
AMENABLE GROUPS

Abstract. A Banach limit is a specific kind of linear functional on `∞(Z) that respects
the natural action of Z. A generalization of this leads to the notion of an amenable group.
We will discuss these groups and give examples. We will also discuss a representation-
theoretic question (due to Dixmier) which has been open since 1950.

Define

`∞(Z) := {f : Z→ R : sup
n∈Z
|f(n)| <∞} =: E

c := {f : Z→ R : lim
n→±∞

f(n) both exist} =: F

Then, E is a normed linear space and F is a subspace of E. Define ϕ : F→ R by

ϕ(f) := lim
n→∞

f(n).

Then ϕ is a bounded linear functional on F. By the Hahn-Banach theorem, there is a
bounded linear functional ψ : E→ R such that

ψ|F= ϕ and ‖ψ‖ = ‖ϕ‖ = 1.

We wish to construct a specific kind of extension of ϕ. Define the right shift operator by
σ : E→ E by

σ(f)(n) := f(n− 1)

Note that S is well-defined, σ(F) ⊂ F. Moreover, if f ∈ F, then ϕ(f) = ϕ(σ(f)).

Theorem 1. There exists a bounded linear functional ψ : E→ R satisfying the following
properties:

(1) ψ|F= ϕ.
(2) ‖ψ‖ = 1.
(3) If f ∈ F is such that f(n) ≥ 0 for all n ∈ N, then ψ(f) ≥ 0.
(4) ψ(f) = ψ(σ(f)) for all f ∈ E.

(See [Conway, 1990] for details)

Proof. Let F′ := {f − σ(f) : f ∈ `∞}, and 1 be the constant function one. Then, one
shows that

‖1 + F′‖ = inf{‖1− f‖ : f ∈ F′} = 1.

Then, one uses a corollary of the Hahn-Banach theorem to produce ψ : E→ R such that

(1) ψ|F′= 0
(2) ψ(1) = 1.
(3) ‖ψ‖ = 1.

To see that ψ satisfies (1), choose f ∈ F, α := ϕ(f) and ε > 0. There exists N ∈ N such
that |f(n)−α| < ε for all n ≥ N . If g := σN(f), then |g(n)−α| < ε for all n ∈ N. Thus,

|ψ(f)− α| = |ψ(g)− α| = |ψ(g − α1)| ≤ ‖ψ‖‖g − α1‖ ≤ ε.

Hence, ψ(f) = α. �

Let G be a group. If t ∈ G, define σt : `∞(G)→ `∞(G) by

σt(f)(s) := f(t−1s).
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Definition 2. A groupG is said to be amenable if there is a linear functional ψ : `∞(G)→
R satisfying the following conditions:

(1) ψ is positive: ψ(f) ≥ 0 if f ∈ `∞(G) is such that f(s) ≥ 0 for all s ∈ G.
(2) ψ is left translation invariant: If f ∈ `∞(G) and t ∈ G, then ψ(σt(f)) = ψ(f).
(3) ψ is a mean: ψ(1) = 1.

Note: The conditions automatically imply that ψ is bounded and that ‖ψ‖ = 1.

Proposition 3. Let G be amenable and ψ as above. Define µ : P(G)→ R by

µ(A) := ψ(χA).

Then,

(1) µ is positive: µ(A) ≥ 0 for all A ⊂ G.
(2) µ is finitely additive: If A,B ⊂ G are disjoint, then µ(A tB) = µ(A) + µ(B).
(3) µ is normalized: µ(G) = 1.
(4) µ is translation invariant: If A ⊂ G and t ∈ G, then µ(tA) = µ(A).

Proof.

(1) Follows because χA(s) ≥ 0 for all s ∈ G.
(2) If A ∩B = ∅, then χAtB = χA + χB. So by linearity, ψ(χAtB) = ψ(χA) + ψ(χB).
(3) Follows because χG = 1.
(4) Follows because χtA = σt(χA)

�

Remark 4. µ is not necessarily countably additive. If G = Z and µ were countably
additive, then by translation invariance,

1 = µ(Z) =
∞∑

n=−∞

µ({n}) =
∞∑

n=−∞

µ({0}).

This is clearly impossible.
Example 5.

(1) Z is amenable.

(2) Any finite group is amenable. Take µ(A) := |A|
|G| .

(3) Let F2 denote the free group on 2 letters {a, b}. Then, F2 is not amenable.

Proof. Let A0 be the set of all words starting with an odd power of a followed by
e or a power of b. Let A1 be the set of all words starting with an even power of
a. Then, F2 = A0 t A1 and A1 = aA0. By translation invariance,

1 = µ(F2) = µ(A0) + µ(A1) = 2µ(A0)⇒ µ(A0) =
1

2
.

Now for j ∈ {0, 1, 2}, define Bj to be the set of words starting with a power of b
congruent to j (mod 3). Then, as before,

µ(B0) =
1

3
.

However, A0 ⊂ B0, so it follows that 1
2
≤ 1

3
. This is absurd. �

(4) Amenability is preserved under taking subgroups, quotients, direct products, di-
rect limits, etc.

(5) In particular, any abelian group is amenable.
(6) Amenability is preserved under taking group extensions 0→ H → G→ N → 0.
(7) Every solvable group is amenable.
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(8) Any group that contains F2 is non-amenable. In particular, SO3(R) (with discrete
topology) is non-amenable. This is the reason the Banach-Tarski paradox works,
which says that there is no SO3(R)-invariant function µ : 2R → R as above.

(9) Olshanksi (1980) proved that there is a non-amenable group that does not contain
F2 (Tarski Monster groups), settling a conjecture of von Neumann (first stated
by M.M. Day (1957)). Now, many more counterexamples are known.

1. Dixmier’s Problem

Definition 6. Let G be a (discrete) group and H a Hilbert space.

(1) A representation of G on H is a group homomorphism π : G → GL(H), where
GL(H) denotes the group of invertible operators on H.

(2) A representation π : G→ GL(H) is unitary if π(s) is a unitary for all s ∈ G. (i.e.
〈π(s)x, π(s)y〉 = 〈x, y〉 for all x, y ∈ H).

(3) Two representations πi : G→ GL(Hi), i = 1, 2 are equivalent (similar) if there is

an invertible T : H1 → H2 such that π1(s) = T−1π2(s)T for all g ∈ G.
(4) A representation π : G→ GL(H) is uniformly bounded if sups∈G ‖π(s)‖ <∞.

Note: If a representation is equivalent to a unitary representation, it must be uniformly
bounded because

‖π(s)‖ = ‖Tρ(s)T−1‖ ≤ ‖T‖‖T−1‖
for all s ∈ G.

Definition 7. A group G is said to be unitarizable if every uniformly bounded represen-
tation of G on a Hilbert space is equivalent to a unitary representation.

Question: Is every group unitarizable?
Answer: No. F2 is not, but this is hard to prove.

Theorem 8 (Day-Dixmier (1950)). Every amenable group is unitarizable.

Sketch of proof. Let G be amenable, and ψ : `∞(G) → C be an invariant mean. Let
π : G → GL(H) be a representation of G on a Hilbert space H such that C :=
sups∈G ‖π(s)‖ <∞.

(1) For x, y ∈ H, define Qx,y : G→ C by s 7→ 〈π(s−1)x, π(s−1)y〉. Then,

|Qx,y(s)| ≤ ‖π(s−1)‖2‖x‖‖y‖ ≤ C2‖x‖‖y‖.

Hence, Qx,y ∈ `∞(G). Moreover,
• If x = y, then Qx,x(s) = ‖π(s−1)x‖2 ≥ 0 for all s ∈ G.
• If t ∈ G, then

σt(Qx,y)(s) = Qx,y(t
−1s)

= 〈π(s−1t)x, π(s−1t)y〉
= 〈π(s−1)π(t)x, π(s−1)π(t)y〉
= Qπ(t)x,π(t)y(s).

(2) Define u : H ×H → C by u(x, y) := ψ(Qx,y). Then,
• u is linear in the first variable.
• u is conjugate linear in the second variable.
• |u(x, y)| ≤ C2‖x‖‖y‖ for all x, y ∈ H.
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Hence, u is a bounded sesqui-linear form on H. Hence, there exists S ∈ B(H)
such that

〈Sx, y〉 = u(x, y).

for all x, y ∈ H.
(3) If x ∈ H, then u(x, x) = ψ(Qx,x) ≥ 0 since Qx,x ≥ 0. Therefore S is a positive

operator.
(4) S is invertible (this takes a little work). Hence, T := S1/2 is a positive invertible

operator and satisfies

〈Tx, Ty〉 = 〈Sx, y〉 = u(Qx,y).

(5) If t ∈ G, then

〈Tπ(t)T−1x, Tπ(t)T−1y〉 = u(π(t)T−1x, π(t)T−1y)

= ψ(Qπ(t)T−1x,π(t)T−1y)

= ψ(σt(QT−1x,T−1y))

= ψ(QT−1x,T−1y)

= u(T−1x, T−1y)

= 〈TT−1x, TT−1y〉
= 〈x, y〉

Hence, Tπ(t)T−1 is a unitary operator.

�

Question: (Dixmier, 1950) Is the converse of this theorem true?
Answer: Unknown! The following is known though:

(1) F2 is not unitarizable.
(2) A subgroup of a unitarizable group is unitarizable. Therefore, any group that con-

tains F2 is not unitarizable. tem In 2007, Pisier proved that a ‘strongly’ unitariz-
able group is amenable. Here, strongly unitarizable roughly means that if π is uni-
formly bounded, then the invertible matrix T can be chosen with ‖T‖, ‖T−1‖ ≤ Cπ
where Cπ := sups∈G ‖π(s)‖.

(3) In 2010, Monod, Epstein and Ozawa proved that there is a non-unitarizable group
that does not contain F2.

(4) If G is a linear group, then Dixmier’s question has a positive answer (by the Tits
alternative: Either G contains a solvable subgroup of finite index, or G contains
a non-abelian free group).

(5) If all countable subgroups of G are unitarizable, then so is G.

Hence, a counterexample (if it exists) must be a countable, non-amenable group that does
not contain F2. If the conjecture is true, then we may resolve the following questions for
unitarizability:

• If G1 and G2 are unitarizable, is G1 ×G2 unitarizable?
• More generally, if N and G/N are both unitarizable, does it follow that G is

unitarizable?
• If (Gn) is an inductive sequence of unitarizable groups, is limGn unitarizable?
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