Korovkin's Theorem

Prahlad Vaidyanathan

Department of Mathematics IISER Bhopal

December 09, 2022

Korovkin's Theorem

The Choquet Boundary

Further Avenues of Research

Korovkin's Theorem

Notation

Define

 $C[0,1] := \{f : [0,1] \rightarrow \mathbb{C} : f \text{ is continuous}\}.$

For $f,g \in C[0,1]$, write

$$d(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|.$$

This defines a metric on C[0, 1].

We write $f_n \rightarrow f$ in C[0,1] if

 $\lim_{n\to\infty}d(f_n,f)=0.$

An element $f \in C[0,1]$ is *positive* if $f(x) \ge 0$ for all $x \in [0,1]$. If this happens, we write

 $f \ge 0$.

A linear operator $T: C[0,1] \rightarrow C[0,1]$ is *positive* if

 $f \ge 0 \Rightarrow T(f) \ge 0.$

• Define $\mathcal{T}: C[0,1] \rightarrow C[0,1]$ by

$$T(f)(x) := \int_0^x f(t) dt.$$

• Define \mathcal{T} : $\mathcal{C}[0,1] \rightarrow \mathcal{C}[0,1]$ by

$$T(f)(x) := f(0)x + f(1)(1-x)$$

Theorem (Korovkin, 1953)

Let $\mathcal{T}_n: C[0,1] \to C[0,1]$ be a sequence of positive operators such that

$${\mathcal T}_n(g) o g$$
 for $g \in \{\mathbf{1}, e_1, e_2\}$

where $e_i(t) := t^i$. Then

$$T_n(f) \to f$$

for all $f \in C[0,1]$.

For a proof, see [Limaye, 1996].

Example: Weierstrass' Approximation Theorem

Define $B_n: C[0,1] \rightarrow C[0,1]$ by

$$B_n(f)(x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Then B_n is linear, and positive. Also,

$$B_n(1)(x) = (x + (1 - x))^n = 1(x)$$

$$B_n(e_1)(x) = e_1(x)$$

$$B_n(e_2)(x) = \frac{n - 1}{n}e_2(x) + \frac{1}{n}e_1(x)$$

Hence, $B_n(g)
ightarrow g$ for $g \in \{1, e_1, e_2\}$, so by Korovkin's theorem,

 $B_n(f) \to f \quad \forall f \in C[0,1].$

Generalizing Korovkin's Theorem

Let X be a compact Hausdorff space and

 $C(X) := \{f : X \to \mathbb{C} : f \text{ is continuous}\}$

equipped with the supremum metric

$$d(f,g) := \sup_{x \in X} |f(x) - g(x)|$$

A function $f \in C(X)$ is *positive* if

 $f(x) \geq 0 \quad \forall x \in X.$

A linear operator $T : C(X) \rightarrow C(X)$ is *positive* if

 $f\geq 0 \Rightarrow T(f)\geq 0.$

Generalizing Korovkin's Theorem

Definition: Korovkin Set

A subset $G \subset C(X)$ is called a *Korovkin set* if, for any sequence $T_n : C(X) \to C(X)$ of positive operators, if

 $T_n(g) \rightarrow g$ for all $g \in G$

then

$$T_n(f) \to f$$
 for all $f \in C(X)$.

Hence, if X = [0, 1], then

$$G = \{\mathbf{1}, e_1, e_2\}$$

is a Korovkin set.

Question A

Given $G \subset C(X)$, how do we determine if G is a Korovkin set?

Given $G \subset C(X)$, the *function system* generated by G is the set

$$A_G := \overline{\operatorname{span}}(G \cup G^*)$$

where $G^* := \{\overline{f} : f \in G\}$.

The answer to Question A may be framed in terms of A_G .

The Choquet Boundary

Let $A \subset C(X)$ be a vector subspace and a fix a point $x_0 \in X$.

Definition: Representing measures

Let μ be a (Borel, regular) probability measure on X. We say that μ represents x_0 with respect to A if

$$f(x_0) = \int_X f d\mu$$

for all $f \in A$.

We write $\operatorname{Rep}(x_0, A)$ for the set of all such measures.

Examples of Representing Measures

For any $A \subset C(X)$ and any $x_0 \in X$,

 $\delta_{x_0} \in \mathsf{Rep}(x_0, A)$

because, by definition

$$\int_X f \delta_{x_0} = f(x_0) \quad \forall f \in C(X).$$

Hence,

 $\delta_{x_0} \in \operatorname{Rep}(x_0, A).$

Question

Can $\operatorname{Rep}(x_0, A)$ contain any other measures?

Examples of Representing Measures

Let $\mathbb{D} \subset \mathbb{C}$ denote the open unit disc, $X := \overline{\mathbb{D}}$ and

 $A := \{ f \in C(X) : f \text{ is analytic on } \mathbb{D} \}.$

If $f \in A$ and $z := re^{it} \in \mathbb{D}$, then $0 \le r < 1$, and so the Poisson integral formula holds

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) P_r(\theta, t) d\theta$$

This gives a measure $\mu \in \operatorname{Rep}(z, A)$. Note that

$$\mu \neq \delta_z$$

because μ is supported on S^1 , the unit circle.

Let $A \subset C(X)$ be a vector subspace.

Definition

A point $x_0 \in X$ is called a *boundary point* of A if

 $\mathsf{Rep}(x_0, A) = \{\delta_{x_0}\}.$

The set of all boundary points of A is called the *Choquet Boundary* of A and is denoted by

 $\partial_X(A).$

If A is dense in C(X) and $x_0 \in X$, suppose $\mu \in \operatorname{Rep}(x_0, A)$. Then

$$\int_X f d\mu = f(x_0) = \int_X f \delta_{x_0}$$

for all $f \in A$. By continuity, this equation holds for all $f \in C(X)$. Therefore,

$$\mu = \delta_{x_0}.$$

Therefore,

$$\partial_X(A) = X.$$

Let $\mathbb{D} \subset \mathbb{C}$ denote the open unit disc, $X := \overline{\mathbb{D}}$ and

 $A := \{ f \in C(X) : f \text{ is analytic on } \mathbb{D} \}.$

If $z \in \mathbb{D}$, then by the Poisson integral formula,

 $\operatorname{Rep}(z,A)\neq\{\delta_z\}.$

Therefore, $z \notin \partial_X(A)$, so

 $\partial_X(A) \subset S^1.$

Indeed, one can show that $\partial_X(A) = S^1$.

Saskin's Theorem

If $G \subset C(X)$ is a set, write

$$A_G := \overline{\operatorname{span}}(G \cup G^*)$$

where $G^* := \{\overline{f} : f \in G\}$.

Theorem (Saskin, 1967)

A subset $G \subset C(X)$ is a Korovkin set if and only if

$$\partial_X(A_G) = X.$$

For a modern proof, see [Davidson and Kennedy, 2016].

Example: Korovkin's Theorem

Let X = [0, 1] and $G = \{1, e_1, e_2\}$ where $e_i(t) := t^i$. We wish to prove that

$$\operatorname{Rep}(x,A_G) = \{\delta_x\}$$

for each $x \in [0,1]$. So fix $x \in [0,1]$ and suppose $\mu \in \operatorname{Rep}(x,A)$ is such that

$$\mu \neq \delta_x.$$

Then, there exists an open set U not containing x such that

 $\mu(U) > 0.$

If $f(t) := (t - x)^2$, then $f \in A_G$ and $0 = f(x) = \int_X f d\mu \ge \int_U f d\mu > 0.$

This contradiction proves that $\operatorname{Rep}(x, A) = \{\delta_x\}.$

Example: Fejer's Theorem

Let $X = S^1$ and $G = \{1, \text{Re}, \text{Im}\}$, then G is a Korovkin set. For a proof, see [Bauer, 1981].

Theorem (Fejer, 1904)

C

Let $f \in C[-\pi,\pi]$ such that $f(\pi) = f(-\pi)$. Define

$$\widehat{f}(k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt$$
$$s_n(f)(x) := \sum_{k=-n}^{n} \widehat{f}(k) e^{ikx}$$
$$r_m(f)(x) := \frac{1}{m} \sum_{n=0}^{m-1} s_n(f)(x).$$

Then,

 $\lim_{m\to\infty}\sigma_m(f)=f$

Further Avenues of Research

Question

If X is a compact Hausdorff space, then

- When does C(X) have a finite Korovkin set?
- For a given X, what is the minimum cardinality of G possible?

Hint: It is related to the Lebesgue covering dimension of X.

Operators on a Hilbert Space

If H is a Hilbert space, then write

 $\mathcal{B}(H) := \{T : H \to H : T \text{ is continuous}\}$

• $\mathcal{B}(H)$ is a Banach space with the norm is defined by

 $||T|| := \sup\{||T(x)|| : x \in H, ||x|| = 1\}.$

• If $T \in \mathcal{B}(H)$, the *adjoint* of T is defined by

 $\langle T^*(x), y \rangle = \langle x, T(y) \rangle.$

- If $S, T \in \mathcal{B}(H)$, define $ST := S \circ T$.
- An operator $T \in \mathcal{B}(H)$ is *positive* if

 $\langle T(x), x \rangle \ge 0 \quad \forall x \in H.$

Definition

A C*-algebra is a norm-closed subalgebra A of $\mathcal{B}(H)$ such that

$$T \in A \Rightarrow T^* \in A.$$

Therefore, we may speak of positive elements and positive operators in the context of C*-algebras.

Question

- Can we formulate a definition for 'Korovkin set' in the context of C*-algebras?
- Can we prove a version of Saskin's theorem here?

This question leads to a deep unresolved conjecture called *Arverson's Hyperrigidity Conjecture*. For the details, see [Arveson, 2011] and [Davidson and Kennedy, 2016].

- Korovkin's theorem is a useful approximation theorem for spaces of continuous functions.
- It may be interpreted using measure theory in the form of Saskin's theorem.
- It may be generalized to C*-algebras, where analogous questions remain open even today.
- There are Korovkin-type approximation theorems for other function spaces (L^p[0,1], C_b(ℝ^d), etc.). For more on this, see [Altomare, 2010].

References

- Altomare, Francesco (2010). "Korovkin-type theorems and approximation by positive linear operators". In: *Surveys in Approximation Theory* 5, pp. 92–164.
- Arveson, William (2011). "The noncommutative Choquet boundary II: hyperrigidity". In: *Israel Journal of Mathematics* 184, pp. 349–385. ISSN: 0021-2172. DOI: 10.1007/s11856-011-0071-z.

- Bauer, Heinz (1981). "Approximation and abstract boundaries". In: Jednota Československých Matematikú a Fyziku. Pokroky Matematiky, Fyziky a Astronomie 26.6. Translated from the English by Ivan Netuka and Jiří Veselý, pp. 305–326. ISSN: 0032-2423.
- Davidson, Kenneth R. and Matthew Kennedy (Aug. 8, 2016).
 "Choquet order and hyperrigidity for function systems". In: arXiv: http://arxiv.org/abs/1608.02334v2 [math.OA].
 Limave. Balmohan V. (1996). Functional analysis. Second. New
 - Limaye, Balmohan V. (1996). *Functional analysis*. Second. New Age International Publishers Limited, New Delhi, pp. x+612. ISBN: 81-224-0849-4.

Thank you!