
ROKHLIN DIMENSION FOR GROUP ACTIONS

DR. PRAHLAD VAIDYANATHAN

Abstract. We discuss a notion of dimension for group actions on C*-algebras, due to
Hirshberg, Winter and Zacharias, that allows us to prove permanence properties when
passing from the algebra to the crossed product.
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Standing assumption: Unless stated otherwise, all C*-algebras will be unital (de-
noted by A,B,C, . . .), all topological spaces will be compact and Hausdorff (denoted by
X, Y, Z, . . .), and all groups will be finite (denoted by G,H, . . .).

1. Motivation

Definition 1.1. A group action of G on A is a group homomorphism α : G→ Aut(A)

For g ∈ G, we write αg := α(g) ∈ Aut(A). Given a group action Gyα A, one constructs
a crossed product C*-algebra

Aoα G

Question: (Permanence property) Suppose A satisfies a property (P), then can we
impose conditions on α so that that Aoα G also satisfies (P)?

Some examples of property (P) might be:

(1) Simplicity
(2) Nuclearity/Exactness
(3) Finite nuclear dimension/stable rank/real rank/etc
(4) Stability (A⊗K ∼= A)
(5) Classifiability (by K-theoretic invariants, in the sense of Elliott)

The motivation once again comes from the commutative case.

Definition 1.2. An action of G on X is a group homomorphism β : G→ Homeo(X)

Let G yβ X. For g ∈ G, we write g · x := β(g)(x). Given such an action, we get an
induced action of G on C(X) by

αg(f)(x) := f(g−1 · x)

Furthermore, every action of G on C(X) arises in this way.
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2. Review of Covering Dimension of a Space

Definition 2.1. An open cover U of X is said to be n-decomposable if there is a decom-
position

U = U0 t U1 t . . . t Un
such that each Ui consists of mutually disjoint sets.

Example 2.2. The following cover of S1 is 1-decomposable.

Figure 1. 1-decomposable cover of S1

One thinks of an n-decomposable cover as a way of covering the space with (n + 1)
colours, where each colour corresponds to a single Ui.

Definition 2.3. The Lebesgue covering dimension of X is the least integer n such that
every finite open cover U of X has a finite refinement V which is n-decomposable. We
denote this number by

dim(X)

3. Free Group Actions on Spaces

An action Gyβ X is said to be free if, for any x ∈ X and g ∈ G,

g · x = x⇒ g = e
Example 3.1.

(1) G acts on itself by left-multiplication (where G = X carries the discrete topology).
We denote this action by

λ : G→ Homeo(G)

(2) G = Zn acts on X = S1 by ‘rotation by 2π/n’

k · z := e2πik/nz

Definition 3.2. Let G yβ X and U be a cover of X. We say that U is n-decomposable
with respect to G if we can write

U = U0 t U1 t . . . t Un
where, for each 0 ≤ i ≤ n, each Ui consists of |G| mutually disjoint sets

Ui = {V g
i : g ∈ G}

such that
g · V h

i = V gh
i
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In other words, such a cover of X corresponds to a colouring of X, where each colour
respects the action of G

Lemma 3.3. If X has a cover that is n-decomposable with respect to G, then the action
is free.

Proof. If x ∈ X, then there exists 0 ≤ i ≤ n and h ∈ G such that x ∈ V h
i . Now if g ∈ G

is such that g · x = x, then

x = g · x ∈ g · V h
i = V gh

i

If g 6= e, then V g
i and V gh

i are disjoint. Hence, g = e must hold. �

Theorem 3.4. Let G yβ X be a free action. Then, there exists n ∈ N such that X has
an open cover that is n-decomposable with respect to G.

We give the idea of the proof by an example.

Example 3.5. Let X = S1 and G = Z6 acting on X by rotation as above.

(1) Observe that X/G ∼= S1

Figure 2. Quotient of S1 by Z6 action

(2) Start with an open cover of X/G like {W0,W1} shown below.

Figure 3. 1-decomposable cover of S1 with respect to Z6

(3) Lift this cover to get an 1-decomposable cover of X with respect to G.
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4. Decomposable Actions on C*-algebras

Let G be a group and λ : G→ Aut(C(G)) be the action induced by the left action of G
on itself. In other words,

λg(f)(h) := f(g−1h)

Let G yα A and G yβ B be two group actions. A linear map ϕ : A → B is said to be
G-equivariant if

ϕ(αg(a)) = βg(ϕ(a))

for all a ∈ A. Note that if Gyα A, then

Z(A) := {b ∈ A : ba = ab ∀a ∈ A}
is G-invariant. So we get an induced action Gy Z(A), which we also denote by α.

Definition 4.1. We say that the group action α is n-decomposable if there exist (n+ 1)
linear maps

ϕ0, ϕ1, . . . , ϕn : C(G)→ Z(A)

such that

(1) Each ϕi is a c.c.p. order zero map.
(2) Each ϕi is G-equivariant.
(3)

n∑
i=0

ϕi(1C(G)) = 1A

Lemma 4.2. Let G yβ X be a group action, and α : G → Aut(C(X)) be the induced
action. If α is n-decomposable, then β is free.

Proof. Let ϕi : C(G)→ C(X) be the maps as above. For g ∈ G, define

V g
i := ϕi(δg)

−1 ((0, 1])

Then

• V g
i ∩ V h

i = ∅ if g 6= h, since ϕi(δg) ⊥ ϕi(δh).
•

g · V h
i = V gh

i

since the ϕi are G-equivariant.
• Furthermore, U = U0 t U1 t . . . t Un is a cover for X since

n∑
i=0

ϕi(1C(G)) = 1C(X)

Hence, the action is free by 3.3. �

In fact, we have the following theorem.

Theorem 4.3. Let G yβ X be a group action, and α : G → Aut(C(X)) the induced
action. Then, α is n-decomposable if and only if β is free.

Once again, we give an example to illustrate the idea of the proof.

Example 4.4. Let X = S1 and G = Z6 with the action as in 3.5. We show that this
action is 1-decomposable by constructing maps

ϕ0, ϕ1 : C(Z6)→ C(S1)

as above.
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Consider the open cover

{W0,W1}
of X/G obtained in Step (ii). Choose a partition of unity {f0, f1} subordinate to this
cover. Then, this partition of unity lifts to functions

{f 0
0 , f

1
0 , . . . , f

5
0} and {f 0

1 , f
1
1 , . . . , f

5
1}

Figure 4. Left-action of G permutes the f j0

Define ϕi : C(G)→ C(X) by

ϕi(δj) = f ji

Observe that

• 0 ≤ f ji ≤ 1. Hence, ϕi is c.c.p.

• λk(f ji ) = fk+ji . Hence, ϕi is G-equivariant.

• For i ∈ {0, 1} fixed, we have f ji f
k
i = 0 if j 6= k. Hence, ϕi has order zero.

•
1∑
i=0

ϕi(1C(G)) =
1∑
i=0

5∑
j=0

f ji = 1C(X)

Hence, this action of Z6 on C(S1) is 1-decomposable.

Hence, the notion of n-decomposability can be thought of as a generalization of
‘freeness’ of an action on space.

5. The Structure of the Crossed Product

The goal of this section is to understand what this condition of n-decomposability implies
for the structure of the crossed product. Our goal is to factor the identity map

Aoα G
id //

ψ̃ ##

Aoα G

B
ϕ̃

;;

where B is a ‘nice’ C*-algebra and ψ̃ and ϕ̃ are ∗-homomorphisms. We will do this in
the following steps:
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(1) Since α is n-decomposable, we have (n+ 1) c.c.p. order zero maps

ϕ0, ϕ1, . . . , ϕn : C(G)→ Z(A)

as above.

By a structure theorem for order zero maps [Winter and Zacharias, 2009],
we get ∗-homomorphisms

ρi : C0[0, 1)⊗ C(G)→ Z(A) such that idC[0,1) ⊗ a 7→ ϕi(a)

Furthermore, these maps ρi are G-invariant where the action of G on C0[0, 1) ⊗
C(G) is given by

g · (f ⊗ a) := f ⊗ λg(a)

(2) Since the maps ρi have commuting ranges, we get a single G-equivariant ∗-
homomorphism

ρ : C → Z(A)

where C = [C0[0, 1)⊗ C(G)]⊗(n+1).
(3) If ηi : C0[0, 1)⊗ C(G)→ C are the inclusion maps (for 0 ≤ i ≤ n), then for

x :=
n∑
i=0

ηi(idC[0,1) ⊗ 1C(G)) ∈ C

we have ρ(x) = 1. Therefore, if I is the ideal of C generated by elements of the
form {xf − f : f ∈ C}, then ρ induces a map

ρ : D → Z(A)

where D := C/I is a unital and commutative C*-algebra. Furthermore, D is of
the form

D ∼= C(Y )⊗ C(G)

for some compact metric space Y with dim(Y ) ≤ n, and where the action of G
on the C(G) component is by λ.

(4) Tensoring with A, we get a G-equivariant map

ρ̂ : D ⊗ A→ Z(A)⊗ A

(5) Now, the map

θ : Z(A)⊗ A→ A given by x⊗ a 7→ xa

is a G-equivariant ∗-homomorphism. Composing, we get a map

ρ̃ : D ⊗ A→ A

Finally, the condition
∑n

i=0 ϕi(1C(G)) = 1A implies that, for all a ∈ A,

ρ̃(1D ⊗ a) = a

(6) So we have a diagram of G-equivariant ∗-homomorphisms

A

ψ ##

id // A

D ⊗ A
ρ̃

;;

where ψ(a) = 1D ⊗ a.
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(7) Finally, we need one more fact. If G yγ E, then the tensor product C(G) ⊗ E
carries two different actions of G,

λ⊗ id and λ⊗ γ

It turns out, both crossed products are the same

(C(G)⊗ E) oλ⊗γ G ∼= (C(G)⊗ E) oλ⊗id G ∼= M|G|(E)

In other words, tensoring with (C(G), λ) kills the dynamical structure!

Since
D ⊗ A ∼= C(Y )⊗ C(G)⊗ A

where the action on C(G) is by λ, we conclude that

(D ⊗ A) oG ∼= C(Y )⊗M|G|(A)

Hence, we arrive at the following theorem

Theorem 5.1. Let α : G → Aut(A) be an n-decomposable action. Then, there is a
commuting diagram

Aoα G
id //

ψ̃ ((

Aoα G

C(Y )⊗M|G|(A)
ϕ̃

66

where Y is a compact metric space with dim(Y ) ≤ n.

This allows us to understand properties of AoαG by ‘factoring through’ C(Y )⊗M|G|(A).

Corollary 5.2. Let (P) denote one of the following properties:

(1) Finite rank (stable/real/decomposition rank/nuclear dimension)
(2) Stability
(3) Classifiability (ie. Simple, separable, and satisfying the UCT)
(4) ... etc.

If A satisfies property (P) and α is n-decomposable, then A oα G also satisfies property
(P).

6. Approximately Decomposable Actions and Rokhlin Dimension

Unfortunately, requiring that an action is n-decomposable is too restrictive in the non-
commutative case. Therefore, one defines an approximate version of it.

Definition 6.1. An action α : G→ Aut(A) is said to be approximately n-decomposable
if, for every finite set F ⊂ A and every ε > 0, there are (n+ 1) linear maps

ϕ0, ϕ1, . . . , ϕn : C(G)→ A

such that

(1) Each ϕi is a c.c.p. order zero map.
(2) Each ϕi is ‘approximately equivariant’.

‖αg(ϕi(f))− ϕi(λg(f))‖ < ε ∀g ∈ G, f ∈ C(G)

(3) Each ϕi is ‘approximately central’

‖ϕi(f)a− aϕi(f)‖ < ε ∀a ∈ F, and f ∈ C(G)

‖ϕi(f1)ϕj(f2)− ϕj(f2)ϕi(f1)‖ < ε ∀f1, f2 ∈ C(G), and 0 ≤ i, j ≤ n
7



(4) The {ϕi} are an ‘approximate partition of unity’.

‖
n∑
i=0

ϕi(1C(G))− 1A‖ < ε

Definition 6.2. [Hirshberg, Winter, and Zacharias, 2012] The Rokhlin dimension
(with commuting towers) of an action α : G → Aut(A) is the least value of n ∈ N such
that α is approximately n-decomposable. We denote the integer by

dimc
Rok(α)

Example 6.3. We give some examples without proof.

(1) [Phillips, 2017, Example 13.6] Let A :=
⊗∞

n=1M2(C) be the UHF algebra of
type 2∞ and α ∈ Aut(A) be the order two automorphism given by

α =
∞⊗
n=1

Ad

(
0 1
1 0

)
Then α induces an action of Z2 on A such that dimc

Rok(α) = 0.
(2) [Hirshberg and Phillips, 2015, Example 1.12] Let θ ∈ R be irrational, and

A = Aθ be the corresponding irrational rotation algebra generated by unitaries
{u, v} such that

uv = e2πiθvu

Let α ∈ Aut(A) be the order two automorphism satisfying

α(v) = v and α(u) = −u
Then, α induces an action of Z2 with the property that dimc

Rok(α) = 1

Note that both actions above are not n-decomposable as in 4.1 because the
underlying algebras are simple, and so have trivial centers.

(3) [Gardella, 2014, Theorem 4.1] However, if A is commutative and α : G →
Aut(A) is an action such that

n := dimc
Rok(α) <∞

then α is n-decomposable in the sense of 4.1.
(4) [Hirshberg and Phillips, 2015, Lemma 1.20] Let G yα A. If there exists

e 6= h ∈ G and u ∈ U(A) a unitary such that

αh(a) = uau∗ ∀a ∈ A
Then dimc

Rok(α) = +∞.

The following is now an analog of 5.1.

Theorem 6.4. [Gardella, Hirshberg, and Santiago, 2017] If

dimc
Rok(α) <∞

Then, there is an approximate/local analog of 5.1.

Many of the properties of C*-algebras listed above are defined in terms of approximations.
Hence, we get the following corollary.

Corollary 6.5. Let (P) denote one of the following properties:

(1) Finite rank (stable/real/decomposition rank/nuclear dimension)
(2) Stability
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(3) Simple, separable, and satisfying the UCT
(4) ... etc.

If A satisfies property (P) and
dimc

Rok(α) <∞
then Aoα G also satisfies property (P).
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