Rokhlin Dimension and Equivariant Bundles

Prahlad Vaidyanathan

Department of Mathematics IISER Bhopal

December 27, 2020

Preliminaries

Group Actions on Spaces

Decomposable Actions on C*-Algebras

Rokhlin Dimension

Equivariant Bundles

Preliminaries

Unless stated otherwise,

- All C*-algebras will be unital and separable (denoted A, B, C, . . .)
- All topological spaces will be compact, Hausdorff (denoted X, Y, Z, . . .)
- All groups will be finite (denoted G, H, \ldots)

A group action of G on A is a group homomorphism

 $\alpha: G \to \operatorname{Aut}(A)$

Given such an action, one constructs a crossed product C*-algebra

 $A \rtimes_{\alpha} G$

Question: Permanence

Suppose A satisfies a property (P), then can we impose conditions on α so that $A \rtimes_{\alpha} G$ also satisfies property (P)?

Examples of (P) include

- 1. Simplicity
- 2. Nuclearity/Exactness
- 3. Finite nuclear dimension/stable rank/real rank
- 4. Stability $(A \otimes \mathcal{K} \cong A)$
- 5. Classifiability (by K-theoretic invariants)

The motivation comes from the commutative case.

Group Actions on Spaces

Covering Dimension of a Space

Definition

Let $n \in \mathbb{N}$. A finite open cover \mathcal{U} of X is said to be *n*-decomposable if there is a decomposition $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \ldots \sqcup \mathcal{U}_n$ such that each \mathcal{U}_i consists of mutually disjoint sets.

The following cover of S^1 is 1-decomposable.

One thinks of an *n*-decomposable cover as a way of covering the space with (n + 1) colours, where each colour corresponds to a single U_i .

Definition

The *Lebesgue covering dimension* of X is the least integer n such that every finite open cover \mathcal{U} of X has a finite refinement \mathcal{V} which is *n*-decomposable. We denote this number by

$\dim(X)$

All spaces in this talk will be assumed to have finite dimension.

A group action of G on X is a group homomorphism

$$\beta: G \to \operatorname{Homeo}(X)$$

Given such an action, we get an induced action of $\alpha: G \to \operatorname{Aut}(C(X))$ by

$$\alpha_g(f)(x) := f(\beta_{g^{-1}}(x))$$

Furthermore, every action of G on C(X) arises this way.

An action $G \curvearrowright_{\beta} X$ is said to be *free* if, for any $x \in X$ and $g \in G$,

$$g \cdot x = x \Rightarrow g = e$$

Some examples include:

1. *G* acts on itself by left-multiplication (where G = X carries the discrete topology). We denote this action by

 $\lambda: G \to \operatorname{Homeo}(G)$

2. $G = \mathbb{Z}_n$ acts on $X = S^1$ by 'rotation by $2\pi/n$ '

$$\overline{k} \cdot z := e^{2\pi i k/n} z$$

Free Group Actions on Spaces

Definition

Let $G \curvearrowright_{\beta} X$, \mathcal{U} be a finite open cover of X, and $n \in \mathbb{N}$. We say that \mathcal{U} is *n*-decomposable with respect to G if we can write $\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \ldots \sqcup \mathcal{U}_n$ where, for each $0 \le i \le n$, each \mathcal{U}_i consists of |G| mutually disjoint sets

$$\mathcal{U}_i = \{V_i^g : g \in G\}$$

such that

$$g \cdot V_i^h = V_i^{gh}$$

In other words, such a cover of X corresponds to a *colouring* of X, where each colour respects the action of G.

Lemma 1

If X has a cover that is *n*-decomposable with respect to G, then the action is free.

Proof.

If $x \in X$, then there exists $0 \le i \le n$ and $h \in G$ such that $x \in V_i^h$. Now if $g \in G$ is such that $g \cdot x = x$, then

$$x = g \cdot x \in g \cdot V_i^h = V_i^{gh}$$

If $g \neq e$, then V_i^g and V_i^{gh} are disjoint. Hence, g = e must hold.

Theorem

Let $G \curvearrowright_{\beta} X$ be a free action. Then, there exists $n \in \mathbb{N}$ and an open cover \mathcal{U} of X that is *n*-decomposable with respect to G.

Decomposable Actions on C*-Algebras

Given a linear map $\varphi: A \to B$ between two C*-algebras, we obtain a linear map

$$\varphi^{(n)}: M_n(A) \to M_n(B)$$

given by

 $(a_{i,j})\mapsto (\varphi(a_{i,j}))$

Definition

A linear map $\varphi : A \to B$ is said to be *completely positive* if $\varphi^{(n)}$ is positive for each $n \in \mathbb{N}$.

A *c.c.p.* map is a contractive, completely positive map.

Two elements $a, b \in A$ are said to be *orthogonal* (in symbols, $a \perp b$) if

$$ab = a^*b = ab^* = ba = 0$$

Definition

A c.c.p. map $\varphi : A \to B$ is said to have *order zero* if, for any $a, b \in A$,

 $a \perp b \Rightarrow \varphi(a) \perp \varphi(b)$

Order Zero Maps

- 1. Any *-homomorphism has order zero.
- 2. If $\pi : A \to B$ is a *-homomorphism and $h \in \pi(A)' \cap B$ is a positive element, then

$$a\mapsto h\pi(a)$$

is an order zero map.

Theorem (Winter and Zacharias, 2009)

Every c.c.p. order zero map has the form of Example 2. Furthermore, there is a one-to-one correspondence between c.c.p. order zero maps $\varphi : A \rightarrow B$ and *-homomorphisms

 $\pi_{\varphi}: C_0[0,1) \otimes A \rightarrow B$

given by $\varphi(a) = \pi_{\varphi}(\mathsf{id}_{C_0[0,1)} \otimes a).$

Given a group action $G \curvearrowright_{\alpha} A$, the centre

$$\mathcal{Z}(A) = \{ a \in A : ab = ba \quad \forall b \in A \}$$

is G-invariant, so we get an induced action $G \curvearrowright_{\alpha} \mathcal{Z}(A)$.

Definition

A linear map $\varphi: C(G) \rightarrow \mathcal{Z}(A)$ is said to be G-equivariant if

$$\varphi(\lambda_g(f)) = \alpha_g(\varphi(f))$$

for all $f \in C(G)$.

Recall that $\lambda : G \to Aut(C(G))$ is given by

$$\lambda_g(f)(h) := f(g^{-1}h)$$

Definition 1

Let $n \in \mathbb{N}$. We say that a group action $G \curvearrowright_{\alpha} A$ is *n*-decomposable if there exists (n + 1) maps

$$\varphi_0, \varphi_1, \ldots, \varphi_n : C(G) \to \mathcal{Z}(A)$$

which are G-equivariant, c.c.p., have order zero, and satisfy

$$\varphi_0(1_{\mathcal{C}(\mathcal{G})}) + \varphi_1(1_{\mathcal{C}(\mathcal{G})}) + \ldots + \varphi_n(1_{\mathcal{C}(\mathcal{G})}) = 1_A$$

We say that α is *decomposable* if it is *n*-decomposable for some natural number $n \in \mathbb{N}$.

$\textbf{Decomposable} \Rightarrow \textbf{Free}$

Lemma 2

Let $G \curvearrowright_{\beta} X$ be a group action and $\alpha : G \to Aut(C(X))$ be the induced action. If α is decomposable, then β is free.

Proof.

Let $\varphi_i : C(G) \to C(X)$ be the maps as above. For $g \in G$, define

$$V_i^g := \varphi_i(\delta_g)^{-1}((0, +\infty))$$

and set $\mathcal{U}_i := \{V_i^g : g \in G\}$. Then one can verify that

$$\mathcal{U} = \mathcal{U}_0 \sqcup \mathcal{U}_1 \sqcup \ldots \sqcup \mathcal{U}_n$$

is *n*-decomposable with respect to *G*. So β is free by Lemma 1.

Theorem (Gardella, 2014)

Let $G \curvearrowright_{\beta} X$ be a group action and $\alpha : G \to Aut(C(X))$ be the induced action. Then, α is decomposable if and only if β is free.

Rokhlin Dimension

Unfortunately, requiring that an action is decomposable is too restrictive in the noncommutative case. Therefore, one defines an approximate version of it.

Definition

Let $n \in \mathbb{N}$. An action $\alpha : G \to \operatorname{Aut}(A)$ is said to be approximately *n*-decomposable if, for every finite set $F \subset A$ and every $\epsilon > 0$, there are (n + 1) c.c.p. order zero linear maps

$$\varphi_0, \varphi_1, \ldots, \varphi_n : C(G) \to A$$

satisfying the following conditions:

1. Each φ_i is 'approximately equivariant'.

 $\|\alpha_{g}(\varphi_{i}(\delta_{h})) - \varphi_{i}(\lambda_{g}(\delta_{h}))\| < \epsilon \quad \forall g, h \in G$

2. Each φ_i is 'approximately central'

 $\|\varphi_i(\delta_h)a - a\varphi_i(\delta_h)\| < \epsilon \quad \forall a \in F, \text{ and } h \in G$

 $\|\varphi_i(\delta_g)\varphi_j(\delta_h) - \varphi_j(\delta_h)\varphi_i(\delta_g)\| < \epsilon \quad \forall h, g \in G, 0 \le i, j \le n$

3. The $\{\varphi_i\}$ are an 'approximate partition of unity'.

$$\|\sum_{i=0}^n \varphi_i(1_{C(G)}) - 1_A\| < \epsilon$$

Definition (Hirshberg, Winter, and Zacharias, 2015)

The Rokhlin dimension (with commuting towers) of an action $\alpha : G \to Aut(A)$ is the least value of $n \in \mathbb{N}$ such that α is approximately *n*-decomposable. We denote the integer by

 $\dim^{c}_{\textit{Rok}}(\alpha)$

Note that if $\dim_{Rok}^{c}(\alpha) = 0$, then α has the *Rokhlin property*.

Let $A := \bigotimes_{n=1}^{\infty} M_2(\mathbb{C})$ be the UHF algebra of type 2^{∞} and $\alpha \in Aut(A)$ be the order two automorphism given by

$$\alpha = \bigotimes_{n=1}^{\infty} \operatorname{Ad} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then α induces an action of \mathbb{Z}_2 on A such that $\dim_{Rok}^c(\alpha) = 0$.

Example 2 (Hirshberg and Phillips, 2015)

Let $\theta \in \mathbb{R}$ be irrational, and $A = A_{\theta}$ be the corresponding irrational rotation algebra generated by unitaries $\{u, v\}$ such that

$$uv = e^{2\pi i\theta}vu$$

Let $\alpha \in Aut(A)$ be the order two automorphism satisfying

$$\alpha(v) = v$$
 and $\alpha(u) = -u$

Then, α induces an action of \mathbb{Z}_2 with the property that $\dim_{Rok}^{c}(\alpha) = 1$.

Note that both actions above are not decomposable in the earlier sense because the underlying algebras are simple, and so have trivial centers. However, if $G \curvearrowright_{\beta} X$ is a group action and $\alpha : G \to Aut(C(X))$ is the induced action, then the following are equivalent:

- $\dim^{c}_{\textit{Rok}}(\alpha) < +\infty$
- α is decomposable in the sense of Definition 1.
- β is free.

Consequences of Finite Rokhlin Dimension

Theorem (Gardella, Hirshberg, and Santiago, 2021)

Let (P) denote one of the following properties:

- 1. Finite rank (stable/real rank/nuclear dimension)
- 2. Stability
- 3. Nuclear, separable, and satisfying the UCT

4. ... etc.

If A satisfies property (P) and

 $\dim_{\mathit{Rok}}^{c}(\alpha) < \infty$

then $A \rtimes_{\alpha} G$ also satisfies property (P).

Equivariant Bundles

In what follows,

- X will denote a compact metric space.
- p: E → X will be a locally trivial, complex vector bundle, endowed with a fixed hermitian metric. The fibers of E, denoted by {E_x : x ∈ X}, are finite dimensional Hilbert spaces.

We write

 $\Gamma(E) := \{\xi : X \to E \text{ continuous, such that } p \circ \xi = \mathrm{id}_X \}$

for the continuous sections of (E, p, X).

Given $\xi \in \Gamma(E)$ and $f \in C(X)$, we may write

$$(f \cdot \xi)(x) := f(x)\xi(x) = (\xi \cdot f)(x)$$

This gives a central action of C(X) on $\Gamma(E)$, so $\Gamma(E)$ is a C(X)-module.

Theorem (Serre-Swan)

 $\Gamma(E)$ is a finitely generated, projective module over C(X). Furthermore, every finitely generated, projective module over C(X) has this form.

Furthermore, the hermitian metric on E gives $\Gamma(E)$ the structure of a *Hilbert* C(X)-*bimodule*.

Fact

Using the Hilbert C(X)-bimodule $\Gamma(E)$, one can associate a C*-algebra,

\mathcal{O}_E

called the Cuntz-Pimsner algebra associated to the vector bundle (E, p, X).

Examples:

- If X = {*} is a point, then O_E ≅ O_n, the usual Cuntz algebra (Here, n = dim(E) as a vector space).
- More generally, *O_E* is a locally trivial unital *C*(*X*)-algebra, each of whose fibers are of the form *O_{n(x)}*, where *n* : *E* → ℤ is the rank function of *E*.

An action of a group G on a vector bundle (E, p, X) is a pair

$$\widetilde{\alpha} : G \to \operatorname{Homeo}(X), \text{ and } \widetilde{\gamma} : G \to \operatorname{Homeo}(E)$$

such that

- $p: E \to X$ is *G*-equivariant.
- For each s ∈ G, the map E_x → E_{α̃s(x)} is a linear map of vector spaces.

Theorem

Given a group action $(\tilde{\alpha}, \tilde{\gamma})$ of G on (E, p, X), there is an induced action

 $\beta: G \to \operatorname{Aut}(\mathcal{O}_E)$

satisfying certain natural properties.

Main Result

Theorem (Vaidyanathan, 2020)

Let $(\widetilde{lpha},\widetilde{\gamma})$ be an action of G on (E,p,X) and let

```
\beta: G \to \operatorname{Aut}(\mathcal{O}_E)
```

be the induced action on the corresponding Cuntz-Pimsner algebra.

• If $\widetilde{\alpha}$ is free, then

 $\dim_{Rok}^{c}(\beta) \leq \dim(X/G)$

• If $\widetilde{\alpha}$ is trivial, then

 $\dim_{Rok}(\beta) \le 2\dim(X) + 1$

Suppose that $\dim(X) < \infty$ and the action \widetilde{lpha} is free or trivial, then

- $\mathcal{O}_E \rtimes_{\beta} G$ has finite nuclear dimension.
- $\mathcal{O}_E \rtimes_{\beta} G$ is classifiable by K-theoretic invariants.

If $\widetilde{\alpha}$ is free, then

• $\mathcal{O}_E \rtimes_{\beta} G$ has finite stable rank, real rank, etc.

References

Gardella, Eusebio (July 4, 2014). "Rokhlin dimension for compact group actions". In: Indiana U. Math. J., 66 (2017), 659-703. arXiv: http://arxiv.org/abs/1407.1277v2 [math.OA]. Gardella, Eusebio, Ilan Hirshberg, and Luis Santiago (2021). "Rokhlin dimension: duality, tracial properties, and crossed products". In: Ergodic Theory and Dynamical Systems 41.2, pp. 408-460. ISSN: 0143-3857. DOI: 10.1017/etds.2019.68. Hirshberg, Ilan and N. Christopher Phillips (2015). "Rokhlin dimension: obstructions and permanence properties". In: Documenta Mathematica 20, pp. 199–236. ISSN: 1431-0635.

- Hirshberg, Ilan, Wilhelm Winter, and Joachim Zacharias (2015).
 "Rokhlin dimension and C*-dynamics". In: Communications in Mathematical Physics 335.2, pp. 637–670. ISSN: 0010-3616.
 DOI: 10.1007/s00220-014-2264-x.
- Izumi, Masaki (2004). "Finite group actions on C*-algebras with the Rohlin property. I". In: *Duke Mathematical Journal* 122.2, pp. 233–280. ISSN: 0012-7094. DOI: 10.1215/S0012-7094-04-12221-3.
 - Vaidyanathan, Prahlad (Oct. 27, 2020). "Rokhlin Dimension and Equivariant Bundles". In: arXiv:

http://arxiv.org/abs/2010.14034v1 [math.OA].

Winter, Wilhelm and Joachim Zacharias (2009). "Completely positive maps of order zero". In: *Münster Journal of Mathematics* 2, pp. 311–324. ISSN: 1867-5778.

Thank you!