x) := f(x)\xi(x) = (\xi \cdot f)(x)$$

This gives a central action of C(X) on $\Gamma(E)$, so $\Gamma(E)$ is a C(X)-module. Moreover, the hermitian metric on E gives $\Gamma(E)$ the structure of a Hilbert C(X)-bimodule.

An action of a group G on a vector bundle (E, p, X) is a pair

$$\widetilde{\alpha} : G \to \operatorname{Homeo}(X) \text{ and } \widetilde{\gamma} : G \to \operatorname{Homeo}(E)$$

such that

- $p: E \to X$ is *G*-equivariant.
- For each s ∈ G, the map E_x → E_{α̃s(x)} is a linear map of vector spaces that preserves the inner product.

Using the Hilbert C(X)-bimodule $\Gamma(E)$, one can associate a C*-algebra,

 \mathcal{O}_E

called the Cuntz-Pimsner algebra associated to the vector bundle (E, p, X).

Theorem

Given a group action $(\tilde{\alpha}, \tilde{\gamma})$ of G on (E, p, X), there is an induced action

 $\beta: G \to \operatorname{Aut}(\mathcal{O}_E)$

satisfying certain natural properties.

Main Result

Theorem (Vaidyanathan, 2022)

Let $(\widetilde{lpha},\widetilde{\gamma})$ be an action of G on (E,p,X) and let

```
\beta: G \to \operatorname{Aut}(\mathcal{O}_E)
```

be the induced action on the corresponding Cuntz-Pimsner algebra.

• If $\widetilde{\alpha}$ is free, then

```
\dim_{Rok}^{c}(\beta) \leq \dim(X/G).
```

- If $\widetilde{\alpha}$ is trivial and the action on each fiber is faithful, then

 $\dim_{Rok}(\beta) \leq 2\dim(X) + 1.$

Suppose that $\dim(X) < \infty$ and the action $\widetilde{\alpha}$ is free, then

- $\mathcal{O}_E \rtimes_{\beta} G$ has finite nuclear dimension.
- $\mathcal{O}_E \rtimes_{\beta} G$ has finite stable rank, real rank, etc.
- $\mathcal{O}_E \rtimes_{\beta} G$ absorbs \mathcal{Z} tensorially.
- $\mathcal{O}_E \rtimes_{\beta} G$ satisfies the UCT.

The main technical tool in the following theorem

Theorem (Vaidyanathan, 2022)

Let A be a nuclear C(X)-algebra and $\alpha : G \to Aut(A)$ be an action where G acts by C(X)-linear automorphisms. Then

$$\dim_{Rok}(\alpha) + 1 \le (\dim(X) + 1)(\sup_{x \in X} \dim(A(x)) + 1)$$

These theorems works for compact, second countable groups and non-unital C*-algebras as well. The assumption that X is compact, metrizable and finite dimensional is needed in the proof.

References

- Gardella, Eusebio (2017). "Rokhlin dimension for compact group actions". In: Indiana University Mathematics Journal 66.2, pp. 659–703. ISSN: 0022-2518. DOI: 10.1512/iumj.2017.66.5951.
- Gardella, Eusebio, Ilan Hirshberg, and Luis Santiago (2021). "Rokhlin dimension: duality, tracial properties, and crossed products". In: Ergodic Theory and Dynamical Systems 41.2, pp. 408–460. ISSN: 0143-3857. DOI: 10.1017/etds.2019.68.
 Hirshberg, Ilan and N. Christopher Phillips (2015). "Rokhlin dimension: obstructions and permanence properties". In: Documenta Mathematica 20, pp. 199–236. ISSN: 1431-0635.

- Hirshberg, Ilan, Wilhelm Winter, and Joachim Zacharias (2015). "Rokhlin dimension and C*-dynamics". In: Communications in Mathematical Physics 335.2, pp. 637–670. ISSN: 0010-3616. DOI: 10.1007/s00220-014-2264-x.
 Izumi, Masaki (2004). "Finite group actions on C*-algebras with the Rohlin property. I". In: Duke Mathematical Journal 122.2, pp. 233–280. ISSN: 0012-7094. DOI: 10.1215/S0012-7094-04-12221-3.
- Vaidyanathan, Prahlad (2022). "Rokhlin dimension and equivariant bundles". In: Journal of Operator Theory 87.2, pp. 487–509. ISSN: 0379-4024. DOI: 10.7900/jot.

Thank you!