Stable Ranks for C*-algebras and Rokhlin Actions

(Based on joint work with Ms. Anshu)

Prahlad Vaidyanathan

Department of Mathematics IISER Bhopal

July 17, 2020

Lebesgue Covering Dimension

Let X be a compact Hausdorff space and \mathcal{V} be an open cover of X. We say that \mathcal{V} has *order* m if every point in X belongs to atmost m elements of \mathcal{V} .

Definition

The (Lebesgue covering) dimension of X is at most n if every open cover of X has a refinement \mathcal{V} , such that

 $\operatorname{order}(\mathcal{V}) \leq n+1$

Example: Circle

Figure 1: Dimension of a Circle (Source: Wikipedia)

The open cover (on the right) has a refinement (on the left) of order 2. Hence,

$$\dim(S^1) \leq 1 \qquad \qquad 3/23$$

If C denotes the Cantor set, then

C is totally disconnected (ie. *C* has a basis consisting of cl-open sets)

Every open cover of C has a refinement consisting of disjoint sets (ie. of order 1). Hence,

 $\dim(C)=0$

Alternate Definition

Theorem

Let X be a compact Hausdorff space. Then dim(X) is the least integer n such that, for any continuous function

$$f: X \to \mathbb{R}^{n+1}$$

and any $\epsilon >$ 0, there is a continuous function

$$g:X o \mathbb{R}^{n+1}$$

such that $\|f - g\|_{\infty} < \epsilon$ and

 $0 \notin g(X)$

This says that 0 is an *unstable* value for f.

Alternate Definition

Theorem

Let X be a compact Hausdorff space. Then dim(X) is the least integer n such that any (n + 1)-tuple

$$(f_1, f_2, \ldots, f_{n+1}) \in C(X, \mathbb{R})^{n+1}$$

can be approximated arbitrarily closely by a tuple

$$(g_1,g_2,\ldots,g_{n+1})\in C(X,\mathbb{R})^{n+1}$$

such that

$$\sum_{i=1}^{n+1} g_i^2$$

is a strictly positive function.

Stable Ranks for C*-algebras

Definition

A C*-algebra is a Banach algebra A together with an involution $a \mapsto a^*$ satisfying certain conditions.

Example:

- \mathbb{C} is a C*-algebra.
- If X is a compact Hausdorff space, C(X) = C(X, ℂ) is a C*-algebra.
- If H is a Hilbert space, $\mathcal{B}(H)$ is a C*-algebra.

Stable Rank for C*-algebras

Definition (Rieffel (1982)

Let A be a C*-algebra. The *topological stable rank* (tsr) of A is the least integer n such that any tuple

 $(a_1, a_2, \ldots, a_n) \in A^n$

can be approximated arbitrarily closely by a tuple

 $(b_1, b_2, \ldots, b_n) \in A^n$

such that

$$\sum_{i=1}^{n} b_i^* b_i$$

is invertible in A.

If no such integer exists, we write $tsr(A) = +\infty$.

• Since a complex valued function can be thought of as a pair of real-valued functions, we have

$$tsr(C(X)) = \left\lceil \frac{\dim(X)}{2} \right\rceil + 1$$

where $\lceil x \rceil$ is the 'integer part' of x.

- $tsr(\mathbb{C}) = 1$
- More generally, if A is a finite dimensional C*-algebra, then

tsr(A) = 1

Examples

• For any C*-algebra A,

$$tsr(A) = 1 \Leftrightarrow GL(A)$$
 is dense in A

 If S ∈ B(l²) denotes the right-shift operator, then S cannot be approximated by invertibles. Hence, if A := C*(S), then

 $tsr(A) \neq 1$

In fact, tsr(A) = 2.

• If H is an infinite dimensional Hilbert space, then

 $tsr(\mathcal{B}(H)) = +\infty$

- Knowing the stable rank of an algebra helps answer questions in 'nonstable' K-theory. ie. One can use K-theoretic information to extract information about elements (projections or unitaries) in the algebra.
- Algebras with stable rank 1 have nice regularity properties that are useful in classification.

Group Actions on C*-algebras

Group Actions

Standing assumption:

- *G* = Finite group
- A = Unital, separable C*-algebra.

Define

 $Aut(A) := \{involution-preserving automorphisms of A\}$

Note that Aut(A) is a group under composition.

Definition

A group action of G on A is a group homomorphism

$$\alpha: G \to \operatorname{Aut}(A)$$

 If G ¬ X is an action of G on a compact Hausdorff space X, then it induces an action α : G ¬ C(X) by

$$\alpha_g(f)(x) := f(g^{-1} \cdot x)$$

- Furthermore, every C*-algebra action of G on C(X) arises in this way.
- If α ∈ Aut(A) is an automorphism of order N, then it induces a group action

$$\alpha:\mathbb{Z}_N\to\operatorname{Aut}(A)$$

Given an action $G \curvearrowright X$ on a space X, one can take the quotient

X/G

Given an action $G \curvearrowright X$ on a space X, one can take the quotient

X/G

If $\alpha : G \frown A$ is an action of G on a C*-algebra A, then the analogous object to consider is

 $A\rtimes_{\alpha} G$

the crossed product.

One can think of it like a *semi-direct product* of G with A.

Example

If $\alpha \in Aut(A)$ has order *N*, then the crossed product

 $A \rtimes_{\alpha} \mathbb{Z}_N$

is the subalgebra of $M_N(A)$ generated by elements of the form

$$\pi(a) := \begin{pmatrix} a & & & \\ & \alpha(a) & & \\ & & \ddots & \\ & & & \alpha^{N-1}(a) \end{pmatrix} \text{ and } U := \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}$$

Once can check that

$$\pi(\alpha(a)) = U\pi(a)U^{-1}$$

Question

If $\alpha : G \to Aut(A)$ is a group action of a finite group on a C*-algebra, can we estimate

 $tsr(A \rtimes_{\alpha} G)$

in terms of tsr(A)?

In 2007, Jeong, Osaka, Phillips and Teruya proved that

 $tsr(A \rtimes_{\alpha} G) \leq tsr(A) + |G| - 1$

We had two objectives :

- Can we improve this estimate if we impose certain conditions on the action?
- Can we also find estimates for other 'ranks'? (Topological stable rank is not the only dimension theory for C*-algebras)

Rokhlin Actions

Definition

An action $\alpha : G \curvearrowright A$ is said to have the *Rokhlin property* if, for any finite set $F \subset A$ and any $\epsilon > 0$, there are projections $\{e_g : g \in G\} \subset A$ such that

1. $\sum_{g \in G} e_g = 1_A$ [Partition of Unity]2. $\alpha_g(e_h) = e_{gh}$ [Permuted by G]3. $\|e_g a - ae_g\| < \epsilon$ [Approximately commutes with F]

If A = C(X), then a projection in A corresponds to a cl-open set in X. Hence, the condition above implies that

X is totally disconnected. (ie. X has a basis consisting of cl-open sets)

Furthermore, if X is totally disconnected, the Rokhlin property is equivalent to saying that

the action is free.

If A is non-commutative, then A tends to admit a Rokhlin action if

A is low-dimensional. (ie. A has a lot of projections)

If A is non-commutative, then A tends to admit a Rokhlin action if

A is low-dimensional. (ie. A has a lot of projections)

Not every C*-algebra admits a Rokhlin action of a finite group (for instance, A_{θ} and \mathcal{O}_{∞} do not).

Example: $A = M_{2^{\infty}}$

Let A be the UHF algebra of type 2^{∞}

$$A = \bigotimes_{n=1}^{\infty} M_2(\mathbb{C})$$

Let $v = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in M_2(\mathbb{C})$ and
 $\operatorname{Ad}(v) : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be given by $a \mapsto vav^*$

Then

$$\alpha := \bigotimes_{n=1}^{\infty} \operatorname{Ad}(v)$$

is an order 2 automorphism of A, so defines an action

$$\alpha: \mathbb{Z}_2 \curvearrowright M_{2^{\infty}}$$

This action has the Rokhlin property.

Theorem (Anshu, PV (2020))

If $\alpha : G \to Aut(A)$ is an action of a finite group on a unital, separable C*-algebra with the Rokhlin property, then

$$tsr(A \rtimes_{\alpha} G) \leq \left\lceil \frac{tsr(A) - 1}{|G|} \right\rceil + 1$$

- Analogous inequalities also hold for a number of other 'ranks' for C*-algebras, including
 - 1. Connected stable rank
 - 2. General stable rank
 - 3. Real Rank
- In 2012, Osaka and Phillips proved that, if the action is Rokhlin and tsr(A) = 1, then

$$tsr(A \rtimes_{\alpha} G) = 1$$

So our theorem is a strengthening of that result.

Thank you!