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Homotopical stable ranks for certain C∗-algebras
associated to groups

by

Anshu Nirbhay and Prahlad Vaidyanathan (Bhopal)

Abstract. We study the general and connected stable ranks for C∗-algebras. We
estimate these ranks for certain C(X)-algebras, and use that to do the same for certain
group C∗-algebras. Furthermore, we also give estimates for the ranks of crossed product
C∗-algebras by finite group actions with the Rokhlin property.

A noncommutative dimension (or rank) is a numerical invariant asso-
ciated to a C∗-algebra that is meant to generalize the notion of Lebesgue
covering dimension for topological spaces. First introduced by Rieffel [23],
these ranks have grown to play an important role in C∗-algebra theory. In
particular, algebras having low rank often enjoy regularity properties that
are important in and of themselves, and in the context of the Elliott classi-
fication program.

Among the various notions of noncommutative dimension that now exist,
we are interested in two such: the general stable rank (gsr) and the connected
stable rank (csr). Introduced by Rieffel in his original paper, both these
ranks are closely related to K-theory. As described below, these ranks not
only control the behaviour of certain long exact sequences associated to K-
theory, they are also homotopy invariant (and are hence collectively termed
homotopical stable ranks). This last property is crucial, and makes the study
of these ranks different from those of other dimension theories.

The goal of this paper is to understand the behaviour of these ranks under
certain natural constructions. We begin with group C∗-algebras associated
to certain nilpotent groups. By a theorem of Packer and Raeburn [19], these
algebras may be expressed as the algebra of sections of a continuous field of
C∗-algebras. Therefore, in order to estimate the ranks of these algebras, we
are led to our first main theorem.
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Theorem A. Let X be a compact metric space of finite covering dimen-
sion N , and let A be a C(X)-algebra. Then

csr(A) ≤ sup {csr(C(TN )⊗A(x)) : x ∈ X}.

Here, A(x) denotes the fibre of A at a point x in X, and Tk denotes the
k-fold product of the unit circle S1. As mentioned above, Theorem A leads
to our next main result.

Theorem B. Let G be a discrete group that is a central extension 0 →
N → G → Q → 0, where N is a finitely generated abelian group of rank n,
and Q is a free abelian group of rank m. Then

csr(C∗(G)) ≤
⌈
n+m

2

⌉
+ 1

where dxe denotes the least integer ≥ x.

We then turn to crossed product C∗-algebras by finite groups. We begin
by giving an estimate for the connected stable rank of a crossed product
C∗-algebra provided the underlying algebra has topological stable rank 1
(Theorem 3.1). However, in the case where the action has the Rokhlin prop-
erty, we were able to obtain stronger estimates.

Theorem C. Let α : G→ Aut(A) be an action of a finite group G on a
separable, unital C∗-algebra A with the Rokhlin property. Then

csr(Aoα G) ≤
⌈
csr(A)− 1

|G|

⌉
+ 1,

gsr(Aoα G) ≤
⌈
gsr(A)− 1

|G|

⌉
+ 1.

In particular, if csr(A) = 1 or gsr(A) = 1, then the same is true for AoαG.

Under the same hypotheses as above, Osaka and Phillips [18] have shown
that if A has either stable rank 1 or real rank 0, then the same is true for
the crossed product C∗-algebra. Therefore, Theorem C may be thought of
as more evidence that crossed products by Rokhlin actions preserve low
dimension.

1. Preliminaries

1.1. Stable ranks. Let A be a unital C∗-algebra and n be a natural
number. A vector a := (a1, . . . , an) ∈ An is said to be left unimodular if
there exists a vector (b1, . . . , bn) ∈ An such that

∑n
i=1 biai = 1. We write

Lgn(A) for the set of all left unimodular vectors. Note that GLn(A), the set
of all invertible elements in Mn(A), acts on Lgn(A) by left multiplication.
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Definition 1.1. Let A be a unital C∗-algebra. The general stable rank
of A, denoted gsr(A), is the least integer n ≥ 1 such that GLm(A) acts
transitively on Lgm(A) for each m ≥ n.

If no such number n exists, we simply write gsr(A) = +∞. Furthermore,
if A is a nonunital C∗-algebra, then the general stable rank of A is simply
defined as that of A+, the minimal unitization of A. To avoid repetition, we
adopt the same convention in the definitions of connected and topological
stable ranks below.

Definition 1.1 seems somewhat opaque, but it has a K-theoretic explana-
tion. In what follows, we will assume A is both unital, and has the invariant
basis number property [14, Definition 1.36], so that we can make sense of
the rank of certain modules over A. Now suppose M is an A-module such
that M ⊕ As ∼= As+m for integers s,m > 0, and we wish to know when we
can conclude that M ∼= Am. Therefore, we consider the somewhat simpler
situation of a finitely generated projective A-module P together with an
isomorphism

f : P ⊕A
∼=−→ An

and we ask when P ∼= An−1. Setting Q := f(P ⊕{0}) and a := f((0, 1)), we
see that Q ∼= P and

Q⊕ aA = An.

It turns out that a is a left unimodular vector, and that P ∼= An−1 if and
only if there is an invertible T ∈ GLn(A) such that T (a) = en, where en =
(0, 0, . . . , 1) ∈ An [14, Proposition 4.14]. Hence, the general stable rank of A
determines the least rank at which a stably free projective module is forced
to be free.

Let GL0
n(A) denote the connected component of the identity in GLn(A).

Observe that GL0
n(A) is a normal subgroup of GLn(A), and hence acts on

Lgn(A) as well.

Definition 1.2. Let A be a unital C∗-algebra. Then the connected stable
rank of A, denoted csr(A), is the least integer n ≥ 1 such that GL0

m(A) acts
transitively on Lgm(A) for all m ≥ n.

This definition is, if possible, even more mysterious than the previous
one. To understand its usefulness, we state a result due to Rieffel: Let A
be a unital C∗-algebra and θn : GLn(A) → GLn+1(A) denote the natural
inclusion

a 7→
(
a 0

0 1

)
.
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This induces a sequence of groups

· · · → GLn−1(A)

GL0
n−1(A)

→ GLn(A)

GL0
n(A)

→ · · ·

whose limit is K1(A).

Theorem 1.3 ([24, Proposition 2.6 and Theorem 2.9]). If n ≥ csr(A),
then the map

GLn−1(A)→ K1(A)

is surjective. Furthermore, if n ≥ max {csr(A), gsr(C(T)⊗A)}, then
GLn−1(A)

GL0
n−1(A)

∼= K1(A).

Thus, these ranks together control the nonstable K-theory of a C∗-al-
gebra. Before we proceed, we give one last definition.

Definition 1.4. Let A be a unital C∗-algebra. The topological stable
rank of A, denoted tsr(A), is the least integer n ≥ 1 such that Lgn(A) is
dense in An.

It turns out that if Lgn(A) is dense in An, then Lgm(A) is dense in Am
for all m ≥ n, which explains the difference between this and the earlier
definitions.

Remark 1.5. We now list some basic properties of these ranks. While
the original proofs are scattered through the literature, [16] is an immediate
reference for all these facts.

(1) gsr(A⊕B) = max {gsr(A), gsr(B)}. Analogous statements hold for csr
and tsr.

(2) gsr(A) ≤ csr(A) ≤ tsr(A) + 1. Strict inequalities are possible in both
cases. In fact, it is possible that tsr(A) = +∞, while csr(A) <∞.

(3) For any n ∈ N,

csr(Mn(A)) ≤
⌈
csr(A)− 1

n

⌉
+ 1, gsr(Mn(A)) ≤

⌈
gsr(A)− 1

n

⌉
+ 1.

(4) If π : A→ B is a surjective ∗-homomorphism, then

csr(B) ≤ max {csr(A), tsr(A)}, gsr(B) ≤ max {gsr(A), tsr(A)}.
(5) Furthermore, if π : A → B is a split epimorphism (i.e. there is a
∗-homomorphism s : B → A such that π ◦ s = idB), then

csr(B) ≤ csr(A), gsr(B) ≤ gsr(A).

(6) If 0→ J → A→ B → 0 is an exact sequence of C∗-algebras, then

csr(A) ≤ max {csr(J), csr(B)}, gsr(A) ≤ max {gsr(J), csr(B)}.
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It is worth mentioning here that when J is an ideal of A, there is,
a priori, no relation between the homotopical stable ranks of A and
those of J .

(7) Let {Ai : i ∈ J} be an inductive system of C∗-algebras with A :=
limAi. Then

csr(A) ≤ lim inf
i

csr(Ai), gsr(A) ≤ lim inf
i

gsr(Ai).

(8) If gsr(A) = 1 (and hence if csr(A) = 1), then A is stably finite. Con-
versely, if gsr(A) ≤ 2 and A is finite, then gsr(A) = 1.

(9) If csr(A) = 1, then K1(A) = 0. The converse is true if tsr(A) = 1.
(10) If tsr(A) = 1, then A has cancellation of projections, so gsr(A) = 1.
(11) If A and B are homotopy equivalent (in the category of C∗-algebras),

then gsr(A) = gsr(B) and csr(A) = csr(B).

1.2. C(X)-algebras. We now describe a class of C∗-algebras that we
will focus on for the first part of the paper. From now on, X will always be
a compact Hausdorff space unless otherwise stated.

Definition 1.6 ([12, Definition 1.5]). A unital C∗-algebra A is said to be
a C(X)-algebra if there exists a unital ∗-homomorphism Φ : C(X)→ Z(A),
where Z(A) denotes the centre of A.

In other words, A is a C(X)-module, so if f ∈ C(X) and a ∈ A, we
simply write fa for Φ(f)(a). Let Y ⊂ X be closed and let C(X,Y ) denote
the set of all functions in C(X) vanishing on Y . Then C(X,Y )A is an ideal in
A by the Cohen factorization theorem [3, Theorem 4.6.4]; we write A(Y ) :=
A/C(X,Y )A for the corresponding quotient, and πY : A → A(Y ) for the
quotient map. Furthermore, if Z ⊂ Y is another closed subset of X, then
we write πYZ : A(Y ) → A(Z) for the natural quotient map satisfying πZ =
πYZ ◦ πY .

If Y = {x} is a singleton set, then A(x) := A({x}) is called the fibre of
A at x, and we write πx for the corresponding quotient map. For a ∈ A, we
write a(x) for πx(a). For each a ∈ A, we have a map Γa : X → R given by
x 7→ ‖a(x)‖. This map is always upper semicontinuous [13, Lemma 2.3]. We
say that A is a continuous C(X)-algebra if Γa is continuous for each a ∈ A.

When A is a C(X)-algebra, we will often consider other C(X)-algebras
constructed from A. We will then need the following remark.

Remark 1.7. Let X be a compact, Hausdorff space and let A be a
C(X)-algebra. If B is a nuclear C∗-algebra, then A ⊗ B carries a natural
action of C(X) given on elementary tensors by f · (a⊗ b) := (fa)⊗ b. This
makes A⊗B a C(X)-algebra, whose fibre at a point x ∈ X is A(x)⊗B.

Finally, one fact that plays a crucial role for us is that a C(X)-algebra
may be patched together from quotients in the following way: Let B,C and
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D be C∗-algebras and β : B → D and γ : C → D be ∗-homomorphisms.
The pullback of this system is defined to be

A = B ⊕D C = {(b, c) ∈ B ⊕ C : β(b) = γ(c)}.
This is described by a diagram

A

δ
��

α // B

β
��

C
γ // D

where α(b, c) = b and δ(b, c) = c.

Lemma 1.8 ([6, Lemma 2.4]). Let X be a compact, Hausdorff space and
Y and Z be two closed subsets of X such that X = Y ∪ Z. If A is a C(X)-
algebra, then A is isomorphic to the following pullback.

A

πZ
��

πY // A(Y )

πY
Y ∩Z
��

A(Z)
πZ
Y ∩Z // A(Y ∩ Z)

1.3. Notational conventions. We fix some notation we will use repeat-
edly. We write Tk for the k-fold product of the circle T. Given a C∗-algebra
A and a compact Hausdorff space X, we identify C(X) ⊗ A with C(X,A),
the space of continuous A-valued functions on X. If X = Tk, we simply write
TkA for C(Tk, A). We write θAn for the map GLn−1(A)→ GLn(A) given by

a 7→
(
a 0

0 1

)
.

If there is no ambiguity, we simply write θA for this map. Given a unital
∗-homomorphism ϕ : A→ B, we write ϕn for the induced maps in a variety
of situations, such as Mn(A) → Mn(B), GLn(A) → GLn(B) and Lgn(A)
→ Lgn(B). Furthermore, when there is no ambiguity, we drop the subscript
and denote the map by ϕ.

Given two topological spaces X and Y , we will write [X,Y ] for the set
of free homotopy classes of continuous maps between them. If X and Y are
pointed spaces, then we write [X,Y ]∗ for the set of based homotopy classes.
Here, we will be concerned with two pointed spaces associated to a unital
C∗-algebra A: GLn(A), as a subspace of Mn(A) with base point In; and
Lgm(A), as a subspace of Am with base point em.

2. C(X)-algebras. The goal of this section is to prove Theorem A.
Given a C(X)-algebra and a point x ∈ X, one often uses upper semiconti-
nuity to propagate a given property from the fibre A(x) to a neighbourhood
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of x. Together with a compactness argument, one may then be able to en-
sure that the property holds for the entire C(X)-algebra. This is the basic
approach to the theorem, the first step of which is the following lemma.

Lemma 2.1. Let A be a unital C∗-algebra, n ∈ N and en = (0, 0, . . . , 1A)
∈ Lgn(A). If u ∈ An is such that ‖u − en‖ < 1/n, then there exists S ∈
GL0

n(A) such that Su = en.

Proof. Consider

T =



1 0 0 . . . 0 u1

0 1 0 . . . 0 u2
...

...
...

...
...

...
0 0 0 . . . 1 un−1

0 0 0 . . . 0 un


.

Then

‖In − T‖ ≤
n−1∑
i=1

‖ui‖+ ‖1A − un‖ ≤ n‖u− en‖ < 1.

Hence, T ∈ GL0
n(A) and T (en) = u, so S := T−1 works.

The proof of Theorem A is by induction on the covering dimension of
the underlying space X. The next result is the base case, and works even if
the underlying space is not metrizable.

Theorem 2.2. Let X be a zero-dimensional compact Hausdorff space,
and A be a unital C(X)-algebra. Then

csr(A) ≤ sup {csr(A(x)) : x ∈ X}.
Proof. If sup {csr(A(x)) : x ∈ X} = +∞, then there is nothing to prove,

so assume sup {csr(A(x)) : x ∈ X} < ∞. Fix n ≥ sup {csr(A(x)) : x ∈ X}
and v ∈ Lgn(A). We want to show that there exists T ∈ GL0

n(A) such that
Tv = en.

For any x ∈ X, v(x) ∈ Lgn(A(x)), so there exists S ∈ GL0
n(A(x)) such

that Sv(x) = en(x). Since the quotient map πx : A → A(x) is surjective,
there exists Tx ∈ GL0

n(A) such that Tx(x) = S. Then

Tx(x)v(x) = en(x).

By upper semicontinuity of the map y 7→ ‖Tx(y)v(y) − en(y)‖, there is a
clopen neighbourhood Ux of x such that, for each y ∈ Ux, we have

‖Tx(y)v(y)− en(y)‖ < 1/n.

By [6, Lemma 2.1(ii)],

‖πUx(Txv)− πUx(en)‖ < 1/n.
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Since πUx is unital, πUx(en) = en ∈ Lgn(A(Ux)). So, applying Lemma 2.1 to
u := πUx(Txv) yields S̃x ∈ GL0

n(A(Ux)) such that

S̃xπUx(Txv) = πUx(en).

Let Rx := S̃xπUx(Tx) ∈ GL0
n(A(Ux)). Since dim(X) = 0, we may choose

a refinement of {Ux : x ∈ X}, the members of which are mutually dis-
joint. Since X is compact, we obtain a finite subcover of that refinement,
denoted by {V1, . . . , Vm}. Note that the Vi are clopen and mutually disjoint.
By Lemma 1.8,

A ∼=
m⊕
i=1

A(Vi)

so GL0
n(A)

∼=
⊕m

i=1GL0
n(A(Vi)). For each 1 ≤ i ≤ m, there exists Ri ∈

GL0
n(A(Vi)) such that

RiπVi(v) = πVi(en).

Hence, there exists T ∈ GL0
n(A) such that πVi(T ) = Ri for all 1 ≤ i ≤ m, so

that Tv = en. Thus, GL0
n(A) acts transitively on Lgn(A), whence csr(A) ≤ n

as required.

We now prove an analogous result for the general stable rank as well.

Theorem 2.3. Let X be a zero-dimensional compact Hausdorff space,
and A be a unital C(X)-algebra. Then

gsr(A) ≤ sup {gsr(A(x)) : x ∈ X}.
Proof. Again, we assume that sup {gsr(A(x)) : x ∈ X} < ∞, and fix

n ≥ sup {gsr(A(x)) : x ∈ X} and v ∈ Lgn(A). We wish to construct T ∈
GLn(A) such that Tv = en. To that end, we fix x ∈ X, and see that there
exists S ∈ GLn(A(x)) such that Sv(x) = en(x). Now choose Tx ∈ Mn(A)
such that Tx(x) = S (note that Tx may not be invertible). Then

Tx(x)v(x) = en(x).

As before, there is a clopen neighbourhood Ux of x such that

‖πUx(Txv)− πUx(en)‖ < 1/n.

Now since S ∈ GLn(A(x)), there exists T̃ ∈ Mn(A) such that T̃ (x) = S−1.
Hence,

Tx(x)T̃ (x) = In(x).

By Remark 1.7,Mn(A) is a C(X)-algebra, so by upper semicontinuity, there
is a clopen neighbourhood Wx of x such that

‖πWx(Tx)πWx(T̃ )− πWx(In)‖ < 1.

Hence, πWx(Tx) is right-invertible. Similarly, there is a clopen neighbour-
hood W̃x of x such that π

W̃x
(Tx) is left-invertible. Thus, replacing Ux by
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Ux ∩Wx ∩ W̃x, we may assume that πUx(Tx) ∈ GLn(A(Ux)). The remainder
of the argument goes through, mutatis mutandis, as for the previous theo-
rem, to conclude that there exists T ∈ GLn(A) such that Tv = en. Thus,
GLn(A) acts transitively on Lgn(A), whence gsr(A) ≤ n as required.

Before we proceed, we record a fact that will be useful to us later.

Remark 2.4. If X is a compact Hausdorff space and A is a unital C∗-
algebra, then the evaluation map at a point of X gives a split epimorphism
C(X,A)→ A. By Remark 1.5(5), it follows that

csr(A) ≤ csr(C(X,A)).

In particular, if n ≤ m, then csr(TnA) ≤ csr(TmA).
Now, we need the following definition from [25]: Let D be a unital C∗-

algebra, and consider the sequence of groups

{1D} = GL0(D) ↪→ GL1(D) ↪→ GL2(D) ↪→ · · ·
where the maps are the natural inclusions θDn . For an integer k ≥ 0, we get
an induced sequence of groups (or sets if k = 0)

πk(GL0(D))→ πk(GL1(D))→ πk(GL2(D))→ · · · .
We write injk(D) for the least integer n ≥ 1 such that the map

πk(GLm−1(D))→ πk(GLm(D))

is injective for each m ≥ n. Similarly, we write surjk(D) for the least integer
n ≥ 1 such that the map πk(GLm−1(D)) → πk(GLm(D)) is surjective for
each m ≥ n.

The next lemma is a strengthening of [25, Proposition 2.7]. While not
strictly speaking necessary for our arguments, this may help shed some light
on the right-hand-side term appearing in Theorem A.

Lemma 2.5. Let D be a unital C∗-algebra and k ≥ 1 be an integer. Then

max {injk−1(D), surjk(D), csr(D)} = csr(TkD).

Proof. By [25, Theorem 3.10], it follows that

csr(TkD) ≤ max {injk−1(D), surjk(D), csr(D)}.
To prove the reverse inequality, let n ≥ csr(TkD). Then by Remark 2.4,

n ≥ csr(D).

Secondly, by Remark 1.5(2), we have n ≥ gsr(TkD). So by [25, Theorem 3.7]
applied to X := {∗} and A := Tk−1D, we have

(1) n ≥ max {gsr(Tk−1D), inj0(Tk−1D)}.
Now by [25, Corollary 4.2 and Lemma 4.3],

gsr(Tk−1D) ≥ gsr(C(ΣTk−2)⊗D) ≥ gsr(C(Sk−1)⊗D).
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Furthermore, by [25, Lemma 3.8 and Proposition 2.7],

gsr(C(Sk−1)⊗D) ≥ inj0(C(S
k−1)⊗D) = injk−1(D).

So we conclude that
n ≥ injk−1(D).

Finally, for m ≥ n fixed, we wish to show that the map πk(GLm−1(D)) →
πk(GLm(D)) is surjective. Since m ≥ csr(D), [23, Corollary 8.5] implies that
Lgm(D) is connected. Hence, by [4, Corollary 1.6], we have a long exact
sequence

· · · → πk+1(Lgm(D))→ πk(GLm−1(D))

→ πk(GLm(D))→ πk(Lgm(D))→ · · · .
Therefore, it suffices to show that πk(Lgm(D)) = 0.

Note that since m ≥ csr(TkD), Lgm(TkD) is connected by [23, Corol-
lary 8.5]. Furthermore, the natural map Lgm(TkD)→ C(Tk,Lgm(D)) given
by evaluation is a homeomorphism by [24, Lemma 2.3]. Hence,

[Tk,Lgm(D)] = π0(Lgm(TkD)) = 0

where the left hand side denotes the set of free homotopy classes of maps from
Tk to Lgm(D). Now, by repeatedly applying (1), we see that m ≥ gsr(TD).
Since m ≥ csr(D), it follows by [25, Lemma 2.6] that the forgetful map

πk(Lgm(D))→ [Tk,Lgm(D)]

is bijective. Hence, πk(Lgm(D)) = 0 for all m ≥ n as required.

The next lemma, which is crucial to our argument, is contained in the
proof of [25, Theorem 2.14]. We isolate it here in the form we need it.

Lemma 2.6. Consider a pullback diagram of unital C∗-algebras

A
α //

β
��

B

δ
��

C
γ // D

where either γ or δ is surjective, and let n be a natural number such that

n ≥ max {inj0(D), surj1(D)}.
Let v ∈ Lgn(A), and suppose that there exist S1 ∈ GL0

n(B) and S2 ∈ GL0
n(C)

such that
S1α(v) = en and S2β(v) = en.

Then there exists T ∈ GL0
n(A) such that Tv = en.

Remark 2.7. As mentioned above, the proof of Theorem A proceeds by
induction on the covering dimension of the underlying space. What finally
allows the argument to work is the following: If X is a finite-dimensional
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compact metric space, then covering dimension agrees with the small induc-
tive dimension [7, Theorem 1.7.7]. Therefore, by [7, Theorem 1.1.6], X has
an open cover B such that, for each U ∈ B,

dim(∂U) ≤ dim(X)− 1.

Now suppose {U1, . . . , Um} is an open cover of X such that dim(∂Ui) ≤
dim(X)− 1 for 1 ≤ i ≤ m, and define sets {Vi : 1 ≤ i ≤ m} inductively by

V1 := U1, Vk := Uk \
⋃
i<k

Ui for k > 1,

and subsets {Wj : 1 ≤ j ≤ m− 1} by

Wj :=
( j⋃
i=1

Vi

)
∩ Vj+1.

It is easy to see that Wj ⊂
⋃j
i=1 ∂Ui, so by [7, Theorem 1.5.3], dim(Wj) ≤

dim(X)− 1 for all 1 ≤ j ≤ m− 1.

We are now in a position to prove Theorem A.

Theorem 2.8. Let X be a compact metric space of finite covering di-
mension N , and let A be a unital C(X)-algebra. Then

csr(A) ≤ sup {csr(TNA(x)) : x ∈ X}.
Proof. We assume by Theorem 2.2 thatN ≥ 1 and the theorem is true for

any C(Y )-algebra, where Y is a compact metric space with dim(Y ) ≤ N−1.
So we assume that sup{csr(TNA(x)) : x ∈ X} <∞ and fix

n ≥ sup {csr(TNA(x)) : x ∈ X}.
We wish to show that GL0

n(A) acts transitively on Lgn(A). We begin, as
before, with a vector v ∈ Lgn(A) and a point x ∈ X. By the first part of the
proof of Theorem 2.2 (and using the fact that X is locally compact), there
is an open neighbourhood Ux of x and an operator Sx ∈ GL0

n(A) such that

πUx
(Sxv − en) = 0.

Furthermore, as in Remark 2.7, we may assume that dim(∂Ux) ≤ N − 1 for
all x ∈ X. Now choose a subcover {U1, . . . , Um} of {Ux : x ∈ X}, and define
{Vi} and {Wj} as in Remark 2.7. Then each Vi is a closed set and there are
Si ∈ GL0

n(A(Vi)) such that

πVi(Siv − en) = 0

for each 1 ≤ i ≤ m. We now induct onm to produce an operator T ∈ GL0
n(A)

such that Tv = en.
If m = 1 there is nothing to prove, so suppose m > 1; then W1 = V1 ∩V2

satisfies dim(W1) ≤ N−1. By Remark 1.7, TA(W1) is a C(W1)-algebra with
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fibres {TA(x) : x ∈W1}. So by induction hypothesis,

csr(TA(W1)) ≤ sup {csr(C(Tdim(W1),TA(x))) : x ∈W1}
= sup {csr(Tdim(W1)+1A(x)) : x ∈W1}.

But dim(W1) ≤ N − 1, so by Remark 2.4,

csr(TA(W1)) ≤ sup {csr(TNA(x)) : x ∈W1} ≤ n.

By Lemma 2.5,

max {inj0(A(W1)), surj1(A(W1))} ≤ n.

Now by Lemma 1.8, A(V1 ∪ V2) is a pullback:

A(V1 ∪ V2) //

��

A(V1)

��
A(V2) // A(W1)

Since the quotient maps in this diagram are surjective, Lemma 2.6 allows us
to construct T̃ ∈ GL0

n(A(V1 ∪ V2)) such that

T̃ πV1∪V2(v) = en.

Now observe that W2 = (V1 ∪ V2)∩ V3 and dim(W2) ≤ N − 1. Replacing
V1 by V1∪V2 and V2 by V3 in the earlier argument, we may repeat the above
procedure. By induction on m, we finally construct an element T ∈ GL0

n(A)
such that T (v) = en. Thus, GL0

n(A) acts transitively on Lgn(A), so csr(A)
≤ n as required.

2.1. Application to group C∗-algebras. Let G be a countable, dis-
crete group which can be obtained as a central extension of the form

0→ N → G→ Q→ 0

where N and Q are finitely generated abelian groups and Q is free (central
means that the image of N lies in the centre of G). The goal of this section
is to estimate the connected stable rank of C∗(G).

To begin, we briefly review the notion of a twisted group C∗-algebra
in the discrete case (see [20] for more details): Let K be a discrete group.
A multiplier (or normalized 2-cocycle with values in T) on K is a map ω :
K ×K → T satisfying

ω(s, 1) = ω(1, s) = 1 and ω(s, t)ω(st, r) = ω(s, tr)ω(t, r)

for all s, t, r ∈ K. Given a multiplier ω on K, we define an ω-twisted convo-
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lution product and an ω-twisted involution on `1(K) by

(f1 ∗ f2)(t) :=
∑
s∈K

f1(s)f2(s
−1t)ω(s, s−1t),

f∗(t) := ω(t, t−1)f(t−1).

This makes `1(K) into a ∗-algebra, and its universal enveloping algebra is
called the full twisted group C∗-algebra C∗(K,ω).

The following theorem of Packer and Raeburn allows us to use Theorem A
in this context. Note that if N is an abelian group, N̂ denotes its Pontryagin
dual group.

Theorem 2.9 ([19, Theorem 1.2]). Let G be a countable, discrete, amen-
able group given as a central extension

0→ N → G→ Q→ 0

and let σ be a multiplier on G such that σ(n, s) = σ(s, s−1ns) for all n ∈ N
and s ∈ G. Then C∗(G, σ) is isomorphic to a continuous C(N̂)-algebra
whose fibres are twisted group C∗-algebras of the form C∗(Q,ω).

We immediately conclude Theorem B.

Theorem 2.10. Let G be a discrete group that is a central extension
0 → N → G → Q → 0 where N is a finitely generated abelian group of
rank n, and Q is a free abelian group of rank m. Then

csr(C∗(G)) ≤
⌈
n+m

2

⌉
+ 1.

Proof. Note that G is amenable, so by Theorem 2.9 (taking the trivial
multiplier on G), C∗(G) is a continuous C(N̂)-algebra, each of whose fibres
is of the form C∗(Q,ω) for some multiplier ω on Q. Now N̂ ∼= Tn × F for
some finite set F , so N̂ is a compact metric space of dimension n. Thus, by
Theorem A,

(2) csr(C∗(G)) ≤ sup
ω
{csr(TnC∗(Q,ω))}.

Now fix a multiplier ω on Q, and consider B := C∗(Q,ω). Define Zω to be
the symmetrizer subgroup

Zω := {x ∈ Q : ω(x, y) = ω(y, x) ∀y ∈ Q}

and observe that, since Q is abelian, Zω is central and satisfies the conditions
of Theorem 2.9. Therefore, B is a C(Ẑω)-algebra. By Remark 1.7, TnB is a
C(Ẑω)-algebra, each of whose fibres is of the form TnB(x). So by Theorem A,

csr(TnB) ≤ sup {csr(TN+nB(x)) : x ∈ Ẑω}
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where N = dim(Ẑω). But Zω is a subgroup of Q, so has rank ≤ m, whence
dim(Ẑω) ≤ m (as above). Hence, by Remark 2.4,

(3) csr(TnB) ≤ sup {csr(Tm+nB(x)) : x ∈ Ẑω}.

Furthermore, by [19, Theorem 1.5], Ẑω is the primitive spectrum of B, so by
the Dauns–Hoffmann theorem [1, Theorem IV.1.6.7], each such fibre B(x) is
a simple C∗-algebra.

Now fix x ∈ Ẑω and note that by Theorem 2.9, B(x) is of the form
C∗(K,σ) where K = Q/Zω and σ is a multiplier on K. Since K is also a
free abelian group,

C∗(K,σ) ∼= Aθ

where Aθ is a simple noncommutative torus or C. If Aθ is a simple noncom-
mutative torus, then

csr(T`Aθ) ≤ 2

by [24, Proposition 2.7]. And if Aθ = C, then

csr(T`Aθ) = csr(C(T`)) ≤ d`/2e+ 1

by [17, Corollary 2.5]. Hence, for any point x ∈ Ẑω, we see that

csr(T`B(x)) ≤ d`/2e+ 1.

Together with (2) and (3), this gives the required inequality.

Note that we may as well have proved more. If G is a central extension
as above and A = C∗(G), then by Remark 1.7, TA is a C(N̂)-algebra, each
of whose fibres is of the form TC∗(Q,ω). Hence, the same argument shows
that

csr(TA) ≤
⌈
n+m+ 1

2

⌉
+ 1.

Note that csr(A) ≤ csr(TA) by Remark 2.4, and gsr(TA) ≤ csr(TA) by
Remark 1.5(2). Hence, by Theorem 1.3, we see that

K1(A) ∼= GLk(A)/GL0
k(A), where k =

⌈
n+m+ 1

2

⌉
.

As a simple example, consider G to be the integer Heisenberg group [19,
Example 1.4(1)]. Here, G is a central extension

0→ Z→ G→ Z2 → 0

so n = 1 and m = 2. Thus,

K1(A) ∼= GL2(A)/GL0
2(A).

Remark 2.11. To put our results in perspective, we consider the ex-
treme cases of Theorem B, namely when either N or Q is trivial. If N is
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trivial, then C∗(G) = C∗(Q) ∼= C(Tm). If X is a compact Hausdorff space
of dimension m, then

csr(C(X)) ≤ dm/2e+ 1

by a result of Nistor [17, Corollary 2.5]. Furthermore, Nica has shown that
this upper bound is attained if the top cohomology group in Hodd(X) is
nonvanishing [16, Theorem 5.3]. In particular, we conclude that

csr(C∗(G)) = csr(C(Tm)) = dm/2e+ 1.

Now, if Q is trivial, then C∗(G) = C∗(N) ∼= B ⊗ C(Tn) for some finite-
dimensional C∗-algebra B. Since tensoring by a finite-dimensional C∗-al-
gebra lowers the connected stable rank (by Remark 1.5), we conclude that

csr(C∗(G)) = csr(B ⊗ C(Tn)) ≤ csr(C(Tn)) = dn/2e+ 1.

3. Crossed products by finite groups. Let α : G → Aut(A) be an
action of a finite group G on a unital C∗-algebra A. The goal of this section
is to estimate the homotopical stable ranks of the crossed product A oα G
in terms of the ranks of A.

A result of Jeong et al. [11] states that the topological stable rank of
Aoα G may be estimated by the formula

tsr(Aoα G) ≤ tsr(A) + |G| − 1.

So by Remark 1.5(3), we conclude that

csr(Aoα G) ≤ tsr(A) + |G|.
Our first theorem is an improvement on this estimate in the case when A
has topological stable rank 1, and builds on the ideas of [23, Theorem 7.1].
Recall that A oα G is generated by a copy of A and unitaries {ug : g ∈ G}
such that uguh = ugh, ug−1 = u∗g, and ugaug−1 = αg(a) for all g, h ∈ G and
a ∈ A.

Theorem 3.1. Let G be a nontrivial finite group and let α : G→ Aut(A)
be an action of G on a unital C∗-algebra A. If tsr(A) = 1, then

csr(Aoα G) ≤ |G|.
Proof. We write B := AoαG, and enumerate G as {g0, g1, . . . , gn} where

g0 denotes the identity element of G. For each b ∈ B, there is a unique
expansion

b =

n∑
i=0

aiugi

where ai ∈ A. So we define the length of b to be L(b) := 1 + max {i ∈
{0, 1, . . . , n} : ai 6= 0}, with the convention that L(0) = 0. For a vector
b = (b1, . . . , bm) ∈ Bm, we write L(b) :=

∑m
j=1 L(bj).
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Now fix m ≥ |G|. We wish to show, as before, that GL0
m(B) acts tran-

sitively on Lgm(B). So fix v ∈ Lgm(B); we wish to prove that there exists
S ∈ GL0

m(B) such that S(v) = e1 where e1 = (1B, 0, . . . , 0). So consider

V := GL0
m(B)(v).

Then V is an open subset of Lgm(B) by [5, Theorem 1], and hence of Bm.
Let b = (b1, . . . , bm) ∈ V be a vector of minimal length in V . In other words,
s := L(b) = min {L(z) : z ∈ V }. We claim that bi = 0 for some 1 ≤ i ≤ m.

Suppose not; then choose ε > 0 such that, for any vector h ∈ Bm,
‖h− b‖ < ε implies that h ∈ V , and write

bi =

ti∑
j=0

ai,jugj

where ti = L(bi)−1. By multiplying by permutation matrices if needed (note
that this does not alter the value of L(b)), we may assume that

(4) 0 ≤ t1 ≤ · · · ≤ tm.
We now consider two cases:

(a) Suppose first that there exists 1 ≤ i ≤ m such that ti = ti+1. Once
again multiplying by a permutation matrix, we may assume that i=m−1.
(Note that the inequalities in (4) need not hold after doing this.) Now
tsr(A) = 1, so there exists x ∈ Lg1(A) such that ‖x − am−1,tm−1‖ < ε.
Consider

h = (b1, . . . , bm−2, b
′
m−1, bm)

where b′m−1 =
∑tm−1−1

j=0 am−1,jugj + xugtm−1
. Then ‖h − b‖ < ε, whence

h ∈ V . Furthermore, there exists y ∈ A such that yx = −am,tm , so consider

T̃ :=



1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0

0 0 0 . . . y 1


.

Then T̃ ∈ GL0
m(B) and T̃ (h) = h′ = (b1, b2, . . . , b

′
m−1, b

′
m) where

b′m =

tm−1∑
j=0

(yam−1,j + am,j)ugj .

This implies that h′ ∈ V and L(h′) < L(b), contradicting the minimality of
L(b).

(b) Now suppose there is no 1 ≤ i ≤ m such that ti = ti+1. Then by the
pigeon-hole principle, m ≤ |G|, so it must happen that m = |G|. Since G is
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nontrivial, m ≥ 2, and it follows that

b1 = a1,0ug0 and b2 = a2,0ug0 + a2,1ug1

where a1,0 6= 0 and a2,1 6= 0. Since tsr(A) = 1, there exists x ∈ A such that
‖x− a1,0‖ < ε and αg1(x) ∈ Lg1(A). Consider h = (b′1, b2, . . . , bm) where

b′1 = xug0 .

Then ‖h − b‖ < ε, so h ∈ V . Furthermore, there exists y ∈ A such that
yαg1(x) = −a2,1, so if

T̃ :=



1 0 0 . . . 0 0

yug1 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0

0 0 0 . . . 0 1


then T̃ ∈ GL0

m(B) and T̃ (h) = h′ = (b′1, b
′
2, b3, . . . , bm) where

b′2 = a2,0ug0 .

Now observe that h′ ∈ V and L(h′) < L(b), contradicting the minimality of
L(b).

Hence, there is some 1 ≤ i ≤ m such that bi = 0. Then, multiplying
by a permutation matrix once again, we assume that b1 = 0. Set b′ :=
(ε, b2, . . . , bm). Then ‖b′ − b‖ < ε, so b′ ∈ V . Now set

Q :=


1
ε 0 0 . . . 0 0
−1
ε b2 1 0 . . . 0 0
...

...
... . . .

...
...

−1
ε bm 0 0 . . . 0 1

 ∈ GL0
m(B).

Then Q(b′) = e1, so e1 ∈ V = GL0
m(B)v. Thus, GL0

m(B) acts transitively
on Lgm(B), whence csr(A) ≤ m as required.

3.1. Rokhlin actions. In this final section of the paper, our goal is
to prove Theorem C. The following definition of the Rokhlin property is
different from the original definition due to Izumi [10, Definition 3.1], but
the two are equivalent if the underlying algebra is separable (see [21, Theo-
rem 5.26]).

Definition 3.2. Let α : G → Aut(A) be an action of a finite group G
on a unital, separable C∗-algebra A. We say that α has the Rokhlin property
if, for every finite set F ⊂ A and every ε > 0, there are mutually orthogonal
projections {eg : g ∈ G} ⊂ A such that
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(1) αg(eh) = egh for all g, h ∈ G,
(2) ‖ega− aeg‖ < ε for all g ∈ G and a ∈ F ,
(3)

∑
g∈G eg = 1.

The Rokhlin property may be thought of as a notion of freeness of the
action, and has a number of interesting properties (see [22, Chapter 13]). In
the context of noncommutative dimension, one result is known: Osaka and
Phillips [18] have shown that a variety of different classes of C∗-algebras
are closed under crossed products by finite group actions with the Rokhlin
property. In particular, if A has topological stable rank 1 or real rank 0, then
so does AoαG. We prove an analogous result for homotopical stable ranks.
In fact, we estimate these ranks for the crossed product C∗-algebra in terms
of those of A.

In what follows, if α : G → Aut(A) is an action of a group G on a
C∗-algebra A, we write Aα to denote the fixed point subalgebra of A. To
begin, we need a result due to Gardella [8]. We are grateful to the referee
for pointing out this result (and the subsequent line of reasoning) to us, as
it considerably simplified our original argument.

Theorem 3.3 ([8, Theorem 2.11]). Let α : G → Aut(A) be an action
of a finite group G on a unital, separable C∗-algebra A with the Rokhlin
property. Then there is a sequence of unital, completely positive, contractive
linear maps ψn : A→ Aα such that, for all a, b ∈ A, we have

lim
n→∞

‖ψn(ab)− ψn(a)ψn(b)‖ = 0,

and, for all a ∈ Aα, we have limn→∞ ‖ψn(a)− a‖ = 0.

Lemma 3.4. Let α : G → Aut(A) be an action of a finite group G on a
unital, separable C∗-algebra with the Rokhlin property. Then

gsr(Aα) ≤ gsr(A) and csr(Aα) ≤ csr(A).

Proof. Let ψj : A → Aα be a sequence of approximately multiplicative
maps as in Theorem 3.3. For each n ∈ N, let ψ(n)

j :Mn(A)→Mn(A
α) denote

its inflation.
We begin with the gsr inequality. We assume that gsr(A) < ∞ and let

n ≥ gsr(A), and fix v ∈ Lgn(A
α), and ε > 0. By hypothesis, there exists

T ∈ GLn(A) such that Tv = en. Now choose η > 0 so that if S ∈ Mn(A
α)

with ‖S − T‖ < η, then S ∈ GLn(A
α). Furthermore, we may assume that

η‖v‖ < ε.
Then, since ‖ψ(n)

j (T ) − T‖ → 0 as j → ∞, we may choose j ∈ N such

that if S := ψ
(n)
j (T ), then ‖S−T‖ < η. This implies that S ∈ GLn(A

α) and

‖Sv − en‖ = ‖Sv − Tv‖ < η‖v‖ < ε.
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This is true for every ε > 0. Since the action of GLn(A
α) on Lgn(A

α) has
closed orbits by [5, Theorem 1], we conclude that GLn(A

α) acts transitively
on Lgn(A

α) as required.
The proof of the csr inequality is similar, except that we need the fact

that the GL0
n(A

α) orbits are also closed, by [23, Theorem 8.3].

The next lemma is a simpler version of a result due to Gardella, and we
state it in the form that we need.

Lemma 3.5 ([9, Theorem 3.8]). Let α : G → Aut(A) be an action of a
finite group on a separable, unital C∗-algebra A, and let β : G→ Aut(B) be an
action of G on a unital, nuclear C∗-algebra B. Let α⊗ β : G→ Aut(A⊗B)
denote the tensor product action (α ⊗ β)g = αg ⊗ βg. If α has the Rokhlin
property, then so does α⊗ β.

We are now in a position to prove Theorem C.

Theorem 3.6. Let α : G→ Aut(A) be an action of a finite group G on
a separable, unital C∗-algebra A with the Rokhlin property. Then

csr(Aoα G) ≤
⌈
csr(A)− 1

|G|

⌉
+ 1,

gsr(Aoα G) ≤
⌈
gsr(A)− 1

|G|

⌉
+ 1.

In particular, if csr(A) = 1 or gsr(A) = 1, then the same is true for AoαG.

Proof. We begin with the gsr inequality: Let B := B(`2(G)), and let
Ad(λ) : G → Aut(B) denote the natural action induced by the left regular
representation of G on `2(G). Let α ⊗ Ad(λ) : G → Aut(A ⊗ B) denote
the tensor product action, which has the Rokhlin property by Lemma 3.5.
However, it follows from noncommutative duality that

Aoα G ∼= (A⊗B)α⊗Ad(λ).

Hence, by Lemma 3.4,

gsr(Aoα G) ≤ gsr(A⊗B) = gsr(M|G|(A)) ≤
⌈
gsr(A)− 1

|G|

⌉
+ 1

where the last inequality follows from [15, Corollary 11.5.13] (note that the
rank glr(A) used in [15] is the same as gsr(A)− 1).

The csr inequality is entirely similar, except that at the very end, we
need the fact that

csr(M|G|(A)) ≤
⌈
csr(A)− 1

|G|

⌉
+ 1,

which was proved by Rieffel [24, Theorem 4.7].

We end with some examples that illustrate these results.
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Corollary 3.7. Let α : G → Aut(A) be an action of a finite group G
on a unital, separable C∗-algebra A with the Rokhlin property. Then

csr(TB) ≤
⌈
csr(TA)− 1

|G|

⌉
+ 1,

gsr(TB) ≤
⌈
gsr(TA)− 1

|G|

⌉
+ 1.

Hence, if

n ≥ max

{⌈
gsr(TA)− 1

|G|

⌉
,

⌈
csr(A)− 1

|G|

⌉}
then the natural map

GLn(B)/GL0
n(B)→ K1(B)

is an isomorphism.

Proof. Let β : G → Aut(C(T)) be the trivial action. Then, by Lem-
ma 3.5, the action α ⊗ β : G → Aut(TA) has the Rokhlin property, so
the result follows from Theorem C. The final conclusion now follows from
Theorem 1.3.

Example 3.8. Let G be a finite group of order k and A be a UHF
algebra of type k∞. Then A admits a Rokhlin action α : G → Aut(A) by
[10, Example 3.2], so the above corollary applies to the algebra B := AoαG.
Since A is divisible in the sense of [24, Definition 4.1], and tsr(A) = 1, it
follows from [24, Corollary 4.12] that csr(TA) ≤ 2. So by the above corollary,
we conclude that the map

GL1(B)/GL0
1(B)→ K1(B)

is an isomorphism. In fact, the same argument shows that

csr(TkB) ≤ 2

for all k ∈ N. Hence, by [24, Theorem 3.3], the natural inclusion map θB :
GLn(B)→ GLn+1(B) induces a weak homotopy equivalence for all n ≥ 1.

We end with an example that shows that Theorem C does not hold if
the action does not satisfy the Rokhlin property.

Example 3.9. If A =M2∞ denotes the UHF algebra of type 2∞, then

csr(A) = 1.

If G = Z/2Z, then Blackadar has constructed in [2] an action of G on A such
that K1(AoG) 6= {0}. It follows by Remark 1.5(9) that

csr(AoG) > 1.

Thus, Theorem C does not hold in this situation.



Homotopical stable ranks 327

Furthermore, tsr(A) = 1, so by Theorem 3.1, we conclude that

csr(AoG) = 2.

Thus, this example also shows that the estimate in Theorem 3.1 is sharp.
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