
SIMPLICITY OF CROSSED PRODUCT C*-ALGEBRAS

Abstract. Given a C*-dynamical system (A,Z, α), we try to determine when the
crossed product A o Z is a simple C*-algebra. In doing so, we arrive at the Connes
Spectrum of such an action.

Let G = Z and A be a unital C*-algebra, and let α : G → Aut(A) be an action of G
on A. We wish to understand when the crossed product C*-algebra AoG is simple.
Remark 1.

(1) We think of A ⊂ A o G. So, if ICA is a proper G-invariant ideal, then we have
a short exact sequence

0→ I oG→ AoG→ A/I oG→ 0.

So, J := I o G is a proper ideal in A o G. Hence, if A o G is simple, then A is
G-simple (no G-invariant ideals).

(2) The converse is not true. If A is any unital C*-algebra and u ∈ U(A) is a unitary,
define α ∈ Aut(A) by α(a) := uau∗. Then, we claim that

AoG ∼= A⊗ C(T).

Indeed, define ι : G → Aut(A) be the trivial action, and let ϕ : Cc(G,A) →
Cc(G,A) by

ϕ(f)(t) := f(t)ut.

Then,

ϕ(f ∗α g)(t) = (f ∗α g)(t)ut

=
∑
x∈G

f(x)g(t− x)uxut−x

= ϕ(f) ∗ι ϕ(g)(t)

So we get a ∗-homomorphism ϕ : Aoα G→ Aoι G. This has an inverse given
on Cc(G,A) by ψ(f)(t) := f(t)u−t. Hence, ϕ is an isomorphism, so

Aoα G ∼= Aoι G ∼= A⊗ C∗(G) ∼= A⊗ C(T).

Thus, Aoα G is not simple (even if A was simple).

Question: If A is G-simple, when can we conclude that AoG is simple?

Definition 2.

(1) Think of α = α(1) ∈ B(A) as a bounded operator, and let σ(α) denote its
spectrum in B(A). Note that ‖α‖ ≤ 1, so σ(α) ⊂ D := {z ∈ C : |z| ≤ 1}.
By the same argument, σ(α−1) ⊂ D, so since σ(α−1) = σ(α)−1,

σ(α) ⊂ T := {z ∈ C : |z| = 1}.

(2) Define S : `1(G)→ B(A) by

S(f) :=
∑
t∈G

f(t)αt.
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Note that ‖S(f)‖ ≤ ‖f‖1, so S defines a bounded operator S : `1(G) → B(A).
Moreover,

S(f)S(g) =

(∑
t∈G

f(t)αt

)(∑
s∈G

g(s)αs

)
=
∑
s,t∈G

f(t)g(s)αt+s

=
∑
u∈G

∑
x∈G

f(x)g(u− x)αu

= S(f ∗ g).

Hence, S is a homomorphism of Banach algebras.

Lemma 3. If S is injective, then σ(α) = T.
Proof.

(1) Suppose S is injective and z ∈ T. Define τ : `1(G)→ C by

τ(f) := f̂(z) =
∑
t∈G

f(t)zt.

Then, τ is a multiplicative linear functional on `1(G). Since S is injective, we get
an induced homomorphism τ : S(`1(G))→ C such that

τ ◦ S = τ.

Moreover, since τ is non-zero, τ is also non-zero.
(2) Let C := S(`1(G)), then C is a unital commutative Banach subalgebra of B(A)

(with unit S(δ0)). Moreover,

α = S(δ1) ∈ C.
Hence, the spectrum σC(α) is given by

σC(α) = {η(α) : η ∈ Ω(C)}.
In particular,

τ(α) = τ(S(δ1)) = τ(δ1) = z ∈ σC(α).

(3) As before, σC(α) ⊂ T. In particular, by the Spectral permanence theorem,

σC(α) = ∂σC(α) ⊂ σB(A)(α).

Hence, z ∈ σ(α), so σ(α) = T.

�

Lemma 4. There is a G-invariant state on A. (i.e. a state τ : A → C such that
τ(αt(a)) = τ(a) for all a ∈ A and t ∈ G).

Proof. Let ψ be any state on A. For each a ∈ A, define fa ∈ `∞(G) by

fa(t) := ψ(αt(a)).

Then,

• If a, b ∈ A, then fa+b = fa + fb.
• f1A is the constant function 1.
• If s ∈ G, then

fαs(a)(t) = ϕ(αts(a)) = fa(ts) = σs(fa)(t)

where σs : `∞(G)→ `∞(G) is the map σs(g)(t) := g(ts).
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Let m ∈ `∞(G)∗ be a G-invariant state (which exists because G is amenable), and define
τ : A→ C by

τ(a) := m(fa).

Then, τ is linear, τ(1A) = 1 and for any s ∈ G,

τ(αs(a)) = m(fαs(a)) = m(σs(fa)) = m(fa) = τ(a).

Hence, τ is a G-invariant state. �

Remark 5. Let τ be a G-invariant state on A. Let N := {a ∈ A : τ(a∗a) = 0}. Then,
N is a G-invariant left-ideal. Let

K := A/N

Then, K carries an action of A given by π(a)(b+N) := ab+N and an action of G given
by unitaries

ut(b+N) := αt(b) +N.

Let H denote the completion of K, and we get a triple (π, u,H). Also,

utπ(a)u∗t (b+N) = utπ(a)(αt−1(b) +N)

= ut(aαt−1(b) +N)

= αt(aαt−1(b)) +N

= αt(a)b+N

= π(αt(a))(b+N).

Hence,

utπ(a)u∗t = π(αt(a)).

Hence, (π, u,H) is a covariant representation of (A,G, α). The induced ∗-homomorphism
π × u : AoG→ B(H) is given on `1(G,A) by

(π × u)(f) =
∑
t∈G

f(t)ut

Theorem 6. If AoG is simple, then σ(α) = T.

Proof. If σ(α) 6= T, then S is not injective. So choose a non-zero f ∈ `1(G) such that
S(f) = 0. Since A is unital, we think of f ∈ `1(G,A). Then, for any b+N ∈ K,

(π × u)(f)(b+N) =
∑
t∈G

f(t)ut(b+N) =
∑
t∈G

f(t)αt(b) +N = S(f)(b) +N = 0.

Hence, f ∈ ker(π × u), so J := ker(π × u) 6= AoG. Moreover,

(π × u)(δ0) = 1A

so J 6= {0} either. Hence, J is a proper ideal in AoG. �

Lemma 7 (Connes, 1973). Let M ⊂ B(H) be a von Neumann algebra and u ∈ U(M) be
a unitary and α : M → M be the automorphism α(a) := uau∗. Then, σ(u) = {λω−1 :
λ, ω ∈ σ(u)}.
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Proof. If λ, ω ∈ σ(u), choose a projection q ∈ B(H) (by spectral theory) such that
‖uq−λq‖ < ε. Similarly, choose a projection p ∈ B(H) such that ‖up−ωp‖ < ε. Choose
a partial isometry v ∈ B(H) such that vv∗ ≤ q and v∗v ≤ p. Then,

‖α(v)− λω−1v‖ = ‖uv − λω−1vu‖
= ‖uqv − λqv‖+ ‖λqv − λω−1vu‖
= ‖(uq − λq)v‖+ ‖qv − ω−1vu‖
≤ ε+ ‖ωvp− vpu‖
= ε+ ‖ωvp− vup‖
= ε+ ‖v(ωp− up)‖
< 2ε

Hence,
D := {λω−1 : λ, ω ∈ σ(u)} ⊂ σ(α).

Conversely, consider two maps L : M → M by L(x) := ux and R : M → M by R(x) =
xu∗, then L,R are bounded linear maps which commute with each other. Therefore,

σ(α) = σ(LR) ⊂ {λζ : λ ∈ σ(L), ζ ∈ σ(R)}.
Now note that σ(L) = σ(u) and σ(R) = σ(u∗) = σ(u)−1. �

Example 8. Let H := `2, A = B(H) and u ∈ A be a unitary with σ(u) = T. Define
α : A → A by α(a) := uau∗. Then, A o G is not simple. However, by the previous
lemma,

σ(α) = T.
so the converse of the previous theorem does not hold.

Definition 9. The Connes spectrum of α is the set

Γ(α) =
⋂

σ(α|B)

where the intersection is taken over all G-invariant hereditary subalgebras B of A.

Example 10. In the above example, if p ∈ A is a spectral projection such that ‖up −
λp‖ < ε, then for any x = pap ∈ pAp with ‖a‖ ≤ 1, we have

‖α(x)− x‖ = ‖upap− papu‖ = ‖upap− paup‖ < ‖upap− λpap‖+ ‖λpap− paup‖ < 2ε.

Hence, restricting α to the G-invariant hereditary subalgebra pAp,

σ(α|pAp) ⊂ {z ∈ T : |z − 1| < 2ε}.
This is true for any ε > 0, so

Γ(α) = {1}.

Theorem 11 (Olesen, Pedersen (1978)). A o G is simple if and only if A is G-simple
and Γ(α) = T.
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