ROKHLIN DIMENSION FOR GROUP ACTIONS

DR. PRAHLAD VAIDYANATHAN

ABsTRACT. We discuss a notion of dimension for group actions on C*-algebras, due to
Hirshberg, Winter and Zacharias, that allows us to prove permanence properties when
passing from the algebra to the crossed product.
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Standing assumption: Unless stated otherwise, all C*-algebras will be unital (de-
noted by A, B,C,...), all topological spaces will be compact and Hausdorff (denoted by

XY,

Definition 1.1. A group action of G on A is a group homomorphism « : G — Aut(A)

Z,...), and all groups will be finite (denoted by G, H, .. .).

1. MOTIVATION

For g € G, we write oy := a(g) € Aut(A). Given a group action G ~,, A, one constructs
a crossed product C*-algebra

Ax, G

Some
(1
(2
(3
(4
(5

examples of property (P) might be:

Simplicity

Nuclearity /Exactness

Finite nuclear dimension/stable rank/real rank/etc

Stability (A® I = A)

) Classifiability (by K-theoretic invariants, in the sense of Elliott)

— — N

The motivation once again comes from the commutative case.

Definition 1.2. An action of G on X is a group homomorphism § : G — Homeo(X)

Let G ~g X. For g € G, we write g - x := [(g)(x). Given such an action, we get an
induced action of G on C(X) by

ag(f)(x) = flg~" - 2)

Furthermore, every action of G on C'(X) arises in this way.
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2. REVIEW OF COVERING DIMENSION OF A SPACE

Definition 2.1. An open cover U of X is said to be n-decomposable if there is a decom-
position

U=U U L...UU,
such that each U; consists of mutually disjoint sets.

Example 2.2. The following cover of S! is 1-decomposable.

U

Z ¢

FIGURE 1. l-decomposable cover of S*

Definition 2.3. The Lebesque covering dimension of X is the least integer n such that
every finite open cover U of X has a finite refinement V which is n-decomposable. We
denote this number by

dim(X)
3. FREE GROUP ACTIONS ON SPACES

An action G ~vg X is said to be free if, for any z € X and g € G,

g-r=x=g=e
Example 3.1.

(1) G acts on itself by left-multiplication (where G = X carries the discrete topology).
We denote this action by
A : G — Homeo(G)
(2) G =7Z, acts on X = S by ‘rotation by 27/n’
k2= emkiny

Definition 3.2. Let G ~g X and U be a cover of X. We say that U is n-decomposable
with respect to G if we can write

U=UUlU L...UU,
where, for each 0 < i < n, each U; consists of |G| mutually disjoint sets
U ={v’:9eG}
such that
qg- ‘/ih _ V;gh
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Lemma 3.3. If X has a cover that is n-decomposable with respect to G, then the action
is free.

Proof. If x € X, then there exists 0 < i < n and h € G such that z € V,L-h. Now if g € G
is such that g - x = x, then

[lj:gxeg‘/lh:‘/lgh
If g # e, then V¥ and V" are disjoint. Hence, g = e must hold. O

Theorem 3.4. Let G ~g X be a free action. Then, there exists n € N such that X has
an open cover that is n-decomposable with respect to G.

We give the idea of the proof by an example.

Example 3.5. Let X = S! and G = Zg acting on X by rotation as above.
(1) Observe that X/G = S*

(y-C

FIGURE 2. Quotient of S* by Zg action

(2) Start with an open cover of X/G like {Wy, Wi} shown below.

Wy

2~ L
(Ox6
N~

FIGURE 3. 1-decomposable cover of S* with respect to Zg

(3) Lift this cover to get an 1-decomposable cover of X with respect to G.
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4. DECOMPOSABLE ACTIONS ON C*-ALGEBRAS

Let G be a group and A : G — Aut(C(G)) be the action induced by the left action of G
on itself. In other words,

N(F)(R) := f(g~"h)
Let G ~y A and G ~g B be two group actions. A linear map ¢ : A — B is said to be

G-equivariant if
plag(a)) = By(p(a))
for all a € A. Note that if G ~, A, then
Z(A):={be A:ba=ab Vac A}
is G-invariant. So we get an induced action G ~ Z(A), which we also denote by a.

Definition 4.1. We say that the group action « is n-decomposable if there exist (n + 1)
linear maps

00y P15+ on s C(G) = Z(A)
such that

(1) Each ¢; is a c.c.p. order zero map.
(2) Each ¢; is G-equivariant.

(3) §
Z vi(le@) = 1a

Lemma 4.2. Let G ~g X be a group action, and o : G — Aut(C(X)) be the induced
action. If o is n-decomposable, then [ is free.

Proof. Let ¢; : C(G) — C(X) be the maps as above. For g € G, define

Ve = 0i(8,) 7 (0, 1)
Then
o VINVI=0if g+ h, since v;(0,) L ©i(d).
) gV =v"
since the ; are G-equivariant.
e Furthermore, U = Uy LIU, LI ... LU, is a cover for X since

> eillee) = lew)
=0

Hence, the action is free by 3.3. U
In fact, we have the following theorem.

Theorem 4.3. Let G ng X be a group action, and o : G — Aut(C(X)) the induced
action. Then, « 1s n-decomposable if and only if B is free.

Once again, we give an example to illustrate the idea of the proof.

Example 4.4. Let X = S' and G = Zg with the action as in 3.5. We show that this
action is 1-decomposable by constructing maps

©o, 01 : C(Ze) — C(Sl)

as above.



Consider the open cover
{W07 Wl}

of X/G obtained in Step (ii). Choose a partition of unity {fo, fi} subordinate to this
cover. Then, this partition of unity lifts to functions

{fo: fo, - fot and {f1, f1 -, £}

FIGURE 4. Left-action of G permutes the fJ

Define ¢; : C(G) — C(X) by
vi(0;) = f}
Observe that
o (< fij < 1. Hence, ¢; is c.c.p.
o \o(f7) = fF*7. Hence, g; is G-equivariant.
e For i € {0,1} fixed, we have f/fF =0 if j # k. Hence, p; has order zero.

Hence, this action of Zg on C'(S?) is 1-decomposable.

5. THE STRUCTURE OF THE CROSSED PRrRoDUCT

The goal of this section is to understand what this condition of n-decomposability implies
for the structure of the crossed product. Our goal is to factor the identity map

Ax, G i Ax, G

B

where B is a ‘nice’ C*-algebra and @Z and ¢ are x-homomorphisms. We will do this in

the following steps:
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(1) Since « is n-decomposable, we have (n + 1) c.c.p. order zero maps
©0, P15+ Pn C(G) — Z(A)

as above.

By a structure theorem for order zero maps [WINTER and ZACHARIAS, 2009],
we get *-homomorphisms

pi : Col0,1) ® C(G) — Z(A) such that idep1) ® a — ¢i(a)

Furthermore, these maps p; are G-invariant where the action of G on Cp[0,1) ®
C(G) is given by
g-(f®a):=[®N(a)
(2) Since the maps p; have commuting ranges, we get a single G-equivariant -
homomorphism

p:C— Z(A)

where C' = [Co[0,1) @ C(G)]*" .
(3) If m; : C[0,1) ® C(G) — C' are the inclusion maps (for 0 < ¢ < n), then for

xr = Z ni(idc[o,l) X 1C(G)> cC
=0

we have p(x) = 1. Therefore, if I is the ideal of C' generated by elements of the
form {zf — f: f € C}, then p induces a map

p:D— Z(A)

where D := C/I is a unital and commutative C*-algebra. Furthermore, D is of
the form

D=C(Y)®C(G)

for some compact metric space Y with dim(Y") < n, and where the action of G
on the C(G) component is by A.
(4) Tensoring with A, we get a G-equivariant map

p:DRA—ZA®A
(5) Now, the map
0:Z(A)®A— Agiven by  ® a — xa
is a G-equivariant *-homomorphism. Composing, we get a map
p:DRA— A
Finally, the condition >, ¢i(1c(e)) = 14 implies that, for all a € A,
p(lp ®a) =a

(6) So we have a diagram of G-equivariant *-homomorphisms

A i A
A

D®A

where ¢(a) = 1p ® a.



(7) Finally, we need one more fact. If G ~., E, then the tensor product C(G) ® E
carries two different actions of G,

A®id and A ® ~

It turns out, both crossed products are the same
(C(G) ® E) NA@»}, G = (C(G) ® E) N)\®id G = MG|(E)
In other words, tensoring with (C(G), ) kills the dynamical structure!

Since

DA=CY)2C(G)® A
where the action on C(G) is by A, we conclude that
(D®A)xG=CY)® Mg(A)

Hence, we arrive at the following theorem

This allows us to understand properties of A x, G by ‘factoring through’ C'(Y") ® Mg (A).

Corollary 5.2. Let (P) denote one of the following properties:
(1) Finite rank (stable/real/decomposition rank/nuclear dimension)

(2) Stability
(3) Classifiability (ie. Simple, separable, and satisfying the UCT)
(4) ... etc.
If A satisfies property (P) and « is n-decomposable, then A X, G also satisfies property

(P).
6. APPROXIMATELY DECOMPOSABLE ACTIONS AND ROKHLIN DIMENSION

Unfortunately, requiring that an action is n-decomposable is too restrictive in the non-
commutative case. Therefore, one defines an approximate version of it.

Definition 6.1. An action o : G — Aut(A) is said to be approzimately n-decomposable
if, for every finite set F' C A and every € > 0, there are (n + 1) linear maps

00, P1,- -, n : C(G) = A
such that

(1) Each ¢; is a c.c.p. order zero map.
(2) Each ¢; is ‘approximately equivariant’.

lag(i(f) =i (f)I <€ Vg e G, fel(G)
(3) Each ¢; is ‘approximately central’

lpi(fla —api(f)]| <e VaeF, and f € C(G)
i (f1)s(f2) — @i(f2)ei(fL)ll < 67 Vfi, fo € C(G), and 0 <i,j <n



(4) The {p;} are an ‘approximate partition of unity’.

1D ¢i(low) = 1all <€
=0

Definition 6.2. [HIRSHBERG, WINTER, and ZACHARIAS, 2012] The Rokhlin dimension
(with commuting towers) of an action o : G — Aut(A) is the least value of n € N such
that « is approximately n-decomposable. We denote the integer by

dim’, ()

Example 6.3. We give some examples without proof.

(1) [PHILLIPS, 2017, Example 13.6] Let A := @~ M>(C) be the UHF algebra of
type 2°° and «a € Aut(A) be the order two automorphism given by

S 01
- ®u(i )
Then « induces an action of Zy on A such that dimf,, () = 0.
(2) [HIRSHBERG and PHILLIPS, 2015, Example 1.12] Let # € R be irrational, and

A = Ay be the corresponding irrational rotation algebra generated by unitaries
{u,v} such that
ww = ey
Let a € Aut(A) be the order two automorphism satisfying
a(v) =v and a(u) = —u

Then, o induces an action of Zy with the property that dimf,, (o) =1

Note that both actions above are not n-decomposable as in 4.1 because the
underlying algebras are simple, and so have trivial centers.

(3) [GARDELLA, 2014, Theorem 4.1] However, if A is commutative and o : G —
Aut(A) is an action such that

n = dimfp,;, () < 00

then « is n-decomposable in the sense of 4.1.
(4) [HIRSHBERG and PHILLIPS, 2015, Lemma 1.20] Let G ~, A. If there exists
e# heGand ue€ U(A) a unitary such that

ap(a) = uau* Va € A

Then dim$,, (o) = +oo.

The following is now an analog of 5.1.

Many of the properties of C*-algebras listed above are defined in terms of approximations.
Hence, we get the following corollary.

Corollary 6.5. Let (P) denote one of the following properties:

(1) Finite rank (stable/real/decomposition rank/nuclear dimension)
(2) Stability
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(3) Simple, separable, and satisfying the UCT
(4) ... ete.
If A satisfies property (P) and
dim%,, (@) < 00
then A x, G also satisfies property (P).
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