Rokhlin Dimension and Equivariant Bundles

Prahlad Vaidyanathan

Department of Mathematics
 IISER Bhopal

December 27, 2020

Contents

Preliminaries

Group Actions on Spaces

Decomposable Actions on C*-Algebras

Rokhlin Dimension

Equivariant Bundles

Preliminaries

Assumptions

Unless stated otherwise,

- All C^{*}-algebras will be unital and separable (denoted $A, B, C, \ldots)$
- All topological spaces will be compact, Hausdorff (denoted $X, Y, Z, \ldots)$
- All groups will be finite (denoted G, H, \ldots)

Motivation

A group action of G on A is a group homomorphism

$$
\alpha: G \rightarrow \operatorname{Aut}(A)
$$

Given such an action, one constructs a crossed product C*-algebra

$$
A \rtimes_{\alpha} G
$$

Question: Permanence

Suppose A satisfies a property (P), then can we impose conditions on α so that $A \rtimes_{\alpha} G$ also satisfies property (P)?

Motivation

Examples of (P) include

1. Simplicity
2. Nuclearity/Exactness
3. Finite nuclear dimension/stable rank/real rank
4. Stability $(A \otimes \mathcal{K} \cong A)$
5. Classifiability (by K-theoretic invariants)

The motivation comes from the commutative case.

Group Actions on Spaces

Covering Dimension of a Space

Definition

Let $n \in \mathbb{N}$. A finite open $\operatorname{cover} \mathcal{U}$ of X is said to be
n-decomposable if there is a decomposition
$\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}$ such that each \mathcal{U}_{i} consists of mutually disjoint sets.

The following cover of S^{1} is 1-decomposable.

$$
u
$$

Covering Dimension of a Space

One thinks of an n-decomposable cover as a way of covering the space with $(n+1)$ colours, where each colour corresponds to a single \mathcal{U}_{i}.

Definition

The Lebesgue covering dimension of X is the least integer n such that every finite open cover \mathcal{U} of X has a finite refinement \mathcal{V} which is n-decomposable. We denote this number by

$$
\operatorname{dim}(X)
$$

All spaces in this talk will be assumed to have finite dimension.

Group Actions on Spaces

A group action of G on X is a group homomorphism

$$
\beta: G \rightarrow \operatorname{Homeo}(X)
$$

Given such an action, we get an induced action of $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ by

$$
\alpha_{g}(f)(x):=f\left(\beta_{g^{-1}}(x)\right)
$$

Furthermore, every action of G on $C(X)$ arises this way.

Free Group Actions on Spaces

An action $G \curvearrowright_{\beta} X$ is said to be free if, for any $x \in X$ and $g \in G$,

$$
g \cdot x=x \Rightarrow g=e
$$

Some examples include:

1. G acts on itself by left-multiplication (where $G=X$ carries the discrete topology). We denote this action by

$$
\lambda: G \rightarrow \operatorname{Homeo}(G)
$$

2. $G=\mathbb{Z}_{n}$ acts on $X=S^{1}$ by 'rotation by $2 \pi / n$ '

$$
\bar{k} \cdot z:=e^{2 \pi i k / n} z
$$

Free Group Actions on Spaces

Definition

Let $G \curvearrowright_{\beta} X, \mathcal{U}$ be a finite open cover of X, and $n \in \mathbb{N}$. We say that \mathcal{U} is n-decomposable with respect to G if we can write $\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}$ where, for each $0 \leq i \leq n$, each \mathcal{U}_{i} consists of $|G|$ mutually disjoint sets

$$
\mathcal{U}_{i}=\left\{V_{i}^{g}: g \in G\right\}
$$

such that

$$
g \cdot V_{i}^{h}=V_{i}^{g h}
$$

In other words, such a cover of X corresponds to a colouring of X, where each colour respects the action of G.

Free Group Actions on Spaces

Lemma 1

If X has a cover that is n-decomposable with respect to G, then the action is free.

Proof.

If $x \in X$, then there exists $0 \leq i \leq n$ and $h \in G$ such that $x \in V_{i}^{h}$. Now if $g \in G$ is such that $g \cdot x=x$, then

$$
x=g \cdot x \in g \cdot V_{i}^{h}=V_{i}^{g h}
$$

If $g \neq e$, then V_{i}^{g} and $V_{i}^{g h}$ are disjoint. Hence, $g=e$ must hold.

Free Group Actions on Spaces

Theorem

Let $G \curvearrowright_{\beta} X$ be a free action. Then, there exists $n \in \mathbb{N}$ and an open cover \mathcal{U} of X that is n-decomposable with respect to G.

Decomposable Actions on
C*-Algebras

Completely Positive maps

Given a linear map $\varphi: A \rightarrow B$ between two C^{*}-algebras, we obtain a linear map

$$
\varphi^{(n)}: M_{n}(A) \rightarrow M_{n}(B)
$$

given by

$$
\left(a_{i, j}\right) \mapsto\left(\varphi\left(a_{i, j}\right)\right)
$$

Definition

A linear map $\varphi: A \rightarrow B$ is said to be completely positive if $\varphi^{(n)}$ is positive for each $n \in \mathbb{N}$.

A c.c.p. map is a contractive, completely positive map.

Order Zero Maps

Two elements $a, b \in A$ are said to be orthogonal (in symbols, $a \perp b)$ if

$$
a b=a^{*} b=a b^{*}=b a=0
$$

Definition

A c.c.p. map $\varphi: A \rightarrow B$ is said to have order zero if, for any $a, b \in A$,

$$
a \perp b \Rightarrow \varphi(a) \perp \varphi(b)
$$

Order Zero Maps

1. Any $*$-homomorphism has order zero.
2. If $\pi: A \rightarrow B$ is a $*$-homomorphism and $h \in \pi(A)^{\prime} \cap B$ is a positive element, then

$$
a \mapsto h \pi(a)
$$

is an order zero map.

Theorem (Winter and Zacharias, 2009)

Every c.c.p. order zero map has the form of Example 2.
Furthermore, there is a one-to-one correspondence between c.c.p. order zero maps $\varphi: A \rightarrow B$ and $*$-homomorphisms

$$
\pi_{\varphi}: C_{0}[0,1) \otimes A \rightarrow B
$$

given by $\varphi(a)=\pi_{\varphi}\left(\right.$ id $\left._{C_{0}[0,1)} \otimes a\right)$.

Equivariant Map

Given a group action $G \curvearrowright_{\alpha} A$, the centre

$$
\mathcal{Z}(A)=\{a \in A: a b=b a \quad \forall b \in A\}
$$

is G-invariant, so we get an induced action $G \curvearrowright_{\alpha} \mathcal{Z}(A)$.

Definition

A linear map $\varphi: C(G) \rightarrow \mathcal{Z}(A)$ is said to be G-equivariant if

$$
\varphi\left(\lambda_{g}(f)\right)=\alpha_{g}(\varphi(f))
$$

for all $f \in C(G)$.

Recall that $\lambda: G \rightarrow \operatorname{Aut}(C(G))$ is given by

$$
\lambda_{g}(f)(h):=f\left(g^{-1} h\right)
$$

Decomposable Actions on C*-algebras

Definition 1

Let $n \in \mathbb{N}$. We say that a group action $G \curvearrowright_{\alpha} A$ is
n-decomposable if there exists $(n+1)$ maps

$$
\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}: C(G) \rightarrow \mathcal{Z}(A)
$$

which are G-equivariant, c.c.p., have order zero, and satisfy

$$
\varphi_{0}\left(1_{C(G)}\right)+\varphi_{1}\left(1_{C(G)}\right)+\ldots+\varphi_{n}\left(1_{C(G)}\right)=1_{A}
$$

We say that α is decomposable if it is n-decomposable for some natural number $n \in \mathbb{N}$.

Decomposable \Rightarrow Free

Lemma 2

Let $G \curvearrowright_{\beta} X$ be a group action and $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ be the induced action. If α is decomposable, then β is free.

Proof.

Let $\varphi_{i}: C(G) \rightarrow C(X)$ be the maps as above. For $g \in G$, define

$$
V_{i}^{g}:=\varphi_{i}\left(\delta_{g}\right)^{-1}((0,+\infty))
$$

and set $\mathcal{U}_{i}:=\left\{V_{i}^{g}: g \in G\right\}$. Then one can verify that

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}
$$

is n-decomposable with respect to G. So β is free by Lemma 1.

Decomposable \Leftrightarrow Free

Theorem (Gardella, 2014)

Let $G \curvearrowright_{\beta} X$ be a group action and $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ be the induced action. Then, α is decomposable if and only if β is free.

Rokhlin Dimension

Approximately Decomposable Actions

Unfortunately, requiring that an action is decomposable is too restrictive in the noncommutative case. Therefore, one defines an approximate version of it.

Definition

Let $n \in \mathbb{N}$. An action $\alpha: G \rightarrow \operatorname{Aut}(A)$ is said to be approximately n-decomposable if, for every finite set $F \subset A$ and every $\epsilon>0$, there are $(n+1)$ c.c.p. order zero linear maps

$$
\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}: C(G) \rightarrow A
$$

satisfying the following conditions:

Approximately Decomposable Actions

1. Each φ_{i} is 'approximately equivariant'.

$$
\left\|\alpha_{g}\left(\varphi_{i}\left(\delta_{h}\right)\right)-\varphi_{i}\left(\lambda_{g}\left(\delta_{h}\right)\right)\right\|<\epsilon \quad \forall g, h \in G
$$

2. Each φ_{i} is 'approximately central'

$$
\begin{gathered}
\left\|\varphi_{i}\left(\delta_{h}\right) a-a \varphi_{i}\left(\delta_{h}\right)\right\|<\epsilon \quad \forall a \in F, \text { and } h \in G \\
\left\|\varphi_{i}\left(\delta_{g}\right) \varphi_{j}\left(\delta_{h}\right)-\varphi_{j}\left(\delta_{h}\right) \varphi_{i}\left(\delta_{g}\right)\right\|<\epsilon \quad \forall h, g \in G, 0 \leq i, j \leq n
\end{gathered}
$$

3. The $\left\{\varphi_{i}\right\}$ are an 'approximate partition of unity'.

$$
\left\|\sum_{i=0}^{n} \varphi_{i}\left(1_{C(G)}\right)-1_{A}\right\|<\epsilon
$$

Rokhlin Dimension

Definition (Hirshberg, Winter, and Zacharias, 2015)

The Rokhlin dimension (with commuting towers) of an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ is the least value of $n \in \mathbb{N}$ such that α is approximately n-decomposable. We denote the integer by

$$
\operatorname{dim}_{R o k}^{c}(\alpha)
$$

Note that if $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=0$, then α has the Rokhlin property.

Example 1 (Izumi, 2004)

Let $A:=\bigotimes_{n=1}^{\infty} M_{2}(\mathbb{C})$ be the UHF algebra of type 2^{∞} and $\alpha \in \operatorname{Aut}(A)$ be the order two automorphism given by

$$
\alpha=\bigotimes_{n=1}^{\infty} \operatorname{Ad}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then α induces an action of \mathbb{Z}_{2} on A such that $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=0$.

Example 2 (Hirshberg and Phillips, 2015)

Let $\theta \in \mathbb{R}$ be irrational, and $A=A_{\theta}$ be the corresponding irrational rotation algebra generated by unitaries $\{u, v\}$ such that

$$
u v=e^{2 \pi i \theta} v u
$$

Let $\alpha \in \operatorname{Aut}(A)$ be the order two automorphism satisfying

$$
\alpha(v)=v \text { and } \alpha(u)=-u
$$

Then, α induces an action of \mathbb{Z}_{2} with the property that $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)=1$.

Note that both actions above are not decomposable in the earlier sense because the underlying algebras are simple, and so have trivial centers.

Example 3 (Gardella, 2014)

However, if $G \curvearrowright_{\beta} X$ is a group action and $\alpha: G \rightarrow \operatorname{Aut}(C(X))$ is the induced action, then the following are equivalent:

- $\operatorname{dim}_{\text {Rok }}^{c}(\alpha)<+\infty$
- α is decomposable in the sense of Definition 1 .
- β is free.

Consequences of Finite Rokhlin Dimension

Theorem (Gardella, Hirshberg, and Santiago, 2021)

Let (P) denote one of the following properties:

1. Finite rank (stable/real rank/nuclear dimension)
2. Stability
3. Nuclear, separable, and satisfying the UCT
4. ... etc.

If A satisfies property (P) and

$$
\operatorname{dim}_{R o k}^{c}(\alpha)<\infty
$$

then $A \rtimes_{\alpha} G$ also satisfies property (P).

Equivariant Bundles

Vector Bundles

In what follows,

- X will denote a compact metric space.
- $p: E \rightarrow X$ will be a locally trivial, complex vector bundle, endowed with a fixed hermitian metric. The fibers of E, denoted by $\left\{E_{x}: x \in X\right\}$, are finite dimensional Hilbert spaces.

We write

$$
\Gamma(E):=\left\{\xi: X \rightarrow E \text { continuous, such that } p \circ \xi=\mathrm{id}_{X}\right\}
$$

for the continuous sections of (E, p, X).

Vector Bundles

Given $\xi \in \Gamma(E)$ and $f \in C(X)$, we may write

$$
(f \cdot \xi)(x):=f(x) \xi(x)=(\xi \cdot f)(x)
$$

This gives a central action of $C(X)$ on $\Gamma(E)$, so $\Gamma(E)$ is a $C(X)$-module.

Theorem (Serre-Swan)

$\Gamma(E)$ is a finitely generated, projective module over $C(X)$.
Furthermore, every finitely generated, projective module over $C(X)$ has this form.

Furthermore, the hermitian metric on E gives $\Gamma(E)$ the structure of
a Hilbert $C(X)$-bimodule.

The Cuntz-Pimsner Algebra of a Vector Bundle

Fact

Using the Hilbert $C(X)$-bimodule $\Gamma(E)$, one can associate a C*-algebra,

$$
\mathcal{O}_{E}
$$

called the Cuntz-Pimsner algebra associated to the vector bundle (E, p, X).

The Cuntz-Pimsner Algebra of a Vector Bundle

Examples:

- If $X=\{*\}$ is a point, then $\mathcal{O}_{E} \cong \mathcal{O}_{n}$, the usual Cuntz algebra (Here, $n=\operatorname{dim}(E)$ as a vector space).
- More generally, \mathcal{O}_{E} is a locally trivial unital $C(X)$-algebra, each of whose fibers are of the form $\mathcal{O}_{n(x)}$, where $n: E \rightarrow \mathbb{Z}$ is the rank function of E.

Group Actions on Bundles

An action of a group G on a vector bundle (E, p, X) is a pair

$$
\widetilde{\alpha}: G \rightarrow \operatorname{Homeo}(X), \text { and } \widetilde{\gamma}: G \rightarrow \operatorname{Homeo}(E)
$$

such that

- $p: E \rightarrow X$ is G-equivariant.
- For each $s \in G$, the map $E_{X} \rightarrow E_{\widetilde{\alpha}_{s}(x)}$ is a linear map of vector spaces.

Group Actions on the Cuntz-Pimsner Algebra

Theorem

Given a group action $(\widetilde{\alpha}, \widetilde{\gamma})$ of G on (E, p, X), there is an induced action

$$
\beta: G \rightarrow \operatorname{Aut}\left(\mathcal{O}_{E}\right)
$$

satisfying certain natural properties.

Main Result

Theorem (Vaidyanathan, 2020)

Let $(\widetilde{\alpha}, \widetilde{\gamma})$ be an action of G on (E, p, X) and let

$$
\beta: G \rightarrow \operatorname{Aut}\left(\mathcal{O}_{E}\right)
$$

be the induced action on the corresponding Cuntz-Pimsner algebra.

- If $\widetilde{\alpha}$ is free, then

$$
\operatorname{dim}_{R o k}^{c}(\beta) \leq \operatorname{dim}(X / G)
$$

- If $\widetilde{\alpha}$ is trivial, then

$$
\operatorname{dim}_{R o k}(\beta) \leq 2 \operatorname{dim}(X)+1
$$

Consequences

Suppose that $\operatorname{dim}(X)<\infty$ and the action $\widetilde{\alpha}$ is free or trivial, then

- $\mathcal{O}_{E} \rtimes_{\beta} G$ has finite nuclear dimension.
- $\mathcal{O}_{E} \rtimes_{\beta} G$ is classifiable by K-theoretic invariants.

If $\widetilde{\alpha}$ is free, then

- $\mathcal{O}_{E} \rtimes_{\beta} G$ has finite stable rank, real rank, etc.

References

嗇 Gardella，Eusebio（July 4，2014）．＂Rokhlin dimension for compact group actions＂．In：Indiana U．Math．J．， 66 （2017），659－703． arXiv：http：／／arxiv．org／abs／1407．1277v2［math．OA］．
國 Gardella，Eusebio，Ilan Hirshberg，and Luis Santiago（2021）． ＂Rokhlin dimension：duality，tracial properties，and crossed products＂．In：Ergodic Theory and Dynamical Systems 41．2， pp．408－460．ISSN：0143－3857．DOI：10．1017／etds．2019．68．
國 Hirshberg，Ilan and N．Christopher Phillips（2015）．＂Rokhlin dimension：obstructions and permanence properties＂．In： Documenta Mathematica 20，pp．199－236．Issn：1431－0635．

E Hirshberg，Ilan，Wilhelm Winter，and Joachim Zacharias（2015）．
＂Rokhlin dimension and C^{*}－dynamics＂．In：Communications in Mathematical Physics 335．2，pp．637－670．ISSN：0010－3616．
DOI： $10.1007 / \mathrm{s} 00220-014-2264-\mathrm{x}$ ．
回 Izumi，Masaki（2004）．＂Finite group actions on C＊－algebras with the Rohlin property．I＂．In：Duke Mathematical Journal 122．2， pp．233－280．ISSN：0012－7094．DOI：
10．1215／S0012－7094－04－12221－3．
國 Vaidyanathan，Prahlad（Oct．27，2020）．＂Rokhlin Dimension and Equivariant Bundles＂．In：arXiv：
http：／／arxiv．org／abs／2010．14034v1［math．OA］．
围 Winter，Wilhelm and Joachim Zacharias（2009）．＂Completely positive maps of order zero＂．In：Münster Journal of Mathematics 2，pp．311－324．ISSN：1867－5778．

Thank you!

