SIMPLICITY OF CROSSED PRODUCT C*-ALGEBRAS

Abstract. Given a C^{*}-dynamical system (A, \mathbb{Z}, α), we try to determine when the crossed product $A \rtimes \mathbb{Z}$ is a simple C^{*}-algebra. In doing so, we arrive at the Connes Spectrum of such an action.
Let $G=\mathbb{Z}$ and A be a unital C*-algebra, and let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of G on A. We wish to understand when the crossed product C^{*}-algebra $A \rtimes G$ is simple.

Remark 1.

(1) We think of $A \subset A \rtimes G$. So, if $I \triangleleft A$ is a proper G-invariant ideal, then we have a short exact sequence

$$
0 \rightarrow I \rtimes G \rightarrow A \rtimes G \rightarrow A / I \rtimes G \rightarrow 0
$$

So, $J:=I \rtimes G$ is a proper ideal in $A \rtimes G$. Hence, if $A \rtimes G$ is simple, then A is G-simple (no G-invariant ideals).
(2) The converse is not true. If A is any unital C^{*}-algebra and $u \in U(A)$ is a unitary, define $\alpha \in \operatorname{Aut}(A)$ by $\alpha(a):=u a u^{*}$. Then, we claim that

$$
A \rtimes G \cong A \otimes C(\mathbb{T})
$$

Indeed, define $\iota: G \rightarrow \operatorname{Aut}(A)$ be the trivial action, and let $\varphi: C_{c}(G, A) \rightarrow$ $C_{c}(G, A)$ by

$$
\varphi(f)(t):=f(t) u^{t}
$$

Then,

$$
\begin{aligned}
\varphi\left(f *_{\alpha} g\right)(t) & =\left(f *_{\alpha} g\right)(t) u^{t} \\
& =\sum_{x \in G} f(x) g(t-x) u^{x} u^{t-x} \\
& =\varphi(f) *_{\iota} \varphi(g)(t)
\end{aligned}
$$

So we get a $*$-homomorphism $\varphi: A \rtimes_{\alpha} G \rightarrow A \rtimes_{\iota} G$. This has an inverse given on $C_{c}(G, A)$ by $\psi(f)(t):=f(t) u^{-t}$. Hence, φ is an isomorphism, so

$$
A \rtimes_{\alpha} G \cong A \rtimes_{\iota} G \cong A \otimes C^{*}(G) \cong A \otimes C(\mathbb{T})
$$

Thus, $A \rtimes_{\alpha} G$ is not simple (even if A was simple).
Question: If A is G-simple, when can we conclude that $A \rtimes G$ is simple?

Definition 2.

(1) Think of $\alpha=\alpha(1) \in \mathcal{B}(A)$ as a bounded operator, and let $\sigma(\alpha)$ denote its spectrum in $\mathcal{B}(A)$. Note that $\|\alpha\| \leq 1$, so $\sigma(\alpha) \subset \mathbb{D}:=\{z \in \mathbb{C}:|z| \leq 1\}$. By the same argument, $\sigma\left(\alpha^{-1}\right) \subset \mathbb{D}$, so since $\sigma\left(\alpha^{-1}\right)=\sigma(\alpha)^{-1}$,

$$
\sigma(\alpha) \subset \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\} .
$$

(2) Define $S: \ell^{1}(G) \rightarrow \mathcal{B}(A)$ by

$$
S(f):=\sum_{\substack{t \in G \\ 1}} f(t) \alpha_{t} .
$$

Note that $\|S(f)\| \leq\|f\|_{1}$, so S defines a bounded operator $S: \ell^{1}(G) \rightarrow \mathcal{B}(A)$. Moreover,

$$
\begin{aligned}
S(f) S(g) & =\left(\sum_{t \in G} f(t) \alpha_{t}\right)\left(\sum_{s \in G} g(s) \alpha_{s}\right) \\
& =\sum_{s, t \in G} f(t) g(s) \alpha_{t+s} \\
& =\sum_{u \in G} \sum_{x \in G} f(x) g(u-x) \alpha_{u} \\
& =S(f * g) .
\end{aligned}
$$

Hence, S is a homomorphism of Banach algebras.
Lemma 3. If S is injective, then $\sigma(\alpha)=\mathbb{T}$.
Proof.
(1) Suppose S is injective and $z \in \mathbb{T}$. Define $\tau: \ell^{1}(G) \rightarrow \mathbb{C}$ by

$$
\tau(f):=\widehat{f}(z)=\sum_{t \in G} f(t) z^{t}
$$

Then, τ is a multiplicative linear functional on $\ell^{1}(G)$. Since S is injective, we get an induced homomorphism $\bar{\tau}: S\left(\ell^{1}(G)\right) \rightarrow \mathbb{C}$ such that

$$
\bar{\tau} \circ S=\tau .
$$

Moreover, since τ is non-zero, $\bar{\tau}$ is also non-zero.
(2) Let $C:=\overline{S\left(\ell^{1}(G)\right)}$, then C is a unital commutative Banach subalgebra of $\mathcal{B}(A)$ (with unit $S\left(\delta_{0}\right)$). Moreover,

$$
\alpha=S\left(\delta_{1}\right) \in C
$$

Hence, the spectrum $\sigma_{C}(\alpha)$ is given by

$$
\sigma_{C}(\alpha)=\{\eta(\alpha): \eta \in \Omega(C)\}
$$

In particular,

$$
\bar{\tau}(\alpha)=\bar{\tau}\left(S\left(\delta_{1}\right)\right)=\tau\left(\delta_{1}\right)=z \in \sigma_{C}(\alpha) .
$$

(3) As before, $\sigma_{C}(\alpha) \subset \mathbb{T}$. In particular, by the Spectral permanence theorem,

$$
\sigma_{C}(\alpha)=\partial \sigma_{C}(\alpha) \subset \sigma_{\mathcal{B}(A)}(\alpha)
$$

Hence, $z \in \sigma(\alpha)$, so $\sigma(\alpha)=\mathbb{T}$.

Lemma 4. There is a G-invariant state on A. (i.e. a state $\tau: A \rightarrow \mathbb{C}$ such that $\tau\left(\alpha_{t}(a)\right)=\tau(a)$ for all $a \in A$ and $\left.t \in G\right)$.
Proof. Let ψ be any state on A. For each $a \in A$, define $f_{a} \in \ell^{\infty}(G)$ by

$$
f_{a}(t):=\psi\left(\alpha_{t}(a)\right)
$$

Then,

- If $a, b \in A$, then $f_{a+b}=f_{a}+f_{b}$.
- $f_{1_{A}}$ is the constant function 1 .
- If $s \in G$, then

$$
f_{\alpha_{s}(a)}(t)=\varphi\left(\alpha_{t s}(a)\right)=f_{a}(t s)=\sigma_{s}\left(f_{a}\right)(t)
$$

where $\sigma_{s}: \ell^{\infty}(G) \rightarrow \ell^{\infty}(G)$ is the map $\sigma_{s}(g)(t):=g(t s)$.

Let $m \in \ell^{\infty}(G)^{*}$ be a G-invariant state (which exists because G is amenable), and define $\tau: A \rightarrow \mathbb{C}$ by

$$
\tau(a):=m\left(f_{a}\right)
$$

Then, τ is linear, $\tau\left(1_{A}\right)=1$ and for any $s \in G$,

$$
\tau\left(\alpha_{s}(a)\right)=m\left(f_{\alpha_{s}(a)}\right)=m\left(\sigma_{s}\left(f_{a}\right)\right)=m\left(f_{a}\right)=\tau(a) .
$$

Hence, τ is a G-invariant state.
Remark 5. Let τ be a G-invariant state on A. Let $N:=\left\{a \in A: \tau\left(a^{*} a\right)=0\right\}$. Then, N is a G-invariant left-ideal. Let

$$
K:=A / N
$$

Then, K carries an action of A given by $\pi(a)(b+N):=a b+N$ and an action of G given by unitaries

$$
u_{t}(b+N):=\alpha_{t}(b)+N .
$$

Let H denote the completion of K, and we get a triple (π, u, H). Also,

$$
\begin{aligned}
u_{t} \pi(a) u_{t}^{*}(b+N) & =u_{t} \pi(a)\left(\alpha_{t^{-1}}(b)+N\right) \\
& =u_{t}\left(a \alpha_{t^{-1}}(b)+N\right) \\
& =\alpha_{t}\left(a \alpha_{t^{-1}}(b)\right)+N \\
& =\alpha_{t}(a) b+N \\
& =\pi\left(\alpha_{t}(a)\right)(b+N) .
\end{aligned}
$$

Hence,

$$
u_{t} \pi(a) u_{t}^{*}=\pi\left(\alpha_{t}(a)\right) .
$$

Hence, (π, u, H) is a covariant representation of (A, G, α). The induced $*$-homomorphism $\pi \times u: A \rtimes G \rightarrow \mathcal{B}(H)$ is given on $\ell^{1}(G, A)$ by

$$
(\pi \times u)(f)=\sum_{t \in G} f(t) u_{t}
$$

Theorem 6. If $A \rtimes G$ is simple, then $\sigma(\alpha)=\mathbb{T}$.
Proof. If $\sigma(\alpha) \neq \mathbb{T}$, then S is not injective. So choose a non-zero $f \in \ell^{1}(G)$ such that $S(f)=0$. Since A is unital, we think of $f \in \ell^{1}(G, A)$. Then, for any $b+N \in K$,

$$
(\pi \times u)(f)(b+N)=\sum_{t \in G} f(t) u_{t}(b+N)=\sum_{t \in G} f(t) \alpha_{t}(b)+N=S(f)(b)+N=0 .
$$

Hence, $f \in \operatorname{ker}(\pi \times u)$, so $J:=\operatorname{ker}(\pi \times u) \neq A \rtimes G$. Moreover,

$$
(\pi \times u)\left(\delta_{0}\right)=1_{A}
$$

so $J \neq\{0\}$ either. Hence, J is a proper ideal in $A \rtimes G$.
Lemma 7 (Connes, 1973). Let $M \subset \mathcal{B}(H)$ be a von Neumann algebra and $u \in U(M)$ be a unitary and $\alpha: M \rightarrow M$ be the automorphism $\alpha(a):=u a u^{*}$. Then, $\sigma(u)=\left\{\lambda \omega^{-1}:\right.$ $\lambda, \omega \in \sigma(u)\}$.

Proof. If $\lambda, \omega \in \sigma(u)$, choose a projection $q \in \mathcal{B}(H)$ (by spectral theory) such that $\|u q-\lambda q\|<\epsilon$. Similarly, choose a projection $p \in \mathcal{B}(H)$ such that $\|u p-\omega p\|<\epsilon$. Choose a partial isometry $v \in \mathcal{B}(H)$ such that $v v^{*} \leq q$ and $v^{*} v \leq p$. Then,

$$
\begin{aligned}
\left\|\alpha(v)-\lambda \omega^{-1} v\right\| & =\left\|u v-\lambda \omega^{-1} v u\right\| \\
& =\|u q v-\lambda q v\|+\left\|\lambda q v-\lambda \omega^{-1} v u\right\| \\
& =\|(u q-\lambda q) v\|+\left\|q v-\omega^{-1} v u\right\| \\
& \leq \epsilon+\|\omega v p-v p u\| \\
& =\epsilon+\|\omega v p-v u p\| \\
& =\epsilon+\|v(\omega p-u p)\| \\
& <2 \epsilon
\end{aligned}
$$

Hence,

$$
D:=\left\{\lambda \omega^{-1}: \lambda, \omega \in \sigma(u)\right\} \subset \sigma(\alpha) .
$$

Conversely, consider two maps $L: M \rightarrow M$ by $L(x):=u x$ and $R: M \rightarrow M$ by $R(x)=$ $x u^{*}$, then L, R are bounded linear maps which commute with each other. Therefore,

$$
\sigma(\alpha)=\sigma(L R) \subset\{\lambda \zeta: \lambda \in \sigma(L), \zeta \in \sigma(R)\}
$$

Now note that $\sigma(L)=\sigma(u)$ and $\sigma(R)=\sigma\left(u^{*}\right)=\sigma(u)^{-1}$.
Example 8. Let $H:=\ell^{2}, A=\mathcal{B}(H)$ and $u \in A$ be a unitary with $\sigma(u)=\mathbb{T}$. Define $\alpha: A \rightarrow A$ by $\alpha(a):=u a u^{*}$. Then, $A \rtimes G$ is not simple. However, by the previous lemma,

$$
\sigma(\alpha)=\mathbb{T}
$$

so the converse of the previous theorem does not hold.
Definition 9. The Connes spectrum of α is the set

$$
\Gamma(\alpha)=\bigcap \sigma\left(\left.\alpha\right|_{B}\right)
$$

where the intersection is taken over all G-invariant hereditary subalgebras B of A.
Example 10. In the above example, if $p \in A$ is a spectral projection such that $\| u p-$ $\lambda p \|<\epsilon$, then for any $x=p a p \in p A p$ with $\|a\| \leq 1$, we have $\|\alpha(x)-x\|=\|$ upap - papu $\|=\|$ upap - paup $\|<\|$ upap $-\lambda p a p ~\|+\| \lambda p a p-p a u p \|<2 \epsilon$.
Hence, restricting α to the G-invariant hereditary subalgebra $p A p$,

$$
\sigma\left(\left.\alpha\right|_{p A p}\right) \subset\{z \in \mathbb{T}:|z-1|<2 \epsilon\} .
$$

This is true for any $\epsilon>0$, so

$$
\Gamma(\alpha)=\{1\} .
$$

Theorem 11 (Olesen, Pedersen (1978)). $A \rtimes G$ is simple if and only if A is G-simple and $\Gamma(\alpha)=\mathbb{T}$.

