NUCLEAR DIMENSION FOR C*-ALGEBRAS

DR. PRAHLAD VAIDYANATHAN

ABSTRACT. We discuss a notion of dimension for C*-algebras, due to Winter and
Zacharias, that generalizes the Lebesgue covering dimension for topological spaces.
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Standing assumption: All C*-algebras will be unital (denoted by A, B,C,...), and all
topological spaces will be compact and Hausdorff (denoted by XY, Z,...).

1. COMPLETELY POSITIVE MAPS

Definition 1.1. An element a € A is said to be positive if there exists x € A such that
a = z*z. Equivalently, a is self-adjoint and o(a) C [0, 00).

We write A, for the set of all positive elements of A.

Definition 1.2. If A is a C*-algebra, so is M,,(A). Given any linear map ¢ : A — B, we
may define

P" My (A) = My(B) given by (ai;z) = (p(ai)
Note that ¢ is also a linear map.

Definition 1.3. Let ¢ : A — B be a linear map (not necessarily a *-homomorphism).
We say that
(1) ¢ is unital if p(14) = 15p.
(2) ¢ is positive if p(AL) C By.
(3) @ is completely positive if ™ is positive for each n € N.
(4) @ is contractive if ||¢]] < 1.
(5) @ is w.c.p. if it is unital and completely positive.
(6) ¢ is c.c.p. (or c.p.c.) if it is contractive and completely positive.

Example 1.4.

(1) Every s-homomorphism is positive and contractive. Furthermore, if ¢ is a *-
homomorphism, then so is ¢™. Hence, every *-homomorphism is c.c.p.

(2) If ¢ : A — B is a x-homomorphism, and x € B is any element. Define ) : A — B
by

U(a) = 2" p(a)z
Then ) is not necessarily multiplicative, but
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(a) 1 is positive: If a = y*y, then ¥ (a) = (¢(y)x)* (p(y)z).
(b) For n € N, write

X = diag(x,z,...,x) € M,(B)
Then
PIN(T) = X o™ (T) X
Hence, v is completely positive.

(3) The ‘transpose’ map My(C) — M,(C) is positive, but not completely positive.

Lemma 1.5. Let ¢ : A — B be a positive map. If A is commutative, then ¢ is completely
positive.

Example 1.6. Let U = {U;,Us, ..., U} be a collection of open subsets of a space X
(not necessarily a cover). Let {o1,09,...,0%} be a partition of unity subordinate to U.
Define F(U) = CF and define

ou: FU) — C(X)
given by

k

: )

(C1,€0y .. Ck) chaj
=1

This map is clearly positive (a positive element of C* is one whose entries are all positive
real numbers). By Lemma 1.5, it is completely positive. Furthermore,

lojlloe < 1

for each 1 < j <k, so y is c.c.p.

2. NUCLEAR C*-ALGEBRAS

Definition 2.1. A linear map 0 : A — B is said to be nuclear if there exist c.c.p maps
¢n : A= My)(C) and 9y, : My, (C) — B

such that
Tim [Jiy 0 pu(a) — B(a)]| = 0

Lemma 2.2. For a map 0 : A — B, the following are equivalent:

(1) 0 is nuclear.
(2) There are finite dimensional C*-algebras C,, and c.c.p. maps ¢, : A — C,, and
Y, : C, — B such that

Tim |t © @ (a) — O(a) | = 0

for all a € A.
(8) For any finite set G C A and € > 0, there is a finite dimensional C*-algebra C
and c.c.p. maps

p:A—=Candy:C—B
such that || o p(a) — O(a)|]| <€ Va € G.

Definition 2.3. A C*-algebra A is said to be nuclear if id4 : A — A is a nuclear map.
Equivalently, for every finite set G C A and ¢ > 0, there exists a finite dimensional
C*-algebra C' and c.c.p. maps ¢ : A — C and ¢ : C'— A such that

[ op(a) —al <e Vaed
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We represent this by a diagram that “approximately (G, €)-commutes”

ida

A

A

Theorem 2.4. C'(X) is nuclear.

Proof. Let G C A be a finite set, and € > 0. Choose an open cover U = {U;,Us, ..., Uy}
and points \; € U; such that, for any f € A,

[f(z) = f(N)| <e Vzel
Let C := F(U) = C™ and define ¢ : A — C by

Then ¢ is a *-homomorphism, so it is c.c.p.

Let {o1,09,...,0,} be a partition of unity subordinate to & and define ¢ : C' — A by
1 = ¢y In other words,

m

(el CayenyCm) = Z Ci0;
i=1
Then 9 is c.c.p. by Example 1.6. Finally, if f € G, then

[¥(e(£)) = £l = sup[A((FN) = @)

- sup i FAoi() - f(a)
—sup i FOou(a) é@(ﬂc)f(x)
< sup VZ (@) (FO) — 1)
< e:g}gg |oi()]
This completes the proof. h -

3. COVERING DIMENSION OF SPACES
Consider Example 1.6 more carefully. Given an open cover U of X, we get a map
pu : F(U) — C(X)
Now suppose U = U; U U5 for two disjoint subsets of . Then we may write
FU)=F(U) ® F(Us)
and

(pU‘F(Ui): Pu;
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Definition 3.1. [KIRCHBERG and WINTER, 2004, Definition 1.4] An open cover U of
X is said to be n-decomposable if there is a decomposition

U:UOI_IZ/ﬁI_I...I_IUn
such that each U; consists of mutually disjoint sets.

Example 3.2.

(1) If X is a finite set and U consists of singleton sets, then U is 0-decomposable.
(2) If X =[0,1] and U = {[0,1/2),(1/4,3/4),(1/2,1]}, then with

Uy = {[0,1/2), (1/2,1]} and Uy := {(1/4,3/4)}

we see that U is 1-decomposable.
(3) The following cover of S is 1-decomposable.

U

[ g

FIGURE 1. l-decomposable cover of S*

Note: One thinks of an n-decomposable cover as a way of covering the space with (n+ 1)
colours, where each colour corresponds to a single ;.

Definition 3.3. The Lebesgue covering dimension of X is the least integer n such that
every finite open cover U of X has a finite refinement V which is n-decomposable. We
denote this number by

dim(X)

Example 3.4.
(1) If X is finite, then dim(X) =0
(2) If X =[0,1] or X = S, then dim(X) =1
(3) If X =[0,1]™, then dim(X) =m
(4) If X is a manifold, then dim(X) coincides with its manifold dimension.

Remark 3.5. Suppose n = dim(X), and suppose we are given a finite subset G C C'(X)
and € > 0. In the proof of Theorem 2.4, we may choose a refinement of the original cover
to assume that the cover U is itself n-decomposable. Hence, we write

M:L{OI_Iull_l...I_IL{n
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so that we have
FU)=FUy) ® Fth) D ...d F(U,)
Now consider the maps
¥ =y, : F(l) = C(X)

given by
k
w(cl7 Ca, ... ,Ck) == Z CiO;
i=1
where {07, 09,...,01} is a collection of positive functions such that

(2) If i # j, then 0,0, = 0.
Hence, for any a,b € F(Uy),
ab=0= Y(a)(b) =0
This condition captures the fact that Uy is made of mutually disjoint sets.

4. NUCLEAR DIMENSION

Definition 4.1.
(1) For any two elements a,b € A, we say that a and b are orthogonal if

ab=a"b=ab" =ba=0
If this happens, we write a L b.
(2) A c.p. map 0 : A — B is said to have order zero if, for any a,b € A,
al b= pla) L (D)
In other words, ¢ preserves orthogonality.

Example 4.2.

(1) Any *-homomorphism has order zero.
(2) If 7: A — B is a *-homomorphism, and h € m(A)’ is a positive element, then the
map
¢ : A — B given by a +— hr(a)
is an order zero map. (In fact, every order zero map has this form [WINTER and
ZACHARIAS, 2009] )
(3) Let U be a collection of open sets in X, and consider the map

ou: FU) — C(X)
as in Example 1.6. If members of U are mutually disjoint, then ¢, is an order

Z€ero map.

Definition 4.3. A c.p. map ¢ : A — B is said to be n-decomposable if A can be
expressed as a direct sum

such that |4, has order zero for each 0 <i <n.

Definition 4.4. [WINTER and ZACHARIAS, 2010] The nuclear dimension of a C*-algebra
A is defined as the least integer n € N such that, for any finite set G C A, and for any
€ > 0, there exists a finite dimensional C*-algebra C' and c¢.p. maps

p:A—=>Candy:C — A
such that



(1)
| op(a) —al| <e VacG

(2) v is n-decomposable.
(3) ¢ is contractive. (¢ need not be contractive).

If such a number exists, we denote it by
dim,,,.(A)
Theorem 4.5.
dim,,,..(C(X)) < dim(X)
If X is second countable (or equivalently, metrizable), then equality holds.

Proof. The inequality < holds from Remark 3.5. The reverse inequality is quite technical.
This result is originally due to [WINTER, 2003], and there is a somewhat shorter proof
due to [CASTILLEJOS, 2018] as well.

O

Example 4.6.
(1) For a C*-algebra A, dim,,,.(A) = 0 if and only if A is an AF-algebra.
(2)

1 : 6 isirrational

dlmnuc<A9) = {

(3) If T denotes the Toeplitz algebra, then dim,,,.(7) =1
(4) For n € NU {o0},

2 :# is rational

(5) In fact, if A is a simple, separable C*-algebra, then
dimy,,.(A) € {0, 1, 400}

Remark 4.7. Note that, in the definition of nuclear dimension, we do not require that
the second map 1 be contractive.

(1) Therefore, it is not obvious (but it is true) that dim,,.(A) < co implies that A is
nuclear.

(2) If we require both ¢ and % to be contractive, then we arrive at the definition
of decomposition rank due to [KIRCHBERG and WINTER, 2004]. The two ranks
coincide for commutative C*-algebras. An important difference is that dim,,,. is
well-behaved with respect to extensions, while dr is not. Given an extension

0—-J—>FEF—>A—0
we have
dimy,,.(F) < dimpe(A) + dimge(J) + 1
There is no equivalent inequality for dr. In fact, if 7 denotes the Toeplitz algebra,

then
dimy,(7) = 1 while dr(7) = 400
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