SIMPLICITY OF CROSSED PRODUCT C*-ALGEBRAS

ABSTRACT. Given a C*-dynamical system (A,Z,«a), we try to determine when the
crossed product A x Z is a simple C*-algebra. In doing so, we arrive at the Connes
Spectrum of such an action.

Let G = Z and A be a unital C*-algebra, and let o : G — Aut(A) be an action of G
on A. We wish to understand when the crossed product C*-algebra A x G is simple.
Remark 1.

(1) We think of A C A x G. So, if <A is a proper G-invariant ideal, then we have
a short exact sequence

0—=>IxG—AxG— A/l xG—0.

So, J :=1 x G is a proper ideal in A x G. Hence, if A x G is simple, then A is
G-simple (no G-invariant ideals).

(2) The converse is not true. If A is any unital C*-algebra and u € U(A) is a unitary,
define a € Aut(A) by a(a) := uwau*. Then, we claim that

AxG=A®C(T).

Indeed, define ¢ : G — Aut(A) be the trivial action, and let ¢ : C.(G,A) —
Ce(G, A) by

Then,
o(f *a 9)(t) = (f *a g)(t)u'
= fl@)g(t — z)u"u'"

zeG
= o(f) *. ¢(9)(t)

So we get a *-homomorphism ¢ : A x, G — A x, G. This has an inverse given
on C,(G, A) by ¥(f)(t) := f(t)u". Hence, ¢ is an isomorphism, so

AN GEAXG2ARCHG) =2 A® C(T).
Thus, A X, G is not simple (even if A was simple).

Question: If A is G-simple, when can we conclude that A x G is simple?

Definition 2.
(1) Think of @« = (1) € B(A) as a bounded operator, and let o(«) denote its

spectrum in B(A). Note that |af] < 1, so o(a) C D := {z € C : |z] < 1}.
By the same argument, o(a™!) C D, so since o(a™!) = o(a)™?,
ola) CT:={ze€C:|z| =1}
(2) Define S : (*(G) — B(A) by
S(f) = [t

teG
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Note that |[S(f)]| < ||f]l1, so S defines a bounded operator S : (*(G) — B(A).
Moreover,

S(f)S(g) = (Z f(t)ozt) <Zg(8)as>

teG seG

= Z F®)g(s)ovss

s,teG

=3 fa@)glu - ),

ueG zeG

=S(f*g).
Hence, S is a homomorphism of Banach algebras.

Lemma 3. If S is injective, then o(a) = T.

Proof.
(1) Suppose S is injective and z € T. Define 7 : £!(G) — C by
() = fl2) =) f(1)"
teG

Then, 7 is a multiplicative linear functional on £!(G). Since S is injective, we get
an induced homomorphism 7 : S(¢!(G)) — C such that

ToS=r.

Moreover, since T is non-zero, T is also non-zero.

(2) Let C' := S(£(G)), then C is a unital commutative Banach subalgebra of B(A)
(with unit S(dg)). Moreover,

a=.S5(0)eC.
Hence, the spectrum oo () is given by
go(a) = {n(a) :n € QC)}.
In particular,
T(a) =7(5(01)) = 7(01) = 2z € o¢(a).
(3) As before, o¢(a) C T. In particular, by the Spectral permanence theorem,
oc(a) = doc(a) C opay(a).
T.

Hence, z € o(a), so o(«)
U

Lemma 4. There is a G-invariant state on A. (i.e. a state 7 : A — C such that
T(ow(a)) = 7(a) for alla € A andt € G).

Proof. Let 1 be any state on A. For each a € A, define f, € (>(G) by
fa(t) = P(au(a)).
Then,

o Ifa,be A, then f,1p = fo+ fp
e f1, is the constant function 1.
o If s € G, then

Jaua)(t) = plais(a)) = falts) = ou(fa)(t)
g(ts).

where o, : (°(G) — (°(G) is the mz;p os(g)(t) := g(ts)



Let m € (>°(G)* be a G-invariant state (which exists because G is amenable), and define
7:A— Chby

T(a) :=m(fa).

Then, 7 is linear, 7(14) = 1 and for any s € G,

T(as(a)) = m(fa.() = mlos(fa)) = m(fa) = 7(a).
Hence, 7 is a G-invariant state. Il

Remark 5. Let 7 be a G-invariant state on A. Let N := {a € A : 7(a*a) = 0}. Then,
N is a G-invariant left-ideal. Let

K :=A/N
Then, K carries an action of A given by 7(a)(b+ N) := ab+ N and an action of G given
by unitaries
ur(b+ N) := ay(b) + N.
Let H denote the completion of K, and we get a triple (7, u, H). Also,
wm(a)u; (b+ N) = wm(a)(oy-1(b) + N)
= uy(ac-1(b) + N)
= ay(ac-1(b)) + N
= o(a)b+ N
= m(ai(a))(b+ N).
Hence,
wr(a)u; = m(ay(a)).
Hence, (7, u, H) is a covariant representation of (A, G, ). The induced *-homomorphism
Txu:AxG— B(H) is given on (' (G, A) by
(mxu)(f) =D _ f(t)u
teG

Theorem 6. If A x G is simple, then o(a) = T.

Proof. If o(a) # T, then S is not injective. So choose a non-zero f € ¢'(G) such that
S(f) = 0. Since A is unital, we think of f € ¢*(G, A). Then, for any b+ N € K,

(rx u)(D)b+N) = 3 FOub+ N) = 3 f(H)au(s) + N = S(f)(8) + N = 0.

teG teG

Hence, f € ker(m x u), so J := ker(m x u) # A x G. Moreover,
(7'[' X u)(50) = 1A
so J # {0} either. Hence, J is a proper ideal in A x G. O

Lemma 7 (Connes, 1973). Let M C B(H) be a von Neumann algebra and w € U(M) be
a unitary and o : M — M be the automorphism o(a) := uau*. Then, o(u) = { w™" :
Aw € o(u)}.

3



Proof. If \,w € o(u), choose a projection ¢ € B(H) (by spectral theory) such that
lug — A\g|| < €. Similarly, choose a projection p € B(H) such that ||up —wpl|| < e. Choose
a partial isometry v € B(H) such that vv* < ¢ and v*v < p. Then,

a(v) — Aw” vl = [|luv — Aw Tvu
Aw ™! Aw ™!

= [Juqu — A\qu|| + || Aqu — M vul|
= ||(ug = Ag)v|| + [[qv — w ™ vul]
< €+ |Jwvp — vpul|
=€+ ||wvp — vup||
= e+ [[v(wp — up)||
< 2¢

Hence,

D:={w ! \wea(u)}Cola).
Conversely, consider two maps L : M — M by L(z) := uz and R : M — M by R(z) =
zu*, then L, R are bounded linear maps which commute with each other. Therefore,

o(a) =c(LR) C{\: A€ o(L),( €o(R)}.
Now note that (L) = o(u) and o(R) = o(u*) = o(u) ' O
Example 8. Let H := (*, A = B(H) and v € A be a unitary with o(u) = T. Define
a: A — Aby ala) := uau*. Then, A x G is not simple. However, by the previous
lemma,
o(a) =T.
so the converse of the previous theorem does not hold.

Definition 9. The Connes spectrum of « is the set

I(a) = o(als)

where the intersection is taken over all G-invariant hereditary subalgebras B of A.

Example 10. In the above example, if p € A is a spectral projection such that ||up —
Ap|| < €, then for any x = pap € pAp with ||a|]| < 1, we have
lee(x) — || = [lupap — papul| = [Jupap — paupl|| < |lupap — Apap|| + || Apap — paup|| < 2e.
Hence, restricting « to the G-invariant hereditary subalgebra pAp,
o(alpap) C{z€T:|z—1| < 2¢}.
This is true for any € > 0, so
I(a) = {1}.

Theorem 11 (Olesen, Pedersen (1978)). A x G is simple if and only if A is G-simple
and I'(a) = T.



