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Abstract. We discuss a notion of dimension for C*-algebras, due to Winter and
Zacharias, that generalizes the Lebesgue covering dimension for topological spaces.
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Standing assumption: All C*-algebras will be unital (denoted by A,B,C, . . .), and all
topological spaces will be compact and Hausdorff (denoted by X, Y, Z, . . .).

1. Completely Positive Maps

Definition 1.1. An element a ∈ A is said to be positive if there exists x ∈ A such that
a = x∗x. Equivalently, a is self-adjoint and σ(a) ⊂ [0,∞).

We write A+ for the set of all positive elements of A.

Definition 1.2. If A is a C*-algebra, so is Mn(A). Given any linear map ϕ : A→ B, we
may define

ϕ(n) : Mn(A)→Mn(B) given by (ai,j) 7→ (ϕ(ai,j)

Note that ϕ(n) is also a linear map.

Definition 1.3. Let ϕ : A → B be a linear map (not necessarily a ∗-homomorphism).
We say that

(1) ϕ is unital if ϕ(1A) = 1B.
(2) ϕ is positive if ϕ(A+) ⊂ B+.
(3) ϕ is completely positive if ϕ(n) is positive for each n ∈ N.
(4) ϕ is contractive if ‖ϕ‖ ≤ 1.
(5) ϕ is u.c.p. if it is unital and completely positive.
(6) ϕ is c.c.p. (or c.p.c.) if it is contractive and completely positive.

Example 1.4.

(1) Every ∗-homomorphism is positive and contractive. Furthermore, if ϕ is a ∗-
homomorphism, then so is ϕ(n). Hence, every ∗-homomorphism is c.c.p.

(2) If ϕ : A→ B is a ∗-homomorphism, and x ∈ B is any element. Define ψ : A→ B
by

ψ(a) := x∗ϕ(a)x

Then ψ is not necessarily multiplicative, but
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(a) ψ is positive: If a = y∗y, then ψ(a) = (ϕ(y)x)∗(ϕ(y)x).
(b) For n ∈ N, write

X = diag(x, x, . . . , x) ∈Mn(B)

Then

ψ(n)(T ) = X∗ϕ(n)(T )X

Hence, ψ is completely positive.
(3) The ‘transpose’ map M2(C)→M2(C) is positive, but not completely positive.

Lemma 1.5. Let ϕ : A→ B be a positive map. If A is commutative, then ϕ is completely
positive.

Example 1.6. Let U = {U1, U2, . . . , Uk} be a collection of open subsets of a space X
(not necessarily a cover). Let {σ1, σ2, . . . , σk} be a partition of unity subordinate to U .
Define F (U) = Ck and define

ϕU : F (U)→ C(X)

given by

(c1, c2, . . . , ck) 7→
k∑
j=1

ckσj

This map is clearly positive (a positive element of Ck is one whose entries are all positive
real numbers). By Lemma 1.5, it is completely positive. Furthermore,

‖σj‖∞ ≤ 1

for each 1 ≤ j ≤ k, so ϕU is c.c.p.

2. Nuclear C*-algebras

Definition 2.1. A linear map θ : A→ B is said to be nuclear if there exist c.c.p maps

ϕn : A→Mk(n)(C) and ψn : Mk(n)(C)→ B

such that

lim
n→∞

‖ψn ◦ ϕn(a)− θ(a)‖ = 0

Lemma 2.2. For a map θ : A→ B, the following are equivalent:

(1) θ is nuclear.
(2) There are finite dimensional C*-algebras Cn and c.c.p. maps ϕn : A → Cn and

ψn : Cn → B such that

lim
n→∞

‖ψn ◦ ϕn(a)− θ(a)‖ = 0

for all a ∈ A.
(3) For any finite set G ⊂ A and ε > 0, there is a finite dimensional C*-algebra C

and c.c.p. maps

ϕ : A→ C and ψ : C → B

such that ‖ψ ◦ ϕ(a)− θ(a)‖ < ε ∀a ∈ G.

Definition 2.3. A C*-algebra A is said to be nuclear if idA : A → A is a nuclear map.
Equivalently, for every finite set G ⊂ A and ε > 0, there exists a finite dimensional
C*-algebra C and c.c.p. maps ϕ : A→ C and ψ : C → A such that

‖ψ ◦ ϕ(a)− a‖ < ε ∀a ∈ G
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We represent this by a diagram that “approximately (G, ε)-commutes”

A
idA //

ϕ ��

A

C
ψ

??

Theorem 2.4. C(X) is nuclear.

Proof. Let G ⊂ A be a finite set, and ε > 0. Choose an open cover U = {U1, U2, . . . , Um}
and points λi ∈ Ui such that, for any f ∈ A,

|f(x)− f(λi)| < ε ∀x ∈ Ui
Let C := F (U) = Cm and define ϕ : A→ C by

ϕ(f) := (f(λ1), f(λ2), . . . , f(λm))

Then ϕ is a ∗-homomorphism, so it is c.c.p.

Let {σ1, σ2, . . . , σm} be a partition of unity subordinate to U and define ψ : C → A by
ψ = ϕU . In other words,

ψ(c1, c2, . . . , cm) =
m∑
i=1

ciσi

Then ψ is c.c.p. by Example 1.6. Finally, if f ∈ G, then

‖ψ(ϕ(f))− f‖ = sup
x∈X
|ψ((f(λi))− f(x)|

= sup
x∈X

∣∣∣∣∣
m∑
i=1

f(λi)σi(x)− f(x)

∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣
m∑
i=1

f(λi)σi(x)−
m∑
i=1

σi(x)f(x)

∣∣∣∣∣
≤ sup

x∈X

m∑
i=1

|σi(x)(f(λi)− f(x))|

< ε sup
x∈X

m∑
i=1

|σi(x)|

= ε

This completes the proof. �

3. Covering Dimension of Spaces

Consider Example 1.6 more carefully. Given an open cover U of X, we get a map

ϕU : F (U)→ C(X)

Now suppose U = U1 t U2 for two disjoint subsets of U . Then we may write

F (U) = F (U1)⊕ F (U2)

and

ϕU |F (Ui)= ϕUi
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Definition 3.1. [Kirchberg and Winter, 2004, Definition 1.4] An open cover U of
X is said to be n-decomposable if there is a decomposition

U = U0 t U1 t . . . t Un
such that each Ui consists of mutually disjoint sets.

Example 3.2.

(1) If X is a finite set and U consists of singleton sets, then U is 0-decomposable.
(2) If X = [0, 1] and U = {[0, 1/2), (1/4, 3/4), (1/2, 1]}, then with

U0 := {[0, 1/2), (1/2, 1]} and U1 := {(1/4, 3/4)}
we see that U is 1-decomposable.

(3) The following cover of S1 is 1-decomposable.

Figure 1. 1-decomposable cover of S1

Note: One thinks of an n-decomposable cover as a way of covering the space with (n+ 1)
colours, where each colour corresponds to a single Ui.

Definition 3.3. The Lebesgue covering dimension of X is the least integer n such that
every finite open cover U of X has a finite refinement V which is n-decomposable. We
denote this number by

dim(X)

Example 3.4.

(1) If X is finite, then dim(X) = 0
(2) If X = [0, 1] or X = S1, then dim(X) = 1
(3) If X = [0, 1]m, then dim(X) = m
(4) If X is a manifold, then dim(X) coincides with its manifold dimension.

Remark 3.5. Suppose n = dim(X), and suppose we are given a finite subset G ⊂ C(X)
and ε > 0. In the proof of Theorem 2.4, we may choose a refinement of the original cover
to assume that the cover U is itself n-decomposable. Hence, we write

U = U0 t U1 t . . . t Un
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so that we have
F (U) = F (U0)⊕ F (U1)⊕ . . .⊕ F (Un)

Now consider the maps
ψ = ϕU0 : F (U0)→ C(X)

given by

ψ(c1, c2, . . . , ck) =
k∑
i=1

ciσi

where {σ1, σ2, . . . , σk} is a collection of positive functions such that

(1) 0 ≤ σi ≤ 1
(2) If i 6= j, then σiσj = 0.

Hence, for any a, b ∈ F (U0),
ab = 0⇒ ψ(a)ψ(b) = 0

This condition captures the fact that U0 is made of mutually disjoint sets.

4. Nuclear Dimension

Definition 4.1.

(1) For any two elements a, b ∈ A, we say that a and b are orthogonal if

ab = a∗b = ab∗ = ba = 0

If this happens, we write a ⊥ b.
(2) A c.p. map θ : A→ B is said to have order zero if, for any a, b ∈ A,

a ⊥ b⇒ ϕ(a) ⊥ ϕ(b)

In other words, ϕ preserves orthogonality.

Example 4.2.

(1) Any ∗-homomorphism has order zero.
(2) If π : A→ B is a ∗-homomorphism, and h ∈ π(A)′ is a positive element, then the

map
ϕ : A→ B given by a 7→ hπ(a)

is an order zero map. (In fact, every order zero map has this form [Winter and
Zacharias, 2009] )

(3) Let U be a collection of open sets in X, and consider the map

ϕU : F (U)→ C(X)

as in Example 1.6. If members of U are mutually disjoint, then ϕU is an order
zero map.

Definition 4.3. A c.p. map ϕ : A → B is said to be n-decomposable if A can be
expressed as a direct sum

A = A0 ⊕ A1 ⊕ . . .⊕ An
such that ϕ|Ai

has order zero for each 0 ≤ i ≤ n.

Definition 4.4. [Winter and Zacharias, 2010] The nuclear dimension of a C*-algebra
A is defined as the least integer n ∈ N such that, for any finite set G ⊂ A, and for any
ε > 0, there exists a finite dimensional C*-algebra C and c.p. maps

ϕ : A→ C and ψ : C → A

such that
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(1)
‖ψ ◦ ϕ(a)− a‖ < ε ∀a ∈ G

(2) ψ is n-decomposable.
(3) ϕ is contractive. (ψ need not be contractive).

If such a number exists, we denote it by

dimnuc(A)

Theorem 4.5.
dimnuc(C(X)) ≤ dim(X)

If X is second countable (or equivalently, metrizable), then equality holds.

Proof. The inequality ≤ holds from Remark 3.5. The reverse inequality is quite technical.
This result is originally due to [Winter, 2003], and there is a somewhat shorter proof
due to [Castillejos, 2018] as well.

�

Example 4.6.

(1) For a C*-algebra A, dimnuc(A) = 0 if and only if A is an AF-algebra.
(2)

dimnuc(Aθ) =

{
1 : θ is irrational

2 : θ is rational

(3) If T denotes the Toeplitz algebra, then dimnuc(T ) = 1
(4) For n ∈ N ∪ {∞},

dimnuc(On) = 1

(5) In fact, if A is a simple, separable C*-algebra, then

dimnuc(A) ∈ {0, 1,+∞}

Remark 4.7. Note that, in the definition of nuclear dimension, we do not require that
the second map ψ be contractive.

(1) Therefore, it is not obvious (but it is true) that dimnuc(A) <∞ implies that A is
nuclear.

(2) If we require both ϕ and ψ to be contractive, then we arrive at the definition
of decomposition rank due to [Kirchberg and Winter, 2004]. The two ranks
coincide for commutative C*-algebras. An important difference is that dimnuc is
well-behaved with respect to extensions, while dr is not. Given an extension

0→ J → E → A→ 0

we have
dimnuc(E) ≤ dimnuc(A) + dimnuc(J) + 1

There is no equivalent inequality for dr. In fact, if T denotes the Toeplitz algebra,
then

dimnuc(T ) = 1 while dr(T ) = +∞
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