NUCLEAR DIMENSION FOR C*-ALGEBRAS

DR. PRAHLAD VAIDYANATHAN

Abstract. We discuss a notion of dimension for C^{*}-algebras, due to Winter and
Zacharias, that generalizes the Lebesgue covering dimension for topological spaces.

Contents

1. Completely Positive Maps 1
2. Nuclear C*-algebras 2
3. Covering Dimension of Spaces 3
4. Nuclear Dimension 5

References 7

Standing assumption: All C*-algebras will be unital (denoted by A, B, C, \ldots), and all topological spaces will be compact and Hausdorff (denoted by X, Y, Z, \ldots).

1. Completely Positive Maps

Definition 1.1. An element $a \in A$ is said to be positive if there exists $x \in A$ such that $a=x^{*} x$. Equivalently, a is self-adjoint and $\sigma(a) \subset[0, \infty)$.

We write A_{+}for the set of all positive elements of A.
Definition 1.2. If A is a C^{*}-algebra, so is $M_{n}(A)$. Given any linear map $\varphi: A \rightarrow B$, we may define

$$
\varphi^{(n)}: M_{n}(A) \rightarrow M_{n}(B) \text { given by }\left(a_{i, j}\right) \mapsto\left(\varphi\left(a_{i, j}\right)\right.
$$

Note that $\varphi^{(n)}$ is also a linear map.
Definition 1.3. Let $\varphi: A \rightarrow B$ be a linear map (not necessarily a $*$-homomorphism). We say that
(1) φ is unital if $\varphi\left(1_{A}\right)=1_{B}$.
(2) φ is positive if $\varphi\left(A_{+}\right) \subset B_{+}$.
(3) φ is completely positive if $\varphi^{(n)}$ is positive for each $n \in \mathbb{N}$.
(4) φ is contractive if $\|\varphi\| \leq 1$.
(5) φ is u.c.p. if it is unital and completely positive.
(6) φ is c.c.p. (or c.p.c.) if it is contractive and completely positive.

Example 1.4.

(1) Every $*$-homomorphism is positive and contractive. Furthermore, if φ is a $*-$ homomorphism, then so is $\varphi^{(n)}$. Hence, every $*$-homomorphism is c.c.p.
(2) If $\varphi: A \rightarrow B$ is a $*$-homomorphism, and $x \in B$ is any element. Define $\psi: A \rightarrow B$ by

$$
\psi(a):=x^{*} \varphi(a) x
$$

Then ψ is not necessarily multiplicative, but
(a) ψ is positive: If $a=y^{*} y$, then $\psi(a)=(\varphi(y) x)^{*}(\varphi(y) x)$.
(b) For $n \in \mathbb{N}$, write

$$
X=\operatorname{diag}(x, x, \ldots, x) \in M_{n}(B)
$$

Then

$$
\psi^{(n)}(T)=X^{*} \varphi^{(n)}(T) X
$$

Hence, ψ is completely positive.
(3) The 'transpose' map $M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ is positive, but not completely positive.

Lemma 1.5. Let $\varphi: A \rightarrow B$ be a positive map. If A is commutative, then φ is completely positive.

Example 1.6. Let $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ be a collection of open subsets of a space X (not necessarily a cover). Let $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ be a partition of unity subordinate to \mathcal{U}. Define $F(\mathcal{U})=\mathbb{C}^{k}$ and define

$$
\varphi_{\mathcal{U}}: F(\mathcal{U}) \rightarrow C(X)
$$

given by

$$
\left(c_{1}, c_{2}, \ldots, c_{k}\right) \mapsto \sum_{j=1}^{k} c_{k} \sigma_{j}
$$

This map is clearly positive (a positive element of \mathbb{C}^{k} is one whose entries are all positive real numbers). By Lemma 1.5, it is completely positive. Furthermore,

$$
\left\|\sigma_{j}\right\|_{\infty} \leq 1
$$

for each $1 \leq j \leq k$, so $\varphi_{\mathcal{U}}$ is c.c.p.

2. Nuclear C^{*}-algebras

Definition 2.1. A linear map $\theta: A \rightarrow B$ is said to be nuclear if there exist c.c.p maps

$$
\varphi_{n}: A \rightarrow M_{k(n)}(\mathbb{C}) \text { and } \psi_{n}: M_{k(n)}(\mathbb{C}) \rightarrow B
$$

such that

$$
\lim _{n \rightarrow \infty}\left\|\psi_{n} \circ \varphi_{n}(a)-\theta(a)\right\|=0
$$

Lemma 2.2. For a map $\theta: A \rightarrow B$, the following are equivalent:
(1) θ is nuclear.
(2) There are finite dimensional C^{*}-algebras C_{n} and c.c.p. maps $\varphi_{n}: A \rightarrow C_{n}$ and $\psi_{n}: C_{n} \rightarrow B$ such that

$$
\lim _{n \rightarrow \infty}\left\|\psi_{n} \circ \varphi_{n}(a)-\theta(a)\right\|=0
$$

for all $a \in A$.
(3) For any finite set $G \subset A$ and $\epsilon>0$, there is a finite dimensional C^{*}-algebra C and c.c.p. maps

$$
\varphi: A \rightarrow C \text { and } \psi: C \rightarrow B
$$

such that $\|\psi \circ \varphi(a)-\theta(a)\|<\epsilon \quad \forall a \in G$.
 Equivalently, for every finite set $G \subset A$ and $\epsilon>0$, there exists a finite dimensional C^{*}-algebra C and c.c.p. maps $\varphi: A \rightarrow C$ and $\psi: C \rightarrow A$ such that

$$
\|\psi \circ \varphi(a)-a\|_{2}<\epsilon \quad \forall a \in G
$$

We represent this by a diagram that "approximately (G, ϵ)-commutes"

Theorem 2.4. $C(X)$ is nuclear.
Proof. Let $G \subset A$ be a finite set, and $\epsilon>0$. Choose an open cover $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{m}\right\}$ and points $\lambda_{i} \in U_{i}$ such that, for any $f \in A$,

$$
\left|f(x)-f\left(\lambda_{i}\right)\right|<\epsilon \quad \forall x \in U_{i}
$$

Let $C:=F(\mathcal{U})=\mathbb{C}^{m}$ and define $\varphi: A \rightarrow C$ by

$$
\varphi(f):=\left(f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{m}\right)\right)
$$

Then φ is a $*$-homomorphism, so it is c.c.p.
Let $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ be a partition of unity subordinate to \mathcal{U} and define $\psi: C \rightarrow A$ by $\psi=\varphi_{\mathcal{U}}$. In other words,

$$
\psi\left(c_{1}, c_{2}, \ldots, c_{m}\right)=\sum_{i=1}^{m} c_{i} \sigma_{i}
$$

Then ψ is c.c.p. by Example 1.6. Finally, if $f \in G$, then

$$
\begin{aligned}
\|\psi(\varphi(f))-f\| & =\sup _{x \in X} \mid \psi\left(\left(f\left(\lambda_{i}\right)\right)-f(x) \mid\right. \\
& =\sup _{x \in X}\left|\sum_{i=1}^{m} f\left(\lambda_{i}\right) \sigma_{i}(x)-f(x)\right| \\
& =\sup _{x \in X}\left|\sum_{i=1}^{m} f\left(\lambda_{i}\right) \sigma_{i}(x)-\sum_{i=1}^{m} \sigma_{i}(x) f(x)\right| \\
& \leq \sup _{x \in X} \sum_{i=1}^{m}\left|\sigma_{i}(x)\left(f\left(\lambda_{i}\right)-f(x)\right)\right| \\
& <\epsilon \sup _{x \in X} \sum_{i=1}^{m}\left|\sigma_{i}(x)\right| \\
& =\epsilon
\end{aligned}
$$

This completes the proof.

3. Covering Dimension of Spaces

Consider Example 1.6 more carefully. Given an open cover \mathcal{U} of X, we get a map

$$
\varphi_{\mathcal{U}}: F(\mathcal{U}) \rightarrow C(X)
$$

Now suppose $\mathcal{U}=\mathcal{U}_{1} \sqcup \mathcal{U}_{2}$ for two disjoint subsets of \mathcal{U}. Then we may write

$$
F(\mathcal{U})=F\left(\mathcal{U}_{1}\right) \oplus F\left(\mathcal{U}_{2}\right)
$$

and

$$
\varphi \underset{\substack{ \\F\left(\mathcal{U}_{i}\right) \\ 3}}{ }=\varphi_{\mathcal{U}_{i}}
$$

Definition 3.1. [Kirchberg and Winter, 2004, Definition 1.4] An open cover \mathcal{U} of X is said to be n-decomposable if there is a decomposition

$$
\mathcal{U}=\mathcal{U}_{0} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}
$$

such that each \mathcal{U}_{i} consists of mutually disjoint sets.

Example 3.2.

(1) If X is a finite set and \mathcal{U} consists of singleton sets, then \mathcal{U} is 0 -decomposable.
(2) If $X=[0,1]$ and $\mathcal{U}=\{[0,1 / 2),(1 / 4,3 / 4),(1 / 2,1]\}$, then with

$$
\mathcal{U}_{0}:=\{[0,1 / 2),(1 / 2,1]\} \text { and } \mathcal{U}_{1}:=\{(1 / 4,3 / 4)\}
$$

we see that \mathcal{U} is 1 -decomposable.
(3) The following cover of S^{1} is 1-decomposable.

Figure 1. 1-decomposable cover of S^{1}

Note: One thinks of an n-decomposable cover as a way of covering the space with $(n+1)$ colours, where each colour corresponds to a single \mathcal{U}_{i}.

Definition 3.3. The Lebesgue covering dimension of X is the least integer n such that every finite open cover \mathcal{U} of X has a finite refinement \mathcal{V} which is n-decomposable. We denote this number by

$$
\operatorname{dim}(X)
$$

Example 3.4.

(1) If X is finite, then $\operatorname{dim}(X)=0$
(2) If $X=[0,1]$ or $X=S^{1}$, then $\operatorname{dim}(X)=1$
(3) If $X=[0,1]^{m}$, then $\operatorname{dim}(X)=m$
(4) If X is a manifold, then $\operatorname{dim}(X)$ coincides with its manifold dimension.

Remark 3.5. Suppose $n=\operatorname{dim}(X)$, and suppose we are given a finite subset $G \subset C(X)$ and $\epsilon>0$. In the proof of Theorem 2.4, we may choose a refinement of the original cover to assume that the cover \mathcal{U} is itself n-decomposable. Hence, we write

$$
\underset{4}{\mathcal{U}}=\underset{\mathcal{U}_{0}}{\mathcal{U}_{1} \sqcup \mathcal{U}_{1} \sqcup \ldots \sqcup \mathcal{U}_{n}}
$$

so that we have

$$
F(\mathcal{U})=F\left(\mathcal{U}_{0}\right) \oplus F\left(\mathcal{U}_{1}\right) \oplus \ldots \oplus F\left(\mathcal{U}_{n}\right)
$$

Now consider the maps

$$
\psi=\varphi_{\mathcal{U}_{0}}: F\left(\mathcal{U}_{0}\right) \rightarrow C(X)
$$

given by

$$
\psi\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\sum_{i=1}^{k} c_{i} \sigma_{i}
$$

where $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ is a collection of positive functions such that
(1) $0 \leq \sigma_{i} \leq 1$
(2) If $i \neq j$, then $\sigma_{i} \sigma_{j}=0$.

Hence, for any $a, b \in F\left(\mathcal{U}_{0}\right)$,

$$
a b=0 \Rightarrow \psi(a) \psi(b)=0
$$

This condition captures the fact that \mathcal{U}_{0} is made of mutually disjoint sets.

4. Nuclear Dimension

Definition 4.1.

(1) For any two elements $a, b \in A$, we say that a and b are orthogonal if

$$
a b=a^{*} b=a b^{*}=b a=0
$$

If this happens, we write $a \perp b$.
(2) A c.p. map $\theta: A \rightarrow B$ is said to have order zero if, for any $a, b \in A$,

$$
a \perp b \Rightarrow \varphi(a) \perp \varphi(b)
$$

In other words, φ preserves orthogonality.

Example 4.2.

(1) Any $*$-homomorphism has order zero.
(2) If $\pi: A \rightarrow B$ is a $*$-homomorphism, and $h \in \pi(A)^{\prime}$ is a positive element, then the map

$$
\varphi: A \rightarrow B \text { given by } a \mapsto h \pi(a)
$$

is an order zero map. (In fact, every order zero map has this form [Winter and Zacharias, 2009])
(3) Let \mathcal{U} be a collection of open sets in X, and consider the map

$$
\varphi_{\mathcal{U}}: F(\mathcal{U}) \rightarrow C(X)
$$

as in Example 1.6. If members of \mathcal{U} are mutually disjoint, then $\varphi_{\mathcal{U}}$ is an order zero map.
Definition 4.3. A c.p. map $\varphi: A \rightarrow B$ is said to be n-decomposable if A can be expressed as a direct sum

$$
A=A_{0} \oplus A_{1} \oplus \ldots \oplus A_{n}
$$

such that $\left.\varphi\right|_{A_{i}}$ has order zero for each $0 \leq i \leq n$.
Definition 4.4. [Winter and Zacharias, 2010] The nuclear dimension of a C*-algebra A is defined as the least integer $n \in \mathbb{N}$ such that, for any finite set $G \subset A$, and for any $\epsilon>0$, there exists a finite dimensional C^{*}-algebra C and c.p. maps

$$
\varphi: A \rightarrow C \text { and } \psi: C \rightarrow A
$$

such that
(1)

$$
\|\psi \circ \varphi(a)-a\|<\epsilon \quad \forall a \in G
$$

(2) ψ is n-decomposable.
(3) φ is contractive. (ψ need not be contractive).

If such a number exists, we denote it by

$$
\operatorname{dim}_{n u c}(A)
$$

Theorem 4.5.

$$
\operatorname{dim}_{n u c}(C(X)) \leq \operatorname{dim}(X)
$$

If X is second countable (or equivalently, metrizable), then equality holds.
Proof. The inequality \leq holds from Remark 3.5. The reverse inequality is quite technical. This result is originally due to [WINTER, 2003], and there is a somewhat shorter proof due to [Castillejos, 2018] as well.

Example 4.6.

(1) For a C^{*}-algebra $A, \operatorname{dim}_{n u c}(A)=0$ if and only if A is an AF-algebra.

$$
\operatorname{dim}_{n u c}\left(A_{\theta}\right)= \begin{cases}1 & : \theta \text { is irrational } \tag{2}\\ 2 & : \theta \text { is rational }\end{cases}
$$

(3) If \mathcal{T} denotes the Toeplitz algebra, then $\operatorname{dim}_{\text {nuc }}(\mathcal{T})=1$
(4) For $n \in \mathbb{N} \cup\{\infty\}$,

$$
\operatorname{dim}_{n u c}\left(\mathcal{O}_{n}\right)=1
$$

(5) In fact, if A is a simple, separable C^{*}-algebra, then

$$
\operatorname{dim}_{n u c}(A) \in\{0,1,+\infty\}
$$

Remark 4.7. Note that, in the definition of nuclear dimension, we do not require that the second map ψ be contractive.
(1) Therefore, it is not obvious (but it is true) that $\operatorname{dim}_{\text {nuc }}(A)<\infty$ implies that A is nuclear.
(2) If we require both φ and ψ to be contractive, then we arrive at the definition of decomposition rank due to [Kirchberg and Winter, 2004]. The two ranks coincide for commutative C^{*}-algebras. An important difference is that dim ${ }_{n u c}$ is well-behaved with respect to extensions, while $d r$ is not. Given an extension

$$
0 \rightarrow J \rightarrow E \rightarrow A \rightarrow 0
$$

we have

$$
\operatorname{dim}_{n u c}(E) \leq \operatorname{dim}_{n u c}(A)+\operatorname{dim}_{n u c}(J)+1
$$

There is no equivalent inequality for $d r$. In fact, if \mathcal{T} denotes the Toeplitz algebra, then

$$
\operatorname{dim}_{\text {nuc }}(\mathcal{T})=1 \text { while } \operatorname{dr}(\mathcal{T})=+\infty
$$

References

Castillejos, Jorge (Oct. 9, 2018). "C*-algebras and their nuclear dimension". In: arXiv: http://arxiv.org/abs/1810.04235v2 [math.OA].
Kirchberg, Eberhard and Winter, Wilhelm (2004). "Covering dimension and quasidiagonality". In: International Journal of Mathematics 15.1, pp. 63-85. ISSN: 0129167X. DoI: $10.1142 /$ S0129167X04002119.
Winter, Wilhelm (2003). "Covering dimension for nuclear C^{*}-algebras". In: Journal of Functional Analysis 199.2, pp. 535-556. ISSN: 0022-1236. DOI: 10.1016/S0022-1236(02)00109-X.
Winter, Wilhelm and Zacharias, Joachim (2009). "Completely positive maps of order zero". In: Münster Journal of Mathematics 2, pp. 311-324. ISSN: 1867-5778.
Winter, Wilhelm and Zacharias, Joachim (2010). "The nuclear dimension of C^{*} algebras". In: Advances in Mathematics 224.2, pp. 461-498. ISSN: 0001-8708. DOi: 10. 1016/j.aim. 2009.12.005.
Email address: prahlad@iiserb.ac.in

