AMENABLE GROUPS

ABSTRACT. A Banach limit is a specific kind of linear functional on £°°(Z) that respects
the natural action of Z. A generalization of this leads to the notion of an amenable group.
We will discuss these groups and give examples. We will also discuss a representation-
theoretic question (due to Dixmier) which has been open since 1950.

Define
C(Z):=A{f:Z = Reswp|f(n)] < oo} = E
c={f:Z—>R: nirinoof(n) both exist} =: F
Then, E is a normed linear space and F is a subspace of E. Define ¢ : F — R by
p(f) = lim f(n).

Then ¢ is a bounded linear functional on F. By the Hahn-Banach theorem, there is a
bounded linear functional ¢ : E — R such that

Ylr= ¢ and ||| = el = 1.

We wish to construct a specific kind of extension of ¢. Define the right shift operator by
oc:E— E by

o(f)(n) = f(n—1)
Note that S is well-defined, o(F) C F. Moreover, if f € F, then ¢(f) = p(a(f)).

Theorem 1. There exists a bounded linear functional v : EE — R satisfying the following
properties:

(1) Ylp=¢.

(2) ||¢]l = 1.

(3) If f € F is such that f(n) > 0 for alln € N, then ¥(f) > 0.

(4) ©(f) = ¥(o(f)) for all f € E.

(See [CoONwAY, 1990] for details)

Proof. Let F' := {f —o(f) : f € £>°}, and 1 be the constant function one. Then, one
shows that

1+ F| =inf{[[1—f|: feF}=1
Then, one uses a corollary of the Hahn-Banach theorem to produce ¢ : E — R such that

(1) Ylp=0
(2) (1) = 1.
3) llv] = 1.

To see that 1 satisfies (1), choose f € F, o := ¢(f) and € > 0. There exists N € N such
that |f(n) —a| < eforalln > N. If g := o™ (f), then |g(n) — a| < € for all n € N. Thus,

[W(f) —al = [¥(g) — ol = [¢¥(g —al)| < [[¢]lllg — o] < e
Hence, (f) = a. O
Let G be a group. If t € G, define o : (*°(G) — (°(G) by
ai(f)(s) = f(t"s).
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Definition 2. A group G is said to be amenable if there is a linear functional ¥ : (*°(G) —
R satisfying the following conditions:
(1) 4 is positive: ¥ (f) > 0 if f € £°(G) is such that f(s) > 0 for all s € G.
(2) 4 is left translation invariant: If f € £>°(G) and t € G, then ¥(ov(f)) = ¥ (f).
(3) ¢ is a mean: (1) = 1.

Note: The conditions automatically imply that ¢ is bounded and that ||¢| = 1.
Proposition 3. Let G be amenable and ¢ as above. Define p: P(G) — R by

p(A) = ¥ (xa)-
Then,
(1) p is positive: pu(A) >0 for all A C G.
(2) p is finitely additive: If A, B C G are disjoint, then n(AU B) = pu(A) 4+ w(B).
(8) p is normalized: u(G) = 1.
(4) 1 is translation invariant: If A C G and t € G, then u(tA) = p(A).
Proof.
(1) Follows because y4(s) > 0 for all s € G.
(2) It AN B =0, then xaup = Xa + X5. So by linearity, ¥ (xaus) = ¥ (xa) + ¥ (x5).
(3) Follows because yg = 1.
(4) Follows because x4 = 0¢(x4)
U

Remark 4. p is not necessarily countably additive. If G = Z and p were countably
additive, then by translation invariance,
L=pu(Z)= Y p({n}) = Y n{0}).
This is clearly impossible.
Example 5.

(1) Z is amenable.
|A]

(2) Any finite group is amenable. Take p(A) := ar

(3) Let Fy denote the free group on 2 letters {a, b}. Then, F; is not amenable.

Proof. Let Ay be the set of all words starting with an odd power of a followed by
e or a power of b. Let A; be the set of all words starting with an even power of

a. Then, Fy = Ay A; and A; = aAy. By translation invariance,
1

L= p(F2) = p(Ao) + p(Ar) = 2u(Ao) = p(Ao) = 5.

Now for j € {0, 1,2}, define B; to be the set of words starting with a power of b

congruent to j (mod 3). Then, as before,

1
1(Bo) = 3
However, Ay C By, so it follows that % < % This is absurd. Il

(4) Amenability is preserved under taking subgroups, quotients, direct products, di-
rect limits, etc.

(5) In particular, any abelian group is amenable.

(6) Amenability is preserved under taking group extensions 0 - H — G — N — 0.

(7) Every solvable group is amenable.
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(8) Any group that contains F; is non-amenable. In particular, SO3(R) (with discrete
topology) is non-amenable. This is the reason the Banach-Tarski paradox works,
which says that there is no SO3(R)-invariant function p : 2% — R as above.

(9) Olshanksi (1980) proved that there is a non-amenable group that does not contain
F, (Tarski Monster groups), settling a conjecture of von Neumann (first stated
by M.M. Day (1957)). Now, many more counterexamples are known.

1. DIXMIER’S PROBLEM

Definition 6. Let G be a (discrete) group and H a Hilbert space.

(1) A representation of G on H is a group homomorphism 7 : G — GL(H), where
GL(H) denotes the group of invertible operators on H.

(2) A representation 7 : G — GL(H) is unitary if 7(s) is a unitary for all s € G. (i.e.
(r(s)x,m(s)y) = (z,y) for all z,y € H).

(3) Two representations m; : G — GL(H;),i = 1,2 are equivalent (similar) if there is
an invertible T': H; — Ho such that m(s) = T~ !my(s)T for all g € G.

(4) A representation w : G — GL(H) is uniformly bounded if sup .. [|7(s)| < oc.

Note: If a representation is equivalent to a unitary representation, it must be uniformly
bounded because

Iz (s)|| = 1Tp(s)T M| < |77
for all s € GG.

Definition 7. A group G is said to be unitarizable if every uniformly bounded represen-
tation of G on a Hilbert space is equivalent to a unitary representation.

Question: Is every group unitarizable?
Answer: No. F5 is not, but this is hard to prove.

Theorem 8 (Day-Dixmier (1950)). Every amenable group is unitarizable.

Sketch of proof. Let G be amenable, and ¢ : ¢*°(G) — C be an invariant mean. Let
m : G — GL(H) be a representation of G on a Hilbert space H such that C' :=
U, |lm(s) | < oc.

(1) For x,y € H, define Q,, : G — C by s — (n(s ')z, m(s7')y). Then,

|Qay ()] < N (sHIElz Iyl < C2llllly]-

Hence, @, € (>°(G). Moreover,
o If z =y, then Q. .(s) = ||7(s7")z|> > 0 for all s € G.
o Ift € G, then

01(Quy)(s) = Qx,y(t_13>
= (n(s ")z, w(s"t)y)
= (n(s™ )m(t)z, m(s)m(t)y)
= Qn(tyr.m(tyy(s):
(2) Define u: H x H — C by u(z,y) := 9(Qs,). Then,
e v is linear in the first variable.

e v is conjugate linear in the second variable.

o [u(z,y)| < C?||z|[lyll for all z,y € H.
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Hence, u is a bounded sesqui-linear form on H. Hence, there exists S € B(H)
such that
(Sz,y) = u(z,y).

for all z,y € H.

(3) If z € H, then u(z,z) = Y(Qrz) > 0 since Q. > 0. Therefore S is a positive
operator.

(4) S is invertible (this takes a little work). Hence, T := S/? is a positive invertible
operator and satisfies

(T'x, Ty) = (Sz,y) = u(Qqy).
(5) If t € G, then
(Tr(t)T 'z, Tr(t)Ty)

(r(O) T 2, w()T )

(Qryr-12.7)7-14)
(Ut(QT lp,T-1 ))
(QT lg,T—1 )

(T 'z, T 'y)
TT 'z, TT 'y)

y)

u
(4
(4
(4
u

=
= (z,
Hence, Twr(t)T~! is a unitary operator.

Question: (Dixmier, 1950) Is the converse of this theorem true?
Answer: Unknown! The following is known though:

(1) F3 is not unitarizable.

(2) A subgroup of a unitarizable group is unitarizable. Therefore, any group that con-
tains F; is not unitarizable. tem In 2007, Pisier proved that a ‘strongly’ unitariz-
able group is amenable. Here, strongly unitarizable roughly means that if 7 is uni-
formly bounded, then the invertible matrix 7" can be chosen with ||T||, |77 < C,
where C = sup ¢ ||7(s)||-

(3) In 2010, Monod, Epstein and Ozawa proved that there is a non-unitarizable group
that does not contain Fs.

(4) If G is a linear group, then Dixmier’s question has a positive answer (by the Tits
alternative: Either G contains a solvable subgroup of finite index, or G' contains
a non-abelian free group).

(5) If all countable subgroups of G are unitarizable, then so is G.

Hence, a counterexample (if it exists) must be a countable, non-amenable group that does
not contain Fs. If the conjecture is true, then we may resolve the following questions for
unitarizability:
e If G; and G, are unitarizable, is G; X G5 unitarizable?
e More generally, if N and G/N are both unitarizable, does it follow that G is
unitarizable?
e If (G,,) is an inductive sequence of unitarizable groups, is lim G,, unitarizable?
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