ROKHLIN DIMENSION FOR GROUP ACTIONS

DR. PRAHLAD VAIDYANATHAN

Abstract. We discuss a notion of dimension for group actions on C^{*}-algebras, due to Hirshberg, Winter and Zacharias, that allows us to prove permanence properties when passing from the algebra to the crossed product.

Contents

1. Motivation 1
2. Review of Covering Dimension of a Space 2
3. Free Group Actions on Spaces 2
4. Decomposable Actions on C^{*}-algebras 4
5. The Structure of the Crossed Product 5
6. Approximately Decomposable Actions and Rokhlin Dimension 7
References 9

Standing assumption: Unless stated otherwise, all C^{*}-algebras will be unital (denoted by A, B, C, \ldots), all topological spaces will be compact and Hausdorff (denoted by X, Y, Z, \ldots), and all groups will be finite (denoted by G, H, \ldots).

1. Motivation

Definition 1.1. A group action of G on A is a group homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$
For $g \in G$, we write $\alpha_{g}:=\alpha(g) \in \operatorname{Aut}(A)$. Given a group action $G \curvearrowright_{\alpha} A$, one constructs a crossed product C^{*}-algebra

$$
A \rtimes_{\alpha} G
$$

Question: (Permanence property) Suppose A satisfies a property (P), then can we impose conditions on α so that that $A \rtimes_{\alpha} G$ also satisfies (P)?
Some examples of property (P) might be:
(1) Simplicity
(2) Nuclearity/Exactness
(3) Finite nuclear dimension/stable rank/real rank/etc
(4) Stability $(A \otimes \mathcal{K} \cong A)$
(5) Classifiability (by K-theoretic invariants, in the sense of Elliott)

The motivation once again comes from the commutative case.
Definition 1.2. An action of G on X is a group homomorphism $\beta: G \rightarrow \operatorname{Homeo}(X)$
Let $G \curvearrowright_{\beta} X$. For $g \in G$, we write $g \cdot x:=\beta(g)(x)$. Given such an action, we get an induced action of G on $C(X)$ by

$$
\alpha_{g}(f)(x):=f\left(g^{-1} \cdot x\right)
$$

Furthermore, every action of G on $C(X)$ arises in this way.

2. Review of Covering Dimension of a Space

Definition 2.1. An open cover \mathcal{U} of X is said to be n-decomposable if there is a decomposition

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}
$$

such that each \mathcal{U}_{i} consists of mutually disjoint sets.
Example 2.2. The following cover of S^{1} is 1 -decomposable.

Figure 1. 1-decomposable cover of S^{1}

One thinks of an n-decomposable cover as a way of covering the space with $(n+1)$ colours, where each colour corresponds to a single \mathcal{U}_{i}.

Definition 2.3. The Lebesgue covering dimension of X is the least integer n such that every finite open cover \mathcal{U} of X has a finite refinement \mathcal{V} which is n-decomposable. We denote this number by

$$
\operatorname{dim}(X)
$$

3. Free Group Actions on Spaces

An action $G \curvearrowright_{\beta} X$ is said to be free if, for any $x \in X$ and $g \in G$,

$$
g \cdot x=x \Rightarrow g=e
$$

Example 3.1.

(1) G acts on itself by left-multiplication (where $G=X$ carries the discrete topology). We denote this action by

$$
\lambda: G \rightarrow \operatorname{Homeo}(G)
$$

(2) $G=\mathbb{Z}_{n}$ acts on $X=S^{1}$ by 'rotation by $2 \pi / n$ '

$$
\bar{k} \cdot z:=e^{2 \pi i k / n} z
$$

Definition 3.2. Let $G \curvearrowright_{\beta} X$ and \mathcal{U} be a cover of X. We say that \mathcal{U} is n-decomposable with respect to G if we can write

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}
$$

where, for each $0 \leq i \leq n$, each \mathcal{U}_{i} consists of $|G|$ mutually disjoint sets

$$
\mathcal{U}_{i}=\left\{V_{i}^{g}: g \in G\right\}
$$

such that

$$
g \cdot V_{i}^{h}=V_{i}^{g h}
$$

Lemma 3.3. If X has a cover that is n-decomposable with respect to G, then the action is free.
Proof. If $x \in X$, then there exists $0 \leq i \leq n$ and $h \in G$ such that $x \in V_{i}^{h}$. Now if $g \in G$ is such that $g \cdot x=x$, then

$$
x=g \cdot x \in g \cdot V_{i}^{h}=V_{i}^{g h}
$$

If $g \neq e$, then V_{i}^{g} and $V_{i}^{g h}$ are disjoint. Hence, $g=e$ must hold.
Theorem 3.4. Let $G \curvearrowright_{\beta} X$ be a free action. Then, there exists $n \in \mathbb{N}$ such that X has an open cover that is n-decomposable with respect to G.

We give the idea of the proof by an example.
Example 3.5. Let $X=S^{1}$ and $G=\mathbb{Z}_{6}$ acting on X by rotation as above.
(1) Observe that $X / G \cong S^{1}$

Figure 2. Quotient of S^{1} by \mathbb{Z}_{6} action
(2) Start with an open cover of X / G like $\left\{W_{0}, W_{1}\right\}$ shown below.

Figure 3. 1-decomposable cover of S^{1} with respect to \mathbb{Z}_{6}
(3) Lift this cover to get an 1-decomposable cover of X with respect to G.

4. Decomposable Actions on C*-algebras

Let G be a group and $\lambda: G \rightarrow \operatorname{Aut}(C(G))$ be the action induced by the left action of G on itself. In other words,

$$
\lambda_{g}(f)(h):=f\left(g^{-1} h\right)
$$

Let $G \curvearrowright_{\alpha} A$ and $G \curvearrowright_{\beta} B$ be two group actions. A linear map $\varphi: A \rightarrow B$ is said to be G-equivariant if

$$
\varphi\left(\alpha_{g}(a)\right)=\beta_{g}(\varphi(a))
$$

for all $a \in A$. Note that if $G \curvearrowright_{\alpha} A$, then

$$
\mathcal{Z}(A):=\{b \in A: b a=a b \quad \forall a \in A\}
$$

is G-invariant. So we get an induced action $G \curvearrowright \mathcal{Z}(A)$, which we also denote by α.
Definition 4.1. We say that the group action α is n-decomposable if there exist $(n+1)$ linear maps

$$
\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}: C(G) \rightarrow \mathcal{Z}(A)
$$

such that
(1) Each φ_{i} is a c.c.p. order zero map.
(2) Each φ_{i} is G-equivariant.

$$
\begin{equation*}
\sum_{i=0}^{n} \varphi_{i}\left(1_{C(G)}\right)=1_{A} \tag{3}
\end{equation*}
$$

Lemma 4.2. Let $G \curvearrowright_{\beta} X$ be a group action, and $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ be the induced action. If α is n-decomposable, then β is free.
Proof. Let $\varphi_{i}: C(G) \rightarrow C(X)$ be the maps as above. For $g \in G$, define

$$
V_{i}^{g}:=\varphi_{i}\left(\delta_{g}\right)^{-1}((0,1])
$$

Then

- $V_{i}^{g} \cap V_{i}^{h}=\emptyset$ if $g \neq h$, since $\varphi_{i}\left(\delta_{g}\right) \perp \varphi_{i}\left(\delta_{h}\right)$.

$$
g \cdot V_{i}^{h}=V_{i}^{g h}
$$

since the φ_{i} are G-equivariant.

- Furthermore, $\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}$ is a cover for X since

$$
\sum_{i=0}^{n} \varphi_{i}\left(1_{C(G)}\right)=1_{C(X)}
$$

Hence, the action is free by 3.3.
In fact, we have the following theorem.
Theorem 4.3. Let $G \curvearrowright_{\beta} X$ be a group action, and $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ the induced action. Then, α is n-decomposable if and only if β is free.

Once again, we give an example to illustrate the idea of the proof.
Example 4.4. Let $X=S^{1}$ and $G=\mathbb{Z}_{6}$ with the action as in 3.5. We show that this action is 1 -decomposable by constructing maps

$$
\varphi_{0}, \varphi_{1}: C\left(\mathbb{Z}_{6}\right) \rightarrow C\left(S^{1}\right)
$$

as above.

Consider the open cover

$$
\left\{W_{0}, W_{1}\right\}
$$

of X / G obtained in Step (ii). Choose a partition of unity $\left\{f_{0}, f_{1}\right\}$ subordinate to this cover. Then, this partition of unity lifts to functions

$$
\left\{f_{0}^{0}, f_{0}^{1}, \ldots, f_{0}^{5}\right\} \text { and }\left\{f_{1}^{0}, f_{1}^{1}, \ldots, f_{1}^{5}\right\}
$$

Figure 4. Left-action of G permutes the f_{0}^{j}

Define $\varphi_{i}: C(G) \rightarrow C(X)$ by

$$
\varphi_{i}\left(\delta_{j}\right)=f_{i}^{j}
$$

Observe that

- $0 \leq f_{i}^{j} \leq 1$. Hence, φ_{i} is c.c.p.
- $\lambda_{k}\left(f_{i}^{j}\right)=f_{i}^{k+j}$. Hence, φ_{i} is G-equivariant.
- For $i \in\{0,1\}$ fixed, we have $f_{i}^{j} f_{i}^{k}=0$ if $j \neq k$. Hence, φ_{i} has order zero.

$$
\sum_{i=0}^{1} \varphi_{i}\left(1_{C(G)}\right)=\sum_{i=0}^{1} \sum_{j=0}^{5} f_{i}^{j}=1_{C(X)}
$$

Hence, this action of \mathbb{Z}_{6} on $C\left(S^{1}\right)$ is 1-decomposable.
Hence, the notion of n-decomposability can be thought of as a generalization of 'freeness' of an action on space.

5. The Structure of the Crossed Product

The goal of this section is to understand what this condition of n-decomposability implies for the structure of the crossed product. Our goal is to factor the identity map

where B is a 'nice' C^{*}-algebra and $\widetilde{\psi}$ and $\widetilde{\varphi}$ are $*$-homomorphisms. We will do this in the following steps:
(1) Since α is n-decomposable, we have $(n+1)$ c.c.p. order zero maps

$$
\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}: C(G) \rightarrow \mathcal{Z}(A)
$$

as above.
By a structure theorem for order zero maps [Winter and Zacharias, 2009], we get $*$-homomorphisms

$$
\rho_{i}: C_{0}[0,1) \otimes C(G) \rightarrow \mathcal{Z}(A) \text { such that } \operatorname{id}_{C[0,1)} \otimes a \mapsto \varphi_{i}(a)
$$

Furthermore, these maps ρ_{i} are G-invariant where the action of G on $C_{0}[0,1) \otimes$ $C(G)$ is given by

$$
g \cdot(f \otimes a):=f \otimes \lambda_{g}(a)
$$

(2) Since the maps ρ_{i} have commuting ranges, we get a single G-equivariant *homomorphism

$$
\rho: C \rightarrow \mathcal{Z}(A)
$$

where $C=\left[C_{0}[0,1) \otimes C(G)\right]^{\otimes(n+1)}$.
(3) If $\eta_{i}: C_{0}[0,1) \otimes C(G) \rightarrow C$ are the inclusion maps (for $0 \leq i \leq n$), then for

$$
x:=\sum_{i=0}^{n} \eta_{i}\left(\operatorname{id}_{C[0,1)} \otimes 1_{C(G)}\right) \in C
$$

we have $\rho(x)=1$. Therefore, if I is the ideal of C generated by elements of the form $\{x f-f: f \in C\}$, then ρ induces a map

$$
\bar{\rho}: D \rightarrow \mathcal{Z}(A)
$$

where $D:=C / I$ is a unital and commutative C^{*}-algebra. Furthermore, D is of the form

$$
D \cong C(Y) \otimes C(G)
$$

for some compact metric space Y with $\operatorname{dim}(Y) \leq n$, and where the action of G on the $C(G)$ component is by λ.
(4) Tensoring with A, we get a G-equivariant map

$$
\widehat{\rho}: D \otimes A \rightarrow \mathcal{Z}(A) \otimes A
$$

(5) Now, the map

$$
\theta: \mathcal{Z}(A) \otimes A \rightarrow A \text { given by } x \otimes a \mapsto x a
$$

is a G-equivariant $*$-homomorphism. Composing, we get a map

$$
\widetilde{\rho}: D \otimes A \rightarrow A
$$

Finally, the condition $\sum_{i=0}^{n} \varphi_{i}\left(1_{C(G)}\right)=1_{A}$ implies that, for all $a \in A$,

$$
\widetilde{\rho}\left(1_{D} \otimes a\right)=a
$$

(6) So we have a diagram of G-equivariant $*$-homomorphisms

where $\psi(a)=1_{D} \otimes a$.
(7) Finally, we need one more fact. If $G \curvearrowright \gamma E$, then the tensor product $C(G) \otimes E$ carries two different actions of G,

$$
\lambda \otimes \operatorname{id} \text { and } \lambda \otimes \gamma
$$

It turns out, both crossed products are the same

$$
(C(G) \otimes E) \rtimes_{\lambda \otimes \gamma} G \cong(C(G) \otimes E) \rtimes_{\lambda \otimes \mathrm{id}} G \cong M_{|G|}(E)
$$

In other words, tensoring with $(C(G), \lambda)$ kills the dynamical structure!
Since

$$
D \otimes A \cong C(Y) \otimes C(G) \otimes A
$$

where the action on $C(G)$ is by λ, we conclude that

$$
(D \otimes A) \rtimes G \cong C(Y) \otimes M_{|G|}(A)
$$

Hence, we arrive at the following theorem
Theorem 5.1. Let $\alpha: G \rightarrow A u t(A)$ be an n-decomposable action. Then, there is a commuting diagram

where Y is a compact metric space with $\operatorname{dim}(Y) \leq n$.
This allows us to understand properties of $A \rtimes_{\alpha} G$ by 'factoring through' $C(Y) \otimes M_{|G|}(A)$.
Corollary 5.2. Let (P) denote one of the following properties:
(1) Finite rank (stable/real/decomposition rank/nuclear dimension)
(2) Stability
(3) Classifiability (ie. Simple, separable, and satisfying the UCT)
(4).. etc.

If A satisfies property (P) and α is n-decomposable, then $A \rtimes_{\alpha} G$ also satisfies property (P).

6. Approximately Decomposable Actions and Rokhlin Dimension

Unfortunately, requiring that an action is n-decomposable is too restrictive in the noncommutative case. Therefore, one defines an approximate version of it.
Definition 6.1. An action $\alpha: G \rightarrow \operatorname{Aut}(A)$ is said to be approximately n-decomposable if, for every finite set $F \subset A$ and every $\epsilon>0$, there are $(n+1)$ linear maps

$$
\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}: C(G) \rightarrow A
$$

such that
(1) Each φ_{i} is a c.c.p. order zero map.
(2) Each φ_{i} is 'approximately equivariant'.

$$
\left\|\alpha_{g}\left(\varphi_{i}(f)\right)-\varphi_{i}\left(\lambda_{g}(f)\right)\right\|<\epsilon \quad \forall g \in G, f \in C(G)
$$

(3) Each φ_{i} is 'approximately central'

$$
\begin{gathered}
\left\|\varphi_{i}(f) a-a \varphi_{i}(f)\right\|<\epsilon \quad \forall a \in F, \text { and } f \in C(G) \\
\left\|\varphi_{i}\left(f_{1}\right) \varphi_{j}\left(f_{2}\right)-\varphi_{j}\left(f_{2}\right) \varphi_{i}\left(f_{1}\right)\right\|<\epsilon \quad \forall f_{1}, f_{2} \in C(G), \text { and } 0 \leq i, j \leq n
\end{gathered}
$$

(4) The $\left\{\varphi_{i}\right\}$ are an 'approximate partition of unity'.

$$
\left\|\sum_{i=0}^{n} \varphi_{i}\left(1_{C(G)}\right)-1_{A}\right\|<\epsilon
$$

Definition 6.2. [Hirshberg, Winter, and Zacharias, 2012] The Rokhlin dimension (with commuting towers) of an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ is the least value of $n \in \mathbb{N}$ such that α is approximately n-decomposable. We denote the integer by

$$
\operatorname{dim}_{R o k}^{c}(\alpha)
$$

Example 6.3. We give some examples without proof.
(1) [Phillips, 2017, Example 13.6] Let $A:=\bigotimes_{n=1}^{\infty} M_{2}(\mathbb{C})$ be the UHF algebra of type 2^{∞} and $\alpha \in \operatorname{Aut}(A)$ be the order two automorphism given by

$$
\alpha=\bigotimes_{n=1}^{\infty} \operatorname{Ad}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then α induces an action of \mathbb{Z}_{2} on A such that $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=0$.
(2) [Hirshberg and Phillips, 2015, Example 1.12] Let $\theta \in \mathbb{R}$ be irrational, and $A=A_{\theta}$ be the corresponding irrational rotation algebra generated by unitaries $\{u, v\}$ such that

$$
u v=e^{2 \pi i \theta} v u
$$

Let $\alpha \in \operatorname{Aut}(A)$ be the order two automorphism satisfying

$$
\alpha(v)=v \text { and } \alpha(u)=-u
$$

Then, α induces an action of \mathbb{Z}_{2} with the property that $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=1$
Note that both actions above are not n-decomposable as in 4.1 because the underlying algebras are simple, and so have trivial centers.
(3) [Gardella, 2014, Theorem 4.1] However, if A is commutative and $\alpha: G \rightarrow$ $\operatorname{Aut}(A)$ is an action such that

$$
n:=\operatorname{dim}_{R o k}^{c}(\alpha)<\infty
$$

then α is n-decomposable in the sense of 4.1.
(4) [Hirshberg and Phillips, 2015, Lemma 1.20] Let $G \curvearrowright_{\alpha} A$. If there exists $e \neq h \in G$ and $u \in U(A)$ a unitary such that

$$
\alpha_{h}(a)=u a u^{*} \quad \forall a \in A
$$

Then $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=+\infty$.
The following is now an analog of 5.1.
Theorem 6.4. [Gardella, Hirshberg, and Santiago, 2017] If

$$
\operatorname{dim}_{R o k}^{c}(\alpha)<\infty
$$

Then, there is an approximate/local analog of 5.1.
Many of the properties of C^{*}-algebras listed above are defined in terms of approximations. Hence, we get the following corollary.

Corollary 6.5. Let (P) denote one of the following properties:
(1) Finite rank (stable/real/decomposition rank/nuclear dimension)
(2) Stability
(3) Simple, separable, and satisfying the UCT
(4) ... etc.

If A satisfies property (P) and

$$
\operatorname{dim}_{R o k}^{c}(\alpha)<\infty
$$

then $A \rtimes_{\alpha} G$ also satisfies property (P).

References

Gardella, Eusebio (July 4, 2014). "Rokhlin dimension for compact group actions". In: Indiana U. Math. J., 66 (2017), 659-703. arXiv: http://arxiv.org/abs/1407. 1277 v 2 [math. OA].
Gardella, Eusebio, Hirshberg, Ilan, and Santiago, Luis (Sept. 1, 2017). "Rokhlin dimension: duality, tracial properties, and crossed products". In: arXiv: http://arxiv . org/abs/1709.00222v1 [math.0A].
Hirshberg, Ilan and Phillips, N. Christopher (2015). "Rokhlin dimension: obstructions and permanence properties". In: Documenta Mathematica 20, pp. 199-236. ISSN: 1431-0635.
Hirshberg, Ilan, Winter, Wilhelm, and Zacharias, Joachim (Sept. 7, 2012). "Rokhlin dimension and C*-dynamics". In: arXiv: http://arxiv . org/abs/1209. 1618v2 [math. OA].
Phillips, N Christopher (2017). "An introduction to crossed product C^{*}-algebras and minimal dynamics". In: preprint.
Winter, Wilhelm and Zacharias, Joachim (2009). "Completely positive maps of order zero". In: Münster Journal of Mathematics 2, pp. 311-324. ISSN: 1867-5778.
Email address: prahlad@iiserb.ac.in

